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Abstract: Reliability analysis of multi-component repairable systems with dependent
component failures is challenging for two reasons. First, the failure mechanism of one
component may depend on other components when considering component failure
dependency. Second, imperfect repair actions can have accumulated effects on the
repaired components and these accumulated effects are difficult to measure. In this paper,
we propose a parametric statistical model to capture the failure dependency information
with general component repair actions. We apply the maximum likelihood method to
estimate the model parameters by utilizing the historical failure data. Statistical
hypothesis tests are developed to determine the dependency structure of the component
failures based on the proposed reliability model. The proposed methodology is
demonstrated by a simulation study and case studies of a forklift vehicle system and a car

body assembly process.
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1. Introduction

Modern engineering systems such as vehicles, aircrafts, and manufacturing systems
generally consist of multiple subsystems/components that interact in a complex manner.
As a result, the degradation or failure of one component may make the interacting
components more prone to fail. Under most situations only the failed component, rather
than the whole system, will be repaired. The repair actions include perfect, minimal, and
situations in between, depending on the failure conditions. Reliability analysis of multi-
component repairable systems plays a critical role for system safety and cost reduction.
Ignoring the dependency of multi-component failures, however, will result in a biased
reliability prediction.

Considering component failure dependency, there are two main challenges for
reliability analysis of multi-component repairable systems. First, as the components
compete to fail, only the potential failures with minimum failure time can be observed.
Taking failure dependency into account, the repair actions of the failed component can
change the failure mechanism of other components. Second, the accumulated effects due
to imperfect repair make the failure mechanism of an individual component more
complex. Under most situations, the repair actions can be distinctive for different
components and for various repairs of each component. In addition, the effect of each

repair action is difficult to quantify, and the repair actions may not be recorded.



The reliability analysis of a multi-component repairable system becomes more
challenging for a single repairable system, when failure data is only collected from one
realization of the multi-component repairable system. Although in this paper we focus on
a single repairable system, the results can be extended to repairable systems with multiple

realizations.

Traditional study on repairable systems mainly focuses on reliability models for
systems with a single component under different repair actions. Kijima and Sumita [1]
and Kijima [2] suggested two imperfect repair models by introducing the concept of
virtual age of repairable systems. Lindqvist, Elvebakk and Heggland [3] proposed a
trend-renewal Process (TRP) to generalize the inhomogeneous and modulated gamma
process proposed by Berman [4], which deal with the imperfect repair conditions well.
Other imperfect repair models for repairable systems with a single component include the
modulated renewal process [5], the modulated power law process [6], the arithmetic
reduction of age and arithmetic reduction of intensity models [7]. A comprehensive
review on statistical methods of repairable systems is provided by Lindqvist [8].

For repairable systems under competing risks, most of the existing research assumes
independency of component failure [9-11]. Thus, the reliability analysis of the entire
system subjected to competing risks can be simplified by analyzing each component
independently. The existing reliability models that consider failure dependency assume
that when a failure of one component occurs, it will result in a possible shock to the other
components with a certain probability [12-16]. Li and Pham [17] discussed a similar
system with component failure dependency, and they assumed a binomial distribution of

perfect and minimal repairs with certain probability. Langseth and Lindqvist [18]



developed a model for systems consisting of multiple components associated with
failures caused by multiple sources. Shaked and Shanthikumar [19] developed statistical
models and investigated properties of repairable systems with dependent component
failures. However, in their work, the parameters estimation approach was not given and
the repair actions were not considered. Yang et al. [20] developed a statistical model to
capture the failure dependency of multi-component repairable systems with the
assumption that the failed component is replaced with one that is as good as new. Zhang
and Yang [21] further developed optimal maintenance policies for multi-component
repairable systems. However, in reality, there are many situations where the failed
component is partially repaired rather than perfectly replaced, and the repair
condition/effectiveness changes (e.g., becomes worse) along with the number of repairs.
Copulas become increasingly popular in modeling dependencies, due to their
flexibility in capturing non-linear dependence and arbitrary marginal distributions. In the
context of reliability, a comprehensive study of systems failure dependency by using
copula was given in the book by Li and Xie [22]. In this paper, we propose a copula-
based trend-renewal process model to analyze the multiple-component repairable systems
under the dependent competing risks. The failed component is subject to general repair
actions, including perfect and minimal repairs as well as situations in between. The repair
conditions may change along with the number of repairs. The framework of this paper is
as follows. After the introduction, Section 2 proposes a generalized parametric statistical
model for reliability analysis of dependent competing-risk systems under the imperfect
component repair assumption. Section 3 discusses the parameter estimation and statistical

inference. Section 4 demonstrates the developed methodology through simulation studies,



and Section 5 illustrates the developed methods by using two real-world applications.

Finally, Section 6 gives a summary of the paper.

2. Data and model
2.1 Data notation

We consider a competing-risk system consisting of multiple (say K) components.
The time scale is the time since installation. Upon each failure, only the failed component
is repaired in terms of imperfect effectiveness between perfect and minimal. The

successive failure events are recorded by 7,,7,,..., until a predetermined ending time 7 .
In addition, each event is labeled with a failure type A, e {0,1,...,K}; where A, =0
indicates there is no failure observed. We use pair (7;,A,) to represent failure information.

An equivalent representation of the failure process is in terms of the marked point

process ; where k denotes failure type and N, (f) denotes the cumulative number of

failures for component k until time . We use N (t):ZkK:INk (t) to denote the total

number of failures regardless of failure type until time . We assume that two failures
cannot occur simultaneously, which is a common assumption for repairable systems in
the literature. In addition, we assume the repair action is immediate and the repair time is

ignored.

2.2 Copula-based TRP

The TRP [3] is a statistical model to model the single-component repairable system
under general system repair actions from perfect to minimal, in which both perfect and
minimal repairs are included as two extreme cases. The basic idea of the TRP model is to

apply a trend function A(r) to transform the original failure times into a new time
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domain. The transformed failure times can be modeled by a renewal process that follows
a renewal distribution F .

In this paper, the TRP model is extended to systems consisting of multiple
components that can fail dependently. We first develop a simplified reliability model
when the failed component is repaired perfectly. Then this model is further extended to

systems with imperfect component repair actions.

2.2.1 Partially perfect repair model for perfect component repair actions

The partially perfect repair model [20] assumes that the failed component is perfectly

repaired whenever a failure occurs. Let 7,(#) be the most recent failure time for
component k . The age of component k;k e {l,...,K} at time 7, denoted as a, (), is
defined as the cumulative running time since its last failure, i.e., a, (t)=t—r.(t). Note

that both r,(r) and a, (¢) are defined as left-continuous functions. Thus, 7, (¢) = lim r, (x)

if a failure occurs at time ¢, and 7, () =0 if no failure occurred by time ¢. Similarly,
a,(t)=lima,(x).

In the partially perfect repair model [20], a component fails once its age reaches the
corresponding life threshold, resulting in the entire system’s failure. The life threshold for

component k, called the latent age to failure of component k , is assumed to be a random

variable. When considering the system from installation, W, is used to represent the

first random latent age to failure of component k , and the random vector

W, =[W,,,....W, 1 is modeled by a joint cumulative distribution function(CDF) F that

can capture the component failure dependency. When the i system failure occurs at time



point ¢,, only the failed component is replaced and thus its age becomes zero, while all

the other components’ ages do not change. As a result, the (i+1)" latent age to failure of

component k , denoted by W,, ,, should be larger than the age of component k at time

point ¢, ie., W, >a (tl.) ,Vkell,..,K},i=12,.... As a result, the random vector

W, =W,

i i+1,12°°°>

W, ] follows a truncated distribution with a joint CDF F conditional

on the vector of [q, (t,),....a, (2,)]".

2.2.2 A general reliability model for imperfect component repair actions

In the partially perfect repair model [20], the system failures are only determined by
the last failure times of all the components because the repair actions are assumed to be
perfect. When the repair action is imperfect, however, the component failures are affected
by the effect of imperfect component repair accumulated from the all the repair history,
which are coupled with the effect of failure dependency of other components in a
complex manner.

To overcome this difficulty, we propose a multiple transformation procedure in this
paper by applying the TRP model to transform the failure times of individual components
to separate transformed time domains in which the effect of imperfect repair can be
eliminated. Specifically, as shown in Figure 1, the failure times of component k (denoted

by T,,, T,

4o »---) are transformed into the k' transformed time domain using a trend
function A, (-). Based on the properties of the TRP model, the transformed failure times

of component k, A (T, ), A(T,,) ... follow a renewal process characterized by a

renewal joint CDF F, .
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Figure 1. Illustration of the multiple transformation procedure
based on different trend functions for different failure types

According to the properties of the renewal process, the accumulated effect of
imperfect repair in the original time domain is eliminated in the transformed domain.
Thus, the failure times in the transformed time domains can be modeled in a similar way

to capture component failure dependency. We assume component k (k =1,...,K ) has a
in the k" transformed time domain after the (i—1)" system

latent age to failure V,
failure and the corresponding repair action. When considering the first system failure
.V ¢ ] is modeled by a joint CDF F with a marginal

Vi

from installation, V, =[
distribution F, , which denotes the renewal distribution of the k"™ component in the

transformed time domain. Let g, (f) and r,(¢) be the component age and the most recent
failure time for component & in the original time domain, respectively, whose definition

are the same as in the previous section. Let b, (f) denote the age of component k in the

k™ transformed time domain. When the i system failure occurs at time point #,, the failed
component can be treated as perfectly replaced in the corresponding transformed time

domain according to the properties of renewal process. Hence, b, (1) = A, (1) — A, (1, (1)) .



Because components may have a non-zero age right after a system failure and the

corresponding repair, the (i+1)" latent age to failure of component k in the k 1

transformed time domain, denoted by V., , should be larger than b, (z,) , ie.,

Vo >b (), Vke{l,..,K}. As a result, the random vector V,, =[V, v,

ESRERLEY z+1,K]
follows a truncated distribution with the joint CDF F conditional on the vector of

[b,(2),...b (£,)]" . It can be seen that the simplified model is a special case of the

general model, when the trend function is the identity function, i.e., A, (f)=1¢.

2.3 Parametric forms

The proposed copula-based TRP model is determined by the trend function and the
joint CDF F . In this paper, the copula functions are used to build the joint CDF F based
on the marginal distributions. Thus, the model parameters include those from the trend

function, the marginal distribution, and the copula function.

2.3.1 Trend function
The power law relationship, which is generally used in the trend function of the TRP
model, is also used in the multiple transformation procedure. In particular, the power law

intensity function ¢, (-) for failure type k has the following form:

fi1
£, (9, ,) =ﬂ[ij (1)
e \ 1k

where O, , =[f,.7,] is the parameter vector of intensity function £ (). We use

0 ;= {01, éV,...,() X. ;} to denote the parameters in all trend functions.
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2.3.2 Renewal distribution
In this paper, we choose the Weibull distribution as the marginal distribution of the
joint CDF F . However, other distributions can also be applied in the model. The CDF of

the Weibull marginal F, is:

E 0, 0)= lexpi(%j }V,,k 20 2)

where &, € (0,0) and 4, € (0,00) are called shape and scale parameter, respectively.
0, . =[x, 41 is the parameter vector of the marginal distribution F, .

Similar to the traditional TRP model for single-component systems, in our model the
marginal expectations are restricted to one in order to reduce the degrees of freedom of
the model, because if a trend function is multiplied by a constant then we can modify the
corresponding marginal distribution accordingly by scaling the time. In practice, we add a

constraint that 4 -I'1+1/x,)=1k=1,..., K, where I'(-) is the gamma function.

2.3.3 Copula function

Copula functions have been applied in reliability studies by many authors [23-25].
The copula functions can be classified into different families. In this paper, we consider
two types of copula functions: the Clayton copula [26] and the Gaussian copula [27]. The
Clayton copula is a typical one from the Archimedean family. It contains one association

parameter o that relates to the dependency measurement Kendall’s tau 7., by the

relation 7, = p/(p+2) [26].

11



When the Clayton copula is selected to construct the joint distribution, the
dependency of the failure types in the transformed time domain is captured by the

association parameter p . The range of the association parameter is pe [—1,0)U(0,c0).
The limiting case when p — O represents the independent situation. In this paper, we

define the Clayton copula as follows:

K

~1l/p
{max(zukﬂ_l(+l,0ﬂ ; p#0
CClayton (ul ERRA MK) = k=1 (3)
K
Hk=1 Uy =0

where u, = F,(v,,,0, )k =1,...,K . Specifically, the multivariate Weibull cdf F(v;;0,)
can be obtained by substituting u, = l—exp(—(vi,k /A, )Kk ) into (3), where

0,={0,,...0,,,0}.
In comparison to Archimedean copulas that can only capture the overall dependency,
Gaussian copula is able to capture full pairwise dependency of all marginals. Specifically,

a Gaussian copula has the form:
CGauss (ul, [ MK) = q)Z |:(¢_1 (1/[1 )’ o q)_l (uK ))j| (4)
where @' is the inverse of the standard normal cdf, and @, is the cdf of a multivariate

normal distribution whose mean vector is 0 and covariance matrix equals to its

correlation matrix. The Gaussian copula density function is given as follows [28]:

& () ) o ()
Wy,...,u, )= 11 exp —l (2*1_1) (5)
bk 2| o L
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where I is the identity matrix and X is the correlation matrix. By using the chain rule,
we obtain the probability density function (pdf) of the multivariate Weibull distribution

using Gaussian copula, i.e.,

K
fGauss (Vi;eF ) = a CGWSS dul t duK
u,...0u, dv,, dv,

= Coauss Uys- -ty ) (V) oo [ (V) ©6)

where f, () is the marginal Weibull pdf for failure type k. Therefore, the joint CDF F

can be obtained by integrating f,,. (v;;0,), where 0, ={0, ,....0, ., X}.

3. Parameter estimation and statistical inference
3.1 Construction of likelihood function

The maximum likelihood (ML) approach is used to estimate the model parameters,
including those in the joint distribution and those in the trend functions. To implement

the ML approach, the likelihood function is firstly calculated.

Let 7 :{(TI,AI),...,(T AN(F))} , which contains all the paired failure times and

N )’
failure types until, but not include, time ¢ . Thus, the whole dataset can be denoted by

F,=F_U{(z,0)} . Given the failure data set J,, the likelihood function can be

decomposed according to the conditional probability as follows:

N(7)+1

Lol F)=[] L (7
i=1

where L, denotes the conditional likelihood function of failure i given all previous
failures. The parameter set 0 ={0 4,9 F} denotes all parameters in our model, where 0 ¢

and 0, are parameters in trend functions and those in joint distributions, that are defined

in Section 2.4. Specifically,
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Pr(t,,0,) fori=1
L =1Pr(t,0,1t,0,;j=1,..,i—1) for i=2,..,N(7). (8)
Pr(z,01¢;,0;;j=1,..,N(7)) for i=N(7)+1

In equation (8), we interpret Pr(x) as f(x)dx, which is proportional to the density f(x).
For convenience of notation, we ignore dx in the likelihood functions.

Due to the cumulative effect of imperfect repair and component failure dependency,
L, in (8) is difficult to calculate in the original time domain as it depends on the entire
failure history. To overcome this difficulty, we calculate the likelihood function in the
transformed time domains, in which the cumulative effects of imperfect repair are

eliminated so that L, only depends on the most recent components’ failures.
The following Proposition 1 shows the calculation of L, in the transformed time

domains. The detailed proof of Proposition 1 is available in Appendix Section 1.
Proposition 1: the conditional likelihood function of failure i given all previous failures,

i.e., L,1is given as follows

aS(Vu""’Vi,(s,""’Vi,K)| P
L= i W, ;5 Vil (1) (1)) s (1) )

b

" S (1), by (1))
where S(-) denotes the survival function of V,; /15‘ (tl.) is the derivative of trend function

that is used to transform the probability density from the original time domain to a

transformed domain; and b, (1) =A, (1) — A, (1,(?)).

When i=N(r)+1 in (8), as there is no failure observed from ¢ to the

N(7)

predetermined ending time 7 , the conditional probability can be calculated as:
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_ S[bl(f),---,b,( (T)] )
‘N (7)+1 S{bl[t;\r/(f)]’“"bK[t;\r/(”]}

(10)

3.2 Maximization of likelihood function

Model parameters can be estimated by maximizing the likelihood function obtained
in the previous section. In practice, however, several issues need to be addressed.

When the Gaussian copula is used, two constraints exist: (a) the covariance matrix
needs to be positive definite; and (b) the covariance matrix is equal to its correlation
matrix. Constraint (b) is satisfied by directly fixing the diagonal elements of the
covariance matrix as one. To satisfy constraint (a), we apply the nearest correlation
matrix method [29]. Specifically, at each iteration of the optimization process, the
estimated correlation matrix is approximated by the nearest correlation matrix that is
positive definite. In practice, the correlation matrix only needs to be approximated by the
nearest correlation matrix at the first several iterations. After a number of iterations, the
output correlation matrix will automatically become positive definite as the estimated
correlation matrix converge to the real correlation matrix.

The first order derivative of the survival function in (9) needs to be evaluated many
times during the process of optimizing the likelihood function. To speed up the parameter
estimation process, we evaluate the first order derivative of survival function of Gaussian
copula as follows:

_OSVsees Vigo oo Vig)

ov

:fk(vi,k)SNt)rmal(%""’ j""’}/[();-jik (11)

i,k
where f, (v, ) is the pdf of random variable v, . In this paper, we consider f(v,,) as

Weibull marginal distribution. However, equation (11) still holds for other marginal
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distributions. Here, S, . () is the survival function of a K —1 dimensional multivariate

normal, and ¥, =CI>_1(uj), where u; denotes the cumulative density of the j" marginal.
The proof of (11) is given in Appendix Section 2.
Under a large-sample assumption, the ML estimate 0 is asymptotically normally

distributed based on ML theory [30]. Thus, the asymptotic covariance ):“.é for O can be
calculated from the observed Fisher information matrix I(é) , 1.e., )ié :I(é)’l, where

I(é) is the negative of the Hessian matrix H(0) evaluated at 0=0 , 1Le.,

~ 0” log(L(0))
1(9) = - 2 08 =0)
®) 0000”

0=0

3.3 Statistical hypothesis test

Dependency information of different component failures is important for the
maintenance and design of complex systems. In addition, distinguishing subsets of
components which do not fail independently can simplify the reliability model and
efficiently reduce the parameter dimension.

In this section, we propose hypothesis testing procedures to determine the
dependency among different component failures based on the proposed model. The

likelihood ratio test statistic is calculated as follows,

D=—o.1n| SUPLL} (12)
sup{L,}

where L indicates the likelihood values for the null model; and L, indicates the

likelihood values for the full model that includes both the null and the alternative models.

16



The likelihood ratio test statistic in (12) follows a x> distribution with the degrees of
freedom @; where @ is the difference between the number of parameters in the full
model and that in the null model. The null and alternative hypotheses, in practice, depend
on the specific copula function that is used to construct the reliability model. In this paper,
hypothesis tests for statistical model via Clayton copula and that via Gaussian copula are

developed in Sections 3.3.1 and 3.3.2, respectively.

3.3.1 Hypothesis test for Clayton copula

When the Clayton copula is selected to construct the reliability model, the overall

dependency among all failure types can be tested using the following hypothesis test.

H ,: all failure types are independent vs H,: not all failure types are independent. (13)

Hypothesis test (13) can be tested based on the likelihood ratio test statistic that is
defined in (12). In (12), sup{L,} can be obtained by maximizing (8), while sup{L, } can
be obtained by maximizing (8) with a constraint that the association parameter p is fixed

as Zero.

3.3.2 Hypotbhesis test for Gaussian copula
The pairwise dependency among all failure types can be tested, when the Gaussian
copula is selected to construct the reliability model. The following test is proposed:
H : failure types 7, j are independent vs H,: failures types i, j are dependent . (14)
Similar to hypothesis test (13), hypothesis test (14) can be tested based on the

likelihood ratio test statistic that is defined in (12). Under this situation, sup{L,} can be
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obtained by maximizing (8), while sup{L,} can be obtained by maximizing (8) with a

constraint that the correlation for failure types i, j in the Gaussian copula is fixed as zero.

If multiple pairwise dependency of failure types are tested simultaneously,
the Bonferroni correction [31] can be used to counteract the problem of multiple
comparisons. Specifically, each individual hypothesis is tested at a significance level of

o/ m , where « is the desired significance level and m is the number of hypothesis tests.

4. Simulation study

A comprehensive simulation study is conducted to verify the developed model. We
consider five scenarios. Scenarios 1-4 are used to examine the effect of different copula
functions, different degree of dependency, different marginal distributions, and different
trend functions, respectively; while Scenario 5 is used to verify the parameter estimation
method. To keep the setting simple, we consider a two-component system for Scenario 1-
4 and a three-component system for Scenario 5. For each scenario, the failure data are

simulated based on the proposed reliability model.

4.1 Parameters setting

1) Scenario 1: examine the effect of form of copula.

We use the Weibull marginal distribution and the power law trend function with
increasing trend. We consider two copula functions with moderate dependency: Gaussian
copula and Clayton copula. The parameters of the copula functions are chosen such that
the copula functions have the same overall dependency. When the Gaussian and Clayton

copulas are chosen, the parameters are listed in Table I and Table II, respectively.
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Table I. Parameter setting in simulation Scenario 1 (Gaussian copula)

Trend function . Joint distribqtion .
(Gaussian copula + Weibull marginal)
Component B h N 1 M Correlation
n K (shape) (scale) ean matrix
1 1.200 1.000 2.000 1.128 0 1.000 0.500
2 1.200 1.000 2.000 1.128 0 0.500 1.000

Table II. Parameter setting in simulation Scenario 1 (Clayton copula)

Trend function Joint distribution
(Clayton copula + Weibull marginal)
Component T
B n K (shape) | A (scale) Association
parameter
1 1.200 1.000 2.000 1.128 1.000
2 1.200 1.000 2.000 1.128 '

2) Scenario 2: examine the effect of dependency in copula.

We use the Weibull marginal distribution, power law trend function with increasing trend,
and the Gaussian copula. By choosing different values of the copula, we consider three
situations: component failure independency, moderate failure dependency, and strong
failure dependency. For the moderate dependency case, the simulation parameters setting
are the same as listed in Table 1. For independency and the strong dependency cases, we
set the values of the correlation coefficients to be 0 and 0.9, respectively, while all other

parameters are the same as those in Table 1.

3) Scenario 3: Examine the effect of marginal distribution:

We use the power law trend function with increasing trend and Gaussian copula. We
consider two marginal distributions: the Weibull and the lognormal distribution. For the
Weibull case, the parameters are the same as listed in Table 1. The parameters for the

lognormal distribution case are listed in Table III.
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Table III. Parameter setting in simulation Scenario 3 (lognormal marginal)

. Joint distribution
Trend function . .
Component (Gaussian copula + lognormal marginal)
B n 1] ] Mean | Correlation matrix
1 1.200 1.000 | -0.125 | 0.500 0 1.000 0.500
2 1.200 1.000 | -0.125 | 0.500 0 0.500 1.000

4) Scenario 4: examine the effect of trend function:

We use the Weibull marginal distribution and Gaussian copula function. We consider
three situations of the power law trend function: increasing trend, constant, or decreasing
trend. For increasing trend function case, the parameters are the same as those in Table I.

For constant and decreasing trend functions, we set p=[1.0,1.0] and p=[0.8,0.8],

respectively, while all the other parameters are the same as those in Table 1.

5) Scenario 5: validate the parameter estimation method:

We use the Weibull marginal distribution, Gaussian copula function, and the power law
trend function with increasing trend. A three-component system is considered, and the

parameters are given in Table IV.

Table IV. Parameter setting in simulation Scenario 5

Trend function . Joint distribqtion .
Component (Gaussian copula + Weibull marginal)
B n K (shape) | A (scale) | Mean Correlation matrix
1 1.200 1.000 2.000 1.128 0 1.000 0.100 0.400
1.200 1.000 2.000 1.128 0 0.100 1.000 0.800
3 1.200 1.000 2.000 1.128 0 0.400 0.800 1.000

4.2 Parameter estimation

In the simulation study, we vary the value of stopping time 7 to obtain different

values of the expected number of events. We think it is more informative to show the
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number of events, instead of the value of 7. We consider four different numbers of
events for each scenario, i.e., 100, 200, 500 and 1000 respectively.

To evaluate the performance of the parameter estimation method, we calculate both
the MSEs of estimators and the coverage probabilities for the 95% confidence intervals
based on 1000 replicates under each parameter setting. Figures 4-8 plot the MSEs (left)
and coverage probabilities (right). From Figures 4-8, we can see that when the sample
size is large enough, the MSEs are approaching zero, and the coverage probabilities of
95% confidence intervals for the unknown parameters are approaching 95%. Thus, the

estimators of the parameters perform well.
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Figure 2. Simulation results for scenario 1 with Gaussian copula.
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Scenario 2: independence Scenario 2: independence
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Figure 3. Simulation results for scenario 2 with independent failures
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Figure 4. Simulation results for scenario 3 with lognormal marginal
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Scenario 4: constant trend function Scenario 4: constant trend function
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Figure 5. Simulation results for scenario 4 with constant trend function
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Figure 6. Simulation results for scenario 5 with 3 stations

S Application
5.1 Application for Example 1
The developed methodology is applied to two real world applications. The first

application comes from a car body assembly machine of an automotive assembly
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production line in the United States. The machine is repaired when a failure occurs, and
the repair action is determined by the failure condition. However, the repair actions are
not recorded. Figure 7 shows the cumulative number of failures from two subsystems of
the machine that work simultaneously during the assembly process. The time is rescaled
and the subsystems are denoted by subsystem A and subsystem B to protect proprietary

information.
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Figure 7. Failure data from stations A and B

When applying the proposed model, the overall likelihood is obtained by substituting
(9) and (10) into (8). The parameters are estimated by maximizing the likelihood function.
When the Clayton copula is applied, the estimated parameters and the standard errors are

listed in the following Table V.
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Table V. Parameter estimates and standard errors (values in the bracket) when
choosing the Clayton copula

Trend function

Joint distribution

failure type -

B 1 K X Association parameter p
1 1.38(0.28)  169.79(1.61) | 1.06(0.20) | 1.02(0.68)
0.33(0.04)
2 1.24(0.33)  110.95(1.90) | 1.20(0.34) | 1.06(0.23)

When applying the Gaussian copula to obtain the joint distribution, the estimated

parameters and the corresponding standard errors are listed in Table V1.

Table VI. Parameter estimates and standard errors (values in the bracket) when
choosing the Gaussian copula

Trend function

Joint distribution

failure type - ~ R ~ "
p n K A )
1 1.52(0.24) 3.27(1.61) | 0.89(0.22) | 0.95(0.13) | 1.00 0.47(0.20)
2 1.65(0.31)  4.45(2.01) | 0.90(0.26) | 0.95(0.15) 1.00

The negative log-likelihood values for the models are 49.909 and 47.255 for the

model via the Clayton copula and that via the Gaussian copula, respectively. As both

models have the same number of model parameters, the model via the Gaussian copula

fits the data much better so that we select the reliability model via the Gaussian copula.

Thus, hypothesis test (14) is applied to test the overall failure dependency. The log-

likelihood value is -47.255 for the full model and -50.561 for the null model. As the p-

value equals 0.01, the reliability model indicates that different failure types are dependent.
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We apply a graphical tool that is traditionally used in reliability literature [32] to
show the goodness of fit for the proposal model. Specifically, we compare the cumulative
number of observed events to the estimated expected number of events. The following
Figure 9 shows the estimated expected number of events for the reliability model via the

Clayton copula and that via the Gaussian copula, respectively.

Clayton copula Gaussian copula
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Figure 8. Estimated mean cumulative intensity function of failures
compared to the real failure data, conditional on event history.

We compared the propose model to three simpler models: 1) perfect repair with
dependent component failures; 2) imperfect repair with independent component failures;
and 3) perfect repair with independent component failures. Specifically, we calculate

both the negative log-likelihood and the Akaike Information Criterion (AIC) values

through AIC=—=2InL+2w; where L is the estimated likelihood value; and w is the
number of free parameters in a model. In general, the smaller negative log-likelihood or

the AIC values, the better the model.
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The following Table VII shows the comparison results. As the proposed model has
the smallest negative log-likelihood and the AIC values, it fits the data best.

Table VII. Comparison of the proposed model to other three simple models

Negative Log- AIC Degrees of
likelihood freedom
Proposed model: imperfect repair
with dependent failures 47255 108.511 /
Mode} 1: imperfect repair with 50,561 113.122 6
independent failures
Model 2: perfect repair with 51932 113.864 5
dependent failures
quel 3: perfect repair with 54307 116.613 4
independent failures

5.2 Application for Example 2

We also apply the developed method to a forklift vehicle system, in which two major
subsystems are a transportation and drive subsystem and a lift mechanism subsystem.
Figure 9 illustrates the cumulative number of failures from the two different subsystems
of a forklift vehicle used in a manufacturing plant for about three years. The failure types

are denoted by failure types 1 and 2 to protect proprietary information.

& 7 O Failure type 1
A Failure type 2

Cumulative number of failures
10
|
>
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time /days

Figure 9. Failure data from failure type 1 and failure type 2
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We apply the developed methods to the lifting fork vehicle system. The following
Tables VIII and IX list the estimated model parameters and the standard errors, when
applying the Clayton copula and the Gaussian copula to obtain the joint distribution,

respectively.

Table VIII. Parameter estimates and standard errors (values in the bracket) when

choosing the Clayton
Trend function Joint distribution
failure type " ~ ~ —
B 1 K Iy Association parameter p
1 1.38(0.26) 169.79(77.44) | 0.84(0.23) | 0.91(0.16)
2.41(1.88)
2 1.24(0.33)  110.95(80.73) | 0.63(0.17) | 0.70(0.23)

Table IX. Parameter estimates and standard errors (values in the bracket) when
choosing the Gaussian copula

Trend function Joint distribution
failure type - ~ R ~ ~
B Ll K A p)
1 1.32(0.30)  155.11(84.05) | 1.01(0.29) | 1.00(0.12) | 1.00 0.56(0.18)
2 1.19(0.31)  96.43(70.31) | 0.75(0.18) | 0.84(0.17) | - 1.00

The negative log-likelihood values for the models are 165.967 and 165.752 for the
model via the Clayton copula and that via the Gaussian copula, respectively. As the
negative log-likelihood values are close, both models have the similar ability to fit the
data. Hypothesis tests are applied in the case study to examine the failure dependency
structure of the stations. When applying hypothesis test (13) to test the failure
dependency, the negative log likelihood value is 165.967 for the full model and is
168.017 for the null model, and the p-value equals 0.043. When applying hypothesis test
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(14) to test the failure dependency, the log-likelihood values is -165.752 for the full
model and is -168.016 for the null model, and the p-value equals 0.033. Thus, the
different failure types are dependent. However, the estimation and standard deviation of
ﬁ in both Tables VIII and IX show that the parameters ﬁ in the trend function are not
statistical different from 1, indicating perfect component repairs in the system.

We apply the propose model as well as other three simpler models to fit the data. The
following Table X shows the comparison results.

Table X. Comparison of the proposed model to other three simple models

Negative Log- AIC Degrees of
likelihood freedom
Propos'ed model: 1mper'fect repair 165.752 345 504 7
with dependent failures

Mode.l 1: imperfect repair with 168.017 348.033 6
independent failures

Model 2: perfect repair with 166.943 343.882 5

dependent failures

quel 3: perfect repair with 168.598 345.196 4

independent failures

For Table X it can be seen that the models assuming component failure dependency
(proposed model and Model 2) fit the data better than those assuming component failure
independency (Model 1 and Model 3), while the models assuming perfect repair (Model
2 and Model 3) fit the data better than those assuming imperfect repair (proposed model
and Model 1). The results are consistent with what obtained previously. Thus we
conclude that the two subsystems are subject to perfect repair with dependent failures.

6. Conclusions
In this paper, we propose a parametric reliability model for dependent competing-risk

systems. This model can handle two challenges in general multi-component repairable
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systems, which are to deal with imperfect component repair from perfect to minimal, and
to capture the dependency among different failure types. We extend the TRP model for
single-component systems to competing-risk systems by transforming original failure
times into new time domains for each component respectively. Then, the dependency of
different component failures is captured by a joint distribution established from marginal
in the transformed time domains. The model parameters are estimated using the ML
method. The dependency is further examined by the suggested hypothesis tests. Finally, a
case study from an engineering head assembly system consisting of three failure types is

conducted to verify the model.

The proposed model can be useful in maintenance planning. Based on the proposed
model, one can predict the system reliability given the failure history. To briefly discuss

the idea, suppose one observed the failure history up to time 7, which is denoted as F,.

One can compute the reliability of the system at a future time # > 7. Specifically, the
probability can be computed as R(z1F,)=S[b(l,t7),....b(K,t)]/S[b(L,z,),...b(K,t])],
which is the probability that no failure occurs before ¢ given the history. Applying this
reliability information and the model predictive ability for the maintenance planning can
be an interesting topic for further research. In some applications, window observations
may occur for the event history data (e.g., Hong, Li and Osborn [33]). It would be
interesting to consider the proposed model under the window-observed recurrent event
data. In this paper, we use a parametric method. In future research, it would also be
interesting to build nonparametric models. The estimation of nonparametric models,

however, can be challenging as identifiability problems may arise.
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Appendix
1. Proof of Proposition 1

Note that V,, is defined as the latent age to failure of component & after the (i—1)"
failures in the k™ transformed time domain. Let W,, be the corresponding random

variable for the age to failure of component k after the (i—1)" failure in the original

time domain. Suppose that the i"

system failure occurs at time point ¢, in the original
time domain.
Because 7, (#,) is left continuous, r,(¢,) =r,(z],). Thus,

Vi =W, +1.()]- A n@)]=A, (W, +1, (titl N-A,ln (titl )]

i,

As b ()= A, (t,)— A1 ()], and b, (¢,) is also left continuous. Thus,

b, (titl) =N lg, (titl) +7 (t;r—l =Nl (titl N=A @) — A n (@)].

Note that
W,>a @)W, +5()>a@)+r(t)
< MW, +r@)]> A la () + 1, ()]
it Ak[Wé,-Yk,k + I’}{ (ti)] _Ak [’}\ (t,')] > Ak [Clk (ti) + I’;( (t,')] _Ak[rk (ti)]
SV, >b ().
(A1)
Similarly,
W, >a (if) &V, >b (). (A2)

In addition,
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W,=a@)ea @)W, <al()+dt
S a (t)+n@)<W, +r.@)<a/ (t)+nr(t)+dt
© A la (&) +r @IS AW, + 1)< A la, (t)+ 1, (1) + di]
& Ada )+, )= AL IS AW, + 1. ()]1- A5, (1)] (A3)
<A la,(t)+r@)+dt]-A,[r, ()]
S b (t)<V,, <Ala @)+, D1+ A la, () +r1, (e))dt — A, [, ()]
S b (t)<V,, <b.(t)+A(t)dt.

From (8), we have

L=Pr(t, 811,85 j=1,i=1) =l N(7)
= Pr[W,, =a, (6),W,, > a,(t);1 % 8 |W,, >a, (17 )k =1, K] (A4)
PrW,; =as @)W, >a,(t);l # 5]
T PW, >a (k=1 K]

Substituting (A1), (A2), and (A3) into (A4), we obtain

L= Prbs (1) <V, <bs (t,)+ A5 (t)dt,V,, > b (t,);l # 6]
a PtV,, > b, (5 );k =1,--,K]

_aS(Vm""Viﬁi""’Vi,K)| A(t)
avm v, =lby (1) (0] [ 776 N

S[bl (t:l)’ o .’bK (ttJr—l)]

b

where v, =(v,,,---,v,;)"; and S(-) denotes the survival function of V.

i,l’“

When i = N(7)+1, the conditional probability can be calculated as:

LN(1)+1 =Pr[730|tj35j;.j=15"'aN(T)]

N (AS5)
:PI'{WN(T),]( >Clk(7);k :1,-.-,[{”}‘/1\,(1_)’,< >ak[tN(T)];k :1’...,K}_

Substituting (A1) and (A2) into (AS), we obtain
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Pr[Vy i > b (0);k=1,--+,K]
Pr{Vy .« >bltye ik =1, K}
__ Sh@. b @]

S{b Lty 1w bilty ) 1}

N(T)+1 —

2. Proof of Equation (11)

We use y, to denote cID’I(uj), ie., u;, =®(y;). Based on (4), the Gaussian copula
function can be written as Cg,, (1, ,....,ux) = Py (..., ¥, ) - Thus, the pdf of Gaussian

copula becomes:

o“C dy, dy dy, dy
(Vv 0,.) = Gauss L K= e —L LK
Soss (Vs Vii0) 9Y,..0%, (dvl dv, j o 71()(61\/1 dvy

where ¢(-) denotes the pdf of multivariate normal distribution ®, . In particular, we use
X, and X, to denote the covariance of [¥,...,¥;,....¥],j#i and the covariance
between [7,...,7;.... ¥x]j#i and 7, respectively. Here [¥,,...,¥,,.... k] j#i is the
vector without ¥, . By using the result in Eaton [34], the pdf of multivariate normal

distribution can be calculated by conditional probability, Le.,

O V) =8 h(y,..., j,...,yK);j #1, where g(-) denotes the standard normal pdf,

and h(-) denotes a K —1 dimensional multivariate normal with a mean vector of X, -7,

and a covariance vector of X, —X, ,-X/,. Thus, the first order partial derivative of the

survival function becomes:
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B OS(V)seees Vyyures Vi)
0

Vi
= J.:Z ---I:---I:{fgtm(Vl,...,v,(;GF)}dvl...dvj...de;j #1

[==] o oo d d . .
[ MG L L ittty
Vk Vi Vi dv1 de

-1
du, S el i .
:{g(%)(d—b;j ﬁ(vl)}{j‘yk”‘f‘,“‘Iv, hW(Yyseees Vjsonns Vi DAY, d Y d Yy ;tl}

:{g(%)(g(;/l))_l ﬁ(vi)}SNormal(}/l""’ yj""’ yK);Jil
:‘fi(vi)SNormal(yl’“" jooe 7K)’.]¢l

where  f.() denotes the " marginal distribution in the Gaussian copula;
S vormat (Wis++s ¥jsees Vi )3 J # 1, 18 the survival function of a multivariate normal distribution

whose pdf is A(¥j,...¥jseen ¥y )s J 1 -
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