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ABSTRACT

Emerging FPGA systems are providing higher external memory
bandwidth to compete with GPU performance. However, because
FPGAs often achieve parallelism through deep pipelines, tradi-
tional FPGA design strategies do not necessarily scale well to large
amounts of replicated pipelines that can take advantage of higher
bandwidth. We show that sliding-window applications—an impor-
tant subset of digital signal processing—demonstrate this scalability
problem. We introduce a window generator architecture that en-
ables replication to over 330 GB/s, which is an 8.7x improvement
over previous work. We evaluate the window generator on the Intel
Broadwell+Arrial0 system for 2D convolution and show that for
traditional convolution (one filter per image), our approach outper-
forms a 12-core Xeon Broadwell E5 by 81x and a high-end Nvidia
P6000 GPU by an order of magnitude for most input sizes, while
improving energy by 15.7X. For convolutional neural nets (CNNs),
we show that although the GPU and Xeon typically outperform
existing FPGA systems, projected performances of the window gen-
erator running on FPGAs with sufficient bandwidth can outperform
high-end GPUs for many common CNN parameters.
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1 INTRODUCTION

Digital signal processing applications commonly use field-programmable
gate arrays (FPGAs) or graphics-processing units (GPUs), but GPUs

are generally the more popular alternative for most high-performance
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use cases. Although FPGAs often provide more performance per
unit of memory bandwidth (e.g., [7]), GPUs tend to provide external
memory bandwidth that is at least an order-of-magnitude higher
than FPGA systems. For example, the Nvidia P100 provides 732
GB/s [19], whereas most FPGA boards provide on the order of tens
of GB/s (e.g., [8, 15, 21]).

Traditionally, high-performance FPGA designs have dealt with
limited memory bandwidth using deep pipelines (e.g., [6, 13, 27]).
Pipeline replication and loop unrolling are also common FPGA
optimizations, but with limited bandwidth such replication pro-
vides limited improvements. For FPGAs to compete with GPU per-
formance, emerging and future FPGAs will need to significantly
increase memory bandwidth [16].

Although higher-bandwidth FPGA systems enable increased
replication, not all FPGA design patterns scale well to large amounts
of pipeline replication. We show that sliding-window generation
has limited replication scaling, which is a significant problem for
FPGAs given the prevalence of sliding windows in convolutional
neural nets (CNNs) and other image-processing applications [6, 26].

Previous approaches provide window generators that are either
limited to one window per cycle [4, 9], lack scalability to numerous
windows [23], or support a specific window and/or image size [20].
For data-center usage, an FPGA circuit must support a wide range
of window and image sizes due to prohibitively long reconfigura-
tion times. Although previous approaches can support different
window and image sizes by padding the input, such padding is
often an expensive overhead, which in our tests exceeded the FPGA
execution times of the presented case studies.

In this paper, we introduce a window generator architecture that
greatly improves scalability, enabling generation of numerous win-
dows in parallel to support anticipated bandwidth increases, while
addressing flexibility problems by supporting runtime-configurable
window and image sizes with no padding overhead. Our results
demonstrate pipeline replication to more than 330 GB/s of mem-
ory bandwidth, which to our knowledge is more than any existing
FPGA system and an 8.7x improvement over previous work [23].

Although the window generator can be used with any sliding-
window application, we evaluate 2D convolution running on an
Intel Broadwell+Arria 10 (BDW+A10) [10]. For traditional convo-
lution (one filter per image), our approach outperforms optimized
implementations from DeepBench [22] and the Intel Math Kernel
Library (MKL) [24] running on a 12-core Xeon Broadwell E5 and a
high-end Nvidia P6000 GPU with 3,840 CUDA cores. Despite the
FPGA having a theoretical peak performance that is comparable
to the Xeon and significantly less than the P6000, our approach
achieves an average speedup of 81X over the Xeon and 12.6x over
the P6000. We obtain these improvements by exploiting different
types of parallelism that provide near-peak FPGA performance in
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situations where existing Xeon and GPU implementations leave
many resources underutilized. Energy improvements are even more
significant, with improvements of 96X and 15.7X for the Xeon and
GPU, respectively. Even for the ideal situation where a GPU can
completely avoid or amortize PCle transfers, our approach achieves
an average speedup of 1.2X and energy improvement of 1.5X.

We also evaluate our approach using convolution parameters
common to CNNs for theoretical bandwidth improvements. Al-
though the P6000 outperforms existing FPGA systems for CNNs,
we show that our approach running on a shared-memory Stratix
10 system with sufficient bandwidth is projected to outperform the
P6000 for common CNN use cases.

2 RELATED WORK

The most closely related study is the window generator from [23],
which had similar goals of generating multiple windows per cycle,
while also supporting runtime-configurable window and image
sizes. We show that the previous approach does not scale past 256
parallel windows on the BDW+A10, and has clock speeds that are
more than 2X slower than the presented approach for 64 or more
parallel windows. Overall, the presented approach is able to support
memory bandwidth that is 8.7 higher than this previous work.

Although there are many previous window-generation studies
[4, 9, 20, 23], none of those studies address scalability, high clock
frequencies, and runtime-configurable inputs with no padding over-
head. A recent approach [20] investigated minimizing register usage
during loop coarsening with high-level synthesis. Our approach
has an alternative goal of maximizing scalability, which sacrifices
register usage for improved clock speeds and scalability up to 1024
replicated pipelines, whereas the previous study reports up to 64.
Although a direct comparison is not feasible due to the previous ap-
proach only providing high-level synthesis estimates, that approach
complements our work with new border-handling techniques.

Tradeoff analyses between FPGAs, GPUs, and microprocessors
for sliding-window applications are a well-studied topic [1, 3, 6, 26],
and have established Pareto-optimal implementations for different
use cases. This paper complements those studies with a window
generator that improves FPGA performance, especially for emerg-
ing high-bandwidth systems.

FPGA performance evaluations for CNNs have received signifi-
cant attention recently. Zhang [27] evaluated an FFT-based FPGA
implementation for CNNs on a shared-memory system. Our work
is complementary, focusing on sliding windows needed by time-
domain implementations. The two approaches could be combined
to efficiently support CNNs over many use cases, with time-domain
implementations for smaller windows and frequency-domain imple-
mentations for larger windows [2]. Nurvitadhi et al. [18] compared
Arria 10 performance with a CPU, GPU, and ASIC for binarized neu-
ral networks. In more recent work, Nurvitadhi et al. [17] presented
Stratix 10 performance and energy projections compared to a Titan
X GPU for CNNs, which showed projections similar to our pre-
sented work. Our work is complementary by presenting a window
generator capable of realizing such projections for high-bandwidth
FPGA systems. In general, the focus of our paper is on efficient
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Figure 1: Unlike traditional FIFOs, the variable-read FIFO
obviates padding for parallel windows (e.g., p = 3), which
reduces pre-processing and PCle overhead.

sliding-window generation, which we evaluate using different con-
volution use cases, whereas earlier studies focus primarily on an
architectural tradeoff analysis for CNNs.

3 WINDOW GENERATOR

Sliding-window applications are a domain of digital signal process-
ing that perform application-specific computation on “windows”
(sub-images) of an image. Applications generally slide these win-
dows across an image from left to right at the top of the image,
then move down one row and repeat until all windows have been
processed. Although there are a variety of different sliding behav-
iors, we focus on single strides where each window slides by one
column, and fully immersed windows where the window does not
slide past the image borders. Our approach can be easily adapted to
other variations, albeit with potentially less reuse for larger strides.
In this section, we present an architecture for generating all
necessary windows independently from the application-specific
computation. For consistency, we adopt the same terminology as
the previous approach in [23], where the inputs are an image i
with i, rows and i, columns, and a window w with w, rows and
we columns. We define the top-left pixel of an image to be i[0, 0].
We use p to represent the number of pixels provided each cycle,
the number of windows generated each cycle, and the amount of
pipeline replication, which are all equivalent in our architecture.
The window generator consists of a variable-read FIFO, a window
buffer, and a window coalescer. Initially, the user passes a stream of
pixels (p each cycle) to the variable-read FIFO (Section 3.1), which
provides a variable number of pixels from that stream to the window
buffer to obviate input padding. The window buffer assembles the
pixels into columns of window data that the coalescer combines
into approximately p complete windows each cycle (Section 3.2).

3.1 Variable-Read FIFO

The variable-read FIFO (VRF) streams pixels into the window buffer
in a way that enables the window buffer to generate p windows in
parallel, while eliminating the need for input padding. Although
padding the image to have columns that are a multiple of p can
eliminate the need for the VRF, such padding has a software pre-
processing and PCle overhead. In our experiments, software padding
times often exceeded the FPGA execution time, which significantly
reduced or eliminated speedup. Although such padding is concep-
tually easy to implement on the FPGA, creating a circuit that adds
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Figure 2: Variable-read FIFO architecture for four parallel inputs and outputs (p = 4).

variable padding based on runtime parameters with no performance
overhead is not trivial. The VRF provides this functionality.

Figure 1 compares the difference between input streams when
using a traditional FIFO with padding and the VRF. For an image
with four columns and a system that can provide three pixels (p = 3)
each cycle, the first read from the FIFO provides elements 0-2. To
complete the processing of the first row, the application only needs
element 3. However, if the FIFO provides three elements instead of
one, the application will either be corrupted with invalid data for
the first row, or must buffer the extra data somewhere internally.
Since the FIFO already provides buffering, it makes more sense to
read a variable amount of data from the FIFO instead of adding
additional buffering elsewhere, which would also need to support
variable amounts. With the VRF, the application reads three pixels
to get pixels 0-2, then one pixel (3) to complete the first row, then
pixels 4-6, then pixel 7, etc. This approach eliminates up to p — 1
padded pixels from the right edge of each image row, which is
critically important for large p values where the padding overhead
could be prohibitive.

Figure 2 illustrates the VRF architecture. The structure is concep-
tually similar to the FIFO in [23], but has been modified to improve
timing scalability for larger p. Both approaches write p pixels into
a fixed set of registers within a buffer of 2p registers. In this buffer,
the output index varies depending on previous reads. Initially, the
output index starts at 0 and then increases after each read by the
number of elements read from the FIFO. When the output index
exceeds p — 1, the write controller shifts the register buffer left by
p positions to ensure the index is always between 0 and p — 1.

Because the output index changes, the read controller must align
the outputs with the appropriate p registers. The previous approach
implemented output alignment using p separate p:1 muxes to select
the appropriate register for each output, which is a significant
timing-closure bottleneck. Although those muxes could potentially
be pipelined, muxes in general are an expensive FPGA resource.
To avoid this problem, and to ensure better scalability, our new

approach ensures that the critical-path propagation delay (ignoring
routing delays) is independent of p.

In our approach, the VRF aligns outputs using a pipelined barrel
shifter that shifts by the amount in the output index. Although this
approach creates a several-cycle output delay, the user can still read
every cycle. With this strategy, there is never more than a 2:1 mux
in between registers for any value of p, which potentially enables
the architecture to scale indefinitely up to any resource constraint
without experiencing a timing-closure bottleneck.

In addition to the logic in the figure, the VRF outputs a count of
the words in the FIFO, in addition to bits that specify the validity of
each output. For example, when the user requests one output, the
VRF will provide p outputs, but will mark p — 1 outputs as invalid.
Although the propagation delay of the count logic increases with
larger p, that increase is logarithmic. For any realistic value of p, the
count logic is is not a timing-closure bottleneck. Even for p = 1024,
the count logic only requires a 10-bit adder and subtractor.

3.2 Window Buffer and Coalescer

The window buffer is responsible for buffering the input stream of
pixels into separate rows, and then passing p columns from each
row into the window coalescer each cycle.

Figure 3(a) provides an overview of the window-buffer architec-
ture. The basic structure is a chained sequence of w, FIFOs, which
each buffer an entire row of the image. The window buffer reads p
pixels at a time from the VREF into the bottom row FIFO, where each
word consists of p pixels. When there are fewer than p pixels left
in a row of the image, the window buffer requests the remaining
number of pixels from the VRF (e.g, pixel 3 in Figure 1). In this
case, the window buffer marks any extra pixels as invalid to avoid
including them in windows.

A previous approach [23] similarly used w, FIFOs, but after
outputting an entire row of windows, that approach would erase
the top FIFO. The previous approach would then reuse the top FIFO
for the next row of the image. As a result, the first row of each
window gradually moves into different FIFOs. Similar to the VRF,
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Figure 3: Overview of the (a) window buffer and (b) coalescer architecture for two parallel (p = 2) 3x3 windows.

the previous approach maintained an index that specified which
FIFO stored the top window row. To align the outputs, that approach
used w, separate w,:1 muxes, which created another significant
scalability bottleneck that has similar problems to the previous VRF.

Our approach uses an alternative strategy that completely elimi-
nates the need for alignment by always using the top FIFO as the top
row of a window, the bottom FIFO as the bottom row, etc. To enable
this functionality, the window buffer initially writes all incoming
pixels into the bottom FIFO, storing p pixels per word. When the
bottom FIFO contains [i./p] words (an entire image row), every
new write into the bottom FIFO also triggers a read from that FIFO.
For each FIFO read, the buffer writes the read data into the next
higher FIFO, which enables the pixels to gradually shift to the top
FIFO. This process repeats until all w, FIFOs contain [i./p] words.

At this point, a controller (not shown) starts reading from all
FIFOs, which passes p columns each cycle into the coalescer (Fig-
ure 3(b)). The coalescer assembles p windows by dividing each
window into w, register columns that get shifted by p positions for
every new set of columns from the window buffer. After [(w. +
p — 1)/p] shifts, the coalescer contains p complete windows, where
the index of the first window starts at the first column, the second
window at the second column, etc. Overall, the coalescer consists of
[(we +p —1)/p] - p columns, where each column has w, registers.

The controller continues streaming columns from the buffer for
[ic/p] cycles, and then returns to buffering incoming data. The
controller continues to buffer new pixels while outputting columns.
If pixels arrive every cycle, the controller will immediately begin
outputting columns again after completing the current row. If the
window buffer outputs all the current columns before another i,
pixels arrive, the controller delays the next set of columns until all
the FIFOs have sufficient pixels.

In addition to removing all muxes, one critically important timing
optimization was the removal of register enable logic. The previous
approach stalled the coalescer by clearing an enable until all FIFOs
were not empty. Because that enable had to control every register in
the coalescer, the previous approach had a timing-closure bottleneck
resulting from a prohibitive enable fanout of [(w¢; +p—1)/p]-pwrd,
where d is the bit width of each pixel.

We address this problem by removing all enable logic from the
coalescer. To remove the logic, the controller delays reads from the

window buffer until the row FIFOs contain all required pixels for
the next row of windows. When the controller starts reading, the p
column inputs to the coalescer will always be valid until the end
of the row, which eliminates the need for an enable. Although this
approach delays the first columns, the throughput is identical. Most
importantly, this optimization eliminates the fanout, which results
in propagation delays that are independent of p.

To support any window size, the controller determines how far
to slide the maximum-sized window across the image. For example,
if the FPGA provides a 10x10 window, but the user requests a 3x3
window, the controller would slide the 10x10 window seven pixels
past the right edge and bottom edge of the image. The controller
pads all unused window elements with 0, which is done automati-
cally on reset. With this strategy, although many window elements
are unused, generation times for 3X3 windows are similar regard-
less of the maximum window size, with the only overhead being
the initial time to fill up the extra row FIFOs. To support arbitrary
image sizes, the architecture sets the FIFO depth to the maximum
image width divided by p, and then simply starts reading from the
FIFOs when the requested image columns i, are buffered in each
FIFO ([i./p] words).

4 2D CONVOLUTION ON BDW+A10

In this section, we describe our custom RTL implementation of
2D convolution on the Broadwell+Arria 10 (BDW+A10). Because
convolution implementations have been widely studied [6], we
focus on BDW+A10 specific issues due to space constraints.

The BDW+A10 shares the Xeon’s main memory with the FPGA,
which the FPGA accesses over both PCIe and/or QPI. To access mem-
ory, the BDW+A10 provides a cache coherent interface (CCI) that
provides basic memory-access mechanisms. In VHDL, we extended
the provided mechanisms with our own DMA memory interface
that provided memory access reordering, virtual-to-physical ad-
dress translation, in addition to width conversion to enable the
application to request any data width from memory. We also went
to great effort with timing optimizations to ensure the DMA inter-
face can run at 400 MHz to maximize memory bandwidth. Intel
provides a Memory Properties Factory core that enables much of
this functionality, which we have not yet evaluated, but could po-
tentially improve reported memory bandwidth.
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In our BDW+A10 implementation, software initially loads the
bitfile and initializes page tables inside the FPGA using memory-
mapped I/O (MMIO) to enable sharing of memory between software
and the FPGA. For data-center usage, such functionality would
normally be done while booting. Next, the software transfers the
convolution kernel into FPGA registers, specifies the convolution
parameters, and starts the FPGA execution, all using MMIO. The
FPGA circuit then starts a DMA access to read the image from
memory, which the circuit streams into the window generator from
Section 3. After receiving enough pixels, the window generator
generates a stream of parallel windows that are pushed into repli-
cated 2D convolution pipelines. The FPGA also initiates another
DMA access to simultaneously write results to memory.

Each 2D convolution pipeline uses a row of w, w, multipliers, one
for each element of the convolution kernel, followed by a balanced
adder tree consisting of w,w. — 1 adders. The pipelines include
registers between each operation, which eventually provides an
output from each pipeline every cycle.

For the floating-point implementation, we use a different strategy
to maximize DSP utilization and clock frequency. Arria 10 DSPs can
perform both a single-precision multiply and addition. The DSPs
also contain chained routing that connects each DSP to an adjacent
DSP. Our implementation utilizes this chaining, which has the side-
effect of converting the balanced adder tree with a depth that grows
logarithmically with the kernel size into a sequence of adds whose
length grows linearly. This chaining improves clock frequencies
at the cost of each adder input requiring a longer alignment delay
than in the balanced tree. To handle these delays, we use registers
when the delay is below a certain threshold and switch to block
RAM for larger delays. Such an approach will not scale to large
kernel sizes due to limited block RAM, in which case a combination
of the balanced approach and chaining approach can be used.

To improve clock frequency, we performed a number of timing
optimizations. Chaining the DSPs made a significant impact on
timing by avoiding routing delays from numerous 32-bit signals.
We also performed an optimization similar to Section 3.2 where we
eliminated stall functionality for each individual pipeline stage to
eliminate the enable signal’s fanout. We replaced the fine-grained
stall strategy with a strategy that uses a large FIFO to absorb the
entire state of the pipeline when writes to output memory have to
stall. When this FIFO is almost full, it triggers the window generator
to stop producing windows. An additional advantage of this strategy
is the enabling of Stratix 10 HyperFlex interconnect registers, which
should further improve clock frequencies in future work.

One critical timing optimization for the 2D convolution pipelines
was register duplication. Because the window coalescer (Section 3.2)
shares registers for window elements that overlap in consecutive
windows, many of these registers will fanout to numerous pipelines,
which can significantly restrict maximum clock frequency for large
values of p. Although we could not find an exact description of
register-duplication restrictions in Quartus, we removed the fine-
grained stalling of each individual register, removed combinational
logic before the first pipeline register, and added registers before
the multipliers, at which point Quartus started replicating the reg-
isters with high fanout. We plan to manually evaluate area/clock
tradeoffs for manually specified replication thresholds, but lengthy
compilation times prohibited such analysis for this study.
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Figure 4: A comparison of Arria 10 clock frequencies for the
presented (new) window generator and previous work (old)
for different amounts of pipeline replication.

5 EXPERIMENTS

In this section, we first evaluate the scalability of the window gen-
erator (Section 5.1). We then provide performance and energy com-
parisons between the BDW+A10, Broadwell Xeon E5, and Nvidia
P6000 for traditional 2D convolution (Section 5.2), in addition to
performance projections for convolutional neural nets (Section 5.3).

5.1 Scalability

Figure 4 compares the maximum clock frequency of the presented
approach with previous work [23], which we evaluated using the
open-source release at https://github.com/ARC-Lab-UF/window_
gen. We use Quartus 16 Prime Pro to determine the maximum
clock frequency after synthesis, placement, and routing on an Arria
10 GX1150 FPGA. Results use 3x3 windows and image sizes of
2048x2048. Frequencies for other window and image sizes were
similar.

The figure demonstrates the potential scalability problem in win-
dow generation with the previous approach decreasing to under
100 MHz for 128 pipelines, whereas the new approach runs at 242
MHz. More importantly, the old approach does not scale past 256
pipelines, whereas we were able to evaluate the new approach
for 1024 pipelines. Although the frequency of both approaches
decreases with more replication, the new approach decreases at
a slower rate, and provides frequencies over 200 MHz even for
512 pipelines. Overall, the maximum bandwidth that the new ap-
proach can leverage is 336 GB/s, compared to 38.4 GB/s in the old
approach—an improvement of 8.7x. These results suggest that the
presented approach will enable FPGAs to fully utilize increased
memory bandwidth for the foreseeable future.

Table 1(a) compares lookup table (LUT), flip flop (FF), and block
RAM (RAM) utilizations between the presented approach and pre-
vious work for different window sizes and replication amounts. For
almost all examples, the new approach used fewer LUTs, with an
average reduction of 40% from eliminating muxes as described in
Section 3.2. Register usage (FFs) increased by an average of 20%,
which is likely an attractive trade off considering the 8.7x band-
width improvement. RAM usage increased on average by 40%. Note
that the previous approach does not synthesize past 256 pipelines.

Table 1(b) shows resource counts for the new approach. The
Arria 10 GX1150 has over one million LUTs and FFs, which likely
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Table 1: (a) Resource utilization relative to previous work for
window sizes from 3x3 to 9x9. (b) Absolute resource num-
bers for the presented approach.

3x3 5x5 7x7 9x9
Replication | LUTs FFs  RAM | LUTs FFs RAM | LUTs FFs RAM | LUTs FFs  RAM
1 0.7x 11x 13x | 0.6x 1.0x 1.2x| 0.6x 1.0x 1.1x| 0.6x 1.0x  1.1x
2 0.7x 11x 1.7x | 0.6x 1.0x 1.4x| 0.6x 1.0x 1.3x| 0.6x 1.0x  1.2x
4 0.7x 1.2x 1.7x | 0.6x 1.1x 1.4x| 0.6x 1.1x 1.3x| 0.5x 1.0x  1.2x
8 09x 13x 1.7x| 0.7x 12x 14x| 07x 1.1x 1.3x| 0.5x 1.1x 1.2x
16 09x 14x 1.7x | 0.7x 1.3x 14x| 0.7x 12x 13x| 0.6x 11Ix 1.2x
32 09x 1.5x 1.7x | 0.7x 1.3x 14x| 0.6x 12x 13x| 0.5x 1.2x 1.2x
64 1.0x 1.6x 17x | 0.4x 14x 1.4x| 04x 13x 1.3x| 0.5x 1.2x  1.2x
128 0.3x 1.6x 1.7x | 0.3x 1.4x 1.4x| 04x 13x 1.3x| 0.5x 1.2x  1.2x
256 02x 1.7x  1.7x | 03x 1.5x 14x| 04x 13x 13x| 05x 13x 1.2x
512 n/a n/a n/a | n/a n/a n/a| n/a n/a n/a| n/a n/a n/a
Avg 0.7x 1.4x 16x | 0.6x 1.2x 1.4x| 0.6x 1.2x 1.3x | 0.5x 1.1x  1.2x
(2)
3x3 5x5 7x7 9x9

Replication | LUTs FFs ~ RAM | LUTs FFs RAM | LUTs FFs RAM | LUTs FFs ~ RAM
1 425 631 4 602 917 6 805 1278 8 1040 1695 10
2 461 704 5 638 1032 7 859 1428 9 1107 1891 11
4 560 990 5 763 1366 7 996 1952 9 | 1264 2377 11
8 823 1632 10 | 1158 2252 14 | 1528 2856 18 | 1911 3484 22
16 1379 3017 20 | 1925 4121 28 | 2489 5231 36 | 3059 6354 44
32 2444 5919 35 | 3216 8070 49 | 3997 10176 63 | 4742 12284 77
64 4826 11967 65 | 6265 16119 91 | 7711 20290 117 | 9218 24465 143
128 10001 24661 130 [12747 32879 182 (15494 41194 234 (18306 49486 286
256 20704 51117 260 |26262 67636 364 |31603 83955 468 |37062 100310 572
512 43360 106385 515 |54097 1E+05 721 (64928 2E+05 927 |75862 204114 1133

(b)

makes these amounts acceptable for most use cases. All results use
a maximum image size of 2048x2048, which makes the RAM usage
pessimistic for common use cases with smaller images.

5.2 2D Convolution on BDW+A10

This section evaluates the window generator using 2D convolution
on the Intel BDW+A10, while comparing performance and energy
to a GPU and parallelized software.

5.2.1 Experimental Setup. All experiments compare the BDW+A10
with a 12-core Broadwell Xeon E5 and an Nvidia Quadro P6000
GPU. The P6000 is a high-end GPU using the latest Pascal archi-
tecture, which has 3840 CUDA cores, 24 GB of GDDR5X RAM, and
costs approximately $5000. The BDW+A10 does not have a publicly
announced price, but uses an Arria 10 GX1150 FPGA, which costs
several thousand dollars [5].

To evaluate software, we used the optimized convolution from
DeepBench [22], which provides two algorithms that leverage the
Intel Math Kernel Library (MKL) 2017 Update 3 [24]. We also created
our own MKL-based implementation to optimize for large images.
All software implementations used AVX2 instructions on 12 cores.
For the GPU, we used DeepBench GPU code, which selects from
eight different algorithms for a given input. We also used Nvidia
convolutionFFT2D code from the CUDA-8.0 SDK to include an opti-
mized frequency-domain implementation. FPGA details are given
in Section 4. For synthesis, we used Quartus 16 Prime Pro, which
is required for the BDW+A10. All examples run the convolution
pipelines at 271 MHz and the DMA interface at 400 MHz.

To measure performance, we used gettimeofday() around relevant
regions of code. For all devices, measurements exclude initializa-
tion that is common to all devices. We also exclude times for device
initialization on all devices, which would be amortized over many
executions when used in a data center. On the FPGA, we excluded
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time for bitstream configuration and memory allocation, which re-
quires several seconds. For the GPU, we exclude the time of the first
execution, which adds 0.3 seconds. For all devices, we exclude the
time to initialize the convolution kernel, which generally changes
infrequently. All FPGA results include PCle and QPI transfer times
for accessing memory.

We measured Xeon and memory power using the RAPL (Running
Average Power Limit) component of Performance API (PAPI) 5.5.1.0
[25]. RAPL uses the Model Specific Registers (MSR) kernel module
to read registers that capture the energy and time between two
points in the code. To measure power, we performed convolution
in a loop, capturing the PAPI readings before and after the loop to
give an average value.

For Arria 10 power measurements, we used tempPowMon from
system release 5.0.3, which reads power and temperature measure-
ments from the FPGA. To get total system power for the FPGA,
we added FPGA power to the measured Xeon and memory power
during FPGA execution.

To measure GPU power, we used nvmlDeviceGetPowerUsage from
the Nvidia Management Library, which provided power of the entire
GPU board. For the GPU, we measured power and time in separate
executions because the power measurements significantly increased
time measurements. For total system power with the GPU, we added
the GPU power to the idle Xeon power and idle memory power.
Ideally, we would measure Xeon power during GPU execution, but
since we could not put the GPU in the server with the Broadwell
processor, such power would not be a fair comparison. Therefore,
total system power for the GPU is likely optimistic.

For all devices, we measured time and power by putting the
relevant code in a loop and averaging numerous measurements,
with the exact amount depending on the variation for each device.

Because 2D convolution can be used for a variety of purposes, a
complete analysis is outside the scope of this paper. This section
focuses on traditional use cases of one filter per image, using kernel
sizes of 3x3, 5X5, 7X7, and 9x9, along with images ranging from
256X256 to 2048%2048. All examples use inseparable kernels to get
worst-case performances. Color channels are 8 bits.

5.2.2  Performance Evaluation. To ensure good FPGA perfor-
mance, we replicated the 2D convolution pipelines using the pre-
sented window generator. Figure 5 demonstrates the improvements
in FPGA execution time for different amounts of pipeline repli-
cation for a 3x3 kernel on a 2048%x2048 image using 8-bit color
channels. Trends were similar for other window and image sizes.

The results show near-perfect performance improvements ini-
tially, with each replication achieving a 1.99X speedup over the
previous amount of replication. However, for 32 replications, that
improvement fell to 1.18X due to memory bandwidth being ex-
hausted. For 64 replications, there was no improvement. For nearly
all the presented results, this trend was the main performance bot-
tleneck. Average DSP utilization was only 52% of the available 1280
DSPs, with additional DSP usage being prevented primarily by in-
sufficient bandwidth. This utilization suggests improved memory
bandwidth can provide significantly improved performance.

Table 2 presents BDW+A10 speedup over the Xeon for both
a 16-bit fixed-point kernel and a 32-bit floating-point kernel. The
software baseline only uses floating point due to MKL not including
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Figure 5: FPGA 2D convolution execution times with vary-
ing amounts pipeline replication (unrolling) for a 3x3 ker-
nel, 2048x2048 image, and 8-bit color channels.

Table 2: BDW+Arrial0 2D convolution speedup compared to
a 12-core Xeon Broadwell E5.

Image Size

Precision Kernel Size ~ 256x256 512x512 1024x1024 2048x2048 Avg

16-bit Fixed 3x3 29x 38x 52x 55x 44x
5x5 57x 96x 135x% 146x  108x
7x7 50x% 115x% 126x% 145x  109x
9x9 38x 80x 110x 123x 88x
Avg 44x 82x 106x 117x

32-bit Float 3x3 27x% 38x 52x 55x 43x
5x5 57x 96x 136x 146x  109x
7x7 48x 97x 109% 123x 94x
9x9 27x% 48x 58x 62x 49x
Avg 40x 70x 89x 97x

fixed-point implementations. The BDW+A10 shows clear improve-
ments over the Xeon, with speedups ranging from 27X to 146X, and
an average of 81X across all examples. Speedup from fixed-point
implementations tended to be larger than floating point, primarily
due to a larger amount of pipeline replication at larger kernel sizes.

The FPGA speedup is achieved from several contributing fac-
tors. Most significantly, the FPGA exploited a massive amount of
parallelism every cycle. For example, the fixed-point 5x5 kernel is
capable of 1,600 multiplies and 1,536 adds every cycle at 271 MHz,
which is approximately 850 GOPS. Floating-point results are similar,
with the 5x5 kernel performing 800 single-precision multiplies and
768 adds each cycle. Although memory bandwidth prevented those
resources from being fully realized, the parallelism still far exceeded
that achieved by the Xeon. For fixed-point kernels, the pipeline
replication was 64 for 3x3 windows, 64 for 5x5, 32 for 7x7, and 16
for 9x9. These pipelines used 576, 1600, 1568, and 1296 multipliers,
respectively, and a similar number of adders. For floating-point
kernels, the replication was 64 for 3x3 windows, 32 for 5X5, 16 for
7x7, and 8 for 9x9, which used 576, 800, 784, and 648 DSP resources,
respectively, with each performing a multiply and add.

For traditional convolution, the Xeon efficiency was surprisingly
low considering its peak potential throughput of 700 GFLOPS when
using AVX2 across 12 cores. We have observed that DeepBench
and MKL appear to exploit parallelism across larger kernel sizes
and larger numbers of kernels, as opposed to computing multiple
outputs from the same kernel in parallel. As as a result, much of
the potential parallelism of the Xeon is left underutilized. It may be
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possible to optimize the Xeon code to exploit such parallelism, but
for current convolution software implementations, our presented
approach is able to exploit parallelism that is not leveraged by the
Xeon.

Another significant contributor to FPGA performance compared
to previous studies is that the BDW+A10 has negligible overhead
for initiating FPGA execution. For systems using FPGAs on PCle
boards, the application generally has to copy all relevant inputs to
the FPGA board, and then read back all results. On the BDW+A10,
even though the FPGA accesses memory over PCle and/or QPI,
the FPGA shares the Xeon’s memory, which provides a significant
performance improvement by eliminating such copying. For the
BDW+A10, execution time is roughly equivalent to the time to read
inputs and write outputs to memory.

Figure 6 compares BDW+A10 execution times with the GPU for
different kernel and image sizes. GPUs can be used in a variety of
usage scenarios, where in some cases inputs and outputs must be
transferred over PCle every execution, and in others results are
reused from GPU memory for a large number of execution. In these
results, we evaluate the maximum possible GPU performance by
excluding all PCle transfers from the GPU execution times. Note
that all FPGA results still include all PCle and QPI transfer times.

For 256x256 images, the fixed-point FPGA implementation al-
ways provided the best performance, with the floating-point FPGA
version achieving nearly identical results, except for the 9x9 kernel
size. The GPU DeepBench implementation was slightly slower, with
FPGA speedup ranging from 1.0X to 1.4x. The GPU CUDA-SDK
implementation was significantly slower at this image size due
to the added initial overhead of performing the FFT. For 512Xx512
images, trends are similar, with the FPGA speedup range increasing
from 1.4X to 2.3x.

At 1024x1024, performances of the GPU CUDA-SDK and FPGA
fixed-point version were comparable, with the GPU slightly over-
taking the FPGA at the 9%x9 kernel size. The FPGA floating-point
version experienced a 2x slowdown for the 9x9 kernel due to lower
parallelism than the fixed-point version. Trends were similar for
2048x%2048 images, with the GPU CUDA-SDK slightly increasing
its advantage.

Table 3 shows BDW+A10 speedup across all inputs compared to
the fastest GPU implementation. The left side of the table summa-
rizes the results from Figure 6, which excluded PCle transfers. The
right side shows the BDW+A10 speedup with GPU PCle transfers.
The results show that GPU transfers are an expensive overhead,
resulting in FPGA speedup of more than an order of magnitude
in most cases. Overall, the average FPGA speedup increased from
1.2x with no GPU PCle transfers to 12.6X with PCle transfers.

Like the Xeon, the P6000 performed far below its peak perfor-
mance of 12 TFLOPS. The decreasing speedup for larger window
sizes suggests that current GPU implementations parallelize across
large windows, and as shown later, across multiple filters per image.
Because traditional convolution uses a single kernel per image, the
P6000 was significantly underutilized, whereas the FPGA was able
to exploit parallelism across multiple outputs of the same kernel.

5.2.3 Energy Comparison. In this section, we repeat the exper-
iments from the previous section for energy consumption using
power measurements described in Section 5.2.1.
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Figure 6: 2D convolution execution times for different kernel and image sizes. FPGA results include 16-bit fixed point and
32-bit floating point. GPU results include CUDA SDK and DeepBench implementations and exclude all PClIe transfer times.

Table 3: BDW+Arrial0 speedup over the P6000 GPU when excluding (left) and including (right) GPU PCle transfer times.

Image Size Image Size

GPU PCle  Precision Kernel Size  256x256 512x512 1024x1024 2048x2048 Avg GPU PCle Precision Kernel Size  256x256 512x512 1024x1024 2048x2048 Avg
Excluded  16-bit Fixed 3x3 1.4x 1.4x 1.2x 0.9x  1.2x Included  16-bit Fixed 3x3 13.1x 16.4x 14.5x 14.1x 14.5x
5x5 1.3x 1.7x 1.1x 0.9x  1.3x 5x5 11.1x 15.5x 14.6x 14.5x 13.9x
7x7 1.4x 2.2x 1.1x 0.9x  1.4x 7x7 9.3x 15.7x 14.9x 15.1x 13.7x
9x9 1.4x 2.3x 0.9x 0.8x  1.3x 9x9 7.0x 12.6x 13.2x 13.4x 11.5x

Avg 1.4x 1.9x 1.1x 0.9x Avg 10.1x 15.0x 14.3x 14.3x
32-bit Float 3x3 1.3x 1.4x 1.2x 0.9x 1.2x 32-bit Float 3x3 12.5x 16.4x 14.5% 14.0x 14.3x
5x5 1.3x 1.7x 1.1x 0.9x  1.3x 5x5 11.1x 15.7x 14.7x 14.5x 14.0x
7x7 1.3x 1.9x 1.0x 0.8x  1.2x 7x7 8.8x 13.3x 12.9x 12.8x 12.0x
9x9 1.0x 1.3x 0.5x 0.4x  0.8x 9x9 5.0x 7.5% 7.0x 6.8x  6.6x

Avg 1.2x 1.6x 0.9x 0.8x Avg 9.4x 13.2x 12.3x 12.0x

Table 4: BDW+Arrial0 2D convolution energy improve-
ments over a Xeon Broadwell E5.

Image Size

Precision Kernel Size  256x256 512x512 1024x1024 2048x2048 Avg

16-bit Fixed 3x3 329 x89 689 659 2x9
2x2 659 1169 1819 1849 1339
8x8 259 1329 1239 16x9 1759
4x4 xx9 459 1329 1x59 1069
Avg 219 449 1319 1x09

37-bit Float 3x3 339 x69 629 669 239
2x2 6x9 1119 1679 1649 1789
8x8 229 1139 1319 1349 1049
4x4 379 259 819 829 249
Avg x69 579 1059 1179

Table 4 compares BDW+A10 energy with the Xeon. BDW+A10
energy improvements were more significant than performance im-
provements, with the FPGA providing an average 96X improvement
in energy. FPGA device power ranged from 8.9 W to 15.4 W. Mem-
ory power during FPGA execution added another 33 W, and the
Xeon power added 42 W. For software execution on the Xeon, Xeon
power ranged from 53 W to 77 W, with memory power ranging
from 25 W to 49 W. Overall, the average system power across all
FPGA tests was 87 W, compared to 105 W when running software.

Table 5 compares BDW+A10 energy to the most energy-efficient
GPU implementation for each input. When excluding GPU PCle
transfers, the BDW+A10 achieved an average energy improvement
of 1.5%, and was more efficient than the GPU for all but two exam-
ples. When including CPU PCle transfers, the BDW+A10 shows
significant improvements, achieving an average energy improve-
ment of 15.7X. GPU device power ranged from 61 W to 190 W. The

FPGA device power ranged from 8.9 W to 15.4 W. Total system
power with the GPU ranged from 98 W to 227 W, whereas the total
system power for the FPGA was from 84 W to 90 W.

One potential power optimization for the FPGA is to use inter-
rupts instead of polling to check for completion. Although FPGA-
generated interrupts are not documented yet for the BDW+A10,
we imitated this optimization by putting the processor to sleep dur-
ing FPGA execution. For these tests, the Xeon power and memory
during FPGA execution decreased to 27 W and 24 W, respectively,
reducing the average total system power to 62 W.

5.3 CNN Performance Projections

In this section, we evaluate the window generator for convolution
parameters common to CNNs. Specifically, we use an image size of
256%256, filter sizes of 3x3 and 5X5, filters per image ranging from
32 to 512, which are common to DeepBench and AlexNet [14].
Unlike traditional convolution, the Xeon and P6000 outperform
existing FPGA systems for most CNN use cases due to efficient
parallelization across multiple filters for an image. Because this pa-
per focuses on the benefits of scalable window generation, in these
experiments we evaluate projected performance of shared-memory
FPGA systems with theoretical amounts of memory bandwidth
that would achieve full utilization of the presented 2D convolu-
tion pipelines up to the resource limits of an Arria 10 GX1150
and a Stratix 10 GX2800. For the FPGA projections, we manually
determined a parallelization strategy for each example that both
replicated pipelines and performed multiple filters per pipeline
without exceeding resource constraints. We then simulated the
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Table 5: BDW+Arrial0 2D convolution energy improvements over the P6000 GPU when excluding (left) and including (right)

GPU PCle transfer times.
Image Size Image Size
GPU PCle  Precision Kernel Size  256x256 512x512 1024x1024 2048x2048 Avg GPU PCle  Precision Kernel Size  256x256 512x512 1024x1024 2048x2048  Avg
Excluded  16-bit Fixed 3x3 1.64 1.x4 1.24 1.04 1.24 9 cluded  16-bit Fixed 3x3 12.24 1n.54 1n.04 1n.74 15.04
2x2 1.24 8.14 1.04 134 164 2x2 18.n4 15.64 1n.24 1n.54 1x.x4
XXX 1.64 8.54 1.34 134 1.x4 XXX 17.24 15.84 1n.x4 87.24 1x.84
nxn 1.x4 3.34 1.14 1.14 154 nxn 5.14 12.34 16.n4 15.64 10.x4
Avg 1.64 8.24 1.34 1.34 Avg 11.54 15.74 15.n4 1n.24
38-bit Float 3x3 1.24 1.x4 1.24 134 1.24 38-bit Float  3x3 10.64 1n.04 1n.74 15.64 1x.n4
2x2 1.24 8.74 1.34 134 1.24 2x2 18.84 1x.54 15.64 15.x4 16.54
XXX 1.24 8.34 1.14 1.14 1.24 XXX n.n4 12.84 16.n4 1x.34 10.54
nxn 1.84 8.74 7.64 7.24 114 nxn 2.54 n.74 5.n4 n.04 534
Avg 1.04 8.74 1.14 1.74 Avg 17.64 12.04 12.54 16.74
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Figure 7: A CNN performance comparison of the Xeon Broadwell and P6000 GPU with projections of the Arria 10 and Stratix
10 using the presented window generation with hypothetical increases in memory bandwidth.

existing pipelines for this strategy, using memory and communi-
cation latencies obtained from the BDW+A10 experiments. Due
to space constraints, these experiments only use 16-bit fixed-point
kernels, which are common for CNNs [11]. GPU examples use
single-precision floating point due to DeepBench not providing
fixed-point implementations. We also evaluated half precision, but
the results are omitted due to worse performance than single pre-
cision, which is a known issue on GPUs [12]. DeepBench can po-
tentially be optimized for half precision, but is outside the scope
of this paper. We omit power and energy in this section due to the
use of projections for envisioned optimizations and the lack of a
Stratix 10 to physically measure.

Figure 7 compares CNN performance, again including GPU re-
sults both with and without PCle transfers. For 3x3 filters and 32
filters per image, the Stratix 10 outperforms all other devices. The
Arria 10 outperforms the GPU when including PCle transfers, and
is comparable to the GPU excluding PCle transfers. For 64 filters per
image, the Arria 10 performance falls behind the GPU excluding
PCle transfers, but the Stratix 10 is still 2x faster without GPU
PCle transfers, and 7X faster than the GPU when including PCle
transfers. Trends are similar at 256 and 512 filters per image, but
with reduced FPGA speedup.

For 5X5 filter sizes, the GPU has significantly better performance
due to extra parallelism from the larger filter. However, when in-
cluding PCle transfers, the Stratix 10 projections are better or com-
parable up to 256 filters per image. At 512 filters per image, the

GPU begins to outperform the Stratix 10 both with and without
PCle transfers, achieving speedups of 1.9x and 1.3x, respectively.
Table 6 shows the parallelism strategy used by each FPGA exam-
ple, where p is the number of replicated pipelines, and k is the filters
per pipeline. BW is the required bandwidth in GB/s to achieve this
parallelism without stalls. Perf is the resulting performance in tera-
operations per second (TOPS). In general, most examples used both
replicated pipelines and performed multiple filters in each pipeline.
For the larger number of filters per image, some examples did not
use pipeline replication and instead used all available resources to
maximize the number of parallel filters. On average, the Arria 10
and Stratix 10 achieved a sustained performance of 1.1 TOPS and
4.2 TOPS, respectively, which required bandwidth ranging from 18
GB/s to 286 GB/s. Required bandwidth was calculated by multiply-
ing the number of inputs and outputs by the clock frequency (271
MHz). For example, the 3x3 Stratix 10 example for 32 filters/image
had 32 inputs each cycle and 32 - 32 outputs each cycle for a total
of (32 + 32 -32)271 = 286 GB/s. Performance was calculated as the
number of multiplies each cycle (pkw,w.) added with the number
of adds each cycle (pkw,w, — p), multiplied by the clock frequency.
The reason for the large differences in required bandwidth is
due to lower resource utilization for a particular parallelization
strategy. For example, for the 5x5 Stratix 10 examples, all of the
circuits used 6400 multipliers, which is only 54% of the 11,721
available multipliers. The reason for this underutilization is that the
existing version of the convolution code only supports replication in
powers of two, where the next highest power would exceed 11,721
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Table 6: FPGA parameters from Figure 7, where p is pipeline
replication, k is filters per pipeline, BW is required memory
bandwidth in GB/s, and Perf is performance in tera-ops/s.

Filters Per Image
32 64 256 512
Device Filter | p k BW Perf| p k BW Perf k BW Perflp k BW Perf
Arria10  3x3 832 72 12| 464 70 12 256 70 1.2{ 1256 70 1.2
5x5 232 18 09| 232 18 09 32 18 092 32 18 09
Stratix 10 3x3 32 32 286 5.0/16 64 282 5.0 256 279 5.0| 2 512 278 5.0
5x5 832 72 35| 464 70 35 256 70 3.5| 125 70 3.5

= AN R|T

multipliers. Ideally, we would replicate by non-powers of two to
ensure that all examples achieve closer to 100% utilization of DSP
resources. We will investigate such optimization in future work,
but even without this optimization, these projections show that the
presented window generator enables emerging FPGA systems to
achieve performance that is better or comparable to the P6000 GPU
for many CNN use cases.

6 CONCLUSIONS

In this paper, we introduced a sliding-window generator architec-
ture that enables scalable pipeline replication to over 330 GB/s of
memory bandwidth, while also eliminating software pre-processing
and PCle overheads from input padding. We evaluated the window
generator for 2D convolution on the Intel Broadwell+Arria 10 and
demonstrated order-of-magnitude speedup over software running
on the Xeon and a high-end P6000 GPU. Although the GPU outper-
forms any existing FPGA for CNN usage, we demonstrate that the
presented window generator running on a Stratix 10 system with
sufficient memory bandwidth can outperform the GPU for many
common CNN use cases.
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