
High-Frequency Absorption-FIFO Pipelining for Stratix 10 HyperFlex

Authors removed for blind review

Abstract—FPGAs commonly have significantly lower clock

frequencies than many microprocessors and GPUs, due largely

to propagation delays incurred by the reconfigurable

interconnect. The Stratix 10 HyperFlex architecture reduces

this problem by embedding numerous registers throughout the

routing resources. However, such Hyper-Registers do not

support back-pressure (i.e., pipeline stalls) that is commonly

used in FPGA pipelines. In this paper, we present and evaluate

pipeline transformations using absorption FIFOs, which avoid

back-pressure limitations to enable numerous pipelines to

benefit from HyperFlex, while also eliminating potentially

expensive stall penalties incurred by existing techniques. We

demonstrate that these transformations not only enable

significant clock improvements on Stratix 10, but also for

devices without HyperFlex, potentially making absorption

FIFOs a better high-frequency strategy for any FPGA. In

addition, we introduce optimizations that yield additional

performance improvements by reducing stall penalties that can

increase linearly with pipeline depth when restarting after a

stall.

Keywords-FPGA; Stratix 10; HyperFlex; pipelining

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) provide
massive amounts of parallelism [1], but performance for
many applications is limited by clock frequencies that are
often more than an order of magnitude slower than
microprocessors and graphics-processing units. A significant
contributor to slow clocks is propagation delay incurred by
the reconfigurable interconnect. The Stratix 10 HyperFlex
architecture [2] reduces this problem by embedding
numerous flip-flops, referred to as Hyper-Registers, across
the routing resources. These Hyper-Registers provide an
optional pipelined interconnect, which has been shown to
significantly improve clock frequencies [4].

One limitation of Hyper-Registers is the lack of support
for back-pressure (i.e., pipeline stalls). Back-pressure is
required by any streaming circuit where a downstream
component must tell upstream components to stop sending
data. For example, a DMA interface writing to an external
DRAM must tell a pipeline to stall while the memory
refreshes. As shown in Figure 1(a), FPGA pipelines often
provide back-pressure using an enable signal connected to all
registers. Because Hyper-Registers lack enable signals,
synthesis maps this implementation onto normal registers,
preventing any benefit from the pipelined interconnect.

Figure 1(b) illustrates a pipeline transformation [3] that
provides the illusion of back-pressure without an enable by
adding a FIFO on the pipeline output, which we refer to as
an absorption FIFO. By providing an almost-full flag that
leaves sufficient room to absorb the full contents of the

pipeline, this FIFO can inform upstream components to stop
sending without losing any data. However, one potential
disadvantage of absorption FIFOs is that pipelines can
become empty during a stall, which may increase stall
penalties due to the FIFO emptying before the pipeline
refills. For frequent stalls, this penalty is potentially
prohibitive due to linear scaling with pipeline depth.

This paper provides the following contributions. We first
evaluate absorption FIFOs as an optimization for Stratix 10
HyperFlex, showing average clock frequency improvements
of 17.5% compared to designs using back-pressure, with a
maximum improvement of 54%. We also demonstrate that
even for an Arria 10 without Hyper-Registers, the
elimination of high fan-out enable signals provides average
improvements of 8.5% and a maximum improvement of
41%, potentially making absorption FIFOs an overall better
pipelining strategy for high frequencies. Finally, we
introduce several optimizations and guidelines that ensure
that absorption FIFOs can provide identical stall penalties as
traditional pipelines.

II. RELATED WORK

Lewis et al. [4] presented a related study that adapted
existing designs to Stratix 10. Our work complements that
study with a more general optimization that can be applied to
potentially any pipeline, and also evaluates the performance
on published, as opposed to confidential, applications.

[3] describes numerous optimization strategies for Stratix
10, including a optimization similar to the presented
absorption-FIFO strategy. Our work expands that description
with more details on optimizations to eliminate stall
penalties, while also evaluating improvements.

Figure 1: (a) Traditional FPGA pipelines often rely on back-pressure using
high fan-out enable signals. In this paper, we demonstrate (b) pipeline

transformations that eliminate the enable signal using an absorption FIFO,

which enables use of Stratix 10 Hyper-Registers, while also reducing stall

penalties and improving performance on older FPGAs.

P
IPELIN

E

FIFO
WRreq

RDreq

Valid

Almost_Full

Empty

(a) (b)

EN

EN

EN

EN

EN

EN

EN

EN

EN

A recent study compared Stratix 10 with GPUs for deep
neural networks, showing significant advantages for the
FPGA [5]. Our study complements that paper with more
general pipelining optimizations.

III. ABSORPTION-FIFO PIPELINING STRATEGIES

In Section III.A, we first define how to use absorption
FIFOs to eliminate back-pressure. Section III.B explains how
absorption FIFOs can potentially have prohibitive stall
penalties. In Section III.C, we present optimizations that
eliminate this stall penalty.

A. Absorption FIFOs

Figure 1(a) shows a traditional pipelining strategy where
a single enable signal is fanned-out to each register, allowing
downstream components to immediately stop the progression
of data until they are able to accept data again.

In this paper, we show that this traditional strategy has
two significant limitations: 1) the high fan-out from the
enable signal becomes a timing bottleneck for many
pipelines, and 2) Hyper-Registers do not support enable
signals, which significantly reduces clock frequency by
preventing usage of the pipelined interconnect.

To solve both of these problems, pipelines must be
transformed to eliminate the enable. Figure 1(b) illustrates an
absorption-FIFO strategy that accomplishes this goal. With
this strategy, whenever a component requests a stall, the
upstream sender stops, but instead of stopping the pipeline,
the absorption FIFO allows the pipeline to run continuously
by absorbing the contents at the time of the stall.

Since the pipeline runs continuously, this strategy needs a
mechanism to identify valid pipeline outputs. The strategy
accomplishes this goal by including a shift register that
delays a valid bit (asserted by the sender) by a number of
cycles equal to the depth of the pipeline. The output of that
shift register stores the pipeline output into the FIFO. Like
other FIFO strategies, the FIFO’s empty flag is used by the
consumer to know when valid data is available to read.

The primary difference between a normal FIFO and the
absorption FIFO is how the full flag is handled. Whereas a
normal FIFO uses a full flag that is intended to immediately
stop an upstream sender, an absorption FIFO uses an almost-
full flag that allows for a delayed response from the sender.

To ensure there is enough space to absorb the contents of
the pipeline, the minimum number of FIFO words is:

𝑀𝑖𝑛 𝐹𝐼𝐹𝑂 𝑤𝑜𝑟𝑑𝑠 = 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ + 1

where the addition by one ensures that the almost flag is not
continually asserted. Because this equation can lead to non-
powers of two, for most practical situations where the FIFO
is implemented in RAM, the minimum number of RAM
words is defined by the following equation:

𝑀𝑖𝑛 𝑅𝐴𝑀 𝑤𝑜𝑟𝑑𝑠 = 2𝑐𝑒𝑖𝑙(log2(𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ + 1))

Regardless of the size of the FIFO used, the absorption
FIFO requires the almost-full flag to be asserted when the
number of words in the FIFO reaches:

𝑎𝑙𝑚𝑜𝑠𝑡 𝑓𝑢𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 = 𝐹𝐼𝐹𝑂 𝑠𝑖𝑧𝑒 − 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ

For situations where a designer is already using a FIFO
in a pipeline, this FIFO can be converted into an absorption
FIFO by increasing the size by the pipeline depth and then
using an almost-full flag as described above.

B. Stall Penalty Problem Definition

Depending on the length of the pipeline and the size of
the FIFO, the absorption-FIFO strategy can lead to
significant performance decreases upon resuming from a
stall, which we refer to as the stall penalty.

Figure 2 demonstrates this problem by stepping through
the contents of a pipeline and absorption FIFO. For
simplicity of illustration, we use a 2-stage pipeline, and an
absorption FIFO with four words, where the almost-full flag
is asserted at word 2. This example assumes that an upstream
sender (not shown) continuously produces data every cycle,
as would typically occur in a pipeline. The example also
assumes a downstream component (not shown), such as a

XX

Almost_Full

1

2

3

4

Cycles 5 - 6

Pipeline fills with
invalid data

34

Almost_Full

1

2

Cycle 4

Almost_Full flag
tells source to stop
feeding new data

XX

Almost_Full

2

3

4

Cycle 7

1

Pipeline gets
invalid data until

Almust_Full flag is
cleared

XX

Almost_Full

4 3

Cycles 8 - 9

Almost_Full flag
cleared only when
below almost full

vlaue

X5

Almost_Full

4

Cycle 10

Last value is read
from FIFO, but
valid data isn t

ready

67

Almost_Full

5

Cycles 11 - 12

STALL PENALTY!!
Two cycles are
needed before

valid data is in FIFO

78

Almost_Full

6

Cycle 13

5

After stall penalty,
pipeline functions

as expected

23

Almost_Full

1

Cycles 1 - 3

Normal
functionality until

stall occurs

Figure 2: A demonstration of increased stall penalties for absorption FIFOs. Initially, the absorption FIFO functions like any other FIFO until almost full is
asserted (Cycles 1-4). At that point, the absorption FIFO stops the sender while using reserved space to absorb the contents of the pipeline (Cycles 5-6).

When a downstream component reads from the FIFO (Cycle 7), the pipeline remains empty until the FIFO clears the almost-full flag (Cycle 8). However,

because the pipeline has not been refilled before the FIFO becomes empty, there are several cycles (Cycles 11-12), where the FIFO provides no output.

memory, which reads data from the pipeline every cycle that
data is available until it requests a stall.

For this example, the consumer stalls until Cycle 7
(shown as the pause symbol), which prevents reading from
the FIFO. During Cycles 1-3, the sender pushes Elements 1-
3 into the pipeline. In Cycle 3, Element 1 enters the FIFO,
while Elements 2 and 3 remain in the pipeline. During Cycle
4, the FIFO stores Element 2, which asserts the almost-full
flag, stalling the sender on the next cycle. Prior to receiving
the stall, the sender provides Element 4 to the pipeline.
During Cycles 5-6, the FIFO absorbs the contents of the
pipeline (Elements 3-4) into the reserved space. By Cycle 6,
the sender has been stalled for two cycles, which results in an
empty pipeline with invalid data.

In Cycle 7, the downstream consumer begins reading
from the FIFO (shown by the play symbol). However,
because the almost-full flag is still asserted, the sender does
not yet provide new data, causing the pipeline to remain
empty. In Cycle 8, the consumer continues to read from the
FIFO. In Cycle 9, the FIFO clears the almost-full flag, which
allows the sender to resume. In Cycle 10, the consumer
continues to read from the FIFO, while the sender begins to
refill the pipeline.

The stall penalty is illustrated in Cycles 11-12. During
this period, the consumer has emptied the FIFO, but the
pipeline has not yet been refilled. As a result, the FIFO has a
two-cycle stall penalty where the consumer does not receive
new data. Finally, in Cycle 13, the pipeline has been refilled
and the FIFO resumes outputting data to the consumer.

Figure 3 shows how the maximum stall penalty scales
with the depth (number of stages) in the pipeline. In general,
the penalty grows linearly with pipeline depth. For every
power of two depth, the penalty decreases to 2 due to the
FIFO doubling in size. At that point, 1 cycle is a result of
having to go below the almost-full value and the other comes
from not being able to store and read the same data in the
same cycle. A fall-through FIFO would reduce this penalty
by 1 cycle, but may result in a reduced maximum frequency.
In general, the maximum stall penalty is determined by:

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ − (𝑎𝑙𝑚𝑜𝑠𝑡 𝑓𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 − 2)

Note that not all instances of absorption FIFOs will incur
the maximum penalty. In addition, if stalls rarely occur, such
penalties may be insignificant. However, for deep pipelines

that stall frequently, the stall penalties can become
prohibitive due to the linear increase with pipeline depth.

C. Optimizations

To avoid the stall penalties described in the previous
section, we present two optimizations with various tradeoffs.

A low area-overhead optimization is to modify the logic
used to stall the upstream producer, as shown in Figure 4.
Instead of having the sender produce data solely when the
almost-full flag is not asserted, this logic also has the sender
produce data whenever the consumer reads data from the
FIFO. This optimization guarantees sufficient room in the
FIFO without the restriction of stalling the sender until the
almost-full flag is cleared. For the example in Figure 2, this
extension would enable the sender to resume in Cycle 7 as
opposed to Cycle 10. The only limitation of this optimization
is that it doesn’t maintain the separation of parallel tasks
normally provided by FIFOs, and as a result would not work
for multiple clock domains without more logic.

 An alternative optimization is to increase the FIFO size
to provide sufficient buffering before the almost-full flag. At
a minimum, this increased FIFO would require a number of
words equal to the pipeline depth to buffer the entire pipeline
both before and after the almost-full flag. Although a
conceptually simple optimization, doubling the size of the
FIFO for deep pipelines might not be a feasible option for
designs that already use large amounts of RAM resources.

IV. EXPERIMENTS

In this section, we compare clock frequencies of
pipelines with and without absorption FIFOs. To evaluate
both approaches, we implemented three optimized sliding-
window pipelines from previous work [1]: SAD (sum of
absolute differences), 2D convolution, and correntropy (a
non-linear similarity measure). We picked sliding-window
applications due to proven scalability limitations [1] that we
can easily evaluate by varying window sizes, in addition to
prevalence in important applications such as convolutional
neural nets.

We evaluated the pipelines with and without absorption
FIFOs on a Stratix 10 1SG280LN3F43E1VG using Altera
Quartus 17.1 and an Arria 10 10AX016E4F29M3SG using
Altera Quartus 16.0. We chose a smaller Arria 10 (61,510
ALMs) to better observe any fanout bottlenecks related to
large pipeline sizes. We used different versions of Quartus
for each device because we were unable to use virtual pins in

Figure 3: An illustration of maximum stall penalties for different pipeline
depths. These results show that without the presented optimizations, stall

penalties can increase linearly with pipeline depth.

Figure 4: Modification to the absorption FIFO to eliminate stall penalties.

 FIFO
WRreq

RDreq

Almost_Full

Empty

Produce Valid

Consume

P
IPELIN

E

Quartus 17.1, which was required because the pipelines had
thousands of inputs. Since Quartus 17.1 is the only version to
support Stratix 10, we compensated by serializing the inputs
using a shift register on a separate clock domain. Quartus 16
allowed us to use virtual pins for all Arria 10 examples.

To obtain clock frequency, we created a TCL script that
varied clock constraints to find the maximum clock
frequency reported by Quartus after placement and routing.

Figure 5(a) compares the clock frequencies on the Stratix
10 for the sliding-window pipelines. On average across all
examples and window sizes, absorption FIFOs achieved a
clock frequency of 737 MHz, compared to the average of
650 MHz with traditional pipelining. In general, as the
pipeline sizes increased, the clock frequency decreased for
both methods, as expected.

Figure 5(b) shows the same experiments using percent
clock improvement to illustrate trends for different sizes. We
see that in most instances, the absorption pipeline method
outperformed the traditional method. The only exception was
when traditional pipelining obtained frequencies near the
maximum clock frequency of 1 GHz [2]. At this high
frequency, the fanout was no longer the limiting factor, so
the absorption method did not provide any benefit. On
average, the improvement was 17.5%. While most pipeline
sizes saw an improvement in clock frequency, larger pipeline
sizes saw the most benefit. 2D convolution and correntropy
achieved a maximum improvement of 54% and 25% at size
35x35, respectively, while SAD achieved a maximum 38%
improvement at size 50x50. Beyond these sizes, the critical
path shifted to other parts of the design, at which point
absorption FIFOs provided less benefit.

Figure 6 shows absorption-FIFO clock improvements for
the Arria 10, which were smaller than Stratix 10, but still
significant for some cases. SAD achieved a 41% increase (a
155 MHz improvement) at size 15x15, which decreased for
larger sizes. 2D convolution had modest improvements for
small sizes, but improved to 31% (a 77 MHz improvement)
for 24x24. For correntropy, absorption FIFOs provided no
increase in frequency due to the critical path being unrelated
to the fanout in the traditional approach.

V. CONCLUSIONS

This paper demonstrated improvements to traditional
back-pressure in pipelines by using absorption FIFOs. We
showed that absorption FIFOs enable use of pipelined
interconnect on Stratix 10 HyperFlex, providing average
clock improvements of 17.5%, and a maximum of 54%, with
a tendency to improve with larger pipelines. Absorption
FIFOs also improved frequencies on an Arria 10 without
Hyper-Registers, which makes the strategy a potentially
better overall approach to high-frequency pipelining. Finally,
we demonstrated optimizations to absorption FIFOs that
eliminate potentially prohibitive stall penalties.

REFERENCES

[1] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and
energy comparison of fpgas, gpus, and multicores for sliding-
window applications," in FPGA’12, pp. 47-56, 2012.

[2] M. Hutton, “Stratix 10: 14nm fpga delivering 1ghz," in 2015 IEEE
Hot Chips 27 Symposium (HCS), pp. 1-24, Aug 2015.

[3] Intel Stratix 10 High-Performance Design Handbook. Jan. 2018.

[4] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa, V.
Manohararajah, I. Milton, T. Vanderhoek, and J. Van Dyken, “The
StratixTM10 highly pipelined fpga architecture," in FPGA’16, pp.
159-168, 2016.

[5] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra,
and G. Boudoukh, “Can fpgas beat gpus in accelerating next-
generation deep neural networks?," in FPGA’17, pp. 5-14, 2017.

 (a) (b)
Figure 5: (a) A clock-frequency comparison of traditional pipelining and absorption FIFOs on Stratix 10 for sliding-window applications of different window

sizes. (b) Percent improvement in clock frequency for the same experiments.

Figure 6: Percent improvement in clock frequency for absorption FIFOs on

Arria 10 for sliding-window applications.

200

300

400

500

600

700

800

900

1000

Traditional Absorption Traditional Absorption Traditional Absorption

2D Convolution Correntropy SAD

C
lo

ck
 F

re
q

u
en

cy
 (

M
H

z)

3x3 6x6 12x12 15x15 25x25 35x35 50x50

