
Practical Revocation and Key Rotation

Steven Myers and Adam Shull(B)

Indiana University, Bloomington, IN, USA
{samyers,amshull}@indiana.edu

Abstract. We consider the problems of data maintenance on untrusted
clouds. Specifically, two important use cases: (i) using public-key encryp-
tion to enforce dynamic access control, and (ii) efficient key rotation.

Enabling access revocation is key to enabling dynamic access control,
and proxy re-encryption and related technologies have been advocated
as tools that allow for revocation on untrusted clouds. Regrettably, the
literature assumes that data is encrypted directly with the primitives.
Yet, for efficiency reasons hybrid encryption is used, and such schemes
are susceptible to key-scraping attacks.

For key rotation, currently deployed schemes have insufficient security
properties, or are computationally quite intensive. Proposed systems are
either still susceptible to key-scraping attacks, or too inefficient to deploy.

We propose a new notion of security that is practical for both prob-
lems. We show how to construct hybrid schemes that are both resistant
to key-scraping attacks and highly efficient in revocation or key rotation.
The number of modifications to the ciphertext scales linearly with the
security parameter and logarithmically with the file length.

1 Introduction

Data storage on the cloud is now a major business. Examples include both
dynamic storage such as Dropbox, Box, Google Drive, and iCloud and static
long term storage such as Amazon’s Glacier, and Google’s Coldline.

All of the dynamic services provide some degree of sharing and access control
that allow one to share files with others, but they all come at the price that all of
one’s data is either (i) encrypted under a key that the cloud has access to or (ii)
placed on the cloud in plaintext. This is necessary because the cloud provider
must be able to provide the data to any of its users (as it may be shared), and
therefore the cloud acts as an all-trusted reference monitor that decides who can
access data. This makes data held by such cloud providers privy to insider and
data exfiltration attacks that can put the data of large numbers of users at risk.

In a separate scenario, different regulatory agencies now require that certain
sensitive data be encrypted under new keys over regular time intervals, a process
dubbed key rotation. With some simplification, such rotation ensures that if keys
are leaked, lost, or stolen without concurrent access to the encrypted data, then
such keys have a limited useful lifespan: after the data is re-encrypted under a
new key, the old key should no longer be useful.
c© Springer International Publishing AG, part of Springer Nature 2018
N. P. Smart (Ed.): CT-RSA 2018, LNCS 10808, pp. 157–178, 2018.
https://doi.org/10.1007/978-3-319-76953-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76953-0_9&domain=pdf


158 S. Myers and A. Shull

In both scenarios, we’d like the ability to re-encrypt data on the cloud (to
revoke access to original recipients and/or provide access to new recipients in
one case, and to rotate keys in the other), without trusting the cloud provider
with access to the original unencrypted data, and thus not exposing the data’s
owners to exfiltration or insider attacks. Of course the original owner of the data
could provide a newly encrypted copy of the data to the cloud in both cases, but
in practice this is typically both expensive and operationally difficult. Similarly,
the original ciphertexts can be re-encrypted under a new key on the cloud, but
this has new associated costs.

Cryptography seemingly provides natural solutions to untrusted cloud access
control; tools such as attribute-based and predicate encryption allow one to store
data on a public cloud with cryptography enforcing access control functions.
Further, to allow for re-encryption there are often corresponding proxy and del-
egated re-encrypted versions of these schemes, which would allow the cloud to
re-encrypt data under new access schemes or for new recipients without hav-
ing access to the original data. This theoretically provides solutions for both
revocation and key rotation.

However, as detailed by Garrison III et al. [14], these cryptographic tech-
niques are not yet well-suited for even relatively simple dynamic access control
policies. Such re-keying is too slow for all but the smallest data, because of the
expensive asymmetric operations that are necessary to be applied to the entire
message payload. Yet, because changes to access policies can often affect large
numbers of files, there is a need for extremely efficient revocation mechanisms.
If one deploys hybrid re-encryption for speed gains, then the approach becomes
problematic due to key-scraping attacks, where a user stores a large number of
symmetric keys in order to maintain access to files even after revocation.

For the scenario of key rotation, there are similar issues. Existing approaches
to key rotation include using very expensive asymmetric operations, such as the
scheme by Boneh et al. employing key-homomorphic ciphers [7], or completely
re-encrypting the data with a symmetric cipher. The technique currently used
in constructions by Google and Amazon [1,15] is to use a long-term symmetric
key to encrypt data and then encrypt that key under another symmetric key,
providing a form of hybrid encryption; for rotation only the latter key is changed
while the long-term key remains the same. These constructions have questionable
and ill-defined security properties and are susceptible to key-scraping attacks.
This latter point was concurrently observed by Everspaugh et al. [13].

Our Contributions. Our observation is that in both scenarios, the assump-
tion should be that the adversary has a prior key to the encrypted material,
and possibly some but not all of the original ciphertext (otherwise, an adver-
sary that has both the prior key and full former ciphertext can already decrypt
the data). The re-encryption in these scenarios should have the property that
security is maintained assuming full access to the re-encrypted ciphertext, but
no access to the new key. We propose new CPA and CCA definitions that prop-
erly capture this setting, and develop them for traditional and identity-based



Practical Revocation and Key Rotation 159

proxy re-encryption, as well as revocable attribute-based encryption (ABE). We
also adapt the notion of UP-IND security for key rotation from [13] and show
how it can be strengthened to address adversaries that have partial access to
old ciphertexts. Next, we provide a construction that satisfies these definitions
and shows exceptional performance. In particular, it only requires modifying
a logarithmic number of the ciphertext bits, assuming the adversary can only
see a fixed (1 − ε) fraction of the original ciphertext. Finally, we discuss the
implementation details, and show the relative benefits compared to a complete
re-encryption with symmetric-key primitives.

Overview of our Construction. Here we present the construction in the case
of it being used as a hybrid encryption mode for proxy re-encryption (PRE)
schemes; the main ideas are the same for other settings. We make novel use of
an All-or-Nothing Transform (AONT) and combine it with traditional ideas from
hybrid encryption to produce a hybrid re-encryption process. The re-encrypted
ciphertext grows slightly in size by an additive length of one public-key encryp-
tion, and thus in practice by several hundred to several thousand bits. However,
for the use cases discussed above, storage is typically cheap, and so this cipher-
text growth adds a negligible cost.

For those versed in the area, the main idea of our construction is to take a tra-
ditional hybrid construction, where a ciphertext consists of an asymmetric PRE
encryption of the symmetric key and a symmetric-key encryption of the file in
question. We then apply an AONT on top of the symmetric-key ciphertext. To
re-encrypt we use the original proxy re-encryption scheme to update the asym-
metric encryption to a new asymmetric key, and then pseudorandomly choose a
number of locations in the AONT-transformed ciphertext to encrypt. We encrypt
enough of the AONT’s output that with high probability the adversary has not
download some of the newly encrypted locations and thus cannot invert the AONT
to decrypt. We then add a new asymmetric encryption of the symmetric key used
to choose and encrypt the random bit locations, so that the appropriate decryptor
can later invert all the operations and retrieve the appropriate locations. The num-
ber of locations to encrypt is roughly (i) proportional to the inverse of the fraction
of the file the adversary does not look at, and (ii) proportional to the number of
bits that need to be changed by the AONT, which ensures that with overwhelming
probability the attacker cannot invert the AONT.

2 Background

Access Revocation. Consider a typical cryptographic access control scenario
where a file is encrypted under a public key, and those that have read access
are given the secret key. We stress that while in traditional PKI settings, only
one person has a given secret key, in cryptographic access control settings this
is not necessarily the case. This is further reflected in cryptographic systems
more directly related to access control such as attribute-based encryption and
predicate encryption, where a given set of credentials or a given access policy
can result in multiple users being given the same corresponding key.



160 S. Myers and A. Shull

Now if a user’s access is revoked from a file that is shared amongst many
on an untrusted server, the typical cryptographic solution involves providing
new secret keys to all users that should continue to have access to the file, and
then re-encrypting the file. When the server is not trusted with the plaintext,
but can be trusted to perform computation, proxy re-encryption or revocable
encryption schemes can be used to re-encrypt the data on the cloud, without
requiring a user that has a valid secret-key to retrieve, decrypt and re-encrypt
the result. A re-encryption key is generated and sent to the cloud, which updates
the ciphertext(s) to the new key.

Key Rotation. Key rotation is the process by which files encrypted and stored
must be re-keyed on a timely basis. This ensures that if keys are accidentally
leaked or otherwise revealed, the plaintext remains secure, assuming the adver-
sary has not also already obtained a copy of the data encrypted under said key.
Key rotation is recommended across a wide range of industries and organiza-
tions. For example, NIST [6] recommends regular and planned rotation, as does
the Open Web Application Security Project (OWASP) [24], and the payment
card industry [25] requires it on a periodic basis for customer data. Google [15]
and Amazon [1] now provide partial support for such operations in their long
term storage services, so that customers that are mandated to rotate keys can
do so. However, as has been noted by Everspaugh et al. [13], the techniques used
have questionable and undefined security.

Key-Scraping Attacks. Hybrid proxy re-encryption, revocable encryption,
and key rotation schemes are all vulnerable to key-scraping attacks if the key used
to encrypt the data itself is not changed during revocation and key rotation. A
key-scraping attack occurs when a user—in order to maintain access to files even
after a future revocation—downloads and stores a large number of symmetric
keys in order to maintain access to files even after revocation.

To make the problem more concrete, consider the following scenario based
on Garrison III et al. [14]: Content files are stored on a cloud and are hybrid-
encrypted using a hybrid proxy re-encryption scheme with public-key encryption
algorithm E and a symmetric-key encryption algorithm ESym. Alice has access
to a large number of files {fi}i that are encrypted on the cloud in ciphertexts{(

E(pkSub0
, ki),ESym(ki, fi)

)}
i
. Alice has the secret key, skSub0 , corresponding

to public key pkSub0
, as she belongs to an initial group of subscribers, and the

subscribers all have access to skSub0 , the secret key for this role.1 She does not
have the resources to download all of the content files she has access to. She
is removed from the subscriber group, so the cloud proxy re-encrypts all data
under a new public-key pkSub1

, denoting the new group of valid subscribers, and
to which Alice does not have the key. The result is that the cloud now serves{
E(pkSub1

, ki),ESym(ki, fi)
}

i
, and Alice cannot directly access the content in the

subscription service.

1 We simplify [14] to keep the example simple.



Practical Revocation and Key Rotation 161

However, while it may not be reasonable to assume that Alice can download
all of the files she has access to on the cloud service while she is a subscriber, due
to their collective size or rate limits on the outgoing service provider’s network
connection, it is more reasonable to assume that at some point Alice downloads
and decrypts all of the symmetric keys {ki}i. Even for millions of files, this would
require less than a gigabyte of storage/bandwidth, and she could use these keys
to decrypt all of

{
ESym(ki, fi)

}
i
. Therefore, even if the symmetric keys are re-

encrypted via proxy re-encryption, it is reasonable to assume that Alice would
maintain the ability to decrypt the symmetric portion of the proxy hybrid re-
encrypted files on the cloud. One needs to ensure with hybrid re-encryption that
ciphertexts are re-encrypted on both the public-key and symmetric-key ciphertext
portions.

While one could use the cloud to provide access control against scraping
attacks, by for example monitoring a user who accesses the encrypted symmetric-
keys portion of too many files, this has several downsides. First, it suggests that
access control mechanisms of the cloud can’t be circumvented by malicious actors
or insiders, which is against the threat model of an untrusted cloud. Further, it
implies that the cloud needs to have user accounts, and is aware of and actively
records the history of such accesses, and implements access control denial when
such occasions occur. The cloud thus monitors which files the users access, which
portions, and how frequently, which for privacy, security, and anonymity reasons
may be undesirable.

Consider the concrete use case of a subscription content service. With a tra-
ditional hybrid encryption scheme a malicious user may be tempted to download
symmetric keys for the entire content service—performing a scraping attack—so
that all the content could be accessed at a later time after stopping payments.
Our proposed scheme would limit the user to the material they could download
while paying for the service. Note that a service can easily limit the download rate
to prevent mass download attacks without effect on legitimate use. For exam-
ple, a library might limit downloads to a few tens of books of data a day, and
similar a streaming service might limit a user to the equivalent of 24 h of video
per day. This doesn’t provide much limit on how much of the library content
a legitimate user might actually access. However, a key-scraping attack under
such a rate-limit would permit access to a significant fraction of all content of
the service.

With respect to the scenario of key rotation of data stored on the cloud,
our construction’s ability to efficiently rotate keys lowers its cost, and this can
allow for more efficient and less costly key rotations on large data stores, or
alternately may permit for more frequent key rotations due to lowered costs.
Other systems, such as those proposed by Boneh et al. [7] that permit updating
of symmetric encryptions through key-homomorphisms, also fulfill this function,
but their computational costs are significantly more expensive—requiring, for
each “block” of the file exponentiations on cyclic groups where the discrete log
problem is hard.



162 S. Myers and A. Shull

3 Related Work

Proxy re-encryption has a significant history (e.g., [4,16,17,22]) that involves the
construction of a number of different variants and increasingly stringent security
definitions and corresponding constructions in the public-key and identity-based
encryption (IBE) spaces. Ateniese et al. [4] also provide a description of a secure
file system scheme that uses proxy re-encryption. However, this scheme does not
consider what happens when a user’s access to a file is revoked.

Related is the notion of revocable encryption schemes. While most such
schemes only revoke certificates/keys so that they cannot be used to decrypt
ciphertexts encrypted in the future, the ABE scheme of Sahai et al. [28] also
provides a mechanism for revoking access to previously encrypted ciphertexts
by delegating the ciphertext to a later time. Since this scheme only delegates
the ABE portion of the ciphertext and not the symmetric-key-encrypted portion,
this scheme is susceptible to key-scraping attacks.

Watanabe and Yoshino [30] present a mechanism for efficiently updating
symmetric keys. They also use an AONT to improve efficiency. However, their
scheme is in the symmetric key setting, and it does not consider revocation,
where the adversary previously had legitimate access to the file.

Li et al. [19] present a rekeying mechanism for encrypted deduplication stor-
age and recognize its benefits for dynamic access control on the cloud and key
rotation, but provide no formal analysis of security, and essentially note that
their construction is susceptible to the key-scraping attack we describe and pre-
vent.

Boneh et al. [7] show how to use key-homomorphic pseudorandom functions
to implement symmetric-key proxy re-encryption, and address its use in key
rotation. However, current constructions of key-homomorphic PRFs are far too
inefficient to be used in practice, and their constructions would require asym-
metric operations that scale directly with the length of the file being encrypted.

Everspaugh et al. [13] look at the issue of key rotations on untrusted clouds.
They cite the problematic approaches being applied, and consider either simple
solutions that are still susceptible to key-scraping attacks or solutions based on
Boneh et al.’s [7] previously mentioned approach with its corresponding draw-
backs.

Independently from our work, Bacis et al. [5] presented a technique for
symmetric-key revocation similar to our approach of applying an AONT to
the symmetric-key ciphertext and then re-encrypting only a small portion of
it. Instead of using an AONT, they similarly apply the AES block cipher mul-
tiple times to different combinations of the bits of a ciphertext—or a portion of
a ciphertext called a “macro-block”—to ensure that each bit affects every other
bit of the macro-block. Their work differs from ours in several keys respects: (i)
They provide no formal notion of security, and thus no formal argument of what
security is achieved; but their security notion, for example, seems to presume the
adversary has no knowledge of the underlying plaintext, and relatively high suc-
cess rates of decryption with access to as little as 50% of the original ciphertext.
(ii) The number of times the AES block cipher needs to be applied to encrypt or



Practical Revocation and Key Rotation 163

decrypt a file of length n in their scheme grows as O(n log n) whereas our scheme
grows as O(n) with applications of AES and SHA primitives. Our scheme only
applies a symmetric-key encryption once and an AONT once to the file, regard-
less of its size. (iii) Lastly, we show how to incorporate our construction with
public-key primitives, whereas their construction is solely symmetric-key.

4 Notation and Background Definitions

Given a string s over a given alphabet, we denote by |s| the length of the string. A
function μ is negligible if it grows slower than any inverse polynomial. Let D1 =
{D1,i}i∈N and D2 = {D2,i}i∈N be two indexed sequences of distributions, then
D1 ≈ D2 denotes that the two sequences are computationally indistinguishable
[18]. Let [N ] denote {1, . . . , N} and let

{
N
�

}
be the set of all �-element subsets

of [N ]. For y ∈ {0, 1}N and L ∈ {
N
�

}
, we use [y]L to denote the N − � bits of y

that are not in L. For a string t, let t[j] represent the jth bit of s.
Let Ind(s, �∗) be a deterministic function that takes a seed s and produces a

pseudorandom element of
{

N
�∗

}
, i.e. a pseudorandom subset of {1, . . . , N} of size

�∗. Let Ctr(k, �∗) denote the keystream of length �∗ produced by a pseudorandom
generator. Our notation envisions using counter mode encryption with key k
and nonce 0, which is a known PRG. Note that if the underlying block cipher is
secure, then Ctr(k, �∗) is pseudorandom.

Let rInd(�∗) denote a random element of
{

N
�∗

}
, i.e. a random subset of

{1, . . . , N} of size �∗; and let rStr(�∗) be a random string of length �∗. Let [t]ind,str

denote string t with the values of the bit positions specified by the indices in
ind XORed with string str. For example, T (x)ind={1,3,4},str=101 would output
t[1] ⊕ 1, t[2], t[3] ⊕ 0, t[4] ⊕ 1, t[5], . . ..

All-Or-Nothing Transforms

All-or-nothing transforms were introduced by Rivest [27] as a primitive function
that has the property that without access to nearly the entire output, no party
could retrieve any bit of the underlying input; but with the entire output the
input is easily retrievable. The notion was formalized by Boyko [8] and Canetti
et al. [9] in the random oracle and standard models respectively, with security
against adaptive adversaries defined by Dodis et al. [12].

Definition 1 (Adaptive AONT [12]). A randomized polynomial time com-
putable function T : {0, 1}n → {0, 1}N is an adaptive �-AONT if it satisfies the
following conditions:

1. T is efficiently invertible, i.e., there is a polynomial time machine I such that
for any x ∈ {0, 1}n and any y ← T (x), we have I(y) = x.

2. For any x0, x1 ∈ {0, 1}n and any PPT adversary A with oracle access to
string y = T (xb) who can read at most N − � bits of y, we have:

∣
∣
∣Pr

[
AT (x0)(x0, x1) = 1

]
− Pr

[
AT (x1)(x0, x1) = 1

]∣∣
∣ ≤ ε(N)

for some negligible function ε.



164 S. Myers and A. Shull

Construction of AONTs. Boyko [8] showed that Optimal Asymmetric
Encryption Padding (OAEP) satisfies a non-adaptive version of Definition 1 in
the random oracle model. Extending the work of Canetti et al. [9] and Dodis et
al. [12] we show that OAEP is also an adaptively secure AONT in the random
oracle model. A proof for the following lemma is given in the full version [23].

Lemma 1. Let G : {0, 1}k → {0, 1}n, and H : {0, 1}n → {0, 1}k be ran-
dom oracles. Define the probablistic function fOAEP : {0, 1}n → {0, 1}n+k as
fOAEP(x; r) = 〈G(r) ⊕ x,H(G(r) ⊕ x) ⊕ r)〉, where r ∈R {0, 1}k. Let � ≤ k,
then fOAEP is an adaptive 2�-AONT, with security q/2�−2 for an adversary that
makes at most q < 2�−1 adaptive queries to G or H.

5 Updatable Encryption

We present a symmetric encryption mode with security properties that are
stronger than those presented by Everspaugh et al. [13] in their UP-IND defini-
tion, but weaker than those presented in the UP-REENC definition. However,
we get performance only slightly slower than known UP-IND constructions, and
orders of magnitude faster performance than known UP-REENC constructions.
Thus, we believe our construction has significant practical value for increasing
deployed security in key-rotation settings.

5.1 Updatable Encryption Definition

To achieve key rotation, we borrow the notion of updatable encryption from
[7,13]. This notion envisions KEM/DEM-type construction, where all the keys
are symmetric keys. We use {ski} to denote the KEM keys that will be rotated,
while {ki} will denote the DEM keys that may or may not be updated. Note, how-
ever, that these keys all come from the same symmetric-key encryption scheme
and are identically distributed.

Definition 2 (Updatable Encryption). An updatable encryption scheme
Πupd consists of five probabilistic polynomial time algorithms:

GUpd(1λ) → (sk): Key generation
EUpd(sk,M) → C = (C̃, C): Symmetric hybrid encryption
DUpd(sk, C) → M : Decryption, returns the underlying message or ⊥.
RGUpd(ski, skj , C̃) → Δi,j,C̃ : Creates a re-encryption token that can trans-
form a ciphertext encrypted under ski with header C̃ to a ciphertext encrypted
under skj.
REUpd(Δi,j,C̃i

, (C̃i, Ci)) → Cj: Takes a re-encryption token Δi,j,C̃i
and a

ciphertext encrypted under ski with header C̃, and translates it into a cipher-
text encrypted under skj. REUpd is required to be deterministic, as this sim-
plifies the security definition.

Correctness. For every message M and sequence of keys {sku ←
GUpd(1λ)}u∈{0,...,r}, let C0 = (C̃0, C0) = EUpd(sk0,M). For 0 ≤ u ≤ r − 1 let
Cu+1 = REUpd(RGUpd(sku, sku+1, C̃u), Cu). Then DUpd(skr, Cr) = M .



Practical Revocation and Key Rotation 165

5.2 UP-IND Security for Updatable Encryption

We borrow the updatable encryption indistinguishability (UP-IND security) def-
inition from Everspaugh et al. [13]2. We make one small change to make our
proofs easier to present: The adversary makes one query to the challenge oracle
instead of a polynomial number of queries to a left-or-right oracle. Standard
techniques show these equivalent up to a factor in the number of queries made
to the left-or-right oracle.

Definition 3 (UP-IND Security Game). The security game is given in
Fig. 1 (p. 12). λ is the security parameter. Let adv. A be a poly-time oracle TM.
The game creates t + κ secret-keys: t ≥ 1 uncorrupted and κ ≥ 0 corrupted that
are given to A. The oracles are defined as follows:

– Encryption Oenc(i,M): Output EUpd(ski,M).
– Re-Encryption Key Generation Orkey(i, j, C̃): If j is corrupted and

(i, C̃) is a challenge derivative, output ⊥. Otherwise, output Δi,j,C̃ ←
RGUpd(ski, skj , C̃).

– Re-Encryption Orenc(i, j, (C̃, C)): Compute Δi,j,C̃ ← RGUpd(ski, skj , C̃) and

C ′ = (C̃ ′, C
′
) ← REUpd(Δi,j,C̃ , (C̃, C)). If j is corrupted and (i, C̃) is a chal-

lenge derivative, then output C̃ ′. Otherwise, output C ′
– Challenge Ochal(M0,M1, i

∗): If i∗ is corrupted, then output ⊥. Otherwise,
output C∗ ← EUpd(ski∗ ,Mb). The oracle can only be called once.

Define the concept of a challenge derivative (i, C) as follows:

– (i∗, C̃∗) is a challenge derivative if the challenge query was asked on secret-key
index i∗ and the response was C∗ = (C̃∗, C

∗
).

– If (i, C̃) is a challenge derivative, and A has queried Orenc(i, j, (C̃, C)) and
received header C̃ ′ in response, then (j, C̃ ′) is a challenge derivative.

– If (i, C̃) is a challenge derivative, and A has queried Orkey(i, j, C̃) and received
Δi,j,C̃ in response, then the header of (j,REUpd(Δi,j,C̃ , (C̃, C)) is a challenge
derivative.

Definition 4. A updatable encryption scheme Πupd is UP-IND-secure if for all
oracle PPT adversaries A, there exists a negligible function negl such that:

Pr[UP-INDA,Πupd
(1λ, t, κ) = 1] ≤ 1

2
+ negl(λ).

5.3 (1 − ε)-Exfiltration UP-IND Security for Updatable Encryption

We now provide our stronger definition, which demonstrates that an adversary
that has a compromised key will be unable to break a key-rotated ciphertext
unless it previously downloaded at least a 1− ε fraction of the former ciphertext
before rotation.
2 Everspaugh et al. [13] presents a security notion UP-INT that ensures integrity. How-

ever, at CRYPTO 2017 they noted a flaw in their constructions. Thus our scheme’s
improvement on their KSS scheme will also not have UP-INT security.



166 S. Myers and A. Shull

Definition 5 ((1 − ε)-Exfiltration UP-IND Security Game). We define
game (1 − ε)-Exfil-UP-INDA,Πupd

(1λ) as being identical to UP-INDA,Πupd
(1λ)

except that the challenge oracle is called as Ochal(M0,M1, [i∗0, . . . , i
∗
r ], j

∗, bitPos)
and works as follows:

The adversary can call (M0, M1, [i∗0, . . . , i
∗
r ], j∗, bitPos) for any values

[i∗0, . . . , i
∗
r ] such that i∗u �= i∗u+1 for 0 ≤ u ≤ r − 1. These values represent the

keys, prior to the current key, through which the challenge ciphertext is updated.
These keys may be corrupted, to model the fact that an adversary may have
obtained the old keys. However, now j∗ must be an uncorrupted index distinct
from i∗r. The input bitPos will be used to indicate the bits of ciphertexts cre-
ated prior to key rotation that the adversary receives. The challenger computes
{C∗

u = (C̃∗
u, C

∗
u)}0≤u≤r where C∗

0 = EUpd(ski∗
0
,Mb), and for u > 0,

(
C̃∗

u, C
∗
u

)
= REUpd

(
RGUpd

(
ski∗

u−1
, ski∗

u
, C̃∗

u

)
,
(
C̃∗

u−1, C
∗
u−1

))
.

The challenger also computes

C∗∗ =
(
C̃∗∗, C

∗∗)
= REUpd

(
RGUpd

(
ski∗

r
, skj∗ , C̃∗

r

)
,
(
C̃∗

r , C
∗
r

))
.

Here each C∗
u represents a ciphertext before key rotation and C∗∗ represents the

ciphertext after key rotation. Let N ′ = min0≤u≤r |C∗
u|.

In this definition, only derivatives of (j∗∗, C̃∗∗)—not (i∗0, C̃
∗
0 ) through

(i∗r , C̃
∗
r )—are considered challenge derivatives for purposes of the Orkey and Orenc

oracles.
The challenge oracle is stateful. The adversary selects bitPos one pair (u, v)

at a time and receives the vth bit of ciphertext C∗
u, so it can choose each pair

based on the previous bits it received. Once the adversary has received (1 − ε)N ′

total bits of {C∗
u}0≤u≤r, the oracle outputs C∗∗. After this it refuses to respond.

Similarly, the oracle refuses to respond if queries change any of the calling values
other than bitPos.

Note that it is possible to be secure in the previous game without actually
achieving UP-IND security, so the definition of security requires both notions.

Definition 6. An updatable encryption scheme Πupd is (1 − ε)-Exfiltration
UP-IND-Secure if for all oracle PPT adversaries A, there exists a negligible func-
tion negl s.t. both hold:

1. Pr[(1 − ε)-Exfil-UP-INDA,Πupd
(1λ) = 1] ≤ 1

2 + negl(λ)
2. Pr[UP-INDA,Πupd

(1λ) = 1] ≤ 1
2 + negl(λ).

5.4 Construction

The basis of our construction is the KSS updatable authenticated encryption
scheme of Everspaugh et al. [13], based on a symmetric encryption primitive
Πsym = (GSym, ESym, DSym). This scheme uses a key encapsulation mechanism



Practical Revocation and Key Rotation 167

(KEM) and a data encapsulation mechanism (DEM), both based on a symmetric
authenticated encryption scheme. In this scheme, the KEM key is updated while
the DEM key is not. The ciphertext header contains a share of the DEM key
encrypted under the KEM key. The ciphertext body contains the other share of
the DEM key and the message encrypted under the DEM key. When the cipher-
text is updated, the DEM key is split into new shares, and the new ciphertext
header is encrypted under the new KEM key. Note that the KSS scheme also
includes an encrypted hash of the message in the header—designed to ensure
integrity—but we exclude it from our scheme because it is insufficient to provide
integrity and is not needed for our security definitions.

In addition to all this, our scheme applies an AONT, T , to the encrypted
message. An initial (never updated) ciphertext has the form (C̃, (y, CT )), where
the components are:

– C̃ = ESym(sk, χ) is an encryption under the KEM key sk of a share χ of the
DEM key x.

– y is the other share of the DEM key x.
– CT = T

(
ESym(x,M)

)
is the AONT applied to the encryption under the DEM

key x of the message M .

When the ciphertext is updated, the same actions are taken as in the KSS
scheme. Additionally, the updater re-encrypts a randomly selected set of bits of
CT , on top of any previous re-encryptions of bits of CT . To allow decryption,
the locations of the re-encrypted bits and the key used to encrypt them are also
stored in the ciphertext header. As a result, the ciphertext header will grow
linearly each time the ciphertext is updated; however, the header size remains
independent of the length of the message.

A ciphertext updated r times has the form (C̃, (y, CT )), where the compo-
nents are:

– C̃ = ESym(sk, (χ, (s1, k1), . . . , (sr, kr)) is an encryption under the KEM key sk
of a share χ of the DEM key x and all the seeds and keys used to re-encrypt
bits of CT .

– y is the other share of the DEM key x.
– CT = T

(
ESym(x,M)

)
is the AONT applied to the encryption under the

DEM key x of the message M , with bits re-encrypted as specified by
(s1, k1), . . . , (sr, kr).

5.5 Updatable Encryption Scheme

We now give the formal description of our (1−ε)-Exfil-UP-IND-secure updatable
encryption scheme Πupd =

(
GUpd,EUpd,RGUpd,REUpd,DUpd

)
. Let N be the out-

put length of T , and let �∗ ≤ N with �∗ = ω(log(λ)) be the number of bits of the
AONT output that are re-encrypted. The value of �∗ will depend on the secu-
rity of the AONT and how small ε is (i.e., how much of the file we assume the
adversary will download). GUpd

(
1λ

)
= GSym

(
1λ

)
, with the remaining algorithms

defined in Fig. 1.



168 S. Myers and A. Shull

Fig. 1. UP-IND security experiment and Πupd algorithms

5.6 Security of Our Scheme

Since our scheme Πupd is essentially the KSS scheme from [13] with the AONT
added on top, the proof of UP-IND security of KSS in Theorem 6 of [13] also
applies to Πupd . Note that the proof of UP-IND security only requires the under-
lying scheme to be IND-CPA-secure encryption, not full authenticated encryp-
tion. Thus we have:



Practical Revocation and Key Rotation 169

Theorem 1. Assume the existence of an IND-CPA-secure symmetric-key
encryption scheme Πsym =

(
GSym,ESym,DSym

)
and an all-or-nothing transform

T . Then the construction of Πupd in Sect. 5.5 is UP-IND-secure.

The following theorem claims that our scheme Πupd also has (1 − ε)-
Exfil-UP-IND-security, meaning it satisfies Definition 6.

Theorem 2. Assume the existence of an IND-CPA-secure symmetric-key
encryption scheme Πsym =

(
GSym,ESym,DSym

)
and an adaptive �-AONT T . Sup-

pose that for the construction of Πupd from Sect. 5.5, CT comprises at least a
fraction 1 − δ of the total size of each ciphertext. Then for any ε < 1 with ε > δ
and any �∗ > �

ε−δ , this construction is (1 − ε)-Exfil-UP-IND-secure.

We provide a brief sketch that discusses the important ideas.

Proof (very brief sketch — full proof to appear in an upcoming paper on
the Cryptology ePrint Archive). We consider a series of hybrid games that
remove the challenge ciphertext’s dependence on any encapsulated keys that
are encrypted with uncorrupted secret keys in the experiment. The IND-CPA
security of the underlying scheme enables this. In several other games we then
exchange the pseudo-random subsets of encrypted bits in the challenge cipher-
text’s AONT with completely random subsets, encrypted with a one-time-pad.
Finally, we argue that with overwhelming probability that a logarithmic number
of encrypted bits were in the ε fraction of T ’s output. Therefore, the adversary
is without knowledge of these bits of T ’s output, and cannot invert T by the
security of the AONT.

6 CPA-Secure Hybrid Public-Key Proxy Re-Encryption
Scheme

In this section we show how a public-key proxy re-encryption scheme can be
updated with a similar hybrid encryption scheme as depicted in the last section
for updatable encryption. This update allows for efficient revocation of ciphertext
access privileges in dynamic access control schemes, as well as fast key rotation
for files that are stored with a public- and symmetric-key hybrid encryption
scheme.

We begin with a unidirectional multi-hop proxy re-encryption (PRE) public-
key encryption scheme, such as the one described in [26]. Unidirectionality
implies one cannot use a re-encryption key to go backwards (i.e., you cannot
produce rj→i given ri→j), and multi-hop means that the re-encryption scheme
can be applied an unlimited number of times. Our results apply to bidirec-
tional and/or single-hop schemes as well, with the resulting scheme inheriting
the properties of the underlying PRE scheme, but for our application the selected
properties seem most appropriate.



170 S. Myers and A. Shull

Definition 7 (Public-Key Proxy Re-Encryption). A proxy public-key
re-encryption scheme Π consists of five probabilistic polynomial time algo-
rithms, the first three of which form a standard public-key encryption prim-
itive (i) G(1λ) → (pk, sk) (key generation); (ii) E(pk,M) → C (public-
key encryption); and (iii) D(sk, C) → M (decryption). The last two are:
(iv) RG(pki, ski, pkj , skj) → rki→j (generating re-keying keys), which takes a
source, i, and destination key, j, pair and creates a re-encryption key; and
(v) RE(rki→j , Ci) → Cj (re-encryption), which takes a re-encryption key and
a ciphertext, and produces a re-encryption of it under the destination key j.

Correctness. For every message M , set of key pairs {(pkiu , skiu) ←
G}u∈{0,...,r}, and set of re-encryption keys {rkiu→iu+1 ← RG(pkiu , skiu , pkiu+1

,

skiu+1)}u∈{0,...,r−1}, we have D
(
skir ,RE

(
rkir−1→ir , . . .RE

(
rki0→i1 ,E

(
pki0 ,M

))

. . .)) = M .

6.1 PRE-CPA-Security (Unidirectional and Multi-Hop)

The security game allows the adversary to query public keys for which it will
get the corresponding secret key—in which case we say that the index of the
public key is corrupted—and public keys for which it will not get the secret
key—in which case the index is uncorrupted. The challenge ciphertext must be
encrypted under a key with an uncorrupted index. The adversary can query any
re-encryption or re-encryption key that does not go from an uncorrupted to a
corrupted index.

Definition 8 (PRE-CPA-Security Game [3]). Let λ be the security param-
eter. Let adversary A(λ) be a poly-time oracle TM. The PRE-CPA game consists
of an execution of A in two phases, as described in Fig. 2 (p. 16). Within each
phase, A has access to oracles (described below) that can be queried in any order
arbitrarily many times unless otherwise specified.

Phase 1: There are two oracles. On the ith query to either of the oracles, we
compute (pki, ski) ← G and then depending on the query:
Uncorrupted Key Generation Oukey: Output pki; note i is uncorrupted.
Corrupted Key Generation Ockey: Output (pki, ski); note i is corrupted.

Phase 2: There are oracles producing re-encryption keys and re-encryptions
of ciphertexts, as well as the challenge oracle. Note that the indices correspond
to those of the keys produced in Phase 1.
Re-Encryption Key Generation Orkey(i, j): If i = j, or if i is uncor-
rupted and j is corrupted, then output ⊥. Otherwise, output rki→j ←
RG(pki, ski, pkj , skj).
Re-Encryption Orenc(i, j, C): If i = j, or if i is uncorrupted and j is
corrupted, then output ⊥. Otherwise, output RE(rki→j , C) where rki→j ←
RG(ski, pki, pkj).
Challenge Ochal(M0,M1, i

∗): If i∗ is corrupted, output ⊥. Otherwise, output
C∗ ← E(pki∗ ,Mb). The oracle can only be called once.



Practical Revocation and Key Rotation 171

Definition 9. A Proxy Re-Encryption scheme Π is Unidirectional, Multi-Hop,
PRE CPA-Secure if for all oracle PPT adversaries A, there exists a negligible
function negl such that: Pr[PRE-CPAA,Π(1λ) = 1] ≤ 1

2 + negl(λ).

6.2 (1 − ε)-Revocable PRE-CPA-Security

We modify the above security definition of traditional PRE security to incorpo-
rate abilities that adversaries have in practice in the revocation and re-keying
scenarios: initial access to files and their decryption keys, but a lack of inclination
or capability to download all of these files. In particular, they may download the
symmetric keys used in a file’s hybrid encryption. The goal is now that after a
file is re-encrypted the adversary cannot, at this point, decrypt the ciphertext.
The new definition modifies Definition 8 similarly to how Definition 5 modifies
Definition 6.

Definition 10 ((1 − ε)-Revocable PRE-CPA Security Game). Security
game (1 − ε)-Revoke-PRE-CPAA,Π(1λ) is identical to PRE-CPAA,Π(1λ) given in
Definition 8 except that the challenge oracle is called as Ochal(M0,M1, [i∗0, . . . , i

∗
r ],

j∗, bitPos) and works as follows:
The adversary can call (M0, M1, [i∗0, . . . , i

∗
r ], j∗, bitPos) for any values

[i∗0, . . . , i
∗
r ] such that i∗u �= i∗u+1 for 0 ≤ u ≤ r − 1. However, j∗ must be an

uncorrupted index distinct from i∗r. The input bitPos will be used to indicate the
bits of ciphertexts created prior to revocation that the adversary receives. The
challenger computes the following:

– {C∗
u}0≤u≤r where C∗

0 = E(pki∗
0
,Mb), and for u > 0, C∗

u =
RE(rki∗

u−1→i∗
u
, C∗

u−1)
– C∗∗ = RE(rki∗

r→j∗ , C∗) for rki∗
r→j∗ = RG(pki∗

r
, ski∗

r
, pkj∗ , skj∗)

Here each C∗
u represents a ciphertext before revocation and C∗∗ represents the

ciphertext after revocation. Let N ′ = min0≤u≤r |C∗
u|.

The challenge oracle is stateful. The adversary selects bitPos one pair (u, v)
at a time and receives the vth bit of ciphertext C∗

u, so it can choose each pair
based on the previous bits it received. Once the adversary has received (1 − ε)N ′

total bits of {C∗
u}0≤u≤r, the oracle outputs C∗∗. After this it refuses to respond.

Similarly, the oracle refuses to respond if queries change any of the calling values
other than bitPos. In the static game all (1 − ε)N ′ queries are made in parallel.

Definition 11. A proxy re-encryption scheme Π is (1 − ε)-Revocable-PRE-
CPA-Secure if for all oracle PPT adversaries A, there exists a negligible function
negl s.t.:

1. Pr[(1 − ε)-Revoke-PRE-CPAA,Π(1λ) = 1] ≤ 1
2 + negl(λ), and

2. Pr[PRE-CPAA,Π(1λ) = 1] ≤ 1
2 + negl(λ).

Note the scheme needs to satisfy both the traditional and revocable definitions
(Definitions 10 and 11), as it is possible to construct revocation schemes that
produces secure re-keyed ciphertexts, but where the originals are insecure.



172 S. Myers and A. Shull

6.3 Proxy Re-Encryption Construction

The basis of our construction is a standard hybrid encryption scheme
with an AONT applied to the symmetric ciphertext portion of the hybrid
ciphertext. That is, an initial ciphertext has the form

(
Cpk = E(pk, k0),

CT = T
(
ESym(k0,M)

))
, where the components of the ciphertext are a stan-

dard encryption of a symmetric-key and an AONT applied to a symmetric-key
encryption of the message M .

For each proxy re-encryption, there is a traditional proxy re-encryption of
the symmetric key followed by re-encryption a random subset of bits of CT . This
makes inverting the AONT impossible unless the adversary was lucky enough to
have previously queried and stored all of the encrypted bits, and since they are
randomly distributed this is incredibly unlikely. However, to allow decryption,
the proxy needs to store the locations of the re-encrypted bits and the key used
to encrypt them. This is done by producing a new public-key encryption of the
seed used to select the positions and encrypt the bits, and adding this to the
ciphertext. As a result, the ciphertext size and encryption time grow additively
with the number of re-encryptions, where the summand is the size of a proxy
ciphertext.

A ciphertext that was re-encrypted r times has the form
(
Cpk,[

Cbks
1 , . . . , Cbks

r

]
, CT

)
, where Cpk is as before. Each Cbks

i of Cbks
1 , . . . , Cbks

r is
an encryption of a random subset of bit positions that we encrypted in the ith
re-encryption, along with the one-time pad used for encryption. Finally, CT is
as before, but with all of the bits defined in the Cbks

i encrypted with the cor-
responding one-time-pads. To keep the notation consistent, we write an initial
ciphertext as

(
Cpk, [ ], CT

)
.

Our proxy re-encryption scheme is the five-tuple (GHyb, EHyb, DHyb, RGHyb,
REHyb), where GHyb

(
1λ

)
= G

(
1λ

)
, EHyb is defined in Fig. 2, DHyb is defined

in Fig. 2, RGHyb
(
pki, ski, pkj , skj

)
=

(
pkj , rki→j = RG

(
pki, ski, pkj , skj

))
, and

REHyb is defined in Fig. 2. We use the same notation as in Sect. 5.5.

6.4 Security of Our Scheme

In [23] we provide a proof to the following theorem showing basic PRE-CPA
security.

Theorem 3. Assume there exists a PRE-CPA-secure public-key proxy re-
encryption scheme Π = (G,RG,E,RE,D), an IND-CPA-secure symmetric-key
encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an all-or-nothing transform

T . Then the construction of Πhyb in Sect. 6.3 is PRE-CPA-secure.

The next theorem establishes the (1−ε)-revocable security of our scheme. We
note that we require a minor additional property of the underlying PRE scheme,
which we call re-encryption history independence. It requires the distribution of
a re-encrypted ciphertext does not depend on the keys used in encryption and
re-encryption prior to the current key (though it may depend on the number



Practical Revocation and Key Rotation 173

Fig. 2. PRE-CPA security experiment and Πhyb algorithms

of previous re-encryptions). Although PRE schemes do not need to have this
property to be PRE-CPA-secure, it is a natural property to have. It does follow
from re-encryption key privacy, an additional security property found in the
schemes of [2,3,26]. Every PRE scheme we looked at [2–4,10,16,21,26] has re-
encryption history independence.

Definition 12 (Re-Encryption History Independence). A public-key
proxy re-encryption scheme Π = (G,RG,E,RE,D) has re-encryption his-
tory independence if for every set of public/secret key pairs

{
(pk0, sk0),(

pk′
0, sk

′
0

)
, . . .,

(
pkr−1, skr−1

)
,

(
pk′

r−1, sk
′
r−1

)
, (pkr, skr)

}
with re-encryption

keys rku→u+1 ← RG
(
pku, sku, pku+1, sku+1

)
, rk′

u→u+1 ← RG
(
pk′

u,
sk′

u, pk′
u+1, sk′

u+1

)
for u ∈ [0, . . . , r − 2] and rkr−1→r ← RG

(
pkr−1,

skr−1, pkr, skr

)
, rk′

r−1→r ← RG
(
pk′

r−1, sk′
r−1, pkr, skr

)
and every mes-

sage M : RE(rkr−1→r, . . .RE(rk0→1, E (pk0,M)) . . .) is indistinguishable from
RE

(
rk′

r−1→r, . . .RE
(
rk′

0→1, E
(
pk′

0,M
))

. . .
)
.

Theorem 4. Assume there exists a PRE-CPA-secure public-key proxy
re-encryption scheme Π = (G,RG,E,RE,D) with re-encryption history



174 S. Myers and A. Shull

independence, a IND-CPA-secure symmetric-key encryption scheme Πsym =(
GSym,ESym,DSym

)
, and an adaptive �-AONT T . Suppose that for the construc-

tion of Πhyb from Sect. 6.3, CT comprises at least a fraction 1 − δ of the total
size of each ciphertext. Then for any ε < 1 with ε > δ and any �∗ > �

ε−δ , this
construction is (1 − ε)-Revoke-PRE-CPA-secure.

See [23] for the full proof.

7 Extensions to IBE and ABE, and RCCA Security

It is difficult to present a unified theorem that shows our construction immedi-
ately lifts to all proxy primitives. This is similar to how it is difficult to have a
generic hybrid encryption theorem that covers traditional PKE, IBE, and ABE.
Due to space limitations and the definition’s relative simplicity, herein we only
provide the results for a CPA secure PRE scheme. However, the hybrid con-
struction that we demonstrate naturally ports to both identity-based PRE and
revocable-storage ABE, which are important primitives for expressive cloud-
based access control schemes (cf., identity-based proxy re-encryption [16,20,29]
and revocable-storage ABE [28]). Results for those primitives are presented in
[23].

Finally, RCCA security is an important requirement for many real-world sce-
narios. We note that based on this construction it is possible to extend it to such
security. We demonstrate a more stringent RCCA-secure system for public-key
proxy re-encryption systems in the Non-Programmable Random Oracle Model
in an upcoming paper on the Cryptology ePrint Archive.

8 Implementation Issues and Efficiency

Implementation. A standard cryptographic hash and block-cipher are all that
are necessary to implement the hybrid portion of our schemes. Given the fre-
quent in silico inclusion of AES and SHA-256, this allows for incredibly efficient
computational implementations of our scheme.

From a practical perspective our construction allows certain overhead compu-
tations to be moved to the cloud, where they may be more palatable. For exam-
ple, a thin client need not compute the AONT on the symmetric ciphertext—
this computation does not rely on any secret data. Thus a thin client can upload
an appropriate traditional hybrid encryption (E(pk, k),ESym(k,m)), where E is
part of a proxy re-encryption scheme, and the cloud can compute T (ESym(k,m))
for the AONT T—the cloud covers the extra encryption costs. Similarly, if a
hybrid ciphertext has not been proxy re-encrypted, the cloud can remove the
AONT, reducing the decryption cost to that of traditional hybrid encryption.
Alternately, the application of an OAEP AONT, if implemented correctly, allows
for a streaming implementation that could complement appropriate streaming
(one-pass) authenticated encryption encryption schemes, resulting in the entire
transform being implemented in one pass. Depending on the file access bottle-
neck, it is possible that in some settings the additional AONT for encryption in
our setting will not actually add extra time to initial encryption.



Practical Revocation and Key Rotation 175

Efficiency. In comparing efficiency, we first need to consider the security we
provide. We provide less security than notions similar to ciphertext independence
in [7] and UP-REENC-security in [13]. However, in practice it is unclear what
attacks they prevent that are not similarly prevented by our definition with a
small value of ε. Everspaugh et al. [13] performed a sample single-core implemen-
tation on a modern machine on a 1 GB file, and had run-times of approximately
2.5 h for each of Encrypt, ReEnc and Decrypt, comparing to roughly 10 ms for
a similar approach with AES-GCM to encrypt the same file. This is of course
because currently known UP-REENC constructions require the entire plaintext
to be encrypted with asymmetric encryption primitives. Regardless, while our
times will be more than the AES times, they will not be substantially more.

Due to differences in implementation, in silico support, disk types, and other
performance parameters, we felt the best comparison would be in terms of the
numbers of calls to a block cipher and hash function (for costing an OAEP
construction of an AONT) that are needed in our construction. We compare
the efficiency of the hybrid portion of our scheme to a naive hybrid proxy
re-encryption. In the naive approach, to re-encrypt the proxy re-encrypts the
public-key–encrypted symmetric key using the public-key proxy re-encryption
algorithm, creates a new symmetric key and encrypts it under the new public-
key, and re-encrypts the already encrypted message under the new symmetric
key. We note that this naive solution does not achieve our security definition,
because the adversary can perform a key-scraping attack for any reasonable value
of ε. Regardless, it provides a reasonable benchmark system.

The AONT is only used in our scheme for encryption and decryption. Com-
puting the AONT on an N -bit message, as well as inverting the AONT, requires
computing two hash functions. Computing OAEP requires the SHA-256 com-
pression function to run a total of 3N/512 times, e.g., 50k times for a 1 MiB file
and 50 mil. times for a 1 GiB file. As noted above, it is possible that in some
instances and implementations these costs will be overshadowed by the overhead
of file access. Regardless, the costs are fixed for any encryption and decryption of
our file, and are fairly small. For example, common package Crypto++ [11] gives
benchmarks of SHA-256 hashing 223 Mib/S on a modern Intel Skylake processor
without in silico support.

Table 1 compares the number of times the AES block cipher is run for each
operation. This depends on �∗, the number of bits that are encrypted in each
re-encryption, which in turn depends on several parameters: �, the minimum
number of missing bits for the AONT to be secure; ε, the minimum fraction
of the ciphertext not downloaded by the adversary; and δ, is the maximum
fraction of the ciphertext comprised by the public-key portion. Let ε∗ denote
ε − δ, the minimum fraction of the symmetric-key portion of the ciphertext
that the adversary has not downloaded. OAEP implemented with SHA-256 as
described above with � = 260 will have 128 bits of security as an adaptive
�-AONT (Lemma 1). So we use 260 as our value for �. Similarly, we assume that
the pseudo-random index-selection and one-time pad are computed by AES, and
count the number of invocations that are necessary.



176 S. Myers and A. Shull

Table 1. Instances of the AES block cipher required for each operation in the naive
approach and in our scheme, where r is the number of re-encryptions

File size ε∗ �∗ Encryption Re-enc. Decryption

r = 1 r = 10 r = 100

1 GiB N = 233 Naive 6.711 × 107 6.711 × 107 1.342 × 108 7.382 × 108 6.778 × 109

0.5 926 6.711 × 107 4.847 × 102 6.711 × 107 6.711 × 107 6.716 × 107

0.25 2325 6.711 × 107 1.217 × 103 6.711 × 107 6.712 × 107 6.723 × 107

0.1 8875 6.711 × 107 4.646 × 103 6.711 × 107 6.716 × 107 6.757 × 107

Figure 3 shows the effect that file size has on the cost of re-encryption, com-
paring naive re-encryption and our scheme with various values of ε∗. Figure 4
shows the effect that the number of previous re-encryptions has on the cost of
decryption (for AES).

Fig. 3. Cost of re-encs vs. file size Fig. 4. Cost of decs vs. prev. re-encs.

While our scheme is slower for encryption (due to computing the AONT),
in practice this will only occur once for each file. Re-encryption costs are more
significant because re-encryption can occur for a large number of files at the
same time. In this case, our scheme is several orders of magnitude faster than
the naive approach, with the difference greater for larger files.

Acknowledgements. This work was supported by the National Science Foundation
under awards CNS–1111149 and CNS–156375.

References

1. Amazon Web Services. Rotating customer master keys, September 2017. https://
goo.gl/Ym9WeM

2. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4 1

https://goo.gl/Ym9WeM
https://goo.gl/Ym9WeM
https://doi.org/10.1007/978-3-319-03515-4_1


Practical Revocation and Key Rotation 177

3. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00862-7 19

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

5. Bacis, E., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Rosa, M.,
Samarati, P.: Mix&slice: efficient access revocation in the cloud. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2016, pp. 217–228. ACM (2016)

6. Barker, E.: SP 800–57. Recommendation for key management, Part 1: General
(revision 4). Technical report, NIST, January 2016

7. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

8. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 32

9. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 33

10. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
CCS 2007, pp. 185–194 (2007)

11. Crypto++: Crypto++ 5.6.5 benchmarks, September 2017. https://goo.gl/xxSyU9
12. Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-

resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 301–324. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 19

13. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

14. Garrison III, W.C., Shull, A., Myers, S., Lee, A.J.: On the practicality of crypto-
graphically enforcing dynamic access control policies in the cloud. In: IEEE Proc.
S&P (2016)

15. Google: Managing data encryption, September 2017. https://goo.gl/5UidnU
16. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,

M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72738-5 19

17. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS 2003. The Internet
Soc. (2003)

18. Katz, J., Lindell, Y.: Intro to Modern Cryptography. Chapman & Hall/CRC, Boca
Raton (2007)

19. Li, J., Qin, C., Lee, P.P.C., Li, J.: Rekeying for encrypted deduplication storage.
In: DSN 2016, pp. 618–629. IEEE Computer Society (2016)

20. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with
delegating capabilities. In: ASIACCS 2009, pp. 276–286 (2009)

https://doi.org/10.1007/978-3-642-00862-7_19
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/3-540-48405-1_32
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33
https://goo.gl/xxSyU9
https://doi.org/10.1007/3-540-44987-6_19
https://doi.org/10.1007/3-540-44987-6_19
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://goo.gl/5UidnU
https://doi.org/10.1007/978-3-540-72738-5_19


178 S. Myers and A. Shull

21. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

22. Mambo, M., Okamoto, E.: Proxy cryptosystems: delegation of the power to decrypt
ciphertexts. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 80, 54–63
(1997)

23. Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. Cryptology ePrint Archive, Report 2017/833 (2017). http://
eprint.iacr.org/2017/833

24. Open Web Application Security Project. Cryptographic storage cheat sheet,
August 2016. https://goo.gl/MwKL8T

25. Payment Card Industry Security Standards Council. Payment card industry (PCI)
data security standard, v3.2, April 2016

26. Phong, L.T., Wang, L., Aono, Y., Nguyen, M.H., Boyen, X.: Proxy re-encryption
schemes with key privacy from LWE. Cryptology ePrint Archive, Report 2016/327
(2016). http://eprint.iacr.org/2016/327

27. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052348

28. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

29. Wang, H., Cao, Z., Wang, L.: Multi-use and unidirectional identity-based proxy
re-encryption schemes. Inf. Sci. 180(20), 4042–4059 (2010)

30. Watanabe, D., Yoshino, M.: Key update mechanism for network storage of
encrypted data. In: CloudCom 2013, pp. 493–498 (2013)

https://doi.org/10.1007/978-3-540-78440-1_21
http://eprint.iacr.org/2017/833
http://eprint.iacr.org/2017/833
https://goo.gl/MwKL8T
http://eprint.iacr.org/2016/327
https://doi.org/10.1007/BFb0052348
https://doi.org/10.1007/978-3-642-32009-5_13

	Practical Revocation and Key Rotation
	1 Introduction
	2 Background
	3 Related Work
	4 Notation and Background Definitions
	5 Updatable Encryption
	5.1 Updatable Encryption Definition
	5.2 UP-IND Security for Updatable Encryption
	5.3 (1-epsilon)-Exfiltration UP-IND Security for Updatable Encryption
	5.4 Construction
	5.5 Updatable Encryption Scheme
	5.6 Security of Our Scheme

	6 CPA-Secure Hybrid Public-Key Proxy Re-Encryption Scheme
	6.1 PRE-CPA-Security (Unidirectional and Multi-Hop)
	6.2 (1-epsilon)-Revocable PRE-CPA-Security
	6.3 Proxy Re-Encryption Construction
	6.4 Security of Our Scheme

	7 Extensions to IBE and ABE, and RCCA Security
	8 Implementation Issues and Efficiency
	References




