
Scalable Window Generation for the Intel Broadwell+Arria 10
and High-Bandwidth FPGA Systems

Greg Stitt, Abhay Gupta, Madison N. Emas, David Wilson, Austin Baylis
University of Florida, Department of Electrical and Computer Engineering

gstitt@ece.ufl.edu,abhayg271@gmail.com,madisel@ufl.edu,d.wilson@ufl.edu,abaylis@ufl.edu

ABSTRACT

Emerging FPGA systems are providing higher external memory

bandwidth to compete with GPU performance. However, because

FPGAs often achieve parallelism through deep pipelines, tradi-

tional FPGA design strategies do not necessarily scale well to large

amounts of replicated pipelines that can take advantage of higher

bandwidth. We show that sliding-window applications—an impor-

tant subset of digital signal processing—demonstrate this scalability

problem. We introduce a window generator architecture that en-

ables replication to over 330 GB/s, which is an 8.7× improvement

over previous work. We evaluate the window generator on the Intel

Broadwell+Arria10 system for 2D convolution and show that for

traditional convolution (one filter per image), our approach outper-

forms a 12-core Xeon Broadwell E5 by 81× and a high-end Nvidia

P6000 GPU by an order of magnitude for most input sizes, while

improving energy by 15.7×. For convolutional neural nets (CNNs),
we show that although the GPU and Xeon typically outperform

existing FPGA systems, projected performances of the window gen-

erator running on FPGAs with sufficient bandwidth can outperform

high-end GPUs for many common CNN parameters.

CCS CONCEPTS

• Hardware → Hardware accelerators;

KEYWORDS

FPGA, convolution, neural networks

ACM Reference format:

Greg Stitt, Abhay Gupta, Madison N. Emas, David Wilson, Austin Baylis.

2018. Scalable Window Generation for the Intel Broadwell+Arria 10 and

High-Bandwidth FPGA Systems. In Proceedings of 2018 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,

February 25–27, 2018 (FPGA ’18), 10 pages.

https://doi.org/10.1145/3174243.3174262

1 INTRODUCTION

Digital signal processing applications commonly use field-programmable

gate arrays (FPGAs) or graphics-processing units (GPUs), but GPUs

are generally themore popular alternative formost high-performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA ’18, February 25–27, 2018, Monterey, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5614-5/18/02. . . $15.00
https://doi.org/10.1145/3174243.3174262

use cases. Although FPGAs often provide more performance per

unit of memory bandwidth (e.g., [7]), GPUs tend to provide external

memory bandwidth that is at least an order-of-magnitude higher

than FPGA systems. For example, the Nvidia P100 provides 732

GB/s [19], whereas most FPGA boards provide on the order of tens

of GB/s (e.g., [8, 15, 21]).

Traditionally, high-performance FPGA designs have dealt with

limited memory bandwidth using deep pipelines (e.g., [6, 13, 27]).

Pipeline replication and loop unrolling are also common FPGA

optimizations, but with limited bandwidth such replication pro-

vides limited improvements. For FPGAs to compete with GPU per-

formance, emerging and future FPGAs will need to significantly

increase memory bandwidth [16].

Although higher-bandwidth FPGA systems enable increased

replication, not all FPGA design patterns scale well to large amounts

of pipeline replication. We show that sliding-window generation

has limited replication scaling, which is a significant problem for

FPGAs given the prevalence of sliding windows in convolutional

neural nets (CNNs) and other image-processing applications [6, 26].

Previous approaches provide window generators that are either

limited to one window per cycle [4, 9], lack scalability to numerous

windows [23], or support a specific window and/or image size [20].

For data-center usage, an FPGA circuit must support a wide range

of window and image sizes due to prohibitively long reconfigura-

tion times. Although previous approaches can support different

window and image sizes by padding the input, such padding is

often an expensive overhead, which in our tests exceeded the FPGA

execution times of the presented case studies.

In this paper, we introduce a window generator architecture that

greatly improves scalability, enabling generation of numerous win-

dows in parallel to support anticipated bandwidth increases, while

addressing flexibility problems by supporting runtime-configurable

window and image sizes with no padding overhead. Our results

demonstrate pipeline replication to more than 330 GB/s of mem-

ory bandwidth, which to our knowledge is more than any existing

FPGA system and an 8.7× improvement over previous work [23].

Although the window generator can be used with any sliding-

window application, we evaluate 2D convolution running on an

Intel Broadwell+Arria 10 (BDW+A10) [10]. For traditional convo-

lution (one filter per image), our approach outperforms optimized

implementations from DeepBench [22] and the Intel Math Kernel

Library (MKL) [24] running on a 12-core Xeon Broadwell E5 and a

high-end Nvidia P6000 GPU with 3,840 CUDA cores. Despite the

FPGA having a theoretical peak performance that is comparable

to the Xeon and significantly less than the P6000, our approach

achieves an average speedup of 81× over the Xeon and 12.6× over

the P6000. We obtain these improvements by exploiting different

types of parallelism that provide near-peak FPGA performance in

FPGA ’18, February 25–27, 2018, Monterey, CA, USA Stitt, Gupta, Emas, Wilson, Baylis

situations where existing Xeon and GPU implementations leave

many resources underutilized. Energy improvements are even more

significant, with improvements of 96× and 15.7× for the Xeon and

GPU, respectively. Even for the ideal situation where a GPU can

completely avoid or amortize PCIe transfers, our approach achieves

an average speedup of 1.2× and energy improvement of 1.5×.
We also evaluate our approach using convolution parameters

common to CNNs for theoretical bandwidth improvements. Al-

though the P6000 outperforms existing FPGA systems for CNNs,

we show that our approach running on a shared-memory Stratix

10 system with sufficient bandwidth is projected to outperform the

P6000 for common CNN use cases.

2 RELATEDWORK

The most closely related study is the window generator from [23],

which had similar goals of generating multiple windows per cycle,

while also supporting runtime-configurable window and image

sizes. We show that the previous approach does not scale past 256

parallel windows on the BDW+A10, and has clock speeds that are

more than 2× slower than the presented approach for 64 or more

parallel windows. Overall, the presented approach is able to support

memory bandwidth that is 8.7× higher than this previous work.

Although there are many previous window-generation studies

[4, 9, 20, 23], none of those studies address scalability, high clock

frequencies, and runtime-configurable inputs with no padding over-

head. A recent approach [20] investigatedminimizing register usage

during loop coarsening with high-level synthesis. Our approach

has an alternative goal of maximizing scalability, which sacrifices

register usage for improved clock speeds and scalability up to 1024

replicated pipelines, whereas the previous study reports up to 64.

Although a direct comparison is not feasible due to the previous ap-

proach only providing high-level synthesis estimates, that approach

complements our work with new border-handling techniques.

Tradeoff analyses between FPGAs, GPUs, and microprocessors

for sliding-window applications are a well-studied topic [1, 3, 6, 26],

and have established Pareto-optimal implementations for different

use cases. This paper complements those studies with a window

generator that improves FPGA performance, especially for emerg-

ing high-bandwidth systems.

FPGA performance evaluations for CNNs have received signifi-

cant attention recently. Zhang [27] evaluated an FFT-based FPGA

implementation for CNNs on a shared-memory system. Our work

is complementary, focusing on sliding windows needed by time-

domain implementations. The two approaches could be combined

to efficiently support CNNs over many use cases, with time-domain

implementations for smaller windows and frequency-domain imple-

mentations for larger windows [2]. Nurvitadhi et al. [18] compared

Arria 10 performance with a CPU, GPU, and ASIC for binarized neu-

ral networks. In more recent work, Nurvitadhi et al. [17] presented

Stratix 10 performance and energy projections compared to a Titan

X GPU for CNNs, which showed projections similar to our pre-

sented work. Our work is complementary by presenting a window

generator capable of realizing such projections for high-bandwidth

FPGA systems. In general, the focus of our paper is on efficient

Variable-Read
FIFO

Traditional
FIFO

7XX
456
3XX
012

0 1 2 3 X X
4 5 6 7 X X

….
678
345
012

0 1 2 3
4 5 6 7

Image

Padded Image
(p=3)

7XX
456
3XX
012

7XX
456
3XX
012

. . . .

. . . .

Figure 1: Unlike traditional FIFOs, the variable-read FIFO

obviates padding for parallel windows (e.g., p = 3), which

reduces pre-processing and PCIe overhead.

sliding-window generation, which we evaluate using different con-

volution use cases, whereas earlier studies focus primarily on an

architectural tradeoff analysis for CNNs.

3 WINDOW GENERATOR

Sliding-window applications are a domain of digital signal process-

ing that perform application-specific computation on “windows”

(sub-images) of an image. Applications generally slide these win-

dows across an image from left to right at the top of the image,

then move down one row and repeat until all windows have been

processed. Although there are a variety of different sliding behav-

iors, we focus on single strides where each window slides by one

column, and fully immersed windows where the window does not

slide past the image borders. Our approach can be easily adapted to

other variations, albeit with potentially less reuse for larger strides.

In this section, we present an architecture for generating all

necessary windows independently from the application-specific

computation. For consistency, we adopt the same terminology as

the previous approach in [23], where the inputs are an image i
with ir rows and ic columns, and a window w with wr rows and

wc columns. We define the top-left pixel of an image to be i[0, 0].
We use p to represent the number of pixels provided each cycle,

the number of windows generated each cycle, and the amount of

pipeline replication, which are all equivalent in our architecture.

Thewindow generator consists of a variable-read FIFO, a window

buffer, and a window coalescer. Initially, the user passes a stream of

pixels (p each cycle) to the variable-read FIFO (Section 3.1), which

provides a variable number of pixels from that stream to the window

buffer to obviate input padding. The window buffer assembles the

pixels into columns of window data that the coalescer combines

into approximately p complete windows each cycle (Section 3.2).

3.1 Variable-Read FIFO

The variable-read FIFO (VRF) streams pixels into the window buffer

in a way that enables the window buffer to generate p windows in

parallel, while eliminating the need for input padding. Although

padding the image to have columns that are a multiple of p can

eliminate the need for the VRF, such padding has a software pre-

processing and PCIe overhead. In our experiments, software padding

times often exceeded the FPGA execution time, which significantly

reduced or eliminated speedup. Although such padding is concep-

tually easy to implement on the FPGA, creating a circuit that adds

Scalable Window Generation FPGA ’18, February 25–27, 2018, Monterey, CA, USA

Reg RegReg Reg Reg Reg Reg Reg

p=4 parallel inputs

Write Controller

Output Index

Register
Buffer

<= 4 outputs

Read Controller

write enable

read amountread enable

0 1 2 3 4 5 6 7

Reg RegReg Reg Reg

Reg RegReg Reg

Output Alignment

(1)

(0)

Figure 2: Variable-read FIFO architecture for four parallel inputs and outputs (p = 4).

variable padding based on runtime parameters with no performance

overhead is not trivial. The VRF provides this functionality.

Figure 1 compares the difference between input streams when

using a traditional FIFO with padding and the VRF. For an image

with four columns and a system that can provide three pixels (p = 3)

each cycle, the first read from the FIFO provides elements 0-2. To

complete the processing of the first row, the application only needs

element 3. However, if the FIFO provides three elements instead of

one, the application will either be corrupted with invalid data for

the first row, or must buffer the extra data somewhere internally.

Since the FIFO already provides buffering, it makes more sense to

read a variable amount of data from the FIFO instead of adding

additional buffering elsewhere, which would also need to support

variable amounts. With the VRF, the application reads three pixels

to get pixels 0-2, then one pixel (3) to complete the first row, then

pixels 4-6, then pixel 7, etc. This approach eliminates up to p − 1

padded pixels from the right edge of each image row, which is

critically important for large p values where the padding overhead

could be prohibitive.

Figure 2 illustrates the VRF architecture. The structure is concep-

tually similar to the FIFO in [23], but has been modified to improve

timing scalability for larger p. Both approaches write p pixels into

a fixed set of registers within a buffer of 2p registers. In this buffer,

the output index varies depending on previous reads. Initially, the

output index starts at 0 and then increases after each read by the

number of elements read from the FIFO. When the output index

exceeds p − 1, the write controller shifts the register buffer left by

p positions to ensure the index is always between 0 and p − 1.

Because the output index changes, the read controller must align

the outputs with the appropriate p registers. The previous approach

implemented output alignment using p separate p:1 muxes to select

the appropriate register for each output, which is a significant

timing-closure bottleneck. Although those muxes could potentially

be pipelined, muxes in general are an expensive FPGA resource.

To avoid this problem, and to ensure better scalability, our new

approach ensures that the critical-path propagation delay (ignoring

routing delays) is independent of p.
In our approach, the VRF aligns outputs using a pipelined barrel

shifter that shifts by the amount in the output index. Although this

approach creates a several-cycle output delay, the user can still read

every cycle. With this strategy, there is never more than a 2:1 mux

in between registers for any value of p, which potentially enables

the architecture to scale indefinitely up to any resource constraint

without experiencing a timing-closure bottleneck.

In addition to the logic in the figure, the VRF outputs a count of

the words in the FIFO, in addition to bits that specify the validity of

each output. For example, when the user requests one output, the

VRF will provide p outputs, but will mark p − 1 outputs as invalid.

Although the propagation delay of the count logic increases with

larger p, that increase is logarithmic. For any realistic value of p, the
count logic is is not a timing-closure bottleneck. Even for p = 1024,

the count logic only requires a 10-bit adder and subtractor.

3.2 Window Buffer and Coalescer

The window buffer is responsible for buffering the input stream of

pixels into separate rows, and then passing p columns from each

row into the window coalescer each cycle.

Figure 3(a) provides an overview of the window-buffer architec-

ture. The basic structure is a chained sequence ofwr FIFOs, which

each buffer an entire row of the image. The window buffer reads p
pixels at a time from the VRF into the bottom row FIFO, where each

word consists of p pixels. When there are fewer than p pixels left

in a row of the image, the window buffer requests the remaining

number of pixels from the VRF (e.g, pixel 3 in Figure 1). In this

case, the window buffer marks any extra pixels as invalid to avoid

including them in windows.

A previous approach [23] similarly used wr FIFOs, but after

outputting an entire row of windows, that approach would erase

the top FIFO. The previous approach would then reuse the top FIFO

for the next row of the image. As a result, the first row of each

window gradually moves into different FIFOs. Similar to the VRF,

FPGA ’18, February 25–27, 2018, Monterey, CA, USA Stitt, Gupta, Emas, Wilson, Baylis

p pixels
from VRF

ic / p words

wr
FIFOs

Row FIFO

Row FIFO

Row FIFO

Row FIFOs provide p
window columnsp pixels per FIFO word

w[i,j+1]w[i,j]

w[i+1,j+1]w[i+1,j]

Reg Reg

wr rows

(wc+p-1)/p p window-column registers

p window outputs

Reg Reg

Reg Reg Reg Reg

w[i+2,j+1]w[i+2,j] Reg Reg Reg Reg

(a) (b)

Figure 3: Overview of the (a) window buffer and (b) coalescer architecture for two parallel (p = 2) 3×3 windows.

the previous approach maintained an index that specified which

FIFO stored the topwindow row. To align the outputs, that approach

used wr separate wr :1 muxes, which created another significant

scalability bottleneck that has similar problems to the previous VRF.

Our approach uses an alternative strategy that completely elimi-

nates the need for alignment by always using the top FIFO as the top

row of a window, the bottom FIFO as the bottom row, etc. To enable

this functionality, the window buffer initially writes all incoming

pixels into the bottom FIFO, storing p pixels per word. When the

bottom FIFO contains �ic/p� words (an entire image row), every

new write into the bottom FIFO also triggers a read from that FIFO.

For each FIFO read, the buffer writes the read data into the next

higher FIFO, which enables the pixels to gradually shift to the top

FIFO. This process repeats until allwr FIFOs contain �ic/p� words.
At this point, a controller (not shown) starts reading from all

FIFOs, which passes p columns each cycle into the coalescer (Fig-

ure 3(b)). The coalescer assembles p windows by dividing each

window intowc register columns that get shifted by p positions for

every new set of columns from the window buffer. After �(wc +

p − 1)/p� shifts, the coalescer contains p complete windows, where

the index of the first window starts at the first column, the second

window at the second column, etc. Overall, the coalescer consists of

�(wc + p − 1)/p� · p columns, where each column haswr registers.

The controller continues streaming columns from the buffer for

�ic/p� cycles, and then returns to buffering incoming data. The

controller continues to buffer new pixels while outputting columns.

If pixels arrive every cycle, the controller will immediately begin

outputting columns again after completing the current row. If the

window buffer outputs all the current columns before another ic
pixels arrive, the controller delays the next set of columns until all

the FIFOs have sufficient pixels.

In addition to removing all muxes, one critically important timing

optimization was the removal of register enable logic. The previous

approach stalled the coalescer by clearing an enable until all FIFOs

were not empty. Because that enable had to control every register in

the coalescer, the previous approach had a timing-closure bottleneck

resulting from a prohibitive enable fanout of �(wc +p−1)/p� ·pwrd ,
where d is the bit width of each pixel.

We address this problem by removing all enable logic from the

coalescer. To remove the logic, the controller delays reads from the

window buffer until the row FIFOs contain all required pixels for

the next row of windows. When the controller starts reading, the p
column inputs to the coalescer will always be valid until the end

of the row, which eliminates the need for an enable. Although this

approach delays the first columns, the throughput is identical. Most

importantly, this optimization eliminates the fanout, which results

in propagation delays that are independent of p.
To support any window size, the controller determines how far

to slide the maximum-sized window across the image. For example,

if the FPGA provides a 10×10 window, but the user requests a 3×3
window, the controller would slide the 10×10 window seven pixels

past the right edge and bottom edge of the image. The controller

pads all unused window elements with 0, which is done automati-

cally on reset. With this strategy, although many window elements

are unused, generation times for 3×3 windows are similar regard-

less of the maximum window size, with the only overhead being

the initial time to fill up the extra row FIFOs. To support arbitrary

image sizes, the architecture sets the FIFO depth to the maximum

image width divided by p, and then simply starts reading from the

FIFOs when the requested image columns ic are buffered in each

FIFO (�ic/p� words).

4 2D CONVOLUTION ON BDW+A10

In this section, we describe our custom RTL implementation of

2D convolution on the Broadwell+Arria 10 (BDW+A10). Because

convolution implementations have been widely studied [6], we

focus on BDW+A10 specific issues due to space constraints.

The BDW+A10 shares the Xeon’s main memory with the FPGA,

which the FPGA accesses over both PCIe and/or QPI. To accessmem-

ory, the BDW+A10 provides a cache coherent interface (CCI) that

provides basic memory-access mechanisms. In VHDL, we extended

the provided mechanisms with our own DMA memory interface

that provided memory access reordering, virtual-to-physical ad-

dress translation, in addition to width conversion to enable the

application to request any data width from memory. We also went

to great effort with timing optimizations to ensure the DMA inter-

face can run at 400 MHz to maximize memory bandwidth. Intel

provides a Memory Properties Factory core that enables much of

this functionality, which we have not yet evaluated, but could po-

tentially improve reported memory bandwidth.

Scalable Window Generation FPGA ’18, February 25–27, 2018, Monterey, CA, USA

In our BDW+A10 implementation, software initially loads the

bitfile and initializes page tables inside the FPGA using memory-

mapped I/O (MMIO) to enable sharing of memory between software

and the FPGA. For data-center usage, such functionality would

normally be done while booting. Next, the software transfers the

convolution kernel into FPGA registers, specifies the convolution

parameters, and starts the FPGA execution, all using MMIO. The

FPGA circuit then starts a DMA access to read the image from

memory, which the circuit streams into the window generator from

Section 3. After receiving enough pixels, the window generator

generates a stream of parallel windows that are pushed into repli-

cated 2D convolution pipelines. The FPGA also initiates another

DMA access to simultaneously write results to memory.

Each 2D convolution pipeline uses a row ofwrwc multipliers, one

for each element of the convolution kernel, followed by a balanced

adder tree consisting of wrwc − 1 adders. The pipelines include

registers between each operation, which eventually provides an

output from each pipeline every cycle.

For the floating-point implementation, we use a different strategy

to maximize DSP utilization and clock frequency. Arria 10 DSPs can

perform both a single-precision multiply and addition. The DSPs

also contain chained routing that connects each DSP to an adjacent

DSP. Our implementation utilizes this chaining, which has the side-

effect of converting the balanced adder tree with a depth that grows

logarithmically with the kernel size into a sequence of adds whose

length grows linearly. This chaining improves clock frequencies

at the cost of each adder input requiring a longer alignment delay

than in the balanced tree. To handle these delays, we use registers

when the delay is below a certain threshold and switch to block

RAM for larger delays. Such an approach will not scale to large

kernel sizes due to limited block RAM, in which case a combination

of the balanced approach and chaining approach can be used.

To improve clock frequency, we performed a number of timing

optimizations. Chaining the DSPs made a significant impact on

timing by avoiding routing delays from numerous 32-bit signals.

We also performed an optimization similar to Section 3.2 where we

eliminated stall functionality for each individual pipeline stage to

eliminate the enable signal’s fanout. We replaced the fine-grained

stall strategy with a strategy that uses a large FIFO to absorb the

entire state of the pipeline when writes to output memory have to

stall. When this FIFO is almost full, it triggers the window generator

to stop producingwindows. An additional advantage of this strategy

is the enabling of Stratix 10 HyperFlex interconnect registers, which

should further improve clock frequencies in future work.

One critical timing optimization for the 2D convolution pipelines

was register duplication. Because the window coalescer (Section 3.2)

shares registers for window elements that overlap in consecutive

windows, many of these registers will fanout to numerous pipelines,

which can significantly restrict maximum clock frequency for large

values of p. Although we could not find an exact description of

register-duplication restrictions in Quartus, we removed the fine-

grained stalling of each individual register, removed combinational

logic before the first pipeline register, and added registers before

the multipliers, at which point Quartus started replicating the reg-

isters with high fanout. We plan to manually evaluate area/clock

tradeoffs for manually specified replication thresholds, but lengthy

compilation times prohibited such analysis for this study.

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256 512 1024

Cl
oc

k
Fr

eq
ue

nc
y

(M
Hz

)

Pipeline Replication

New

Old

Figure 4: A comparison of Arria 10 clock frequencies for the

presented (new) window generator and previous work (old)

for different amounts of pipeline replication.

5 EXPERIMENTS

In this section, we first evaluate the scalability of the window gen-

erator (Section 5.1). We then provide performance and energy com-

parisons between the BDW+A10, Broadwell Xeon E5, and Nvidia

P6000 for traditional 2D convolution (Section 5.2), in addition to

performance projections for convolutional neural nets (Section 5.3).

5.1 Scalability

Figure 4 compares the maximum clock frequency of the presented

approach with previous work [23], which we evaluated using the

open-source release at https://github.com/ARC-Lab-UF/window_

gen. We use Quartus 16 Prime Pro to determine the maximum

clock frequency after synthesis, placement, and routing on an Arria

10 GX1150 FPGA. Results use 3×3 windows and image sizes of

2048×2048. Frequencies for other window and image sizes were

similar.

The figure demonstrates the potential scalability problem in win-

dow generation with the previous approach decreasing to under

100 MHz for 128 pipelines, whereas the new approach runs at 242

MHz. More importantly, the old approach does not scale past 256

pipelines, whereas we were able to evaluate the new approach

for 1024 pipelines. Although the frequency of both approaches

decreases with more replication, the new approach decreases at

a slower rate, and provides frequencies over 200 MHz even for

512 pipelines. Overall, the maximum bandwidth that the new ap-

proach can leverage is 336 GB/s, compared to 38.4 GB/s in the old

approach—an improvement of 8.7×. These results suggest that the
presented approach will enable FPGAs to fully utilize increased

memory bandwidth for the foreseeable future.

Table 1(a) compares lookup table (LUT), flip flop (FF), and block

RAM (RAM) utilizations between the presented approach and pre-

vious work for different window sizes and replication amounts. For

almost all examples, the new approach used fewer LUTs, with an

average reduction of 40% from eliminating muxes as described in

Section 3.2. Register usage (FFs) increased by an average of 20%,

which is likely an attractive trade off considering the 8.7× band-

width improvement. RAM usage increased on average by 40%. Note

that the previous approach does not synthesize past 256 pipelines.

Table 1(b) shows resource counts for the new approach. The

Arria 10 GX1150 has over one million LUTs and FFs, which likely

FPGA ’18, February 25–27, 2018, Monterey, CA, USA Stitt, Gupta, Emas, Wilson, Baylis

Table 1: (a) Resource utilization relative to previouswork for

window sizes from 3×3 to 9×9. (b) Absolute resource num-

bers for the presented approach.

LUTs FFs RAM LUTs FFs RAM LUTs FFs RAM LUTs FFs RAM
1 0.7x 1.1x 1.3x 0.6x 1.0x 1.2x 0.6x 1.0x 1.1x 0.6x 1.0x 1.1x
2 0.7x 1.1x 1.7x 0.6x 1.0x 1.4x 0.6x 1.0x 1.3x 0.6x 1.0x 1.2x
4 0.7x 1.2x 1.7x 0.6x 1.1x 1.4x 0.6x 1.1x 1.3x 0.5x 1.0x 1.2x
8 0.9x 1.3x 1.7x 0.7x 1.2x 1.4x 0.7x 1.1x 1.3x 0.5x 1.1x 1.2x
16 0.9x 1.4x 1.7x 0.7x 1.3x 1.4x 0.7x 1.2x 1.3x 0.6x 1.1x 1.2x
32 0.9x 1.5x 1.7x 0.7x 1.3x 1.4x 0.6x 1.2x 1.3x 0.5x 1.2x 1.2x
64 1.0x 1.6x 1.7x 0.4x 1.4x 1.4x 0.4x 1.3x 1.3x 0.5x 1.2x 1.2x
128 0.3x 1.6x 1.7x 0.3x 1.4x 1.4x 0.4x 1.3x 1.3x 0.5x 1.2x 1.2x
256 0.2x 1.7x 1.7x 0.3x 1.5x 1.4x 0.4x 1.3x 1.3x 0.5x 1.3x 1.2x
512 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Avg 0.7x 1.4x 1.6x 0.6x 1.2x 1.4x 0.6x 1.2x 1.3x 0.5x 1.1x 1.2x

9x9
Replication

3x3 5x5 7x7

(a)

LUTs FFs RAM LUTs FFs RAM LUTs FFs RAM LUTs FFs RAM
1 425 631 4 602 917 6 805 1278 8 1040 1695 10
2 461 704 5 638 1032 7 859 1428 9 1107 1891 11
4 560 990 5 763 1366 7 996 1952 9 1264 2377 11
8 823 1632 10 1158 2252 14 1528 2856 18 1911 3484 22
16 1379 3017 20 1925 4121 28 2489 5231 36 3059 6354 44
32 2444 5919 35 3216 8070 49 3997 10176 63 4742 12284 77
64 4826 11967 65 6265 16119 91 7711 20290 117 9218 24465 143
128 10001 24661 130 12747 32879 182 15494 41194 234 18306 49486 286
256 20704 51117 260 26262 67636 364 31603 83955 468 37062 100310 572
512 43360 106385 515 54097 1E+05 721 64928 2E+05 927 75862 204114 1133

Replication
3x3 5x5 7x7 9x9

(b)

makes these amounts acceptable for most use cases. All results use

a maximum image size of 2048×2048, which makes the RAM usage

pessimistic for common use cases with smaller images.

5.2 2D Convolution on BDW+A10

This section evaluates the window generator using 2D convolution

on the Intel BDW+A10, while comparing performance and energy

to a GPU and parallelized software.

5.2.1 Experimental Setup. All experiments compare the BDW+A10

with a 12-core Broadwell Xeon E5 and an Nvidia Quadro P6000

GPU. The P6000 is a high-end GPU using the latest Pascal archi-

tecture, which has 3840 CUDA cores, 24 GB of GDDR5X RAM, and

costs approximately $5000. The BDW+A10 does not have a publicly

announced price, but uses an Arria 10 GX1150 FPGA, which costs

several thousand dollars [5].

To evaluate software, we used the optimized convolution from

DeepBench [22], which provides two algorithms that leverage the

Intel Math Kernel Library (MKL) 2017 Update 3 [24].We also created

our own MKL-based implementation to optimize for large images.

All software implementations used AVX2 instructions on 12 cores.

For the GPU, we used DeepBench GPU code, which selects from

eight different algorithms for a given input. We also used Nvidia

convolutionFFT2D code from the CUDA-8.0 SDK to include an opti-

mized frequency-domain implementation. FPGA details are given

in Section 4. For synthesis, we used Quartus 16 Prime Pro, which

is required for the BDW+A10. All examples run the convolution

pipelines at 271 MHz and the DMA interface at 400 MHz.

Tomeasure performance, we used gettimeofday() around relevant

regions of code. For all devices, measurements exclude initializa-

tion that is common to all devices. We also exclude times for device

initialization on all devices, which would be amortized over many

executions when used in a data center. On the FPGA, we excluded

time for bitstream configuration and memory allocation, which re-

quires several seconds. For the GPU, we exclude the time of the first

execution, which adds 0.3 seconds. For all devices, we exclude the

time to initialize the convolution kernel, which generally changes

infrequently. All FPGA results include PCIe and QPI transfer times

for accessing memory.

Wemeasured Xeon andmemory power using the RAPL (Running

Average Power Limit) component of Performance API (PAPI) 5.5.1.0

[25]. RAPL uses the Model Specific Registers (MSR) kernel module

to read registers that capture the energy and time between two

points in the code. To measure power, we performed convolution

in a loop, capturing the PAPI readings before and after the loop to

give an average value.

For Arria 10 power measurements, we used tempPowMon from

system release 5.0.3, which reads power and temperature measure-

ments from the FPGA. To get total system power for the FPGA,

we added FPGA power to the measured Xeon and memory power

during FPGA execution.

Tomeasure GPU power, we used nvmlDeviceGetPowerUsage from

the NvidiaManagement Library, which provided power of the entire

GPU board. For the GPU, we measured power and time in separate

executions because the powermeasurements significantly increased

timemeasurements. For total system power with the GPU, we added

the GPU power to the idle Xeon power and idle memory power.

Ideally, we would measure Xeon power during GPU execution, but

since we could not put the GPU in the server with the Broadwell

processor, such power would not be a fair comparison. Therefore,

total system power for the GPU is likely optimistic.

For all devices, we measured time and power by putting the

relevant code in a loop and averaging numerous measurements,

with the exact amount depending on the variation for each device.

Because 2D convolution can be used for a variety of purposes, a

complete analysis is outside the scope of this paper. This section

focuses on traditional use cases of one filter per image, using kernel

sizes of 3×3, 5×5, 7×7, and 9×9, along with images ranging from

256×256 to 2048×2048. All examples use inseparable kernels to get

worst-case performances. Color channels are 8 bits.

5.2.2 Performance Evaluation. To ensure good FPGA perfor-

mance, we replicated the 2D convolution pipelines using the pre-

sented window generator. Figure 5 demonstrates the improvements

in FPGA execution time for different amounts of pipeline repli-

cation for a 3×3 kernel on a 2048×2048 image using 8-bit color

channels. Trends were similar for other window and image sizes.

The results show near-perfect performance improvements ini-

tially, with each replication achieving a 1.99× speedup over the

previous amount of replication. However, for 32 replications, that

improvement fell to 1.18× due to memory bandwidth being ex-

hausted. For 64 replications, there was no improvement. For nearly

all the presented results, this trend was the main performance bot-

tleneck. Average DSP utilization was only 52% of the available 1280

DSPs, with additional DSP usage being prevented primarily by in-

sufficient bandwidth. This utilization suggests improved memory

bandwidth can provide significantly improved performance.

Table 2 presents BDW+A10 speedup over the Xeon for both

a 16-bit fixed-point kernel and a 32-bit floating-point kernel. The

software baseline only uses floating point due to MKL not including

Scalable Window Generation FPGA ’18, February 25–27, 2018, Monterey, CA, USA

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32 64

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Pipeline Replication

Figure 5: FPGA 2D convolution execution times with vary-

ing amounts pipeline replication (unrolling) for a 3x3 ker-

nel, 2048x2048 image, and 8-bit color channels.

Table 2: BDW+Arria10 2D convolution speedup compared to

a 12-core Xeon Broadwell E5.

Precision Kernel Size 256x256 512x512 1024x1024 2048x2048 Avg
16-bit Fixed 3x3 29× 38× 52× 55× 44×

5x5 57× 96× 135× 146× 108×
7x7 50× 115× 126× 145× 109×
9x9 38× 80× 110× 123× 88×
Avg 44× 82× 106× 117×

32-bit Float 3x3 27× 38× 52× 55× 43×
5x5 57× 96× 136× 146× 109×
7x7 48× 97× 109× 123× 94×
9x9 27× 48× 58× 62× 49×
Avg 40× 70× 89× 97×

Image Size

fixed-point implementations. The BDW+A10 shows clear improve-

ments over the Xeon, with speedups ranging from 27× to 146×, and
an average of 81× across all examples. Speedup from fixed-point

implementations tended to be larger than floating point, primarily

due to a larger amount of pipeline replication at larger kernel sizes.

The FPGA speedup is achieved from several contributing fac-

tors. Most significantly, the FPGA exploited a massive amount of

parallelism every cycle. For example, the fixed-point 5×5 kernel is
capable of 1,600 multiplies and 1,536 adds every cycle at 271 MHz,

which is approximately 850 GOPS. Floating-point results are similar,

with the 5×5 kernel performing 800 single-precision multiplies and

768 adds each cycle. Although memory bandwidth prevented those

resources from being fully realized, the parallelism still far exceeded

that achieved by the Xeon. For fixed-point kernels, the pipeline

replication was 64 for 3×3 windows, 64 for 5×5, 32 for 7×7, and 16

for 9×9. These pipelines used 576, 1600, 1568, and 1296 multipliers,

respectively, and a similar number of adders. For floating-point

kernels, the replication was 64 for 3×3 windows, 32 for 5×5, 16 for
7×7, and 8 for 9×9, which used 576, 800, 784, and 648 DSP resources,

respectively, with each performing a multiply and add.

For traditional convolution, the Xeon efficiency was surprisingly

low considering its peak potential throughput of 700 GFLOPS when

using AVX2 across 12 cores. We have observed that DeepBench

and MKL appear to exploit parallelism across larger kernel sizes

and larger numbers of kernels, as opposed to computing multiple

outputs from the same kernel in parallel. As as a result, much of

the potential parallelism of the Xeon is left underutilized. It may be

possible to optimize the Xeon code to exploit such parallelism, but

for current convolution software implementations, our presented

approach is able to exploit parallelism that is not leveraged by the

Xeon.

Another significant contributor to FPGA performance compared

to previous studies is that the BDW+A10 has negligible overhead

for initiating FPGA execution. For systems using FPGAs on PCIe

boards, the application generally has to copy all relevant inputs to

the FPGA board, and then read back all results. On the BDW+A10,

even though the FPGA accesses memory over PCIe and/or QPI,

the FPGA shares the Xeon’s memory, which provides a significant

performance improvement by eliminating such copying. For the

BDW+A10, execution time is roughly equivalent to the time to read

inputs and write outputs to memory.

Figure 6 compares BDW+A10 execution times with the GPU for

different kernel and image sizes. GPUs can be used in a variety of

usage scenarios, where in some cases inputs and outputs must be

transferred over PCIe every execution, and in others results are

reused from GPU memory for a large number of execution. In these

results, we evaluate the maximum possible GPU performance by

excluding all PCIe transfers from the GPU execution times. Note

that all FPGA results still include all PCIe and QPI transfer times.

For 256×256 images, the fixed-point FPGA implementation al-

ways provided the best performance, with the floating-point FPGA

version achieving nearly identical results, except for the 9×9 kernel
size. The GPUDeepBench implementation was slightly slower, with

FPGA speedup ranging from 1.0× to 1.4×. The GPU CUDA-SDK

implementation was significantly slower at this image size due

to the added initial overhead of performing the FFT. For 512×512
images, trends are similar, with the FPGA speedup range increasing

from 1.4× to 2.3×.
At 1024×1024, performances of the GPU CUDA-SDK and FPGA

fixed-point version were comparable, with the GPU slightly over-

taking the FPGA at the 9×9 kernel size. The FPGA floating-point

version experienced a 2× slowdown for the 9×9 kernel due to lower
parallelism than the fixed-point version. Trends were similar for

2048×2048 images, with the GPU CUDA-SDK slightly increasing

its advantage.

Table 3 shows BDW+A10 speedup across all inputs compared to

the fastest GPU implementation. The left side of the table summa-

rizes the results from Figure 6, which excluded PCIe transfers. The

right side shows the BDW+A10 speedup with GPU PCIe transfers.

The results show that GPU transfers are an expensive overhead,

resulting in FPGA speedup of more than an order of magnitude

in most cases. Overall, the average FPGA speedup increased from

1.2× with no GPU PCIe transfers to 12.6× with PCIe transfers.

Like the Xeon, the P6000 performed far below its peak perfor-

mance of 12 TFLOPS. The decreasing speedup for larger window

sizes suggests that current GPU implementations parallelize across

large windows, and as shown later, across multiple filters per image.

Because traditional convolution uses a single kernel per image, the

P6000 was significantly underutilized, whereas the FPGA was able

to exploit parallelism across multiple outputs of the same kernel.

5.2.3 Energy Comparison. In this section, we repeat the exper-

iments from the previous section for energy consumption using

power measurements described in Section 5.2.1.

FPGA ’18, February 25–27, 2018, Monterey, CA, USA Stitt, Gupta, Emas, Wilson, Baylis

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

3x3 5x5 7x7 9x9

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Convolution Kernel Size

FPGA (Fixed)

FPGA (Float)

GPU CUDA

GPU DeepBench

(a) 256×256 Image

0

0.2

0.4

0.6

0.8

0.1

0.3

0.x

0.5

0.7

696 191 x9x 797

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Convolution Kernel Size

FPGA (Fi9ed)

FPGA (Float)

GPU CUDA

GPU DeepBench

(b) 1024×1024 Image

Figure 6: 2D convolution execution times for different kernel and image sizes. FPGA results include 16-bit fixed point and

32-bit floating point. GPU results include CUDA SDK and DeepBench implementations and exclude all PCIe transfer times.

Table 3: BDW+Arria10 speedup over the P6000 GPU when excluding (left) and including (right) GPU PCIe transfer times.

GPU PCIe Precision Kernel Size 256x256 512x512 1024x1024 2048x2048 Avg GPU PCIe Precision Kernel Size 256x256 512x512 1024x1024 2048x2048 Avg
Excluded 16-bit Fixed 3x3 1.4× 1.4× 1.2× 0.9× 1.2× Included 16-bit Fixed 3x3 13.1× 16.4× 14.5× 14.1× 14.5×

5x5 1.3× 1.7× 1.1× 0.9× 1.3× 5x5 11.1× 15.5× 14.6× 14.5× 13.9×
7x7 1.4× 2.2× 1.1× 0.9× 1.4× 7x7 9.3× 15.7× 14.9× 15.1× 13.7×
9x9 1.4× 2.3× 0.9× 0.8× 1.3× 9x9 7.0× 12.6× 13.2× 13.4× 11.5×
Avg 1.4× 1.9× 1.1× 0.9× Avg 10.1× 15.0× 14.3× 14.3×

32-bit Float 3x3 1.3× 1.4× 1.2× 0.9× 1.2× 32-bit Float 3x3 12.5× 16.4× 14.5× 14.0× 14.3×
5x5 1.3× 1.7× 1.1× 0.9× 1.3× 5x5 11.1× 15.7× 14.7× 14.5× 14.0×
7x7 1.3× 1.9× 1.0× 0.8× 1.2× 7x7 8.8× 13.3× 12.9× 12.8× 12.0×
9x9 1.0× 1.3× 0.5× 0.4× 0.8× 9x9 5.0× 7.5× 7.0× 6.8× 6.6×
Avg 1.2× 1.6× 0.9× 0.8× Avg 9.4× 13.2× 12.3× 12.0×

Image Size Image Size

Table 4: BDW+Arria10 2D convolution energy improve-

ments over a Xeon Broadwell E5.

Precision Kernel Size 256x256 512x512 1024x1024 2048x2048 Avg
16-bit Fixed 3x3 329 ×89 689 659 2×9

2x2 659 1169 1819 1849 1339
8x8 259 1329 1239 16×9 1759
4x4 ××9 459 1329 1×59 1069
Avg 219 449 1319 1×09

37-bit Float 3x3 339 ×69 629 669 239
2x2 6×9 1119 1679 1649 1789
8x8 229 1139 1319 1349 1049
4x4 379 259 819 829 249
Avg ×69 579 1059 1179

Image Size

Table 4 compares BDW+A10 energy with the Xeon. BDW+A10

energy improvements were more significant than performance im-

provements, with the FPGA providing an average 96× improvement

in energy. FPGA device power ranged from 8.9 W to 15.4 W. Mem-

ory power during FPGA execution added another 33 W, and the

Xeon power added 42 W. For software execution on the Xeon, Xeon

power ranged from 53 W to 77 W, with memory power ranging

from 25 W to 49 W. Overall, the average system power across all

FPGA tests was 87 W, compared to 105 W when running software.

Table 5 compares BDW+A10 energy to the most energy-efficient

GPU implementation for each input. When excluding GPU PCIe

transfers, the BDW+A10 achieved an average energy improvement

of 1.5×, and was more efficient than the GPU for all but two exam-

ples. When including CPU PCIe transfers, the BDW+A10 shows

significant improvements, achieving an average energy improve-

ment of 15.7×. GPU device power ranged from 61 W to 190 W. The

FPGA device power ranged from 8.9 W to 15.4 W. Total system

power with the GPU ranged from 98 W to 227 W, whereas the total

system power for the FPGA was from 84 W to 90 W.

One potential power optimization for the FPGA is to use inter-

rupts instead of polling to check for completion. Although FPGA-

generated interrupts are not documented yet for the BDW+A10,

we imitated this optimization by putting the processor to sleep dur-

ing FPGA execution. For these tests, the Xeon power and memory

during FPGA execution decreased to 27 W and 24 W, respectively,

reducing the average total system power to 62 W.

5.3 CNN Performance Projections

In this section, we evaluate the window generator for convolution

parameters common to CNNs. Specifically, we use an image size of

256×256, filter sizes of 3×3 and 5×5, filters per image ranging from

32 to 512, which are common to DeepBench and AlexNet [14].

Unlike traditional convolution, the Xeon and P6000 outperform

existing FPGA systems for most CNN use cases due to efficient

parallelization across multiple filters for an image. Because this pa-

per focuses on the benefits of scalable window generation, in these

experiments we evaluate projected performance of shared-memory

FPGA systems with theoretical amounts of memory bandwidth

that would achieve full utilization of the presented 2D convolu-

tion pipelines up to the resource limits of an Arria 10 GX1150

and a Stratix 10 GX2800. For the FPGA projections, we manually

determined a parallelization strategy for each example that both

replicated pipelines and performed multiple filters per pipeline

without exceeding resource constraints. We then simulated the

Scalable Window Generation FPGA ’18, February 25–27, 2018, Monterey, CA, USA

Table 5: BDW+Arria10 2D convolution energy improvements over the P6000 GPU when excluding (left) and including (right)

GPU PCIe transfer times.

GPU PCIe Precision Kernel Size 256x256 512x512 1024x1024 2048x2048 Avg GPU PCIe Precision Kernel Size 256x256 512x512 1024x1024 2048x2048 Avg
Excluded 16-bit Fixed 3x3 1.64 1.×4 1.24 1.04 1.24 9I cluded 16-bit Fixed 3x3 12.24 1n.54 1n.04 1n.74 15.04

2x2 1.24 8.14 1.04 1.34 1.64 2x2 18.n4 15.64 1n.24 1n.54 1×.×4
×x× 1.64 8.54 1.34 1.34 1.×4 ×x× 17.24 15.84 1n.×4 87.24 1×.84
nxn 1.×4 3.34 1.14 1.14 1.54 nxn 5.14 12.34 16.n4 15.64 10.×4
Avg 1.64 8.24 1.34 1.34 Avg 11.54 15.74 15.n4 1n.24

38-bit Float 3x3 1.24 1.×4 1.24 1.34 1.24 38-bit Float 3x3 10.64 1n.04 1n.74 15.64 1×.n4
2x2 1.24 8.74 1.34 1.34 1.24 2x2 18.84 1×.54 15.64 15.×4 16.54
×x× 1.24 8.34 1.14 1.14 1.24 ×x× n.n4 12.84 16.n4 1×.34 10.54
nxn 1.84 8.74 7.64 7.24 1.14 nxn 2.54 n.74 5.n4 n.04 5.34
Avg 1.04 8.74 1.14 1.74 Avg 17.64 12.04 12.54 16.74

Image Size Image Size

2.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 256 512

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Filters Per Image

Arria 10 Stratix 10 Xeon Broadwell P6000 GPU (PCIe) P6000 GPU (no PCIe)

(a) 3×3 Filter

1.1 2.11.6 3.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

32 64 256 512
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Filters Per Image

Arria 10 Stratix 10 Xeon Broadwell P6000 GPU (PCIe) P6000 GPU (no PCIe)

(b) 5×5 Filter

Figure 7: A CNN performance comparison of the Xeon Broadwell and P6000 GPU with projections of the Arria 10 and Stratix

10 using the presented window generation with hypothetical increases in memory bandwidth.

existing pipelines for this strategy, using memory and communi-

cation latencies obtained from the BDW+A10 experiments. Due

to space constraints, these experiments only use 16-bit fixed-point

kernels, which are common for CNNs [11]. GPU examples use

single-precision floating point due to DeepBench not providing

fixed-point implementations. We also evaluated half precision, but

the results are omitted due to worse performance than single pre-

cision, which is a known issue on GPUs [12]. DeepBench can po-

tentially be optimized for half precision, but is outside the scope

of this paper. We omit power and energy in this section due to the

use of projections for envisioned optimizations and the lack of a

Stratix 10 to physically measure.

Figure 7 compares CNN performance, again including GPU re-

sults both with and without PCIe transfers. For 3×3 filters and 32

filters per image, the Stratix 10 outperforms all other devices. The

Arria 10 outperforms the GPU when including PCIe transfers, and

is comparable to the GPU excluding PCIe transfers. For 64 filters per

image, the Arria 10 performance falls behind the GPU excluding

PCIe transfers, but the Stratix 10 is still 2× faster without GPU

PCIe transfers, and 7× faster than the GPU when including PCIe

transfers. Trends are similar at 256 and 512 filters per image, but

with reduced FPGA speedup.

For 5×5 filter sizes, the GPU has significantly better performance

due to extra parallelism from the larger filter. However, when in-

cluding PCIe transfers, the Stratix 10 projections are better or com-

parable up to 256 filters per image. At 512 filters per image, the

GPU begins to outperform the Stratix 10 both with and without

PCIe transfers, achieving speedups of 1.9× and 1.3×, respectively.
Table 6 shows the parallelism strategy used by each FPGA exam-

ple, where p is the number of replicated pipelines, and k is the filters

per pipeline. BW is the required bandwidth in GB/s to achieve this

parallelism without stalls. Perf is the resulting performance in tera-

operations per second (TOPS). In general, most examples used both

replicated pipelines and performed multiple filters in each pipeline.

For the larger number of filters per image, some examples did not

use pipeline replication and instead used all available resources to

maximize the number of parallel filters. On average, the Arria 10

and Stratix 10 achieved a sustained performance of 1.1 TOPS and

4.2 TOPS, respectively, which required bandwidth ranging from 18

GB/s to 286 GB/s. Required bandwidth was calculated by multiply-

ing the number of inputs and outputs by the clock frequency (271

MHz). For example, the 3×3 Stratix 10 example for 32 filters/image

had 32 inputs each cycle and 32 · 32 outputs each cycle for a total

of (32 + 32 · 32)271 = 286 GB/s. Performance was calculated as the

number of multiplies each cycle (pkwrwc) added with the number

of adds each cycle (pkwrwc − p), multiplied by the clock frequency.

The reason for the large differences in required bandwidth is

due to lower resource utilization for a particular parallelization

strategy. For example, for the 5×5 Stratix 10 examples, all of the

circuits used 6400 multipliers, which is only 54% of the 11,721

available multipliers. The reason for this underutilization is that the

existing version of the convolution code only supports replication in

powers of two, where the next highest power would exceed 11,721

FPGA ’18, February 25–27, 2018, Monterey, CA, USA Stitt, Gupta, Emas, Wilson, Baylis

Table 6: FPGA parameters from Figure 7, where p is pipeline

replication, k is filters per pipeline, BW is required memory

bandwidth in GB/s, and Perf is performance in tera-ops/s.

Device Filter p k BW Perf p k BW Perf p k BW Perf p k BW Perf
Arria 10 3x3 8 32 72 1.2 4 64 70 1.2 1 256 70 1.2 1 256 70 1.2

5x5 2 32 18 0.9 2 32 18 0.9 2 32 18 0.9 2 32 18 0.9
Stratix 10 3x3 32 32 286 5.0 16 64 282 5.0 4 256 279 5.0 2 512 278 5.0

5x5 8 32 72 3.5 4 64 70 3.5 1 256 70 3.5 1 256 70 3.5

Filters Per Image
32 64 256 512

multipliers. Ideally, we would replicate by non-powers of two to

ensure that all examples achieve closer to 100% utilization of DSP

resources. We will investigate such optimization in future work,

but even without this optimization, these projections show that the

presented window generator enables emerging FPGA systems to

achieve performance that is better or comparable to the P6000 GPU

for many CNN use cases.

6 CONCLUSIONS

In this paper, we introduced a sliding-window generator architec-

ture that enables scalable pipeline replication to over 330 GB/s of

memory bandwidth, while also eliminating software pre-processing

and PCIe overheads from input padding. We evaluated the window

generator for 2D convolution on the Intel Broadwell+Arria 10 and

demonstrated order-of-magnitude speedup over software running

on the Xeon and a high-end P6000 GPU. Although the GPU outper-

forms any existing FPGA for CNN usage, we demonstrate that the

presented window generator running on a Stratix 10 system with

sufficient memory bandwidth can outperform the GPU for many

common CNN use cases.

ACKNOWLEDGMENTS

This work was supported by the I/UCRC Program of the National

Science Foundation under Grant No. EEC-0642422 and IIP-1161022.

We would like to thank and acknowledge the donations and support

from Intel, and the help provided by Ken Hill and Pawel Cieslewski.

REFERENCES
[1] S. Asano, T. Maruyama, and Y. Yamaguchi. 2009. Performance comparison of

FPGA, GPU and CPU in image processing. In Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on. 126–131. https://doi.
org/10.1109/FPL.2009.5272532

[2] Patrick Cooke, Jeremy Fowers, Greg Brown, and Greg Stitt. 2015. A Tradeoff
Analysis of FPGAs, GPUs, and Multicores for Sliding-Window Applications.
ACM Trans. Reconfigurable Technol. Syst. 8, 1, Article 2 (March 2015), 24 pages.
https://doi.org/10.1145/2659000

[3] B. Cope, P.Y.K. Cheung, W. Luk, and S. Witt. 2005. Have GPUs made FPGAs
redundant in the field of video processing?. In Field-Programmable Technology,
2005. Proceedings. 2005 IEEE International Conference on. 111 –118. https://doi.
org/10.1109/FPT.2005.1568533

[4] Yazhuo Dong, Yong Dou, and Jie Zhou. 2007. Optimized Generation of Memory
Structure in Compiling Window Operations onto Reconfigurable Hardware. In
Proc. of the Int. Symp. on Applied Reconfigurable Computing. 110–121.

[5] Mouser Electronics. 2017. Intel Arria 10 GX 1150 Series FPGA
- Field Programmable Gate Array. (September 2017). http:
//www.mouser.com/Intel/Semiconductors/Programmable-Logic-ICs/
FPGA-Field-Programmable-Gate-Array/Arria-10-GX-1150-Series/_/N-3oh9p?
P=1ypc7usZ1yy6lwu

[6] Jeremy Fowers, Greg Brown, John Wernsing, and Greg Stitt. 2013. A Perfor-
mance and Energy Comparison of Convolution on GPUs, FPGAs, and Multicore
Processors. ACM Trans. Archit. Code Optim. 9, 4, Article 25 (Jan. 2013), 21 pages.
https://doi.org/10.1145/2400682.2400684

[7] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and Greg Stitt.
2014. A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector

Multiplication. In Field-Programmable Custom Computing Machines (FCCM), 2014
IEEE 22nd Annual International Symposium on. 36–43. https://doi.org/10.1109/
FCCM.2014.23

[8] Gidel. 2017. Proc10A PCIe Arria 10 Accelerator Boards. (2017). http://www.gidel.
com/HPC-RC/Proc10A_HPC.asp

[9] Zhi Guo, Betul Buyukkurt, and Walid Najjar. 2004. Input data reuse in compiling
window operations onto reconfigurable hardware. In Proceedings of the 2004 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’04). ACM, New York, NY, USA, 249–256. https://doi.org/10.1145/
997163.997199

[10] PK Gupta. 2016. Accelerating Datacenter Workloads. (2016). http://www.fpl2016.
org/slides/Gupta%20--%20Accelerating%20Datacenter%20Workloads.pdf FPL
2016 Keynote.

[11] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
32Nd International Conference on International Conference on Machine Learning -
Volume 37 (ICML’15). JMLR.org, 1737–1746. http://dl.acm.org/citation.cfm?id=
3045118.3045303

[12] Nhut-Minh Ho and Weng-Fai Wong. 2017. Exploiting half precision arithmetic
in Nvidia GPUs. In IEEE High Performance Extreme Computing Conference.

[13] S. Kestur, J.D. Davis, and O. Williams. 2010. BLAS Comparison on FPGA, CPU
and GPU. In VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on.
288–293. https://doi.org/10.1109/ISVLSI.2010.84

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[15] Nallatech. 2017. Nallatech 385A FPGA Accelerator Card. (2017). http://
www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-cards/
nallatech-385a-arria10-1150-fpga/

[16] Nallatech. 2017. Nallatech 510T Compute Acceleration Card.
(2017). http://www.nallatech.com/store/fpga-accelerated-computing/
pcie-accelerator-cards/nallatech-510t-fpga-computing-acceleration-card/

[17] E. Nurvitadhi et al. 2017. Can FPGAs Beat GPUs in Accelerating Next-Generation
Deep Neural Networks?. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’17). ACM, New York, NY,
USA, 5–14. https://doi.org/10.1145/3020078.3021740

[18] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh, and D. Marr.
2016. Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU,
and ASIC. In 2016 International Conference on Field-Programmable Technology
(FPT). 77–84. https://doi.org/10.1109/FPT.2016.7929192

[19] Nvidia. 2017. Tesla P100: The Most Advanced Data Center GPU Ever Built. (2017).
http://www.nvidia.com/object/tesla-p100.html

[20] M. A. Ozkan, O. Reiche, F. Hannig, and J. Teich. 2017. Hardware design and analy-
sis of efficient loop coarsening and border handling for image processing. In 2017
IEEE 28th International Conference on Application-specific Systems, Architectures
and Processors (ASAP). 155–163. https://doi.org/10.1109/ASAP.2017.7995273

[21] A. Putnam et al. 2014. A Reconfigurable Fabric for Accelerating Large-scale
Datacenter Services. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 13–24.
http://dl.acm.org/citation.cfm?id=2665671.2665678

[22] Baidu Research. 2017. DeepBench. (2017). https://svail.github.io/DeepBench/
[23] Greg Stitt, Eric Schwartz, and Patrick Cooke. 2016. A Parallel Sliding-Window

Generator for High-Performance Digital-Signal Processing on FPGAs. ACM
Trans. Reconfigurable Technol. Syst. 9, 3, Article 23 (May 2016), 22 pages. https:
//doi.org/10.1145/2800789

[24] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel Math Kernel Library. Springer International
Publishing, Cham, 167–188. https://doi.org/10.1007/978-3-319-06486-4_7

[25] V. M.Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, and
S. Moore. 2012. Measuring Energy and Power with PAPI. In 2012 41st International
Conference on Parallel Processing Workshops. 262–268. https://doi.org/10.1109/
ICPPW.2012.39

[26] Haiqian Yu and M. Leeser. 2006. Automatic Sliding Window Operation Opti-
mization for FPGA-Based Computing Boards. In Field-Programmable Custom
Computing Machines, 2006. FCCM ’06. 14th Annual IEEE Symposium on. 76 –88.
https://doi.org/10.1109/FCCM.2006.29

[27] Chi Zhang and Viktor Prasanna. 2017. Frequency Domain Acceleration of Convo-
lutional Neural Networks on CPU-FPGA Shared Memory System. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’17). ACM, New York, NY, USA, 35–44. https://doi.org/10.1145/
3020078.3021727

