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Abstract—FPGAs commonly have significantly lower clock 

frequencies than many microprocessors and GPUs, due largely 

to propagation delays incurred by the reconfigurable 

interconnect. The Stratix 10 HyperFlex architecture reduces 

this problem by embedding numerous registers throughout the 

routing resources. However, such Hyper-Registers do not 

support back-pressure (i.e., pipeline stalls) that is commonly 

used in FPGA pipelines. In this paper, we present and evaluate 

pipeline transformations using absorption FIFOs, which avoid 

back-pressure limitations to enable numerous pipelines to 

benefit from HyperFlex, while also eliminating potentially 

expensive stall penalties incurred by existing techniques. We 

demonstrate that these transformations not only enable 

significant clock improvements on Stratix 10, but also for 

devices without HyperFlex, potentially making absorption 

FIFOs a better high-frequency strategy for any FPGA. In 

addition, we introduce optimizations that yield additional 

performance improvements by reducing stall penalties that can 

increase linearly with pipeline depth when restarting after a 

stall.   
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I.  INTRODUCTION 

Field-programmable gate arrays (FPGAs) provide 
massive amounts of parallelism [1], but performance for 
many applications is limited by clock frequencies that are 
often more than an order of magnitude slower than 
microprocessors and graphics-processing units. A significant 
contributor to slow clocks is propagation delay incurred by 
the reconfigurable interconnect. The Stratix 10 HyperFlex 
architecture [2] reduces this problem by embedding 
numerous flip-flops, referred to as Hyper-Registers, across 
the routing resources. These Hyper-Registers provide an 
optional pipelined interconnect, which has been shown to 
significantly improve clock frequencies [4]. 

One limitation of Hyper-Registers is the lack of support 
for back-pressure (i.e., pipeline stalls). Back-pressure is 
required by any streaming circuit where a downstream 
component must tell upstream components to stop sending 
data. For example, a DMA interface writing to an external 
DRAM must tell a pipeline to stall while the memory 
refreshes. As shown in Figure 1(a), FPGA pipelines often 
provide back-pressure using an enable signal connected to all 
registers. Because Hyper-Registers lack enable signals, 
synthesis maps this implementation onto normal registers, 
preventing any benefit from the pipelined interconnect.  

Figure 1(b) illustrates a pipeline transformation [3] that 
provides the illusion of back-pressure without an enable by 
adding a FIFO on the pipeline output, which we refer to as 
an absorption FIFO. By providing an almost-full flag that 
leaves sufficient room to absorb the full contents of the 

pipeline, this FIFO can inform upstream components to stop 
sending without losing any data. However, one potential 
disadvantage of absorption FIFOs is that pipelines can 
become empty during a stall, which may increase stall 
penalties due to the FIFO emptying before the pipeline 
refills. For frequent stalls, this penalty is potentially 
prohibitive due to linear scaling with pipeline depth.  

This paper provides the following contributions. We first 
evaluate absorption FIFOs as an optimization for Stratix 10 
HyperFlex, showing average clock frequency improvements 
of 17.5% compared to designs using back-pressure, with a 
maximum improvement of 54%. We also demonstrate that 
even for an Arria 10 without Hyper-Registers, the 
elimination of high fan-out enable signals provides average 
improvements of 8.5% and a maximum improvement of 
41%, potentially making absorption FIFOs an overall better 
pipelining strategy for high frequencies. Finally, we 
introduce several optimizations and guidelines that ensure 
that absorption FIFOs can provide identical stall penalties as 
traditional pipelines. 

II. RELATED WORK 

Lewis et al. [4] presented a related study that adapted 
existing designs to Stratix 10. Our work complements that 
study with a more general optimization that can be applied to 
potentially any pipeline, and also evaluates the performance 
on published, as opposed to confidential, applications. 

[3] describes numerous optimization strategies for Stratix 
10, including a optimization similar to the presented 
absorption-FIFO strategy. Our work expands that description 
with more details on optimizations to eliminate stall 
penalties, while also evaluating improvements. 

 

Figure 1: (a) Traditional FPGA pipelines often rely on back-pressure using 
high fan-out enable signals. In this paper, we demonstrate (b) pipeline 

transformations that eliminate the enable signal using an absorption FIFO, 

which enables use of Stratix 10 Hyper-Registers, while also reducing stall 

penalties and improving performance on older FPGAs. 
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A recent study compared Stratix 10 with GPUs for deep 
neural networks, showing significant advantages for the 
FPGA [5]. Our study complements that paper with more 
general pipelining optimizations. 

III. ABSORPTION-FIFO PIPELINING STRATEGIES 

In Section III.A, we first define how to use absorption 
FIFOs to eliminate back-pressure. Section III.B explains how 
absorption FIFOs can potentially have prohibitive stall 
penalties. In Section III.C, we present optimizations that 
eliminate this stall penalty. 

A. Absorption FIFOs 

Figure 1(a) shows a traditional pipelining strategy where 
a single enable signal is fanned-out to each register, allowing 
downstream components to immediately stop the progression 
of data until they are able to accept data again. 

In this paper, we show that this traditional strategy has 
two significant limitations: 1) the high fan-out from the 
enable signal becomes a timing bottleneck for many 
pipelines, and 2) Hyper-Registers do not support enable 
signals, which significantly reduces clock frequency by 
preventing usage of the pipelined interconnect. 

To solve both of these problems, pipelines must be 
transformed to eliminate the enable. Figure 1(b) illustrates an 
absorption-FIFO strategy that accomplishes this goal. With 
this strategy, whenever a component requests a stall, the 
upstream sender stops, but instead of stopping the pipeline, 
the absorption FIFO allows the pipeline to run continuously 
by absorbing the contents at the time of the stall. 

Since the pipeline runs continuously, this strategy needs a 
mechanism to identify valid pipeline outputs. The strategy 
accomplishes this goal by including a shift register that 
delays a valid bit (asserted by the sender) by a number of 
cycles equal to the depth of the pipeline. The output of that 
shift register stores the pipeline output into the FIFO. Like 
other FIFO strategies, the FIFO’s empty flag is used by the 
consumer to know when valid data is available to read. 

The primary difference between a normal FIFO and the 
absorption FIFO is how the full flag is handled. Whereas a 
normal FIFO uses a full flag that is intended to immediately 
stop an upstream sender, an absorption FIFO uses an almost-
full flag that allows for a delayed response from the sender. 

To ensure there is enough space to absorb the contents of 
the pipeline, the minimum number of FIFO words is: 

𝑀𝑖𝑛 𝐹𝐼𝐹𝑂 𝑤𝑜𝑟𝑑𝑠 = 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ + 1 

where the addition by one ensures that the almost flag is not 
continually asserted. Because this equation can lead to non-
powers of two, for most practical situations where the FIFO 
is implemented in RAM, the minimum number of RAM 
words is defined by the following equation: 

𝑀𝑖𝑛 𝑅𝐴𝑀 𝑤𝑜𝑟𝑑𝑠 = 2𝑐𝑒𝑖𝑙(log2(𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ + 1)) 

Regardless of the size of the FIFO used, the absorption 
FIFO requires the almost-full flag to be asserted when the 
number of words in the FIFO reaches:  

𝑎𝑙𝑚𝑜𝑠𝑡 𝑓𝑢𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 = 𝐹𝐼𝐹𝑂 𝑠𝑖𝑧𝑒 − 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ 

For situations where a designer is already using a FIFO 
in a pipeline, this FIFO can be converted into an absorption 
FIFO by increasing the size by the pipeline depth and then 
using an almost-full flag as described above.  

B. Stall Penalty Problem Definition 

Depending on the length of the pipeline and the size of 
the FIFO, the absorption-FIFO strategy can lead to 
significant performance decreases upon resuming from a 
stall, which we refer to as the stall penalty.  

Figure 2 demonstrates this problem by stepping through 
the contents of a pipeline and absorption FIFO. For 
simplicity of illustration, we use a 2-stage pipeline, and an 
absorption FIFO with four words, where the almost-full flag 
is asserted at word 2. This example assumes that an upstream 
sender (not shown) continuously produces data every cycle, 
as would typically occur in a pipeline. The example also 
assumes a downstream component (not shown), such as a 
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Figure 2: A demonstration of increased stall penalties for absorption FIFOs. Initially, the absorption FIFO functions like any other FIFO until almost full is 
asserted (Cycles 1-4). At that point, the absorption FIFO stops the sender while using reserved space to absorb the contents of the pipeline (Cycles 5-6). 

When a downstream component reads from the FIFO (Cycle 7), the pipeline remains empty until the FIFO clears the almost-full flag (Cycle 8). However, 

because the pipeline has not been refilled before the FIFO becomes empty, there are several cycles (Cycles 11-12), where the FIFO provides no output.   



memory, which reads data from the pipeline every cycle that 
data is available until it requests a stall. 

For this example, the consumer stalls until Cycle 7 
(shown as the pause symbol), which prevents reading from 
the FIFO. During Cycles 1-3, the sender pushes Elements 1-
3 into the pipeline. In Cycle 3, Element 1 enters the FIFO, 
while Elements 2 and 3 remain in the pipeline. During Cycle 
4, the FIFO stores Element 2, which asserts the almost-full 
flag, stalling the sender on the next cycle. Prior to receiving 
the stall, the sender provides Element 4 to the pipeline. 
During Cycles 5-6, the FIFO absorbs the contents of the 
pipeline (Elements 3-4) into the reserved space. By Cycle 6, 
the sender has been stalled for two cycles, which results in an 
empty pipeline with invalid data. 

In Cycle 7, the downstream consumer begins reading 
from the FIFO (shown by the play symbol). However, 
because the almost-full flag is still asserted, the sender does 
not yet provide new data, causing the pipeline to remain 
empty. In Cycle 8, the consumer continues to read from the 
FIFO. In Cycle 9, the FIFO clears the almost-full flag, which 
allows the sender to resume. In Cycle 10, the consumer 
continues to read from the FIFO, while the sender begins to 
refill the pipeline. 

The stall penalty is illustrated in Cycles 11-12. During 
this period, the consumer has emptied the FIFO, but the 
pipeline has not yet been refilled. As a result, the FIFO has a 
two-cycle stall penalty where the consumer does not receive 
new data. Finally, in Cycle 13, the pipeline has been refilled 
and the FIFO resumes outputting data to the consumer. 

Figure 3 shows how the maximum stall penalty scales 
with the depth (number of stages) in the pipeline. In general, 
the penalty grows linearly with pipeline depth. For every 
power of two depth, the penalty decreases to 2 due to the 
FIFO doubling in size. At that point, 1 cycle is a result of 
having to go below the almost-full value and the other comes 
from not being able to store and read the same data in the 
same cycle. A fall-through FIFO would reduce this penalty 
by 1 cycle, but may result in a reduced maximum frequency. 
In general, the maximum stall penalty is determined by: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ − (𝑎𝑙𝑚𝑜𝑠𝑡 𝑓𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 − 2) 

Note that not all instances of absorption FIFOs will incur 
the maximum penalty. In addition, if stalls rarely occur, such 
penalties may be insignificant. However, for deep pipelines 

that stall frequently, the stall penalties can become 
prohibitive due to the linear increase with pipeline depth. 

C. Optimizations 

To avoid the stall penalties described in the previous 
section, we present two optimizations with various tradeoffs. 

A low area-overhead optimization is to modify the logic 
used to stall the upstream producer, as shown in Figure 4. 
Instead of having the sender produce data solely when the 
almost-full flag is not asserted, this logic also has the sender 
produce data whenever the consumer reads data from the 
FIFO. This optimization guarantees sufficient room in the 
FIFO without the restriction of stalling the sender until the 
almost-full flag is cleared. For the example in Figure 2, this 
extension would enable the sender to resume in Cycle 7 as 
opposed to Cycle 10. The only limitation of this optimization 
is that it doesn’t maintain the separation of parallel tasks 
normally provided by FIFOs, and as a result would not work 
for multiple clock domains without more logic.  

 An alternative optimization is to increase the FIFO size 
to provide sufficient buffering before the almost-full flag. At 
a minimum, this increased FIFO would require a number of 
words equal to the pipeline depth to buffer the entire pipeline 
both before and after the almost-full flag. Although a 
conceptually simple optimization, doubling the size of the 
FIFO for deep pipelines might not be a feasible option for 
designs that already use large amounts of RAM resources.  

IV. EXPERIMENTS 

In this section, we compare clock frequencies of 
pipelines with and without absorption FIFOs.  To evaluate 
both approaches, we implemented three optimized sliding-
window pipelines from previous work [1]: SAD (sum of 
absolute differences), 2D convolution, and correntropy (a 
non-linear similarity measure). We picked sliding-window 
applications due to proven scalability limitations [1] that we 
can easily evaluate by varying window sizes, in addition to 
prevalence in important applications such as convolutional 
neural nets.  

We evaluated the pipelines with and without absorption 
FIFOs on a Stratix 10 1SG280LN3F43E1VG using Altera 
Quartus 17.1 and an Arria 10 10AX016E4F29M3SG using 
Altera Quartus 16.0. We chose a smaller Arria 10 (61,510 
ALMs) to better observe any fanout bottlenecks related to 
large pipeline sizes. We used different versions of Quartus 
for each device because we were unable to use virtual pins in 

 

Figure 3: An illustration of maximum stall penalties for different pipeline 
depths. These results show that without the presented optimizations, stall 

penalties can increase linearly with pipeline depth.    

 

Figure 4: Modification to the absorption FIFO to eliminate stall penalties. 
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Quartus 17.1, which was required because the pipelines had 
thousands of inputs. Since Quartus 17.1 is the only version to 
support Stratix 10, we compensated by serializing the inputs 
using a shift register on a separate clock domain. Quartus 16 
allowed us to use virtual pins for all Arria 10 examples.  

To obtain clock frequency, we created a TCL script that 
varied clock constraints to find the maximum clock 
frequency reported by Quartus after placement and routing. 

Figure 5(a) compares the clock frequencies on the Stratix 
10 for the sliding-window pipelines. On average across all 
examples and window sizes, absorption FIFOs achieved a 
clock frequency of 737 MHz, compared to the average of 
650 MHz with traditional pipelining. In general, as the 
pipeline sizes increased, the clock frequency decreased for 
both methods, as expected. 

Figure 5(b) shows the same experiments using percent 
clock improvement to illustrate trends for different sizes. We 
see that in most instances, the absorption pipeline method 
outperformed the traditional method. The only exception was 
when traditional pipelining obtained frequencies near the 
maximum clock frequency of 1 GHz [2]. At this high 
frequency, the fanout was no longer the limiting factor, so 
the absorption method did not provide any benefit. On 
average, the improvement was 17.5%. While most pipeline 
sizes saw an improvement in clock frequency, larger pipeline 
sizes saw the most benefit.  2D convolution and correntropy 
achieved a maximum improvement of 54% and 25% at size 
35x35, respectively, while SAD achieved a maximum 38% 
improvement at size 50x50. Beyond these sizes, the critical 
path shifted to other parts of the design, at which point 
absorption FIFOs provided less benefit. 

Figure 6 shows absorption-FIFO clock improvements for 
the Arria 10, which were smaller than Stratix 10, but still 
significant for some cases. SAD achieved a 41% increase (a 
155 MHz improvement) at size 15x15, which decreased for 
larger sizes. 2D convolution had modest improvements for 
small sizes, but improved to 31% (a 77 MHz improvement) 
for 24x24. For correntropy, absorption FIFOs provided no 
increase in frequency due to the critical path being unrelated 
to the fanout in the traditional approach.  

 

V. CONCLUSIONS 

This paper demonstrated improvements to traditional 
back-pressure in pipelines by using absorption FIFOs. We 
showed that absorption FIFOs enable use of pipelined 
interconnect on Stratix 10 HyperFlex, providing average 
clock improvements of 17.5%, and a maximum of 54%, with 
a tendency to improve with larger pipelines. Absorption 
FIFOs also improved frequencies on an Arria 10 without 
Hyper-Registers, which makes the strategy a potentially 
better overall approach to high-frequency pipelining. Finally, 
we demonstrated optimizations to absorption FIFOs that 
eliminate potentially prohibitive stall penalties.  
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                                                      (a)                                                                                                                    (b) 
Figure 5: (a) A clock-frequency comparison of traditional pipelining and absorption FIFOs on Stratix 10 for sliding-window applications of different window 

sizes. (b) Percent improvement in clock frequency for the same experiments.  

 

Figure 6: Percent improvement in clock frequency for absorption FIFOs on 

Arria 10 for sliding-window applications. 
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