2018 IEEE 31st Computer Security Foundations Symposium

Knowledge-based Security of Dynamic Secrets for Reactive Programs

McKenna McCall, Hengruo Zhang, and Limin Jia
Carnegie Mellon University
Pittsburgh, USA
{mckennak, hengruoz, liminjia} @andrew.cmu.edu

Abstract—Scripts on webpages could steal sensitive user
data. Much work has been done, both in modeling and
implementation, to enforce information flow control (IFC) of
webpages to mitigate such attacks. It is common to model
scripts running in an IFC mechanism as a reactive program.
However, this model does not account for dynamic script
behavior such as user action simulation, new DOM element
generation, or new event handler registration, which could
leak information. In this paper, we investigate how to secure
sensitive user information, while maintaining the flexibility of
declassification, even in the presence of active attackers—those
who can perform the aforementioned actions. Our approach
extends prior work on secure-multi-execution with stateful
declassification by treating script-generated content specially to
ensure that declassification policies cannot be manipulated by
them. We use a knowledge-based progress-insensitive definition
of security and prove that our enforcement mechanism is
sound. We further prove that our enforcement mechanism
is precise and has robust declassification (i.e. active attackers
cannot learn more than their passive counterpart).

I. INTRODUCTION

Users are becoming increasingly accustomed to web ser-
vices such as banking, social media, email, and shopping.
Accessing these services often requires sensitive personal
information, such as email addresses, phone numbers, pass-
words, credit card numbers, or even social security numbers.
As a result, it would be profitable for web applications or
third-party scripts to access this information. Indeed, web
attackers are known to steal sensitive user data [23].

There has been much work on the development of in-
formation flow control (IFC) mechanisms in the browser
context to mitigate such attacks. In the theoretical domain,
reactive and interactive models for client-side scripts [13],
[18], detailed models for the DOM [1], [28], and new
definitions for security properties that suit such programming
models have been proposed [12], [18], [31]. On the sys-
tems side, several projects have modified existing browsers,
browser components, or implemented extensions to enforce
IFC [1], [7]-[9], [17], [28], [30].

One of the challenges of IFC is dealing with declas-
sification. How can sensitive information be intentionally
released while maintaining a provably secure system. Al-
lowing principled declassification is particularly important
in the browser context, as many useful scripts, such as
web analytics services, only work when they are allowed to
access some sensitive data. For example, a company may be

© 2018, McKenna McCall. Under license to IEEE.
DOI 10.1109/CSF.2018.00020

interested in knowing where their website is most popular,
so the script will need to access visitor locations. Prior
work that allows declassification by web scripts either did
not prove formal properties about declassification [7], [9],
or used a simplified model that is missing some dynamic
Javascript features that could leak information [31].

Ignoring dynamic features of scripts—such as user action
simulation, new DOM element generation, and new event
handler registration—is problematic because they can be
used to leak information, especially when they interfere with
trusted declassification operations. For instance, consider a
declassification policy that allows a user’s GPS location
to be sent to a server only after the user clicks on the
“AGREE” button. If the IFC mechanism does not distinguish
between a user-generated click and a script-simulated click,
the user’s GPS location will be leaked to the server without
user consent, which is a violation of the policy. This is an
example of a lack of robust declassification [26], in which
an active attacker can abuse declassification components and
trick the system into leaking more information than intended.
Another dynamic feature of scripts that may leak information
is DOM element generation. A script may change which
fields are present on a page based on a secret value. Since a
user can only trigger events for elements which are present
on the page, observing which events are triggered will leak
information.

To reason about declassification precisely, we appeal to
the concept of gradual release [3], which allows us to say a
system is secure if the attacker’s knowledge remains constant
outside of declassification and to quantify over released
information at declassification points.

We aim to provably secure sensitive user information in
the browser context, while maintaining the flexibility of
declassification, even in the presence of active attackers—
those who can simulate user actions, generate new DOM
elements, and register new event handlers. Few papers have
examined this problem before. Our key insight is that script-
generated events and objects need to be prevented from
affecting the declassification mechanism.

This paper makes the following contributions.

o« We show, through examples, that naively including
dynamic components to otherwise secure models in-
troduces information leaks.

o We extend prior work on secure multi-execution (SME)

IEEE
computer
psouety

with declassification [31] and design new SME rules
that treat script-generated content specially to ensure
that declassification policies cannot be manipulated by
them.

Instead of trace-based definitions, we use a knowledge-
based progress-insensitive definition of security and
prove that our enforcement mechanism is sound. This
way, the properties of our system can be described by
changes in an attacker’s knowledge—a natural way to
model what an attacker learns by observing a system.
We prove that our enforcement mechanism is precise
(does not alter the semantics of “good” programs) and
has robust declassification.

To the best of our knowledge, our paper is the first to
study the interaction between these dynamic script features
and declassification. Our results are one more step toward
enforcing IFC in real browsers.

The rest of this paper is organized as follows. We briefly
review systems and concepts that our work builds on in
Section II, and present examples where dynamic features
interfere with declassification in Section III. In Section IV,
we introduce our dynamic reactive program model and
introduce declassification. Our SME system and its formal
properties are presented in Section V. We discuss specific
aspects of our system in Section VI and related work in
Section VII.

Detailed definitions, lemmas, and proofs can be found in
our companion technical report [25].

II. BACKGROUND

In this section, we briefly review the reactive program
model, secure multi-execution, and stateful declassification
to set up the background for our work.

Reactive programs have been used to model event-driven
programs, such as scripts on webpages [13]. In the reactive
model, a program is a set of event handlers. The top-level
event loop is single-threaded and each event handler only
executes when a corresponding event is triggered. In this
model, only one event handler executes at a time and events
waiting to be processed stay in an event queue. To manage
the single-threaded event loop, the runtime keeps track of
system state (consumer or producer state). In the consumer
state, a new event can be processed. Once an event handler
executes, the system enters the producer state. The system
stays in the producer state until the current event handler
finishes, at which point, the system switches back to the
consumer state to process the next event. This model is a
nice and clean abstraction of the single-threaded main event
loop from the JavaScript engine in browsers. Such reactive
programs have been used to model the way that browsers
and IFC mechanisms interact with scripts [10], [29].

Secure multi-execution (SME) was introduced as an infor-
mation flow control (IFC) mechanism for JavaScript on web
pages [17], [18]. A copy of the script runs at each security

176

level. Consider a two point security lattice with labels L and
H and partial order L C H as an example. The copy that
runs at security level H receives input from both H and L,
outputs to H channels, and its output to L channels is thrown
away. On the other hand, the copy that runs at security level
L receives only L inputs and outputs to L channels. The H
inputs are replaced with default values, and the H outputs
are suppressed. This way, potential information leaks from
H inputs to L outputs are stopped.

To allow scripts that depend on approximated or aggre-
gated secret values (e.g. analytical scripts) to run correctly in
SME, Vanhoef et al. proposed an approach to implementing
stateful declassification policies [31]. In their system, a
projection function specifies what information from a secret
event can be declassified. In addition, a stateful release
function maintains the aggregate information about all se-
cret events seen so far for eventual declassification (e.g.,
total number of clicks). Example stateful policies include:
whether the user pressed a specific shortcut key can be
released, the average of the coordinates of mouse clicks can
be released, and after the user clicks on the “AGREE” button,
the GPS reading can be released.

III. DYNAMIC FEATURES LEAK INFORMATION

We illustrate potential security problems caused by inter-
actions between dynamic features of scripts and declassifica-
tion and demonstrate how knowledge-based noninterference
is used in our setting.

A. Scripts Interfering with Declassification

One of the drawbacks of the reactive programming model
from the prior work discussed in Section II is that it is
overly simplified and omits many security-relevant dynamic
features. The dynamic features that we focus on are user
event simulation, new DOM element generation, and new
event handler registration. We chose these features because
of the clear risk they pose to IFC. We do not model event
bubbling, preemptive events, or DOM element removal,
but plan to extend our model to address these in future
work. Next we show how these features interfere with
declassification if not treated carefully.

Script-simulated events First, in the presence of script-
simulated events, the implementation of declassification
policies needs to consider the provenance of events. In
particular, events generated by scripts should not affect when
and what information is declassified. Consider the following
scenario in which the declassification policy allows the
release of the average coordinates of every two clicks. A
script simulates a click at a constant location [once the user
clicks on the webpage. The script knows [and the average of
[and the location of the user’s click, from which computing
the coordinates of the user’s click is trivial.

Consider another declassification policy that allows the
release of a GPS reading after the user clicks on a button
authorizing it. Scripts can simulate a click on that button to
cause the information to be released.

These examples show that declassification policies
shouldn’t be affected by script operations. Allowing scripts
to control what is declassified violates the principle of robust
declassification [33], which requires that an active attacker
cannot learn more than a passive attacker. An active attacker
not only observes the system behavior, but can also modify
it. The enforcement mechanism must distinguish between
events triggered by the user and events triggered by scripts
to ensure robust declassification.

Dynamically-generated elements Dynamically-generated
elements can create channels that leak information if their
creation depends on a secret. Consider the policy: button
click events are visible to public scripts and keypress events
are secret and not visible to public scripts. Consider the
following script. For now, assume secret stores the code of
the key that user has pressed and that new(id, ¢, ¢) generates
a new object of type ¢ identified by ¢d with attributes e, and
addEh(id, onClick{c}) registers an event handler with body
c for click events from the object identified by ¢d.

case secret of
| 1 = new(idq, Button, e); addEh(idy, onClick{c,})

| n = new(id,, Button, e); addEh(id,,, onClick{cy})

where ¢; = output attacker.com 1.

Here, depending on the value of secret, a different button
will be generated with a distinct event handler. The user only
sees one button, which depends on the value of secret; if
they pressed key ¢, (i.e. secret = 1), the user sees a button
with the ID id;. Once the user clicks on the button with ID
id;, the onClick event handler associated with that button
will be triggered, sending the value ¢ to the attacker. Thus,
the attacker will receive the value of secret, revealing which
key the user pressed.

Extending SME If we naively extend the stateful declassi-
fication mechanisms for SME to handle these new features,
we may be too restrictive and risk altering the semantics of
legitimate programs, making it less practical; or we may not
be restrictive enough, making it vulnerable to exploitation
by attackers. In FlowFox [17] (Firefox with SME support),
all DOM APIs are labeled as low, which means that the high
execution cannot add new elements to the DOM since low
outputs are suppressed from the high execution. This is very
restrictive, as websites frequently use JavaScript to modify
parts of the page based on private user data. For example,
a page may highlight a password field which is too weak
on a registration page. The password field is secret, so the
high execution need to modify the DOM to highlight the

177

0 Keypress i H

(user view)

IL,
(attacker view)

v

Output i to
L Button 2 attack.com= L

Button 7

Figure 1. The high execution receives the real keypress, so generates only
one button with id id;. The low execution receives the default value, so
generates all n buttons.

field. Since this output is suppressed, the DOM will not be
updated and the user will not see the field change.

To remove this restriction, we give each execution its own
copy of the DOM. However, if we freely allow the high
execution to add new elements then the leak in the second
example can still be exploited. The low execution receives a
default value (denoted dv) instead of secret, so the attacker
adds the following branch.

| dv = new(idy, Button, e); addEh(idy, onClick{c1});

new(id,,, Button, e); addEh(id,,, onClick{c,})

The high execution has a copy of this script which knows
the real value of secret. It generates a single button for the
user whose ID depends on the value of secret, like before.
But this time, the low execution executes the branch for the
default value, generating n buttons, one for each possible
value of secret. The resulting view for each execution is
shown in Figure 1. The user never sees the buttons from
the low execution and the attacker doesn’t see which button
was generated for the user, but when the declassification
policy releases the button click event, the low execution is
guaranteed to have a matching button to capture the event
since every possible button is present. The value of secret is
leaked to the attacker just as before. In Section V, we show
how to stop leaks through dynamically generated elements.
Next, we show informally that this example violates a
knowledge-based security property.

B. Knowledge-Based Security

We review knowledge-based noninterference and gradual
release, and provide some intuition for how gradual release
is useful to our dynamic program model.

For explanatory purposes, we write ¢ to denote an exe-
cution trace, 7 to denote input/output sequences, and L to
denote a label context that maps events to security labels.

The secrets in our system are sequences of user inputs. Let us
write 7 &% 7/ to denote that two traces are observationally
equivalent at the level L given the label context L. The
~~% relation is standard: 7 ~% 7' if removing all secret
events (those which are not observable from L) from 7
and 7’ results in the same trace. £ is formally defined in
Section IV-C.

An attacker’s knowledge, written K(7, 0¢, L), is the set of
possible input sequences that could produce an output trace
that is observationally equivalent at L to 7 from the initial
configuration o given the context L.

We define in(t) and out(t) to be the input and output
actions in ¢, respectively. We denote runs(og) as the set of
execution traces starting from the initial state og.

K(7,00,L) = {7 | 3t € runs(oy), out(t)
AT =in(t)}

sz

The security property that we are interested in enforcing says
that interacting with the system does not reveal anything
about the user’s secret inputs to the attacker. It is defined as
follows:

Definition 1 (Security). We say a configuration o is secure
against attackers at level L, if for all traces T, action a, s.t.
T-a € runs(og), K(7,00,L) C< K(1 - v, 00, £).

Here, 51 C< S means that every element in S is a prefix
of an element in Sy. This is a gradual release property [3]. It
is weaker than the standard noninterference property, which
requires that a low observer know nothing about the high
inputs and that the knowledge set includes all possible secret
user inputs. However, this is too restrictive, as our program
is not input-total: events have to be associated with existing
elements, which reduces the number of possible inputs.

Let’s revisit the example in Section III-A. Let’s assume
the attacker knows the program and that the secret value is
between 1 and 8. The attacker now knows that id.ev(9) is
not a possible input. We allow the attacker to know this type
of information, even though it refines their knowledge. After
the first input and before seeing ids.click(v), the knowledge
of the argument of the first input event could be any integer
begin 1 and 8:

K([id.ev(2)], 00, L) = {[id.ev(1)], -, [id.ev(8)]}

After observing ids.click(v), every possible input except 2
is eliminated.

K([id.ev(2), ids.onClick(...)], 00, L)

= {[id.ev(2), id2.onClick(...)]}

Here, not all knowledge of the shorter trace is a prefix of
the knowledge of the longer trace:

{[id.ev(1)], -, [id.ev(8)]}
Z< {lid.ev(2), ida.onClick(...)|}

The program is not secure using our definition.
We will present the formal definitions in Section V.

178

IV. DYNAMIC REACTIVE PROGRAMS

To design an IFC enforcement mechanism which prevents
leaks due to dynamic features, we need to design a language
model that includes those features. We first present the
syntax and semantics of our dynamic reactive programs.
We then introduce security relevant constructs. Finally, we
explain stateful declassification and extend both the language
and security definitions to accommodate declassification.

A. Syntax

The syntax of our language is shown below. We write
ev to denote events such as click and mouseover. Event
handlers, denoted eh, always have names of the form onFEwv,
where Fuv is the name of the event. One difference between
our model and prior work [13] is that we make explicit
the object that events are associated with. For instance,
b1 .click(v) corresponds to the user clicking on a button with
the identifier b1 . The body of an event handler is a command
c. We allow event handlers to trigger other events, generate
new objects, and register event handlers. It is common for
scripts to generate new DOM elements and simulate events.

Event: ev = ..
Event handler: eh := onEv(z){c}
Command: c skip|cr;e |z i=e

if e then ¢; else cg

while e do ¢

output ch e

trigger id.cv(e)
new(id,t, e)

addEh(id, eh)

| M, ev— {ehy,---,ehy}
o,z vl|id— (v, M)

ev handler map M
state o

Command ¢ includes the following actions: output ch e
evaluates e and sends the result to URL ch, trigger id.ev(e)
allows the script to simulate an event ev with parameter
e associated with an object identified by id, new(id,t,e)
generates a new object identified as #d of type t (e.g., button,
form) with attributes e, and addEh(id, eh) registers a new
event handler eh to the object id. We also allow multiple
event handlers to be registered for one event. We write M to
denote a mapping from an event to the set of registered event
handlers for this event. We define the system state, denoted
o, to be a mapping from variables to values and named
objects to tuples, which model the attributes and event maps
associated with the objects. For instance a button b1 can be
associated with a number of mouse events, each of which
could have multiple registered event handlers. Because new
objects and event handlers can be added at run time, we do
not have a fixed program. Instead, given a state o, we can
view all the event handlers in o as the program of .

B. Operational Semantics

To define the operational semantics for our language, we
first introduce a few runtime constructs. We write E to
denote the set of events generated by the event handlers. As
we discussed in Section III, these events cannot be mixed
with user input events. Therefore, we collect them in a
separate context and process them once they are generated.
We write a to denote input and output actions, e to denote
silent actions, and « to denote all actions. An action trace,
denoted 7 is a sequence of actions. To model single-
threaded execution, the runtime semantics keeps track of the
execution state: producer, denoted P, consumer, denoted C,
and local consumer, denoted LC'. The system is in producer
state when an event handler is executing. The system is in
consumer state when it is ready to process user inputs (i.e.,
no event handler is executing and no script generated events
are left to be processed). The system is in local consumer
state when it is ready to process script generated events (i.e.,
no event handler is executing and some script generated
events still need to be processed).

events E == -|E,id.ev(v)
non-silent actions a == id.ev(v)|ch(v)
actions a = ale

execution state s = P|C|LC
configurations K = 0,058 F

action traces T u= Ta
execution traces t K|k et

We define two sets of small-step operational semantics:
one for commands from event handlers for a single event
and the other for managing the event loop of consumer and
producer state. We write o,¢ — o', ¢, E to denote the
execution rules of a command ¢ under the store o, which
returns an updated store ¢/, a new command ¢/, and a
list of events ' generated while evaluating c. The outer-
level rules manage the event loop and are of the form:
o,¢,5,F = o',c,s,E', where o, ¢, and E have the
same meaning as before and s is the state of the event loop
(consumer, producer, or local consumer).

Most of the rules in Figure 2 are straightforward. Ex-
pression semantics are standard, so we omit those rules. We
summarize the ones responsible for the dynamic features we
aim to model. Rule OUTPUT evaluates e under the store o
and sends the result to the URL ch. Rule EVENT-TRIGGER
evaluates e under the store o, and passes the result as
a parameter to the event ev associated with the object
identified by id. This event is added to the event queue. Rule
NEW adds a new object to the store of type ¢ and identified
by id. The attributes are determined by evaluating e under
the store 0. No event handlers are associated with an object
when it is created. Rule ADD-EH looks up an object id in the
store o and adds the event handler eh to its set of registered
event handlers.

179

«
o,c— o', E

- n SKIP
o,skip;c — o, ¢, -

o / /
o,cp —o,c, E

o T SEQ
g,C15C2 ? 0561;627E

[e]lo = v

- —— ASSIGN
o,x:=e — o[z — v],skip, -
[e], = true
- 5 IF-TRUE
o,if e then ¢ else co — 0, ¢q, -
[e]s = false
. 5 IF-FALSE
o,if e then ¢y else co — 7, ¢o, -
[e], = true
WHILE-TRUE

. L] .
o,while e do ¢ — o, ¢;while e do ¢ , -

[e]» = false

WHILE-FALSE
. L] .
o,while e do ¢ — o, skip, -

[e]lo = v

e OUTPUT
ch(v)
o,output ch e — o,skip, -

[e]o =v

o, trigger id.ev(e) — o, skip, id.ev(v)

EVENT-TRIGGER

[[e]]a =v

B NEW
o,new(id, t,e) — olid — (v,)], skip, -
e=¢,ev— EH
o=0",id— (v,e) eh = onEv(z){c}
o1 =0c',id — (v, (¢,ev — EH Ueh))
ADD-EH

o,addEh(id, eh) — o1, skip, -

Figure 2. Operational Semantics of Commands

We summarize the operational semantic rules for event
loops in Figure 3. Rule PTOC says that if there are no more
commands to execute or events to process and the execution
is in producer state, then it is ready to process user inputs
and switches to consumer state. Note that this is the only rule
for switching to consumer state, ensuring that no user input
is processed until all events are processed. Rule PTOLC
says that if there are no commands left to execute, but there
are events to process, and the execution is in the producer
state, then it is ready to process script generated events and

- < - PToC
o, skip, P,- — o, skip, C, -

E+-

. PTOLC
o, skip, P, E > o, skip, LC, E

o(id.ev(v)) = ¢
id.ev(v)

CTOP-USR-INPUT

o, skip, C, - o,¢c, P, -

CTOP-SCRIPT-INPUT
o(id.ev(v)) = ¢

o,skip, LC, (id.ev(v), E) = o,¢, P, E

@ / / !
o,c— o ,c,F

P
o,c,PE-* o' ¢, P (EE

Figure 3. Operational Semantics for Event Loop

switches to local consumer state. Rule CTOP-USR-INPUT
receives a user-initiated event ev associated with object id
and parameters v. The execution switches to producer state,
the body of the event handler ¢ is looked up in the store
o and is executed next. Rule CTOP-SCRIPT-INPUT begins
with the execution in local consumer state, indicating that
there are script-generated events to process. The execution
switches to producer state and the body of the event on the
front of the queue, c, is looked up in the store, o, to be
executed next. Finally, rule P is responsible for executing
individual commands. It takes one step in the command
operational semantics and updates the store, command, and
event queue, remaining in the producer state.

C. Security Labels

Before introducing declassification policies, we define
our security lattice. Figure 4 summarizes all the constructs
needed for defining security policies.

We assume a simple security lattice that has two labels
H and L and a partial order L. T H. As shown in our
motivating examples, events associated with dynamically
generated objects should not influence declassification. To
enforce this, we augment our security labels with another
label: Ha for events that are associated with such objects.
These events should not be observable by low-observers, nor
should they be subject to declassification. In the security
lattice, we treat H the same as label H. Since we do not
allow dynamically generated objects to have any affect on
low outputs, it is possible that we will change the behavior
of otherwise benign programs. This affects how we reason
about the precision of our enforcement mechanism, which
says that the semantics of good programs should not be

180

Security label l = H|HA|L
Init. IDs r == I
Lab. map m (eventName + chName)
— arg — Lab
Policy context L == (T,my)
Command c o= - | @ := declassify (s,)
Declassification Func. D (state x event)
— (state
X release option
X event option)
Release R == (p,D)
Released value r = none|some(t,v)
Release Channel d == -|d,(¢,v)

Figure 4. Constructs for Defining Security Policies

altered. See Section V-C for information about our precision
theorem and Section VI for further discussion.

We use a label context £ to map events and network
outputs to their security labels. The label context needs
to map events associated with dynamically added objects
correctly, therefore, we split the label mapping into two
parts: I' which records all the object IDs that are in the
initial configuration (IDs of elements that the attacker knows
for sure exist by reading the program), and m; which is
a function that takes an event name and the argument of
the event as input and returns the corresponding security
label. In other words, m; decides the label of events and
network outputs. For events, m; uses the event type and
event argument alone, not the ID of the object that the event
is associated with. For network outputs, m; takes as input
the channel name and the value to be sent to that channel as
arguments. We can decide the security label of a non-silent
action given a label context £. The judgment £ + a : /
means that a non-silent action a has security label ¢ with
regard to the label context L. It is defined as follows:

id ¢ T
(T, my) b id.ev(v) : Ha

id el my(ev,v) =/
(T, my) Fid.ev(v) : £

my(ch,v) = ¢
(T, my) F ch(v) : ¢

To decide the label of an event id.ev(v), we first check
whether ¢d is in I'. If it is not, the label for this event is
Ha. Otherwise, we apply m;: my(ev,v). Instead of using
the judgment, we write £(a) to denote the security label of a
given L. For instance, a label context £ with T' = {buttong},
my(click, _) = H means that initially there is only buttong
on the page, and all click events are H. Then, if we use this
label context £ in the example in Section III-A, we have
L(buttong.click(v)) = H and L(id;.click(v)) = Ha.

D. Declassification

Many useful scripts, such as Google Analytics, are not
secure using the strict definition of noninterference, as they
are designed to collect some private information about user
actions. Therefore, we need to extend our model to include
declassification.

We add a declassification command, where ¢ is the
identifier of the declassification. We assume that each de-
classification command in a program has a unique location
¢. Intuitively, declassification commands are used to wrap
expressions that compute aggregates of secrets (e.g. max,
min, average, total number of events, etc.). For instance, to
track how much content a user reads on a page, a script may
want to know how many times the space key is pressed.
Each time the space key is pressed, the event handler for
the key press event increments a global variable numPress.
When the user navigates away from the page, the unload
event handler will be triggered, which contains the following
command to access the number of times that the user pressed
the space bar: = := declassify (¢, numPress).

Generalizing ideas from [31], we define operational de-
classification policies. We write R to denote such policies.
‘R is a pair of a state p and a function D. D takes as input
an event and the state p and returns a tuple containing the
value to be released (1), an event to be released, and the new
state. The value to be released can either be none, indicating
nothing is to be released, or some(¢,v), indicating value v
is to be released to declassification location ¢.

We call R an operational policy because it specifies
how declassification should work but does not provide a
declarative specification as to precisely what is released.
One could imagine defining a specification similar to a flow
spec, specified in [6], where a formula over two traces
is used to specify the declassification policy. Then, static
analysis is needed to check that the operational policies
satisfy the declarative specification. We leave declarative
policy specification to future work.

The run-time state is augmented by a channel d for
communicating declassified values. d contains mappings
of a declassification location to a value. We define the
update(d, r) and read(d,¢) operations to update the value
in d and read the released value from d, respectively. When
r is none, the update operation just returns d unchanged.

We augment the operational semantics to handle declassi-
fication. We add the release channel d to the left of the arrow
for all the local execution rules in Figure 2. We also add the
following DECLASSIFY rule to the local execution rules. It
reads from the declassification channel d the value that ¢ is
mapped to and assigns it to x. Here, e is not evaluated, as
the release policy module is supposed to evaluate e on the
scripts’ behalf, which we explain further towards the end of
this section.

181

«
d,o,c — o', E

read(d, 1) = v

d, o, x := declassify (¢,) —
olx +— v], skip, -

DECLASSIFY

We also add the release channel d to the left of the rules
governing local script input and output; that include all the
rules in Figure 3, except the CTOP-USER-INPUT rule. The
resulting set of rules may be found in Section V, Figure 6
(they will be re-used for defining SME rules in that section).

The remaining rules, summarized below, use a new judg-
ment £ F R,d,x — R',d’,x’. These rules are the new
outer-most level input/output rules.

LFR,d kR dK

oidev(v) =c L(id.ev(v)) € {L, Ha}

L+ R, d,o,skip,C,- Y R, d,0,c, P,
o(id. ev())=c¢
adent) = R = (D)
D(id.ev(v)) = (r, _,p) d' = update(d,r)
id.ev(v))

LFR,d, o,skip,C,- (0, D),d o,c, P,-

(03
d,k =5 K

OuT
LFR,d k- R,d~K

Our release function is only applied to events that are
labeled H. Therefore, the runtime state includes the label
context L. The purpose of the additional rules is to compute
aggregates of secret inputs using the release module, which
produces the release value. Rule IN-L applies when the input
event is not declassified because it is either a low input
(labeled L) or is not supposed to be declassified because
it may leak information (labeled Ha). If the input event is
labeled H, rule IN-H applies. The declassification function
D is applied to the current state of the release module and
the input event, and returns a new state and a release value 7.
The declassification channel d is updated to the new release
value. Note that update will not change d if r is none.
Finally, rule OUT applies when the system is in producer or
local consumer state. It makes use of the rules in Figure 3.

For our example policy which releases the total number
of space key presses, the state p can be the number of
space key presses so far and the declassification function
increments p by 1 if the input event is a space bar key press
event. The analytical script’s event handler for key press
computes its own version in the global variable numPress.
In Section V-C, we formally define a compatibility condition
to make sure that the release policy is true to the declassified
expressions (i.e., it computes what e evaluates to). In this
example, d should be the same as the value of numPress
when the number of key presses is released. This way, the

high execution does not need the declassify primitive and
the low execution relies on the release module to compute
declassified values.

V. SECURE MULTI-EXECUTION

In this section, we explain how to extend secure multi-
execution rules to constrain dynamic features so they cannot
be leveraged by attackers to leak information. The key
idea here is that all inputs related to dynamically generated
elements should be separated from the release module.
We define security for our dynamic reactive programs as
a conditional gradual release property and prove that our
rules are sound. Finally, we prove the precision and robust
declassification theorems for our system.

A. SME with Declassification

We write ¥ to denote the secure multi-execution configu-
ration. 3 is composed of the release policy R, the declassi-
fication channel d, and two execution configurations x;, and
Kk executing at security levels L and I, respectively.

SME Configuration 3
SME Exec. Traces T

R,d;KL; ku
= N|T=T

We write £ - ¥ == ¥ to denote the small step operational
semantics for SME, which consists of rules that coordinate
between the high and low executions. We write 7" to de-
note the execution traces of SME, which is a sequence of
transitions.

Summaries of the SME rules are shown in Figure 7 and 8
and handle user inputs and outputs, respectively. If the input
event’s label is H, it is subject to declassification. We need
to apply the release policy to the event to update the state
of the release module, update the declassification channel,
and compute the projected event that the low execution
is allowed to see. Rule SMEI-NR1 states that if the low
execution is not allowed to see the input event (the projected
event is emp), then low execution stays in the consumer
state, and event handlers associated with this input event are
scheduled to run in only the high execution. Rule SMEI-R
applies when the H input event is projected to ey. In this
case, both the high and low execution move to producer
state and start executing the event handlers for the events
that they see.

Rule SMEI-NR2 applies when the input event’s label is
H A, indicating that this input potentially interferes with the
release policies. Therefore, the release module remains the
same and the low execution stays in consumer state.

The last input rule SMEI-L states that when the input
event is labeled L, both executions see the same input and
execute event handlers matching that event. A depiction of
the relationship between H and Ha labels and declassifica-
tion may be found in Figure 5.

182

{H,HA}=

{HH,} R~

_bH

H

— (user view) T

R(H)|
- IL
L (attacker view) — [

Figure 5. The high execution receives all inputs, unchanged. The low
execution receives L inputs and released H inputs through the release
module. Note that the release module throws out the Ha inputs so that
they don’t interfere with the declassification policy.

The output rules make use of consumer and producer
states, which are defined as follows.

iff Jo,¢,E st. k= (0,¢,P, F)
iff Jdo s.t. k = (o,skip,C,)

The output rules make sure that (1) the execution that is not
in consumer state runs using single execution rules (shown
in Figure 6), (2) the low execution runs first, (3) outputs
produced by an execution with the same label are allowed
and (4) outputs produced by an execution with a different
label are suppressed.

Notice that we use Ha to label all events that are related
to elements that are not in the initial configuration so that
these events will not be mistakenly passed to the release
module for declassification. Going back to our examples
in Section III-A, this means that the click event of newly
generated buttons will not be released to the low execution,
even though the declassification function maps all click
events to L. Thus, we effectively protect the integrity of the
declassification policy, since the events that are fed to R are
not influenced by the attacker. Moreover, the simulated click

producer(k)
consumer(k)

d, k= K/
E £ -
ZA PTOLC
d,o,skip, P, E — o,skip, LC, E
5 ProC
d, o, skip, P,- — o, skip, C, -
o(id.ev(v)) =c¢
(()) LCTtoP

d,o,skip, LC, (id.ev(v), E) = 0,¢, P, E

d,o,c =0, FE b
d,o,¢c,P,E o' ¢,P,(E,E

Figure 6. Operational Semantic Rules for Single Execution

LEY =

L(id.ev(v))=H
D(p,id.ev(v)) = (r,emp, p)
d' = update(d,r) op(id.ev(v)) = cy

. . SMEI-NR1
(p,D),d;or,skip, C,-; o, skip, C, -
LE) g D) oy, skip, C,
OH,CH, Pv '
L(id. =4 d. —
(id.ev(v)) = Ha : o (i ev.(v)) N SMEI-NR2
R,d;or,skip, C, o1, skip, C,
L:}_ zdg”) R,d;O-L) Sk|p,C’;
OH,CH, P7 '
L(id.ev(v)) = H
D(p,id.co() = (rre1,)
d/ = update(d7 7")
orler) =cr on(id-ev(v)) = cn SMEI-R

(pv D)J d7 UL7Skip7 Cu 5 O—Haskipa C7 °

id.
' gﬁv) (p/7D)7dl;O—L7CL7P7 5
O-H7CH7Pa :

L

L(id.ev(v)) =L
or(id.ev(v)) = ¢y, op(id.ev(v)) = cy
R7 d7 oL, Skipa 07 5 O0H, Skip7 C7 .

id.ev(v)
= Ra d7 O'L,CL,P,)

O'H,CH,P,‘

SMEI-L

L+

Figure 7. SME Input Rules

on the “agree to share GPS location” button will also not be
given to the release module. This event will be placed in the
local event queue, F, and will not affect the declassification
state, so the GPS location will not be leaked.

B. Soundness

In Section III-B, we informally discussed knowledge
and security based on an initial configuration oy. Here,
we define these terms based on execution traces, 7', for
SME. First, we define iruns(og, £, R) to be the set of
SME execution traces starting from the initial state X
(do, R; (00, skip, C, -); (o ,skip, C,-)), where o, denotes
the same store as oy with all the declassification commands
removed and d as the default declassification channel that
maps all possible declassification location ¢ to a default
value. We call ¥ an initial SME configuration from oy.

The knowledge of an attacker, K(T, 0¢, £, R) is the set of
possible input traces that could produce an execution trace
that is observationally equivalent to 7.

K(T,00,L,R) = {7 | 3T" € iruns(op, L, R),
T=~5T A7 =in(T")}

183

LEY =

—consumer (k)
d,kp = Ky L(a)=L

LEFR,d;kp; kg == R, d; Ky ; ki

producer(ri) SMEO-LL

—consumer (k)
d s K
sRp —> Ky,

producer(k)
La)=Hora=e

. SMEO-LH
LFTR,dykp;ky = R,d; K75 kp

consumer(xr,)
L(a)=H
LFR,d;kp; kg == R, d;kp; Ky

—consumer (k)
&4 !
d,kg — Ky

SMEO-HH

consumer(kr,)
La)=Lora=e
LFR,d kL kg = R,d;kL; Ky

—consumer (K)

d, Ry i) Iiiq
SMEO-HL

Figure 8. SME Output Rules

To determine when two execution traces are observation-
ally equivalent, we must first determine when two con-
figurations are observationally equivalent and define the
observation of a trace.

We consider two SME configurations, X
Ri,diskpi;6pr and - 3o Ra,ds; K12 KH2,
observationally equivalent whenever their low executions
are in the same state and they are affected by declassification
equivalently (Ry = R, di = do, and kp1 = Kp2). It
follows that the observation at the level L of a trace, T,
under the label context £, denoted T' llf, is the sequence
of inputs and outputs that results in some change in the low
execution or declassification policy. Examining our SME
rules reveals that this observation is the declassified high

T" € runs(X',R', L) LY acin(l)
(LEYS =T 5 =Re(a) = T |5

T' € runs(X',R', L) Y#.Y adin(T)
(LFYS=T) E=a=T |5

T" € runs(X', R, L) Yoy Y
(LHE=T)5=T |

Figure 9. Projection of Traces

inputs, the low inputs, and the low outputs. Formally, 7" ||+
is defined in Figure 9. Here :: denotes concatenation, and
runs(¥, R, L) is the set of execution traces beginning from
> with release policy R and label context L.

We define our security property for SME, which states
that the attacker cannot gain more knowledge about secret
user inputs as the system runs, except for what has been
released. Formally:

Definition 2 (Security). A configuration o is secure w.r.t.
the label context L and release policy R against attackers
at level L, if for all traces T, actions «, and configu-
rations Y. s.t. (T == ¥) € iruns(og, L, R), K(T ==
E, ao, E, R) 25 IC(T, ao, E, R)

Definition 2 is progress sensitive. For instance, if a
confidential value determines whether or not the execution
reaches a consumer state, then it is not secure under this
definition. The attacker can refine her knowledge about the
confidential value based on whether the system is making
progress to process inputs. Our SME rules are not secure by
Definition 2. To prove this statement for our rules, we want
to show that all of the shorter traces in (T, 09, L, R) are
prefixes of longer traces in K(T == X, 0, £, R). Consider
the situation where « is an input event. If the shorter trace is
currently processing an event handler containing an infinite
loop, it will never return to a consumer state to accept input.
Therefore, this trace is not a prefix of a longer trace in
K(T = %, 00,L,R).

Instead, we consider a progress-insensitive definition of
security. We define a trace which can make progress as
follows:

prog(T,L) iff T=LFXy="% and
I st. T'=LEY =" 3¢
and consumer(X¢)

And we limit our set of knowledge to the traces that make
progress:

K:t(T, O'(),;C,R) =
{r; | AT’ € iruns(og, L,R), T ~=% T'A
7 =in(T") A prog(T’, L)}

Then, we can update our definition of security to be
progress-insensitive by limiting the shorter trace to those
capable of making progress.

Definition 3 (Progress Insensitive Security). A configuration
o is secure w.r.t. the label context L and release policy R
against an attacker at level L, if for all traces T, actions
o, and configurations ¥ s.t. (T == X) € iruns(og, £, R),
K(T = %,00,L,R) 2< Ki(T,00,L,R)

We prove that our SME rules are sound, formally:

Theorem 4 (Soundness). VL, R, o0q, s.t. g is secure w.r.t.
the label context L and release policy 'R against an attacker
at level L.

184

As stated previously, to prove this statement, we want to
show that all of the shorter traces in K(T', 00, L, R) are a
prefix of a longer trace in K(T == X, 00, L, R). This is
to say, any shorter trace can be expanded to an execution
which is observationally equivalent to £ - T == X. If a is
not observable (e.g. high output), the shorter trace is already
observationally equivalent to £ - 7' == X.. Otherwise, we
need to show that the shorter trace can take an equivalent
step. This is the intuition behind the following lemma:

Lemma 5 (Strong One-step). If T} = L F %) == ¥ with
¥y % X, X1 & Yo, and prog(Xa, L) then 3%, T s.t.
To=LF Y, =" 2/2 with T} ~E T, and 2/1 X 2/2

In addition to « being observable, this lemma requires
that the two traces be in equivalent states before the step.
This follows from an additional lemma:

Lemma 6 (Eq trace Eq state). If Ty = L F ¥ =™ ¥
and Ty = L= Yy =" X with $y =1 Yy and Ty =% T,
then 3 ~p Y.

Lemma 5 is proven by examining each case of £ :: L I
Y1 == Y where « is observable, and showing that the
second trace can take an equivalent step. Lemma 6 is proven
by induction over the length of the trace 7). A detailed proof
of Theorem 4, as well as supporting lemmas may be found
in our companion technical report [25].

C. Precision

One desirable property of SME is precision, which states
that the semantics of good programs should not be altered.
Good programs are those that are compatible with the de-
classification policies and do not leak information outside of
what is released by declassification. The formal definitions
of compatibility and no leak outside declassification are very
similar to those in prior work [31].

Definition 7 (Compatibility). We say that a state o is
compatible with a release policy R and label context L,
when for all T L+ dy,R;x —* d',R'; k" iff K —* K’
where dy is the initial release channel, k = (o,skip, C,-).

We use the judgement x —* &’ to denote program
execution without SME. Definition 7 confirms that the
release function computes the same declassified values as
the script would if it ran without SME. We say that a script
does not leak outside of declassification if release policies
that affect the inputs the same way always produce the same
outputs. If the outputs differed, it must be the case that the
secret inputs influenced the outputs, outside of what was
declassified. We write T|Z£ to denote the projection of an
action sequence to label ¢ under the label context £, and
R (1) to denote repeatedly applying R to each input event
in 7 with label context L.

Definition 8 (No leak outside declassification). We say that
a state o is has no leak outside declassification, if for all
label context L, release policies R, R', R1, R} and traces
Ti1, Tig, S.t. Ry(1i,) = RE(Ti,), for all 7 and 12 L +
ty = do, Ry k —* d/,Rl;FL/ and L+ ty = do,R/;KJ —*
d',R; k', and in(ty) = 71, in(ta) = 7o, it is the case that
out(t1)|§ = 0Ut(t2)|€.

We say that an execution trace is a complete run if it starts

and finishes in consumer state.

LET =3="*%
and consumer(X)
and consumer(X)

T is a complete run iff

We prove the following precision theorem. Similar to prior
work on SME, our precision theorem concerns observations
at each security level.

Theorem 9 (Precision). For all L, R, o and k1, k1 =
(o,skip, C,), o is compatible with L and R, and does not
leak outside declassification, then for all complete runs T’
andt s.t. LT =31 = 3o, t = k1 —* Ko, and X1 =
d,R; k1; k1, and in(T) = in(t) imply out(T)|% = out(t)|%

£ =
and out(T)|5 = out(t)|%.

Proof details may be found in the full version of our pa-
per [25], and uses similar techniques as prior work [31]. One
interesting observation here is that this precision theorem is
fairly weak as it requires both the SME and single execution
traces exist. In Section VI, we show that programs are not
precise using a stronger definition due to dynamic features.

D. Robust Declassification

Robust declassification requires that active attackers can-
not learn more than passive attackers. We say that oo
contains more active components than oy (o1 <4 09) if it
contains more script-generated event handlers and objects,
but is otherwise the same. The formal definition may be
found in our companion technical report [25].

For our robustness theorem, we consider an interleaving
of inputs to o1 with additional inputs (corresponding to the
additional components, denoted 7A) as the input to . We
formally define an interleaving of two traces as follows:

I — — R
1 =T1 T T = (0 11Ty

T =T, Tk =T o (1 T
We also define the following relation for A and B, sets

of traces:

AC. B iff Vre A, 37", 7a with 7' € B, and

TXTA =T

Because the additional inputs to oo are from script-
generated components, all of these inputs have the label Hn.
We denote this formally as dom(7a) NI' = (), meaning that

185

the objects assosciated with inputs from dom were added to
the system. We define the domain of a set of inputs:

!
T=7T

dom(7) = dom(a) U dom(7")

e a = id.ev(v)

dom(a) = {id}

o = ch(v)
dom(er) = { }
One caveat is that we need to account for non-progress
behavior (divergent in non-consumer state) introduced by the

additional event handlers in o5. We consider an execution
trace divergent if it never reaches a consumer state.

Theorem 10 (Robust Declassification). Voq,09, L, R s.t.
01 <4 09, and VT € iruns(o1, L, R) s.t. Ty is a complete
run, YTy € iruns(oq, L, R) s.t. Ty is a complete run, with
7 = in(Ty), in(Ty) = 7 > 7a, dom(ta) N T = 0,
K(Ty,01,L,R) Ce K(Ty,09,L,R) or oy diverges.

We prove this by defining a simulation relation between
the configurations in 7} and 75. As mentioned earlier, the
additional input to 75 will not affect the state of the release
module, and can only be processed by the high execution.
Therefore, after processing these inputs, the configurations
in Ty still relate to the same configurations in 73. Details
about this proof as well as supporting lemmas may be found
in our companion technical report [25].

Allowing active attackers to cause the system to enter a
state where it cannot receive inputs is consistent with our
progress-insensitive definition of the attacker’s knowledge,
which allows the system to leak information through whether
or not it makes progress.

Going back to our example in Section III-A, we can in-
stantiate o9 as the configuration including the event handler
with the problematic branching statement, and o; as this
configuration minus this event handler. The additional events
will be idy.click(v). If ids.click(v) were given to the low
execution, then the knowledge of the active attacker refines
that of the passive one, as it knows the previous input must
be 2. However, because the button with ID ids was added to
the system, the event is not given to the low execution, so the
active attacker learns no more than the passive one. Robust
declassification ensures that this is always the case. The
attacker that generates objects and registers event handlers
learns no more than the attacker who merely watches the
system run.

VI. DISCUSSION

Precision Our precision theorem is weak in the sense that
we require the program leak no information outside of
what is released by declassification. Consider a program
that generates new elements and event handlers (denoted
Ao), which output to low channels when triggered. If all
the events associated with these new items are otherwise low
events, then this is a benign program since there is no secret

involved. However, it does not satisfy the no leak outside
of declassification condition. The reason is that the events
associated with Ag are given the Ha label by our system,
and are expected to have no effects on low outputs, which
is not the case here. Our SME rules will suppress legitimate
low outputs from this program, as a result. However, SME
cannot do much better because the run-time has no way of
knowing whether Ao depends on secrets or not.

Integrity and Endorsement Dual to confidentiality is in-
tegrity, whose non-interference property states that untrusted
(low integrity) data cannot affect trusted (high integrity)
data. Considering integrity in our system would provide an
opportunity for more fine-grained declassification policies.
For instance, instead of preventing any script-generated
input from affecting declassification, the trustworthiness (i.e.
integrity) of the source could be taken into account. User
inputs (high integrity) should be allowed to influence declas-
sification policies whereas scripts (low-integrity) should not.
This connection between robust declassification and integrity
has been studied [15], [26], [33]. We face two challenges
when incorporating integrity in our system. SME provides a
clean and intuitive mechanism for enforcing confidentiality
which may be expanded to include integrity, but it is not
clear how to do this without sacrificing performance since
every additional label requires another execution. Indeed,
previous work which implements SME does not consider
integrity. Similarly, our knowledge-based security property
is a natural way to reason about confidentiality, as it is
precisely the attacker’s knowledge we wish to restrict but,
a knowledge-based interpretation of integrity has not been
studied. We intend to consider integrity in future work.

VII. RELATED WORK

Enforcing IFC in JavaScript Much work has been done
on information flow control enforcement in JavaScript [4],
[16], [19]-[24]. Because of the dynamic nature of JavaScript,
all of the above mentioned projects use runtime enforcement
mechanisms to enforce information flow control. Austin and
Flanagan [4] present a system which simulates different
executions for different security levels using faceted values
to keep track of the high and low versions of data. SME and
faceted execution are similar in principle. Their similarities
and differences are well studied [11]. Our system allows
user access to the elements present in the high execution,
which is what scripts in the high execution see. Scripts in
the low execution see an alternative set of elements. This
is reminiscent of multi-faceted value, except that the entire
DOM, not individual elements, is faceted.

Enforcing IFC on web scripts Several projects have de-
veloped tools for enforcing information flow control on web
scripts by modifying browser components [7]-[9], [17], [30],
[31]. Methods used by these projects include taint tracking,

186

compartmentalization, and secure multi-execution, which
was introduced by Devriese and Piessens [18]. SME has
since been extended to be more precise [32] and to deal with
declassification [14], [27], [31]. Our paper builds on Vanhoef
et al.’s work on SME with stateful declassification [31].
Two forms of declassification are considered in this paper:
event projection (which returns any information relating to
the event which is public, or declassified) and information
release (which contains aggregate information, made public
periodically). We also introduce dynamic script features and
prove a robust declassification theorem.

DOM event handling logic is quite complex and can be
used to leak information [28]. Interactions between SME
and DOM event scheduling logic is an interesting problem
that has not been investigated. Some of those problems can
be mitigated in our system because script-generated events
are handled by the execution at the same security level.
However, the interactions between event bubbling order and
pre-emptive event scheduling and declassification policies
can be very tricky.

Knowledge-Based Information Flow Security Balliu de-
fined abstract knowledge-based security for distributed pro-
grams [5] and studied the relationship between knowledge-
based definitions and various trace-equivalence-based def-
initions. Our knowledge-based security definition is based
on the concept of gradual release, which was introduced
by Askarov and Sabelfeld [3]. The gradual release property
enforces that knowledge stays constant outside of intentional
releases (declassification). Our definition of security is a
gradual release property, except that in most cases, gradual
release has been applied to knowledge of possible initial
configurations, while ours reasons about possible input se-
quences. The gradual release property has been applied to
systems that allow flexible declassification. For instance,
Banerjee et al. proposed expressive declassification policies
defined by agreements of initial state written as flowspecs,
which specify precisely how much information may be
revealed about confidential variables [6]. They also present a
type system for enforcing knowledge-based security, which
is defined as a conditional gradual release property. Askarov
and Chong [2] also present a definition of knowledge which
reasons about initial configurations. Like us, they refine it to
progress knowledge which restricts the set of configurations
to those that can produce another observable event. The con-
cept of robust declassification was introduced by Zdancewic
et al. to ensure low integrity attackers cannot manipulate
declassification operations [33]. Later work develops a type
system for enforcing robust declassification and qualified
robustness [26]. We do not have an explicit integrity label
for attackers. Instead, we assume scripts have low integrity
and therefore actions performed by scripts are considered to
have low integrity.

VIII. CONCLUSION

In this paper, we investigated how dynamic features of
JavaScript can be used to leak information by abusing
declassification policies. We designed new SME rules to
enforce strict separation between dynamically generated
components and the declassification module. To state secu-
rity properties in the presence of declassification policies,
we use a knowledge-based progress-insensitive definition
of security and prove that our enforcement mechanism is
sound. We also prove precision and robust declassification
properties of our SME rules. As future work, we plan to
implement our SME rules in a research prototype browser
developed on FireFox.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation via grant CNS1704542.

REFERENCES

[1] A. G. Almeida Matos, J. F. Santos, and T. Rezk. An informa-
tion flow monitor for a core of DOM: Introducing references
and live primitives. In Proceedings of the International
Symposium on Trustworthy Global Computing (TGC), 2014.

[2] A. Askarov and S. Chong. Learning is change in knowledge:

Knowledge-based security for dynamic policies. In Pro-

ceedings of the 2012 IEEE Computer Security Foundations

Symposium (CSF), 2012.

[3] A. Askarov and A. Sabelfeld. Gradual release: Unifying

declassification, encryption and key release policies. In

Proceedings of the 2007 IEEE Symposium on Security and

Privacy (SP), 2007.

[4] T. H. Austin and C. Flanagan. Multiple facets for dynamic

information flow. In Proceedings of the ACM Principles of

Programming Languages (POPL), 2012.

[5] M. Balliu. A logic for information flow analysis of distributed

programs. In Proceedings of the Nordic Conference on Secure

IT Systems (NordSec). Springer, 2013.

[6] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive

declassification policies and modular static enforcement. In

Proceedings of the 2008 IEEE Symposium on Security and

Privacy (SP), 2008.

[7] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian.

Run-time monitoring and formal analysis of information flows

in Chromium. In Proceedings of the 2015 Network and

Distributed System Security Symposium (NDSS), 2015.

[8] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Infor-

mation flow control in WebKit’s JavaScript bytecode. In

Proceedings of the International Conference on Principles

of Security and Trust (POST), 2014.

[9] A. Bichhawat, V. Rajani, J. Jain, D. Garg, and C. Ham-

mer. WebPol: Fine-grained information flow policies for web

browsers. In Proceedings of the European Symposium on

Research in Computer Security (ESORICS), 2017.

187

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reac-
tive non-interference for a browser model. In Proceedings of
the International Conference on Network and System Security,
(NSS), 2011.

N. Bielova and T. Rezk. Spot the difference: Secure multi-
execution and multiple facets. In Proceedings of the European
Symposium on Research in Computer Security (ESORICS),
2016.

A. Bohannon and B. C. Pierce. Featherweight Firefox:
Formalizing the core of a web browser. In Proceedings of the
2010 USENIX Conference on Web Application Development
(WebApps), 2010.

A. Bohannon, B. C. Pierce, V. Sjoberg, S. Weirich, and
S. Zdancewic. Reactive noninterference. In Proceedings of
the 2009 ACM Conference on Computer and Communications
Security (CCS), 2009.

1. Boloteanu and D. Garg. Asymmetric secure multi-execution
with declassification. In Proceedings of the International
Conference on Principles of Security and Trust (POST), 2016.

E. Cecchetti, A. Myers, and O. Arden. Nonmalleable infor-
mation flow control. In Proceedings of the 2017 ACM Con-
ference on Computer and Communications Security (CCS),
2017.

R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
information flow for JavaScript. In Proceedings of the
ACM Conference on Programming Language Design and
Implementation (PLDI), 2009.

W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens.
FlowFox: a web browser with flexible and precise information
flow control. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS), 2012.

D. Devriese and F. Piessens. Noninterference through secure
multi-execution. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy (SP), 2010.

M. Dhawan and V. Ganapathy. Analyzing information flow in
JavaScript-based browser extensions. In Proceedings of the
2009 Computer Security Applications Conference (ACSAC),
2009.

D. Hedin, L. Bello, and A. Sabelfeld. Information-flow
security for JavaScript and its APIs. Journal of Computer
Security (JCS), 24(2), 2016.

D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow:
Tracking information flow in JavaScript and its APIs. In
Proceedings of the ACM Symposium on Applied Computing
(SAC), 2014.

D. Hedin and A. Sabelfeld. Information-flow security for
a core of JavaScript. In Proceedings of the 2012 IEEE
Computer Security Foundations Symposium (CSF), 2012.

D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript web
applications. In Proceedings of the 2010 ACM Conference on
Computer and Communications Security (CCS), 2010.

[24]

[25]

[26]

[27]

(28]

[29]

S. Just, A. Cleary, B. Shirley, and C. Hammer. Information
flow analysis for JavaScript. In Proceedings of the ACM
Workshop on Programming Language and Systems Technolo-
gies for Internet Clients (PLASTIC), 2011.

M. McCall, H. Zhang, and L. Jia. Knowledge-based security
of dynamic secrets for reactive programs. Technical Report
CMU-CyLab-18-001, Cylab, Carnegie Mellon University,
March 2018.

A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
robust declassification. In Proceedings of Computer Security
Foundations Workshop (CSFW), 2004.

W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-
grained, declassification-aware, and transparent. Journal of
Computer Security (JCS), 24(1), 2016.

V. Rajani, A. Bichhawat, D. Garg, and C. Hammer. In-
formation flow control for event handling and the DOM in
web browsers. In Proceedings of the 2015 IEEE Computer
Security Foundations Symposium (CSF), 2015.

B. Reynders, D. Devriese, and F. Piessens. Multi-tier func-
tional reactive programming for the web. In Proceedings of

188

(30]

(31]

(32]

(33]

the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, part
of SPLASH, 2014.

D. Stefan, E. Z. Yang, B. Karp, P. Marchenko, A. Russo,
and D. Mazieres. Protecting users by confining JavaScript
with COWL. In Proceedings of the USENIX conference on
Operating Systems Design and Implementation (OSDI), 2014.

M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and
T. Rezk. Stateful declassification policies for event-driven
programs. In Proceedings of the 2014 IEEE Computer
Security Foundations Symposium (CSF), 2014.

D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement
of confidentiality for reactive systems. In Proceedings of
the 2013 IEEE Computer Security Foundations Symposium
(CSF), 2013.

S. Zdancewic and A. C. Myers. Robust declassification.
In Proceedings of Computer Security Foundations Workshop
(CSFW), 2001.

