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Abstract: Reliability analysis of multi-component repairable systems with dependent 

component failures is challenging for two reasons. First, the failure mechanism of one 

component may depend on other components when considering component failure 

dependency. Second, imperfect repair actions can have accumulated effects on the 

repaired components and these accumulated effects are difficult to measure.  In this paper, 

we propose a parametric statistical model to capture the failure dependency information 

with general component repair actions. We apply the maximum likelihood method to 

estimate the model parameters by utilizing the historical failure data. Statistical 

hypothesis tests are developed to determine the dependency structure of the component 

failures based on the proposed reliability model. The proposed methodology is 

demonstrated by a simulation study and case studies of a forklift vehicle system and a car 

body assembly process. 

Keywords: Clayton copula, competing risks, failure dependency, lognormal, Weibull, 

Gaussian copula.  

ACRONYMS 

CDF      Cumulative Distribution Function 

AIC       Akaike Information Criterion 

 

NOTATIONS 



2 

 

iT  Failure time of the ith failure 

i∆  Failure type of the ith failure, {0,1,..., }i K∆ ∈  

τ  The predetermined ending time for failure observation  

( )N t , ( )kN t  Numbers of system failures of all components and that of the kth failure 

type occurring in the time interval (0, t ] 

( )
j

r t  Most recently observed failure time of component j  before time t  

( )ka t , ( )kb t  Age of component k  in the original domain and that in the kth transformed 

time domain, respectively  

1W , Random vector of the latent ages to failure of all components; 

1 1,1 1,
[ ,..., ]

K
W W ′=W , where 

1,k
W  is the latent age to failure of the kth 

component, and  

1V  Random vector of the latent ages to failure of all components in the 

transformed time domain; 
1 1,1 1,[ ,..., ]KV V ′=V  

( )kΛ ⋅  The kth trend function for failure type k 

F, kF  Joint and the kth marginal distribution of renewal distribution 

θ  Model parameters; { },
Fζ=θ θ θ ;  

ζθ , Fθ ,
,k F

θ   Model parameters for trend function, joint renewal distribution, and the kth 

marginal distribution , respectively 

β , η  Parameters for power law trend function 

κ , λ  Shape and scale parameters of Weibull marginal distributions 

Σ  Correlation matrix in Gaussian copula 

ρ  Association parameter in the Gumbal-Hougaard copula  

( )L θ  Likelihood function for unknown parameter vector θ  

θ̂  ML estimation of θ   
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D  Likelihood ratio test statistic  

nL ,
f

L  Likelihood value for the null model and that for the full model, 

respectively 

1. Introduction 

Modern engineering systems such as vehicles, aircrafts, and manufacturing systems 

generally consist of multiple subsystems/components that interact in a complex manner. 

As a result, the degradation or failure of one component may make the interacting 

components more prone to fail. Under most situations only the failed component, rather 

than the whole system, will be repaired. The repair actions include perfect, minimal, and 

situations in between, depending on the failure conditions.  Reliability analysis of multi-

component repairable systems plays a critical role for system safety and cost reduction. 

Ignoring the dependency of multi-component failures, however, will result in a biased 

reliability prediction.  

Considering component failure dependency, there are two main challenges for 

reliability analysis of multi-component repairable systems. First, as the components 

compete to fail, only the potential failures with minimum failure time can be observed. 

Taking failure dependency into account, the repair actions of the failed component can 

change the failure mechanism of other components. Second, the accumulated effects due 

to imperfect repair make the failure mechanism of an individual component more 

complex. Under most situations, the repair actions can be distinctive for different 

components and for various repairs of each component. In addition, the effect of each 

repair action is difficult to quantify, and the repair actions may not be recorded.   
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The reliability analysis of a multi-component repairable system becomes more 

challenging for a single repairable system, when failure data is only collected from one 

realization of the multi-component repairable system. Although in this paper we focus on 

a single repairable system, the results can be extended to repairable systems with multiple 

realizations. 

Traditional study on repairable systems mainly focuses on reliability models for 

systems with a single component under different repair actions. Kijima and Sumita [1] 

and Kijima [2] suggested two imperfect repair models by introducing the concept of 

virtual age of repairable systems. Lindqvist, Elvebakk and Heggland [3] proposed a 

trend-renewal Process (TRP) to generalize the inhomogeneous and modulated gamma 

process proposed by Berman [4], which deal with the imperfect repair conditions well. 

Other imperfect repair models for repairable systems with a single component include the 

modulated renewal process [5], the modulated power law process [6], the arithmetic 

reduction of age and arithmetic reduction of intensity models [7]. A comprehensive 

review on statistical methods of repairable systems is provided by Lindqvist [8]. 

For repairable systems under competing risks, most of the existing research assumes 

independency of component failure [9-11]. Thus, the reliability analysis of the entire 

system subjected to competing risks can be simplified by analyzing each component 

independently. The existing reliability models that consider failure dependency assume 

that when a failure of one component occurs, it will result in a possible shock to the other 

components with a certain probability [12-16]. Li and Pham [17] discussed a similar 

system with component failure dependency, and they assumed a binomial distribution of 

perfect and minimal repairs with certain probability. Langseth and Lindqvist [18] 
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developed a model for systems consisting of multiple components associated with 

failures caused by multiple sources. Shaked and Shanthikumar [19] developed statistical 

models and investigated properties of repairable systems with dependent component 

failures. However, in their work, the parameters estimation approach was not given and 

the repair actions were not considered. Yang et al. [20] developed a statistical model to 

capture the failure dependency of multi-component repairable systems with the 

assumption that the failed component is replaced with one that is as good as new. Zhang 

and Yang [21] further developed optimal maintenance policies for multi-component 

repairable systems. However, in reality, there are many situations where the failed 

component is partially repaired rather than perfectly replaced, and the repair 

condition/effectiveness changes (e.g., becomes worse) along with the number of repairs.  

Copulas become increasingly popular in modeling dependencies, due to their 

flexibility in capturing non-linear dependence and arbitrary marginal distributions. In the 

context of reliability, a comprehensive study of systems failure dependency by using 

copula was given in the book by Li and Xie [22]. In this paper, we propose a copula-

based trend-renewal process model to analyze the multiple-component repairable systems 

under the dependent competing risks. The failed component is subject to general repair 

actions, including perfect and minimal repairs as well as situations in between. The repair 

conditions may change along with the number of repairs. The framework of this paper is 

as follows. After the introduction, Section 2 proposes a generalized parametric statistical  

model for reliability analysis of dependent competing-risk systems under the imperfect 

component repair assumption. Section 3 discusses the parameter estimation and statistical 

inference. Section 4 demonstrates the developed methodology through simulation studies, 
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and Section 5 illustrates the developed methods by using two real-world  applications. 

Finally, Section 6 gives a summary of the paper. 

2. Data and model  

2.1 Data notation 

We consider a competing-risk system consisting of multiple (say K ) components. 

The time scale is the time since installation. Upon each failure, only the failed component 

is repaired in terms of imperfect effectiveness between perfect and minimal. The 

successive failure events are recorded by 1 2, ,...T T , until a predetermined ending time τ . 

In addition, each event is labeled with a failure type {0,1,..., }i K∆ ∈ ; where 0i∆ =  

indicates there is no failure observed. We use pair ( , )i iT ∆  to represent failure information. 

An equivalent representation of the failure process is in terms of the marked point 

process ; where k  denotes failure type and ( )kN t  denotes the cumulative number of 

failures for component k  until time t . We use
1

( ) ( )
K

kk
N t N t

=
=∑  to denote the total 

number of failures regardless of failure type until time t . We assume that two failures 

cannot occur simultaneously, which is a common assumption for repairable systems in 

the literature. In addition, we assume the repair action is immediate and the repair time is 

ignored.  

2.2 Copula-based TRP 

The TRP [3] is a statistical model to model the single-component repairable system 

under general system repair actions from perfect to minimal, in which both perfect and 

minimal repairs are included as two extreme cases. The basic idea of the TRP model is to 

apply a trend function ( )tΛ  to transform the original failure times into a new time 
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domain. The transformed failure times can be modeled by a renewal process that follows 

a renewal distribution F .  

In this paper, the TRP model is extended to systems consisting of multiple 

components that can fail dependently. We first develop a simplified reliability model 

when the failed component is repaired perfectly. Then this model is further extended to 

systems with imperfect component repair actions. 

2.2.1 Partially perfect repair model for perfect component repair actions 

The partially perfect repair model [20] assumes that the failed component is perfectly 

repaired whenever a failure occurs. Let ( )kr t  be the most recent failure time for 

component k . The age of component ; {1,..., }k k K∈  at time t , denoted as ( )ka t , is 

defined as the cumulative running time since its last failure, i.e., ( ) ( )k ka t t r t= − . Note 

that both ( )kr t  and ( )ka t  are defined as left-continuous functions. Thus, ( ) lim ( )
k k

x t

r t r x
−→

=  

if a failure occurs at time t , and ( ) 0kr t =  if no failure occurred by time t . Similarly,  

( ) lim ( )
k k

x t

a t a x
−→

= .  

In the partially perfect repair model [20], a component fails once its age reaches the 

corresponding life threshold, resulting in the entire system’s failure. The life threshold for 

component k, called the latent age to failure of component k , is assumed to be a random 

variable. When considering the system from installation,  
1,k

W  is used to represent the 

first random latent age to failure of component k , and the random vector 

1 1,1 1,
[ ,..., ]

K
W W ′=W  is modeled by a joint cumulative distribution function(CDF) F  that 

can capture the component failure dependency. When the ith system failure occurs at time 
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point 
it , only the failed component is replaced and thus its age becomes zero, while all 

the other components’ ages do not change. As a result,  the (i+1)th latent age to failure of 

component k , denoted by 
1,i k

W + , should be larger than the age of component k at time 

point it , i.e., ( )1,i k ik
tW a+ > ,  {1,..., }, 1, 2,...k K i∀ ∈ = . As a result, the random vector 

1 1,1 1,[ ,..., ]i i i KW W+ + +
′=W  follows a truncated distribution with a joint CDF F conditional 

on the vector of ( ) ( )1 , ,[ ]
i i

T

K
a t a t… .  

2.2.2 A general reliability model for imperfect component repair actions 

In the partially perfect repair model [20], the system failures are only determined by 

the last failure times of all the components because the repair actions are assumed to be 

perfect. When the repair action is imperfect, however, the component failures are affected 

by the effect of imperfect component repair accumulated from the all the repair history, 

which are coupled with the effect of failure dependency of other components in a 

complex manner.  

To overcome this difficulty, we propose a multiple transformation procedure in this 

paper by applying the TRP model to transform the failure times of individual components 

to separate transformed time domains in which the effect of imperfect repair can be 

eliminated. Specifically, as shown in Figure 1, the failure times of component k (denoted 

by 
,1k

T , 
,2k

T ,…) are transformed into the kth transformed time domain using a trend 

function ( )kΛ ⋅ . Based on the properties of the TRP model, the transformed failure times 

of component k , 
,1

( )
k k

TΛ , 
,2

( )
k k

TΛ … follow a renewal process characterized by a 

renewal joint CDF 
kF .  
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,1( , )kT k ,2( , )kT k

,1( )k kTΛ

,3( , )kT k

,3( )k kTΛ,2( )k kTΛ

 

Figure 1. Illustration of the multiple transformation procedure                                     

based on different trend functions for different failure types 

According to the properties of the renewal process, the accumulated effect of 

imperfect repair in the original time domain is eliminated in the transformed domain. 

Thus, the failure times in the transformed time domains can be modeled in a similar way 

to capture component failure dependency. We assume component k ( 1,...,k K= ) has a 

latent age to failure 
,i k

V , in the th
k  transformed time domain after the ( 1)thi − system 

failure and the corresponding repair action. When considering the first system failure 

from installation, 
1 1,1 1,

[ ,..., ]
K

V V ′=V  is modeled by a joint CDF F  with a marginal 

distribution kF , which denotes the renewal distribution of the thk  component in the 

transformed time domain. Let ( )ka t  and ( )kr t  be the component age and the most recent 

failure time for component k  in the original time domain, respectively, whose definition 

are the same as in the previous section. Let ( )kb t  denote the age of component k  in the 

kth transformed time domain. When the ith system failure occurs at time point 
it , the failed 

component can be treated as perfectly replaced in the corresponding transformed time 

domain according to the properties of renewal process. Hence, ( ) ( ) ( ( ))k k k kb t t r t= Λ − Λ . 
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Because components may have a non-zero age right after a system failure and the 

corresponding repair, the (i+1)th latent age to failure of component k in the k th 

transformed time domain, denoted by 
1,i k

V + , should be larger than ( )ik
b t , i.e., 

( )1,i k ik
tV b+ > ,  {1,..., }k K∀ ∈ . As a result, the random vector  

1 1,1 1,
[ ,..., ]

i i i K
V V+ + +

′=V  

follows a truncated distribution with the joint CDF F conditional on the vector of 

( ) ( )1
, ,[ ]T

K i
t b tb … . It can be seen that the simplified model is a special case of the 

general model, when the trend function is the identity function, i.e., ( )k t tΛ = .  

2.3 Parametric forms  

The proposed copula-based TRP model is determined by the trend function and the 

joint CDF F . In this paper, the copula functions are used to build the joint CDF F based 

on the marginal distributions. Thus, the model parameters include those from the trend 

function, the marginal distribution, and the copula function.  

2.3.1 Trend function 

The power law relationship, which is generally used in the trend function of the TRP 

model, is also used in the multiple transformation procedure. In particular, the power law 

intensity function ( )kζ ⋅
 
for failure type k  has the following form: 

 1

,( ; )

k

k
k k

k k

t
t

β

ζ

β
ζ

η η

−
 

=  
 

θ  (1) 

where 
, , ][

k k kζ β η= ′θ  is the parameter vector of intensity function ( )kζ ⋅ . We use 

{ }1, ,
, ...,

Kζ ζ ζ=θ θ θ  to denote the parameters in all trend functions. 

 



11 

 

2.3.2 Renewal distribution 

In this paper, we choose the Weibull distribution as the marginal distribution of the 

joint CDF F . However, other distributions can also be applied in the model. The CDF of 

the Weibull marginal kF  is: 

 
,

, , ,( ; ) 1 exp ; 0

k

i k

k i k k F i k

k

v
F v v

κ

λ

  
 = − − ≥    

θ  (2) 

where (0, )kκ ∈ ∞  and (0, )kλ ∈ ∞  are called shape and scale parameter, respectively. 

,
, ][

k F k k
κ λ= ′θ  is the parameter vector of the marginal distribution kF . 

Similar to the traditional TRP model for single-component systems, in our model the 

marginal expectations are restricted to one in order to reduce the degrees of freedom of 

the model, because if a trend function is multiplied by a constant then we can modify the 

corresponding marginal distribution accordingly by scaling the time. In practice, we add a 

constraint that (1 1/ ) 1; 1,...,k k k Kλ κ⋅Γ + = = , where ( )Γ ⋅  is the gamma function. 

2.3.3 Copula function 

Copula functions have been applied in reliability studies by many authors [23-25]. 

The copula functions can be classified into different families. In this paper, we consider 

two types of copula functions: the Clayton copula [26] and the Gaussian copula [27]. The 

Clayton copula is a typical one from the Archimedean family. It contains one association 

parameter ρ  that relates to the dependency measurement Kendall’s tau Kendallτ , by the 

relation ( 2)Kendallτ ρ ρ= +  [26]. 
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When the Clayton copula is selected to construct the joint distribution, the 

dependency of the failure types in the transformed time domain is captured by the 

association parameter ρ . The range of the association parameter is [ 1,0) (0, )ρ ∈ − ∞∪ . 

The limiting case when 0ρ →  represents the independent situation. In this paper, we 

define the Clayton copula as follows: 

 1/

11

1

max 1,0 ; 0
( , , )

                                  ; 0

K

k

kClayton K

K

kk

u K
C u u

u

ρ

ρ ρ

ρ

−

−

=

=

  
 − + ≠  

=   


=

∑

∏

…  (3) 

where 
, ,

( , ); 1, ,
k k i k k F

u F v k K= =θ … . Specifically, the multivariate Weibull cdf ( ; )i FF v θ

can be obtained by substituting ( )( ),1 exp /
k

k kk i
u v

κ
λ= − −  into (3), where 

1, ,{ ,..., , }
F F K F

ρ=θ θ θ . 

In comparison to Archimedean copulas that can only capture the overall dependency, 

Gaussian copula is able to capture full pairwise dependency of all marginals. Specifically, 

a Gaussian copula has the form: 

 1 1

1, 1( , , ) ( ( ), , ( ))
Gauss K K

C u u u u− −
Σ
 = Φ Φ Φ … …  (4) 

where  1−Φ  is the inverse of the standard normal cdf, and ΣΦ  is the cdf of a multivariate 

normal distribution whose mean vector is 0  and covariance matrix equals to its 

correlation matrix. The Gaussian copula density function is given as follows [28]: 

 
1 1

1 1

1

1 1

2 1 1

( ) ( )
1 1

( , , ) exp ( )
2

( ) ( )

Gauss K

K K

u u

c u u

u u

− −

−

− −

 ′   Φ Φ     
= − −    

    Φ Φ     

Σ I

Σ

… ⋯ ⋯  (5) 
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where I  is the identity matrix and Σ  is the correlation matrix. By using the chain rule, 

we obtain the probability density function (pdf) of the multivariate Weibull distribution 

using Gaussian copula, i.e., 

 
1

1 1 ,1 ,

1 ,1 ,

( ; ) ( , ) ( ) ( )
K

Gauss K
Gauss i F Gauss K i K i K

K i i K

C du du
f c u u f v f v

u u dv dv

∂
= = ⋅

∂ ∂
v θ … … …

…
 (6) 

where ( )kf ⋅  is the marginal Weibull pdf for failure type k . Therefore, the joint CDF F  

can be obtained by integrating ( ; )Gauss i Ff v θ , where 
1, ,{ ,..., , }

F F K F
=θ θ θ Σ . 

3. Parameter estimation and statistical inference 

3.1 Construction of likelihood function  

The maximum likelihood (ML) approach is used to estimate the model parameters, 

including those in the joint distribution and those in the trend functions. To implement 

the ML approach, the likelihood function is firstly calculated. 

Let ( ) ( ){ }1 1 ( ) ( )
, ,..., ,

N t N tt
T T− − −= ∆ ∆F , which contains all the paired failure times and 

failure types until, but not include, time t  . Thus, the whole dataset can be denoted by 

{( ,0)}τ τ
τ−= ∪F F . Given the failure data set τF , the likelihood function can be 

decomposed according to the conditional probability as follows: 

 ( ) 1

1

( | )
N

i

i

L L
τ

τ

+

=

= ∏θ F  (7) 

where iL  denotes the conditional likelihood function of failure i  given all previous 

failures. The parameter set { },
Fζ=θ θ θ  denotes all parameters in our model, where ζθ  

and Fθ  are parameters in trend functions and those in joint distributions, that are defined 

in Section 2.4. Specifically, 
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1 1Pr( , )  for 1

Pr( , | , ; 1,..., 1)  for  2,..., ( )

Pr( ,0 | , ; 1,..., ( )) for ( ) 1

i i i j j

j j

t i

L t t j i i N

t j N i N

δ

δ δ τ

τ δ τ τ

 =


= = − =


= = +

. (8) 

In equation (8), we interpret Pr( )x  as ( )f x dx , which is proportional to the density ( )f x . 

For convenience of notation, we ignore dx  in the likelihood functions. 

Due to the cumulative effect of imperfect repair and component failure dependency, 

i
L  in (8) is difficult to calculate in the original time domain as it depends on the entire 

failure history. To overcome this difficulty, we calculate the likelihood function in the 

transformed time domains, in which the cumulative effects of imperfect repair are 

eliminated so that 
i

L  only depends on the most recent components’ failures.  

 The following Proposition 1 shows the calculation of 
i

L  in the transformed time 

domains. The detailed proof of Proposition 1 is available in Appendix Section 1.   

Proposition 1: the conditional likelihood function of failure i  given all previous failures, 

i.e., 
i

L , is given as follows 

 

1

1 , ,

[ ( ), , ( )]
,

1 1 1

( , , , , )
( )

,
[ ( ), , ( )]

|i

ii i K i

i

i i i K

ib t b t
i

i K

i

i

S v v v
t

v

S b t b t
L

δ

δ

δ

λ′=

+ +

− −

 ∂ 
− 

∂ = 
v ⋯

⋯ ⋯

⋯
 

(9) 

where ( )S ⋅  denotes the survival function of 
1V ; ( )

i i
tδλ  is the derivative of trend function 

that is used to transform the probability density from the original time domain to a 

transformed domain; and ( )
k

b t = ( ) ( ( ))
k k k

t r tΛ − Λ .  

When ( ) 1i N τ= +  in (8), as there is no failure observed from 
( )N

t τ  to the 

predetermined ending time τ , the conditional probability can be calculated as: 
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( ) 1

1

1 ( ) ( )

[ ( ), , ( )]

{ [ ], , [ ]}

K

N K N

N

S b b

S
L

b t b t
τ

τ τ

τ τ
+ + +

==
⋯

⋯
.  (10) 

3.2 Maximization of likelihood function 

Model parameters can be estimated by maximizing the likelihood function obtained 

in the previous section. In practice, however, several issues need to be addressed. 

When the Gaussian copula is used, two constraints exist: (a) the covariance matrix 

needs to be positive definite; and (b) the covariance matrix is equal to its correlation 

matrix. Constraint (b) is satisfied by directly fixing the diagonal elements of the 

covariance matrix as one. To satisfy constraint (a), we apply the  nearest correlation 

matrix method [29]. Specifically, at each iteration of the optimization process, the 

estimated correlation matrix is approximated by the nearest correlation matrix that is 

positive definite. In practice, the correlation matrix only needs to be approximated by the 

nearest correlation matrix at the first several iterations. After a number of iterations, the 

output correlation matrix will automatically become positive definite as the estimated 

correlation matrix converge to the real correlation matrix. 

The first order derivative of the survival function in (9) needs to be evaluated many 

times during the process of optimizing the likelihood function. To speed up the parameter 

estimation process, we evaluate the first order derivative of survival function of Gaussian 

copula as follows: 

 
,1 , ,

, 1

,

( ,..., ,..., )
( ) ( ,..., ,..., );

i i k i K

k i k Normal j K

i k

S v v v
f v S j k

v
γ γ γ

∂
− = ≠

∂
 (11) 

where
,( )

k i k
f v  is the pdf of random variable 

,i k
v . In this paper, we consider 

,( )
i i k

f v  as 

Weibull marginal distribution. However, equation (11) still holds for other marginal 
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distributions. Here, ( )
Normal

S ⋅  is the survival function of a 1K −  dimensional multivariate 

normal, and 
1( )

j j
uγ −= Φ , where 

j
u  denotes the cumulative density of the thj marginal. 

The proof of (11) is given in Appendix Section 2. 

Under a large-sample assumption, the ML estimate θ̂  is asymptotically normally 

distributed based on ML theory [30]. Thus, the asymptotic covariance ˆ
ˆ
θ
Σ  for θ̂  can be 

calculated from the observed Fisher information matrix ˆ( )Ι θ , i.e., 1

ˆ
ˆˆ ( )−=

θ
Σ Ι θ , where 

ˆ( )Ι θ  is the negative of the Hessian matrix ( )H θ  evaluated at ˆ=θ θ  , i.e., 

ɵ

ɵ

2

=

log( ( ))
( ) =

T

L∂
−

∂ ∂
θ θ

θ

θ

θ
I θ . 

3.3 Statistical hypothesis test  

Dependency information of different component failures is important for the 

maintenance and design of complex systems. In addition, distinguishing subsets of 

components which do not fail independently can simplify the reliability model and 

efficiently reduce the parameter dimension.  

In this section, we propose hypothesis testing procedures to determine the 

dependency among different component failures based on the proposed model. The 

likelihood ratio test statistic is calculated as follows, 

sup{ }
2 ln

sup{ }

n

f

L
D

L

 
= − ⋅   

 
     (12) 

where 
nL  indicates the likelihood values for the null model; and 

f
L  indicates the 

likelihood values for the full model that includes both the null and the alternative models. 
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The likelihood ratio test statistic in (12) follows a 2χ  distribution with the degrees of 

freedom ω ; where ω  is the difference between the number of parameters in the full 

model and that in the null model. The null and alternative hypotheses, in practice, depend 

on the specific copula function that is used to construct the reliability model. In this paper, 

hypothesis tests for statistical model via Clayton copula and that via Gaussian copula are 

developed in Sections 3.3.1 and 3.3.2, respectively. 

3.3.1 Hypothesis test for Clayton copula 

When the Clayton copula is selected to construct the reliability model, the overall 

dependency among all failure types can be tested using the following hypothesis test.  

0H : all failure types are independent vs 1H : not all failure types  are independent. (13) 

Hypothesis test (13) can be tested based on the likelihood ratio test statistic that is 

defined in (12).  In (12), sup{ }
f

L  can be obtained by maximizing (8), while sup{ }nL  can 

be obtained by maximizing (8) with a constraint that the association parameter ρ  is fixed 

as zero. 

3.3.2 Hypothesis test for Gaussian copula 

The pairwise dependency among all failure types can be tested, when the Gaussian 

copula is selected to construct the reliability model. The following test is proposed:  

0H : failure types ,i j  are independent  vs 1H : failures types ,i j  are dependent . (14) 

Similar to hypothesis test (13), hypothesis test (14) can be tested based on the 

likelihood ratio test statistic that is defined in (12).  Under this situation, sup{ }
f

L  can be 
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obtained by maximizing (8), while sup{ }nL  can be obtained by maximizing (8) with a 

constraint that the correlation for failure types ,i j in the Gaussian copula is fixed as zero.    

If multiple pairwise dependency of failure types are tested simultaneously, 

the Bonferroni correction [31] can be used to counteract the problem of multiple 

comparisons. Specifically, each individual hypothesis is tested at a significance level of 

/ mα  , where α  is the desired significance level and m  is the number of hypothesis tests.  

4. Simulation study 

A comprehensive simulation study is conducted to verify the developed model. We 

consider five scenarios. Scenarios 1-4 are used to examine the effect of different copula 

functions, different degree of dependency, different marginal distributions, and different 

trend functions, respectively; while Scenario 5 is used to verify the parameter estimation 

method. To keep the setting simple, we consider a two-component system for Scenario 1-

4 and a three-component system for Scenario 5. For each scenario, the failure data are 

simulated based on the proposed reliability model.  

4.1  Parameters setting 

1) Scenario 1: examine the effect of form of copula.  

We use the Weibull marginal distribution and the power law trend function with 

increasing trend. We consider two copula functions with moderate dependency: Gaussian 

copula and Clayton copula. The parameters of the copula functions are chosen such that 

the copula functions have the same overall dependency. When the Gaussian and Clayton 

copulas are chosen, the parameters are listed in Table I and Table II, respectively. 



19 

 

Table I. Parameter setting in simulation Scenario 1 (Gaussian copula) 

Component 

Trend function 
Joint distribution  

(Gaussian copula + Weibull marginal) 

β  η  κ (shape) λ (scale) Mean 
Correlation 

matrix  

1 1.200 1.000 2.000 1.128 0 1.000 0.500  

2 1.200 1.000 2.000 1.128 0 0.500 1.000  

 

Table II. Parameter setting in simulation Scenario 1 (Clayton copula) 

Component 

Trend function 
Joint distribution  

(Clayton copula + Weibull marginal) 

β  η  κ (shape) λ (scale) 
Association 

parameter  

1 1.200 1.000 2.000 1.128 
1.000 

 

2 1.200 1.000 2.000 1.128  

 

2) Scenario 2: examine the effect of dependency in copula.  

We use the Weibull marginal distribution, power law trend function with increasing trend, 

and the Gaussian copula. By choosing different values of the copula, we consider three 

situations: component failure independency, moderate failure dependency, and strong 

failure dependency. For the moderate dependency case, the simulation parameters setting 

are the same as listed in Table I. For independency and the strong dependency cases, we 

set the values of the correlation coefficients to be 0 and 0.9, respectively, while all other 

parameters are the same as those in Table 1. 

3) Scenario 3: Examine the effect of marginal distribution:  

We use the power law trend function with increasing trend and Gaussian copula. We 

consider two marginal distributions: the Weibull and the lognormal distribution. For the 

Weibull case, the parameters are the same as listed in Table I. The parameters for the 

lognormal distribution case are listed in Table III. 
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Table III. Parameter setting in simulation Scenario 3 (lognormal marginal) 

Component 
Trend function 

Joint distribution  

(Gaussian copula + lognormal marginal) 

β  η  µ  σ  Mean Correlation matrix  

1 1.200 1.000 -0.125 0.500 0 1.000 0.500  

2 1.200 1.000 -0.125 0.500 0 0.500 1.000  

4) Scenario 4: examine the effect of trend function:  

We use the Weibull marginal distribution and Gaussian copula function. We consider 

three situations of the power law trend function: increasing trend, constant, or decreasing 

trend. For increasing trend function case, the parameters are the same as those in Table I. 

For constant and decreasing trend functions, we set [1.0, 0]1.= ′β  and [0.8, 8]0.= ′β , 

respectively, while all the other parameters are the same as those in Table 1. 

5) Scenario 5: validate the parameter estimation method:  

We use the Weibull marginal distribution, Gaussian copula function, and the power law 

trend function with increasing trend. A three-component system is considered, and the 

parameters are given in Table IV. 

Table IV. Parameter setting in simulation Scenario 5 

Component 
Trend function 

Joint distribution  

(Gaussian copula + Weibull marginal) 

β  η  κ (shape) λ (scale) Mean Correlation matrix  

1 1.200 1.000 2.000 1.128 0 1.000 0.100 0.400  

2 1.200 1.000 2.000 1.128 0 0.100 1.000 0.800 
 

3 1.200 1.000 2.000 1.128 0 0.400 0.800 1.000 

 

4.2 Parameter estimation 

In the simulation study, we vary the value of stopping time τ  to obtain different 

values of the expected number of events. We think it is more informative to show the 
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number of events, instead of the value of τ . We consider four different numbers of 

events for each scenario, i.e., 100, 200, 500 and 1000 respectively.  

To evaluate the performance of the parameter estimation method, we calculate both 

the MSEs of estimators and the coverage probabilities for the 95%  confidence intervals 

based on 1000 replicates under each parameter setting. Figures 4-8 plot the MSEs (left) 

and coverage probabilities (right). From Figures 4-8, we can see that when the sample 

size is large enough, the MSEs are approaching zero, and the coverage probabilities of  

95%  confidence intervals for the unknown parameters are approaching 95% . Thus, the 

estimators of the parameters perform well.  

 

 

Figure 2. Simulation results for scenario 1 with Gaussian copula. 
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Figure 3. Simulation results for scenario 2 with independent failures 

 

Figure 4. Simulation results for scenario 3 with lognormal marginal 
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Figure 5. Simulation results for scenario 4 with constant trend function 

 

Figure 6. Simulation results for scenario 5 with 3 stations 
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production line in the United States. The machine is repaired when a failure occurs, and 

the repair action is determined by the failure condition. However, the repair actions are 

not recorded. Figure 7 shows the cumulative number of failures from two subsystems of 

the machine that work simultaneously during the assembly process. The time is rescaled 

and the subsystems are denoted by subsystem A and subsystem B to protect proprietary 

information.   

 

Figure 7. Failure data from stations A and B 

When applying the proposed model, the overall likelihood is obtained by substituting 

(9) and (10) into (8). The parameters are estimated by maximizing the likelihood function. 

When the Clayton copula is applied, the estimated parameters and the standard errors are 
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Table V. Parameter estimates and standard errors (values in the bracket) when 

choosing the Clayton copula 

failure type 
Trend function Joint distribution 

β̂  η̂  κ̂  λ̂  Association parameter ρ  

1 1.38(0.28) 169.79(1.61) 1.06(0.20) 1.02(0.68) 

0.33(0.04) 

2 1.24(0.33) 110.95(1.90) 1.20(0.34) 1.06(0.23) 

When applying the Gaussian copula to obtain the joint distribution, the estimated 

parameters and the corresponding standard errors are listed in Table VI. 

Table VI. Parameter estimates and standard errors (values in the bracket) when 

choosing the Gaussian copula 

failure type 

Trend function Joint distribution 

β̂  η̂  κ̂  λ̂  Σ̂  

1 1.52(0.24) 3.27(1.61) 0.89(0.22) 0.95(0.13) 1.00 0.47(0.20) 

2 1.65(0.31) 4.45(2.01) 0.90(0.26) 0.95(0.15) - 1.00 

 

The negative log-likelihood values for the models are 49.909 and 47.255 for the 

model via the Clayton copula and that via the Gaussian copula, respectively. As both 

models have the same number of model parameters, the model via the Gaussian copula 

fits the data much better so that we select the reliability model via the Gaussian copula. 

Thus, hypothesis test (14) is applied to test the overall failure dependency. The log-

likelihood value is -47.255 for the full model and -50.561 for the null model. As the p-

value equals 0.01, the reliability model indicates that different failure types are dependent. 
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We apply a graphical tool that is traditionally used in reliability literature [32] to 

show the goodness of fit for the proposal model. Specifically, we compare the cumulative 

number of observed events to the estimated expected number of events. The following 

Figure 9 shows the estimated expected number of events for the reliability model via the 

Clayton copula and that via the Gaussian copula, respectively.   

 

 

 

 

 

 

 

 

 

Figure 8. Estimated mean cumulative intensity function of failures                                       

compared to the real failure data, conditional on event history. 
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The following Table VII shows the comparison results. As the proposed model has 

the smallest negative log-likelihood and the AIC values, it fits the data best.  

Table VII. Comparison of the proposed model to other three simple models 

 Negative Log-

likelihood 

AIC Degrees of 

freedom 

Proposed model: imperfect repair 

with dependent failures 
47.255 108.511 7 

Model 1: imperfect repair with 

independent failures 
50.561 113.122 6 

Model 2: perfect repair with  

dependent failures 
51.932 113.864 5 

Model 3: perfect repair with 

independent failures 
54.307 116.613 4 

 

5.2 Application for Example 2 

We also apply the developed method to a forklift vehicle system, in which two major 

subsystems are a transportation and drive subsystem and a lift mechanism subsystem. 

Figure 9 illustrates the cumulative number of failures from the two different subsystems 

of a forklift vehicle used in a manufacturing plant for about three years. The failure types 

are denoted by failure types 1 and 2 to protect proprietary information.   

 

Figure 9. Failure data from failure type 1 and failure type 2  
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We apply the developed methods to the lifting fork vehicle system. The following 

Tables VIII and IX list the estimated model parameters and the standard errors, when 

applying the Clayton copula and the Gaussian copula to obtain the joint distribution, 

respectively.  

Table VIII. Parameter estimates and standard errors (values in the bracket) when 

choosing the Clayton  

failure type 

Trend function Joint distribution 

β̂  η̂  κ̂  λ̂  Association parameter ρ  

1 1.38(0.26) 169.79(77.44) 0.84(0.23) 0.91(0.16) 

2.41(1.88) 

2 1.24(0.33) 110.95(80.73) 0.63(0.17) 0.70(0.23) 

 

Table IX. Parameter estimates and standard errors (values in the bracket) when 

choosing the Gaussian copula 

failure type 

Trend function Joint distribution 

β̂  η̂  κ̂  λ̂  Σ̂  

1 1.32(0.30) 155.11(84.05) 1.01(0.29) 1.00(0.12) 1.00 0.56(0.18) 

2 1.19(0.31) 96.43(70.31) 0.75(0.18) 0.84(0.17) - 1.00 

 

The negative log-likelihood values for the models are 165.967 and 165.752 for the 

model via the Clayton copula and that via the Gaussian copula, respectively. As the 

negative log-likelihood values are close, both models have the similar ability to fit the 

data. Hypothesis tests are applied in the case study to examine the failure dependency 

structure of the stations. When applying hypothesis test (13) to test the failure 

dependency, the negative log likelihood value is 165.967 for the full model and is 

168.017 for the null model, and the p-value equals 0.043. When applying hypothesis test 
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(14) to test the failure dependency, the log-likelihood values is -165.752 for the full 

model and is -168.016 for the null model, and the p-value equals 0.033. Thus, the 

different failure types are dependent. However, the estimation and standard deviation of 

β̂  in both Tables VIII and IX show that the parameters β̂  in the trend function are not 

statistical different from 1, indicating perfect component repairs in the system. 

We apply the propose model as well as other three simpler models to fit the data. The 

following Table X shows the comparison results.  

Table X. Comparison of the proposed model to other three simple models 

 Negative Log-

likelihood 
AIC 

Degrees of 

freedom 

Proposed model: imperfect repair 

with dependent failures 
165.752 345.504 7 

Model 1: imperfect repair with 

independent failures 
168.017 348.033 6 

Model 2: perfect repair with  

dependent failures 
166.943 343.882 5 

Model 3: perfect repair with 

independent failures 
168.598 345.196 4 

 

For Table X it can be seen that the models assuming component failure dependency 

(proposed model and Model 2) fit the data better than those assuming component failure 

independency (Model 1 and Model 3), while the models assuming perfect repair (Model 

2 and Model 3) fit the data better than those assuming imperfect repair (proposed model 

and Model 1).  The results are consistent with what obtained previously. Thus we 

conclude that the two subsystems are subject to perfect repair with dependent failures. 

6. Conclusions  

In this paper, we propose a parametric reliability model for dependent competing-risk 

systems. This model can handle two challenges in general multi-component repairable 
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systems, which are to deal with imperfect component repair from perfect to minimal, and 

to capture the dependency among different failure types. We extend the TRP model for 

single-component systems to competing-risk systems by transforming original failure 

times into new time domains for each component respectively. Then, the dependency of 

different component failures is captured by a joint distribution established from marginal 

in the transformed time domains. The model parameters are estimated using the ML 

method. The dependency is further examined by the suggested hypothesis tests. Finally, a 

case study from an engineering head assembly system consisting of three failure types is 

conducted to verify the model. 

The proposed model can be useful in maintenance planning. Based on the proposed 

model, one can predict the system reliability given the failure history. To briefly discuss 

the idea, suppose one observed the failure history up to time π , which is denoted as πF . 

One can compute the reliability of the system at a future time t π> . Specifically, the 

probability can be computed as ( | ) [ (1, ),..., ( , )] / [ (1, ),..., ( , )]R t S b t b K t S b t b K tπ π π
− − + +=F , 

which is the probability that no failure occurs before t  given the history. Applying this 

reliability information and the model predictive ability for the maintenance planning can 

be an interesting topic for further research. In some applications, window observations 

may occur for the event history data (e.g., Hong, Li and Osborn [33]). It would be 

interesting to consider the proposed model under the window-observed recurrent event 

data. In this paper, we use a parametric method. In future research, it would also be 

interesting to build nonparametric models. The estimation of nonparametric models, 

however, can be challenging as identifiability problems may arise.   
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Appendix 

1. Proof of Proposition 1 

Note that 
,i k

V   is defined as the latent age to failure of component k  after the ( 1)thi −  

failures in the  thk  transformed time domain. Let  
,i k

W  be the corresponding random 

variable for the age to failure of component k  after the ( 1)thi −  failure in the original 

time domain.  Suppose that the thi  system failure occurs at time point it  in the original 

time domain.  

Because ( )k ir t  is left continuous, 
1( ) ( )

k i k i
r t r t +

−= . Thus,  

 , , , 1 1
[ ( )] [ ( )] [ ( )] [ ( )]

i k k i k k i k k i k i k k i k k i
V W r t r t W r t r t

+ +

− −= Λ + − Λ = Λ + − Λ   

As ( )k ib t = ( ) [ ( )]k i k k it r tΛ − Λ , and ( )k ib t  is also left continuous. Thus,  

 
1 1 1 1 1( ) [ ( ) ( )] [ ( )] ( ) [ ( )].

k i k k i k i k k i k i k k i
b t a t r t r t t r t+ + + +

− − − − −= Λ + − Λ = Λ − Λ  

Note that 

 
,

,

,

,

,

,

                  

( ) ( ) ( ) ( )

                  [ ( )] [ ( ) ( )]

[ ( )] [ ( )] [ ( ) ( )] [ ( )]

                  ( ).

i k

i k k i i k k i k i k i

k i k k i k k i k i

k k k i k k i k k i k i k k i

i k k i

W a t W r t a t r t

W r t a t r t

W r t r t a t r t r t

V b t

ξ

> ⇔ + > +

⇔ Λ + > Λ +

Λ + − Λ

>

⇔ > Λ + − Λ

⇔

 (A1) 

Similarly,             

 , 1 , 1
( ) ( ).

i k k i i k k i
W a t V b t

+ +

− −> ⇔ >     (A2) 

In addition,  



32 

 

        

, ,

,

,

( ) ( ) ( )

                  ( ) ( ) ( ) ( ) ( )

                  [ ( ) ( )] [ ( )] [ ( ) ( ) ]

                  [ ( ) (

i k k i k i i k k i

k i k i i k k i k i k i

k k i k i k i k k i k k i k i

k k i k

W a t a t W a t dt

a t r t W r t a t r t dt

a t r t W r t a t r t dt

a t r t

= ⇔ ≤ < +

⇔ + ≤ + < + +

⇔ Λ + ≤ Λ + < Λ + +

⇔ Λ + ,

,

)] [ ( )] [ ( )] [ ( )]

                        [ ( ) ( ) ] [ ( )]
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i k k i k i k k i k k i

k k i k i k k i

k i i k k k i k i k k i k i k k i

k i

r t W r t r t

a t r t dt r t

b t V a t r t a t r t dt r t

b t

λ

− Λ ≤ Λ + − Λ

< Λ + + − Λ

⇔ ≤ < Λ + + + − Λ

⇔ ,) ( ) ( ) .
i k k i k i

V b t t dtλ≤ < +

    (A3)           

From (8), we have 

, , , 1

, ,

, 1

Pr( , | , ; 1, , 1) 1, , ( )

Pr[ ( ), ( ); | ( ); 1, , ]

Pr[ ( ), ( ); ]
.

Pr[ ( ); 1, , ]

i i

i i

i i i j j

i i i l l i i i k k i
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i k k i

L t t j i i N
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W a t W a t l

W a t k K
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δ

δ

+
−

+
−

= = − =

= = > ≠ > =

= > ≠
=

> =

⋯ ⋯

⋯

⋯

 (A4) 

Substituting (A1), (A2), and (A3) into (A4), we obtain  

1
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i
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L
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λ δ
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 ∂ 
− 
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v ⋯

⋯

⋯ ⋯

⋯
 

where 
,1 ,( , , )i i i Kv v ′=v ⋯ ; and ( )S ⋅  denotes the survival function of 

1V . 

When ( ) 1i N τ= + , the conditional probability can be calculated as: 

 
{ }

( ) 1

( ), ( ), ( )

Pr[ ,0 | , ; 1, , ( )]

Pr ( ); 1, , | [ ]; 1, , .

N j j

N k k N k k N

L t j N

W a k K W a t k K

τ

τ τ τ

τ δ τ

τ

+

+

= =

= > = > =

⋯

⋯ ⋯
 (A5) 

Substituting (A1) and (A2) into (A5), we obtain 
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2. Proof of Equation (11) 

We use 
j

γ  to denote 
1( )

j
u

−Φ , i.e., ( )
j j

u γ= Φ . Based on (4), the Gaussian copula 

function can be written as 
1, 1( ,..., ) ( ,..., )

Gauss K K
C u u γ γΣ= Φ . Thus, the pdf of Gaussian 

copula becomes:  

 
1 1

1 1

1 1 1

( ,..., ; ) ... ( ,..., ) ... ,
...

K

Gauss K K
Gauss K F K

K K K

C d d d d
f v v

dv dv dv dv

γ γ γ γ
φ γ γ

γ γ

   ∂
= =   

∂ ∂    
θ  

 

where ( )φ ⋅  denotes the pdf of multivariate normal distribution ΣΦ . In particular, we use 

1,1Σ  and 
1,2Σ  to denote the covariance of 

1[ ,..., ,..., ] ,
j K

j iγ γ γ ′ ≠  and the covariance 

between  
1[ ,..., ,..., ]

j K
j iγ γ γ ′ ≠  and iγ , respectively. Here 

1[ ,..., ,..., ]
j K

j iγ γ γ ′ ≠  is the 

vector without iγ  . By using the result in Eaton [34], the pdf of multivariate normal 

distribution can be calculated by conditional probability, i.e., 

1 1( ,..., ) ( ) ( ,..., ,..., );
K i j K

g h j iφ γ γ γ γ γ γ= ⋅ ≠ , where ( )g ⋅  denotes the standard normal pdf, 

and ( )h ⋅  denotes a 1K −  dimensional multivariate normal with a mean vector of 
1,2 iγΣ ⋅   

and a covariance vector of 1,1 1,2 1,2

T− ⋅Σ Σ Σ . Thus, the first order partial derivative of the 

survival function becomes: 
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( ) (

K j

K j

i K

i

Gauss K F j K
v v v

K
i j K j K

v v v
K

i
i i

i

S v v v

v

f v v dv dv dv j i
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g h dv dv dv j i

dv dv

du
g f v

d

γ γ
γ γ γ γ

γ
γ

∞ ∞ ∞

∞ ∞ ∞

−

∂
−

∂

= ≠

   
= ≠  

   

 
=  

 

∫ ∫ ∫

∫ ∫ ∫

θ

{ }
( ){ }

1
1 1

1

1

1

) ... ... ( ,..., ,..., ) ... ... ;

( ) ( ) ( ) ( ,..., ,..., );

( ) ( ,..., ,..., );

K j
i j K j K

v v v

i i i i Normal j K

i i Normal j K

h d d d j i

g g f v S j i

f v S j i

γ γ γ γ γ γ

γ γ γ γ γ

γ γ γ

∞ ∞ ∞

−

  
≠ 

  

= ≠
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∫ ∫ ∫

 

where ( )if ⋅  denotes the thi  marginal distribution in the Gaussian copula;

1( ,..., ,..., );
Normal j K

S j iγ γ γ ≠ , is the survival function of a multivariate normal distribution 

whose pdf is 
1( ,..., ,..., );

j K
h j iγ γ γ ≠ . 
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