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Abstract

Big data features not only large volumes of data but also data with complicated

structures. Complexity imposes unique challenges in big data analytics. Meeker and

Hong (2014, Quality Engineering, pp. 102-116) provided an extensive discussion of

the opportunities and challenges in big data and reliability, and described engineering

systems that can generate big data that can be used in reliability analysis. Meeker

and Hong (2014) focused on large scale system operating and environment data (i.e.,

high-frequency multivariate time series data), and provided examples on how to link

such data as covariates to traditional reliability responses such as time to failure, time

to recurrence of events, and degradation measurements. This paper intends to extend

that discussion by focusing on how to use data with complicated structures to do

reliability analysis. Such data types include high-dimensional sensor data, functional

curve data, and image streams. We first provide a review of recent development in

those directions, and then we provide a discussion on how analytical methods can

be developed to tackle the challenging aspects that arise from the complexity feature

of big data in reliability applications. The use of modern statistical methods such as

variable selection, functional data analysis, scalar-on-image regression, spatio-temporal

data models, and machine learning techniques will also be discussed.

Key Words: Clustering; Degradation Data; Functional Data; Machine Learning;

Reliability Prediction; Spatio-temporal Data.

1



1 Introduction

1.1 Background

Technological advancements have fundamentally changed the way that data are collected,

causing the arrival of the big data era. Big data features not only large data volumes and

high speed in data collection, but also data with complicated structures. In many appli-

cations, complexity imposes unique challenges in big data analytics. As pointed out by

Steinberg (2016), technological development and industrial advancement continue to gen-

erate challenging problems that will require new statistical methods, which is also true for

research on the area of reliability analysis. Meeker and Hong (2014) provided an extensive

discussion of the opportunities and challenges in big data and reliability. A large number of

engineering systems that can generate big data were discussed. Those engineering systems

can generate large-scale system operating and environment data (i.e., high-frequency multi-

variate time series data), which can be used in reliability analysis. Meeker and Hong (2014)

also provided examples on how to link the large-scale system operating and environmental

data to traditional reliability responses such as time to failure, time to recurrence of events,

and degradation measurements.

The main objective of this paper is to extend the discussion in Meeker and Hong (2014)

by focusing on the use of data with complicated structures to do reliability analysis. Tra-

ditional data types that have been used for reliability data analysis include lifetime data

and degradation data. With the advancement of technology, various data types other than

lifetime data and degradation can be collected from engineering systems and reliability tests.

Those data types include high-dimensional sensor data, functional curve data, and image

streams. With appropriate analytical methods, it is possible that those new data types can

be used to provide reliability information for the systems and products. Instead of using

traditional tools from survival analysis for lifetime data and nonlinear mixed effects models

for degradation data, several modern statistical methods can be tailored and integrated to

analyze reliability data with complicated structures. Those potentially useful modern statis-

tical methods include variable selection, functional data analysis, scalar-on-image regression,

spatio-temporal data modeling, and machine learning techniques.

In this paper, we first provide a review of recent developments in modeling and analysis of

reliability data with complicated structures. We then provide a discussion on how analytical

methods can be developed to tackle the challenging aspects that arise from the complexity

features of big data in reliability applications.
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1.2 Data Complexity and Reliability Applications

The common characteristics of big data are described by the three V’s (e.g., Zhang 2015),

which represent volume, velocity, and variety. “Volume” refers to the large amount of data

that can be collected, when there is continuous tracking of the past. “Velocity” means that

data are recorded with high frequency and are available in real time. “Variety” refers to that

data arrive in various formats such as text, images, audio, and video. The system operating

and environmental (SOE) data presented in Meeker and Hong (2014) represents the volume

and velocity of the big data features in reliability, because the SOE data track how the

product being used and under which environments being used in real time. The “variety”

feature is related to data complexity. Data complexity can include high dimensionality,

complex relationships, and many other complications in a dataset.

While complexity in big data presents tremendous challenges in modeling and analysis, it

also provides opportunities to develop new statistical methods. This is also true in reliability

applications. The types of data that are used for reliability analysis evolve over time. Lifetime

data have had a long history being used to provide reliability information. In the past

decades, degradation data have also been used to provide reliability information. With the

arrival of big data technology, we see new data types become available for reliability analysis.

Even though some of these data types have existed in the past, the current big data wave

makes the cost of collection low and provides motivation to analyze those data with complex

structures. Examples of such data include:

• Multivariate time series data: multi-channel sensor data that are collected at regular

intervals is an example of this type of data. The SOE data presented in Meeker and Hong

(2014) provide detailed examples.

• Functional data: data collected by equipment such as a spectrophotometer display a

functional curve. High-frequency sensor data can also be treated as functional data. Func-

tional data can also be available over time, which we call longitudinal functional data.

• Image data and streams : image data can be collected by infrared cameras, or other

more advanced equipment such as a scanning electron microscope (SEM) to characterize

system status or material properties. When images are taken over time, image streams are

obtained.

• Other types of Unstructured data: Data types such as text data and audio data can also

provide reliability information in some applications. For example, text data in a warranty

database can provide information about product maintenance. Audio data can be used for

the monitoring of system operating status.
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1.3 Overview

We intend to discuss the opportunities that big data bring in the following areas of reliability

analysis, especially from data a complexity point of view.

• New trends in degradation data analysis : Section 2 reviews recent developments in

degradation data analysis and discusses some new directions for methodological research in

degradation data analysis.

• Tackling new types of covariates : Section 3 discusses some opportunities in tackling

new types of covariates in reliability analysis. We focus on how to automatically select

important covariates for reliability prediction and how to incorporate functional and image

type of predictors for reliability metrics.

• Applications of machine learning techniques : Section 4 discusses applications of several

machine learning techniques in reliability analysis. These include clustering of events, deep

learning for predictions, and text analytics for predictions.

• Emerging application areas of reliability : Section 5 discusses several emerging applica-

tion areas where reliability analysis techniques can be used.

Finally, Section 6 contains some concluding remarks.

2 Degradation Analysis

Degradation data have been widely used to conduct reliability prediction and system health

assessment. Lu and Meeker (1993) novelly used degradation measurements to assess reliabil-

ity. Such data are typically repeated measurements of a degradation index (e.g., the depth

of tire tread) over time. Statistical methods to analyze degradation data are mainly based

on two types of models: the general paths models (e.g., Nelson 1990, Chapter 13 of Meeker

and Escobar 1998, and Escobar et al. 2003), and stochastic models (e.g., Whitmore 1995,

and Park and Padgett 2005).

Recent developments of stochastic models for repeated measurement degradation includes

Wang and Xu (2010), Ye and Chen (2014), and Peng (2016) for inverse Gaussian process

models. Zhou, Serban, and Gebraeel (2011) and Zhou et al. (2014) used functional data

analysis techniques to model the degradation paths. For destructive degradation test data,

Xie et al. (2018) developed a semiparametric model to describe the degradation path. For

products and systems used in the field, the units are typically subject to time-varying usage

and environmental conditions. With the advancement of data collection technology, one can

record such time-varying covariates, which is referred to as degradation data with dynamic

covariates. Recent development on statistical methods for degradation data with dynamic

covariates can be found at Hong et al. (2015) and Xu et al. (2016). Chen and Ye (2018)
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considered uncertainty quantification for degradation models. However, many other research

opportunities arise due to the arrival of big data, especially related to the complexity features.

2.1 Degradation Index Construction

Most of the existing research on degradation data modeling assumes that the degradation

index for a product or system is well defined. Modern sensor technology allows one to

collect multi-channel sensor data that are related to the underlying degradation process.

However, any single channel may not be sufficient to represent the underlying degradation

process. Figure 1 shows an example of multi-channel sensor data from the NASA jet engine

simulation data (e.g., Saxena and Goebel 2008). Without a well-defined index, most of

existing methods will not be applicable. Thus, constructing an appropriate degradation

index is a fundamental step in degradation modeling. Liu, Gebraeel, and Shi (2013) proposed

a data-level fusion model for developing composite health indices for degradation modeling

and prognostic analysis. Fang, Paynabar, and Gebraeel (2017) studied a multi-stream sensor

fusion-based prognostics model for systems with a single failure mode. Chehade et al. (2018)

considered a data-level fusion approach for degradation index building under multiple failure

modes.

Here we briefly discuss a general approach for degradation index building based on an

additive-nonlinear model with variable selection. The approach is more flexible than a linear

combination of sensor signals, and the approach can automatically select the most informa-

tive variables to be used in the degradation index. Let xi(t) = [xi1(t), · · · , xip(t)]
′ be the

multivariate measurements for unit i at time t, i = 1, · · · , n. Here, p is the number of sensor

channels and n is the number of units. The degradation index is built as

zi(t) =

p
∑

j=1

fj [xij(t);βj],

where fj is the contribution function for variable j. The functional forms of the fj are

expressed as a linear combination of spline bases with parameter vector βj. Methods for

construction of the spline bases for fj can be found in Meyer (2008). The procedure to

estimate the fj functions is briefly discussed below.

Let tik, k = 1, · · · , ni, be the time point where the measurements are taken. Let ti = tini

be the last measurement time point and let δi be an event indicator. The indicated events

may not be failures but can be events where the product performance requirements cannot

be met for specific types of products. The events typically indicate that the degradation

has progressed above a certain threshold that is unknown. For those units with events at

time ti (i.e., δi = 1), the degradation index zi(ti) should be near to the threshold with
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Figure 1: An example of multi-channel sensor data from the NASA jet engine simulation

data. The plot shows the signal measurement as a function of cycles from a subset of variables

from one randomly selected unit.
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small variation. That is, the goal is to minimize the variation of zi(ti) for those events. In

particular, the objective is to minimize

min
βj , j=1,··· ,p

∑

{i: δi=1}

[zi(ti)− z̄]2,

where z̄ =
∑

{i: δi=1} zi(ti)/
∑n

i=1 δi is the mean degradation level.

A group lasso penalty function λ1
∑p

j=1 ||βj|| (e.g., Yuan and Lin 2006) is used to select

the most informative variables into the degradation index. Here || · || is the L2 norm and λ1

is a tuning parameter. Note that the degradation index should be monotonically increasing.

To impose this constraint, a penalty for non-monotonicity is introduced. In particular, the

penalty term is

λ2

n
∑

i=1

ni
∑

k=1

[zi (ti,k−1)− zi (ti,k)]+ ,

where [x]+ = x + c, if x > 0, and [x]+ = 0, if x < 0, and λ2 is a tuning parameter. Here,

the constant c is used to impose strict monotonicity. In summary, the overall problem is

formulated as follows:

min
βj , j=1,··· ,p

∑

{i:δi=1}

[zi(ti)− z̄]2 + λ1

p
∑

j=1

||βj||+ λ2

n
∑

i=1

ni
∑

k=1

[zi (ti,k−1)− zi (ti,k)]+ . (1)

The coordinate decent algorithm in Tibshirani and Taylor (2011) can be used to solve (1).

2.2 Multivariate Degradation Modeling

Most of the existing framework for degradation data modeling focuses on a single degradation

characteristic. In some applications, however, systems may have multiple characteristics

that degrade simultaneously, and one can track those degradation characteristics together.

Figure 2 shows examples of degradation data with two degradation characteristics from the

National Institute of Standards and Technology (NIST) coating data (Gu et al. 2009).

The literature for multivariate degradation modeling is sparse, mostly due to the lack of

flexible models for such data. The multivariate Wiener process is one exception because the

multivariate extension of the well-known Wiener process retains the independent increment

and infinite divisibility properties (e.g., Whitmore, Crowder, and Lawless 1998). Some papers

have used a copula (e.g., Nelsen 2006) to model the joint distribution of the increments

(e.g., Pan and Balakrishnan 2011, and Pan et al. 2013). However, direct modeling of the

increments by using a copula model does not preserve the infinite divisibility property. Thus,

it can be problematic (not well-defined) when one adds together the increments of the two

consecutive intervals, because the distribution of the sum of the increments is no longer from

the same class of models. Sun et al. (2016a) and Sun et al. (2016b) considered multiple
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(a) Damage 1250 cm−1 (b) Damage 1510 cm−1

Figure 2: Examples of degradation data with two characteristics from the NIST coating

data. Each connected line shows the observed degradation path for a unit and the dots show

points in time the measurements were taken.

degradation characteristics under an accelerated degradation test setting. Si et al. (2018)

conducted reliability analysis for dynamic local deformation of materials under a multivariate

degradation model.

Here, we discuss a general model structure based on a copula random effects model. In

general, the stochastic model for the multivariate degradation measurement is

Yj(t) = Dj(t) + ǫj(t), j = 1, · · · , p,

where Dj(t) is the underlying stochastic process for the true degradation process of charac-

teristic j, ǫj(t) is the error term, and p is the number of degradation characteristics. The

commonly-used Wiener process, gamma process, and inverse Gaussian process can be used

to describe the stochastic behavior of Dj(t). However, a new structure needs to be intro-

duced into Dj(t) in such way that it can capture a flexible dependence structure among

the p characteristics, while each marginal process is still a well-defined process. The copula

random effects model meets the requirements.

In this paper, we use the Wiener process as an illustration. The copula random effects

model can also be used for other processes such as the gamma process and the inverse

Gaussian process. In particular, the new model structure is

Dj(t) = Dj(t; x, ωj) = ωjΛj(t; x) + σjB[Λj(t; x)], j = 1, · · · , p, (2)

ω = (ω1, · · · , ωp)
′ ∼ C[F1(ω1), · · · , Fp(ωp)].
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Here, Λj( · ; x) is the shape function where x represents covariate information, and B(·) is the

standardWiener process. The random vector ω is used to introduce the dependence structure

among all stochastic processes. Conditional on ω, eachDj(t) is a well-defined Wiener process.

The function C(u1, · · · , up) here is a copula function and the Fj(ωj) functions are marginal

cumulative distribution functions (cdf) for ωj, j = 1, · · ·p. The commonly-used copulas, such

as the Gaussian and Archimedean copulas can be used (e.g., Nelsen 2006). The commonly-

used marginal distributions such as lognormal, the Weibull, and gamma can also be used.

With the combination of the copula functions and the marginal distributions, a great deal

of flexibility for the dependence structure can be achieved. Note that the model in (2) is

also capable of incorporating covariate information x into the model, for example, using a

regression type of model. The model estimation can be done by using the Monte Carlo EM

algorithm (e.g., Bedair et al. 2016).

2.3 Longitudinal Functional Data for Degradation Modeling

As measurement instruments advance and data storage capacity increases, new types of data

are becoming available for degradation analysis. Instead of generating one single measure-

ment for characterizing a material property, some instruments will generate a functional

curve to represent the property of a material. For example, transmission spectroscopy can

measure the light transmittance as a function of wavelength. The change in the transmit-

tance spectra will indicate the deterioration of a material property. Thus, the longitudinal

measurements of the transmittance spectra can show the trend of the material property

degradation over time. Figure 3 shows the temporal changes of light transmittance spectra

for an ethylene-vinyl acetate (EVA) sample under ultraviolet (UV) irradiation.

There is little work in reliability data analysis literature dealing with longitudinal func-

tional data. In the functional data analysis literature, Park and Staicu (2015) developed

longitudinal functional data analysis techniques to handle such data. Here we briefly de-

scribe the model in Park and Staicu (2015). Let Yij(s), s ∈ Ω be the function curve for unit

i at time tij . Here Ω is the domain of the functional curve, and tij is the time where the

measurement are taken. In particular, the measurement Yij(s) is modeled as

Yij(s) = µ(s, tij) +Xi(s, tij) + ǫij(s). (3)

The model in (3) has three major components. The term µ(s, tij) is the mean structure at

time tij , and ǫij(s) is an error term. The individual to individual differences are described

by the term,

Xi(s, tij) =
∑

k≥1

ξik(tij)ψk(s),
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Figure 3: Temporal changes of light transmittance spectra for an EVA sample under UV

irradiation. The legend shows the number of days from the origin when the measurement

was taken.

which is a linear combination of a common basis function ψk(s) with coefficients ξik(tij).

Note that ξik(t) is a function of t. Thus it is time dependent. The estimation method is

mainly based on functional eigenvalue decompositions. However, for degradation data, one

often assumes a monotonicity behavior among observed curves as the time gets larger. Also,

one of the major goals of reliability analysis is to make predictions. Thus, monotonicity and

extrapolation are the two major challenges that need to be addressed in order to make the

model in (3) applicable in reliability applications.

2.4 Spatio-temporal Data for Degradation Modeling

In some applications, the measurements are taken over a spatial region for a period of time,

which is related to the degradation process. We call this type of data as spatio-temporal

degradation data. For example, infrared cameras can be used to track the change of a

thermal field. Although it is not directly related to degradation, vibrothermography data

from Gao and Meeker (2012) in Figure 4 illustrate the evolution of a process over a two-

dimensional spatial region. From frame 8, one starts to see a signal in the middle of the

region and the signal becomes evident in frame 16. Another example of spatio-temporal

degradation is available in Liu, Yeo, and Kalagnanam (2018), who proposed to use spatio-
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Figure 4: Illustration of the evolution of a spatio-temporal process using the vibrothermog-

raphy data. The color (darkness) shows the intensity.

temporal models to describe such types of data. They addressed challenges relating to spatial

heterogeneity, the spatial propagation of degradation to neighboring areas, the anisotropic

and space-time nonseparable covariance structure in a complex spatio-temporal degradation

process. Other examples where spatio-temporal degradation data were generated include the

spatial variation of a thermal field and microscopic characterization for the wear of tools. In

silicon ingot manufacturing, equipment degradation will affect the spatial variation of the

thermal field, and a change in the thermal field will affect the quality of the ingot. In a

broaching process, the tool condition of the broach has high impacts on the quality of the

final part. Images from a microscope are used to characterize the wear of the broaching tool

over time.

Here we briefly describe a Bayesian framework that can be used for modeling and analysis

of spatio-temporal degradation data. Assume that we have measurements over a spatial
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region Ω for a period [0, τ ]. We denote the spatio-temporal data by D(s, t), s ∈ Ω, t ∈ [0, τ ].

Let s1, · · · , sm be the locations in the spatial domain where the measurements are taken,

and let m denote the number of locations. Let

Dt = [D(s1, t), D(s2, t), · · · , D(sm, t)]
′,

where s1, s2, · · · , sm ∈ Ω, and t ∈ [0, τ ]. Note that Dt is a vector that contains all the

observed measurements taken at the m spatial locations at time t ∈ [0, τ ]. One can model

Dt via a Bayesian hierarchical model (e.g., Cressie and Wikle 2011). We use the following

model for the measurements,

Dt = Ut + ǫt,

where ǫt ∼ N(0, R) for t ∈ [0, τ ]. Here Ut represents the underlying spatio-temporal degrada-

tion process and ǫt is the noise process. We use the variance-covariance matrix R to describe

the spatial correlation among the noise terms at different locations.

The modeling of Ut is typically more challenging than the traditional type of degradation

data. It is of benefit to leverage physical knowledge about the process. The degradation

process usually results from a physical process, which can be modeled by a system of partial

differential equations (e.g., describing a diffusion process) with a set of boundary conditions.

Using finite differences to approximate the partial derivatives and adding a random term to

make it stochastic, we have the following model for the true degradation process,

Ut =MUt−1 +M (b)U
(b)
t−1 + ηt,

U0 ∼N(µ0,Σ0).

Here ηt is the temporal random effect that follows a N(0, Q) distribution with variance-

covariance matrix Q, M is the propagator matrix, M (b) is the boundary propagator matrix,

and U
(b)
t is the boundary condition. The initial status for the process is given by U0 having

a multivariate normal distribution with mean µ0 and variance-covariance matrix Σ0.

Parameter estimation can be done by using Bayesian methods, which requires the specifi-

cation of prior information. For example, we can use inverse Wishart distributions to specify

the prior for R and Q, and a Gaussian process prior for the propagator matrices. We can

either set the hyperparameters to be fixed or assign prior distributions to these parameters

as well. Then the posterior distribution for Ut, t ∈ [0, τ ], is

π(U0,U1,··· ,Uτ ,M,Q,R|D1,··· ,Dτ ) ∝

[

τ
∏

t=1

π(Dt|Ut,R)

]

× πU0

×

[

τ
∏

t=1

π(Ut|Ut−1,M,Q)

]

× πR × πQ × πM .
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Here π(·|·) and π(·) on the right hand side of the equation denote conditional distributions and

prior distributions, respectively. The posterior distribution can be obtained by using Markov

chain Monte Carlo (MCMC) via a Gibbs sampler. Based on the estimated model and failure

definition, one can make reliability predictions using MCMC methods. A failure event can

be defined when the maximum of the degradation measurement exceeds a threshold, or when

area of the region that is above a certain degradation level exceeds a threshold.

3 Reliability Models using Covariates

In traditional reliability field data modeling and analysis, covariate information (when is

available) tends to be simple such as operating temperature and other conditions, while the

response used is typically time to event, degradation levels, or recurrent event times. Recent

development of reliability methods include Zhu, Yashchin, and Hosking (2014), Peng (2016),

and Wang et al. (2018). Regarding covariate modeling, the system operating and environ-

mental (SOE) data have become available for many different kinds of systems. The SOE

data essentially are multivariate time-varying covariates. With different types of responses

for reliability models, the SOE data can be integrated to provide better reliability prediction-

s. Recent developments include integrating SOE data with time to event data (e.g., Hong

and Meeker 2013, Yokoyama et al. 2015, Kumazaki et al. 2015, and Yokoyama 2016), with

degradation data (e.g., Hong et al. 2015, and Xu et al. 2016), and with recurrent event data

(e.g., Xu et al. 2017). This section describes some other directions for using covariates in

reliability data modeling and analysis.

3.1 Variable Selection

Although the SOE data contain large amounts of information, it is not necessarily the case

that all information is relevant for the event process or the degradation process. One needs to

reduce the large p number of covariates and only keep relevant covariates for a parsimonious

model. Here we describe some general ideas of an automatic method for variable selection.

In statistics literature, there have been many recent developments in variable selection,

especially via penalty functions. Thus, the idea of using penalty functions in reliability

setting will be discussed here.

Let Li(θ;wi) be the likelihood contribution of the data from unit i based on a reliabil-

ity model (e.g., a time to event model or a degradation model) that incorporates the SOE

covariate information. Here θ is a general parameter vector of the unknown model parame-

ters. The model typically involves random effects wi which are unobservable. The penalized

maximum likelihood (ML) approach will be used for parameter estimation. The penalized
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log likelihood is defined as

l(θ) =−

n
∑

i=1

log

[
∫

wi

Li(θ;wi)fnor(wi)dwi

]

+ Pα(β), (4)

where fnor(wi; σw) is the probability density function (pdf) of a normal distribution, β =

(β1, · · · , βp)
′ are the coefficients for the covariates, and Pα(β) is a penalty function on β with

penalty α. The penalty function Pα(β) in (4) will allow keeping the subset of the covariates

that are most important for describing the event process or the degradation process.

For the SOE data, the use of an elastic net (EN) penalty function in Zou and Hastie (2005)

is suitable. The EN penalty function can be expressed as Pα(β) = α1

∑p

l=1 |βl|+α2

∑p

l=1 β
2
l ,

where α = (α1, α2)
′ are the penalty values. The EN penalty is a combination of an L1

penalty and an L2 penalty. The first term α1

∑p

l=1 |βl| is the LASSO penalty, which is the

most commonly-used penalty function (e.g., Hastie, Tibshirani, and Friedman 2009). The

second term α2

∑p

l=1 β
2
l is the ridge-regression type penalty (e.g., Hoerl and Kennard 1970).

The LASSO penalty will automatically set the coefficients of non-important variables to zero

to achieve sparsity. When there is a group of variables among which the pairwise correlations

are high, the LASSO penalty, when used by itself, tends to select only one variable from

the group and does not care which one is selected (Zou and Hastie 2005). The SOE data

contain many variables and usually there are high correlations between pairs of variables.

The L2 penalty tends to work better in situations with a high degree of collinearity but it

keeps all covariates in the model. The EN penalty has the advantage of using both of the

L1 and L2 penalties.

3.2 Functional Covariates

In addition to the traditional covariates (time invariant and time varying), some covariates

take the form of a functional curve. Functional covariates sometimes arise in reliability anal-

ysis. That is, the response in the dataset is the time to event or degradation measurement,

while the covariates are functional curves that characterize certain features of the product

and system that can be related to the product reliability. Figure 5(a) shows an example

degradation path from the NIST coating data and Figure 5(b) shows the UV profile that

is related to the degradation data (along with temperature and relative humidity). The

UV information at a specific point is a functional curve of UV wavelength λ, as shown in

Figure 5(b). Although the coating data has been analyzed in Hong et al. (2015), the UV

information was simply aggregated over the range of the wavelength. That is, a scalar is

used to represent the functional covariate at each time point.

With function data analysis techniques, the UV information can be treated as a functional

covariate. One can flexibly model the effect of UV wavelength λ. Let yij be the degradation
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Figure 5: Example of degradation data for one unit (a) and functional covariates showing

the UV intensity (b) from NIST coating data.

measurement at tij for unit i. Also, let xi(λ; t) be the UV intensity at time t and wavelength

λ for unit i. The following functional regression framework can be considered. That is

yij = β0 +

tij
∑

t=0

∫

λ

ψ(λ)xi(λ; t)dλ+ ǫij . (5)

Here ψ(λ) describes the functional effect that UV wavelength has on degradation yij. Due to

the monotonicity of the degradation path, we use a cumulative damage model here which is

represented by the summation over time t in (5). In the regression framework, the ordinary

time-varying covariates xi(t) (e.g., temperature and relative humidity) can be easily incor-

porated by adding an extra term
∑tij

t=0 βxi(t) into (5). Spline bases can be used to construct

ψ(λ) so that a flexible functional form can be achieved for the effect of UV wavelength.

3.3 Image Covariates

In some applications, the response is the time to event or a degradation measurement, and

images are used to characterize a property of the unit. For example, Si, Yang, and Wu (2017)

studied how to use images of the microstructure of a high strength steel to predict the lifetime

of the material. For another example, Figure 6 shows an example of atomic force microscopy

(AFM) images for the microstructure of a polymer material tested at NIST. In this case, the

response might be the breaking strength of the material. Thus, it is practically useful if one

can build a model to predict the strength to fail as a function of the microstructure images.
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(a) Amplitude (b) Phase

Figure 6: Illustration of image covariates from AFM images of a material.

In statistics, such problems have been studied as an image regression problem. The

tensor regressor models in Zhou, Li, and Zhu (2013) provide a general way to incorporate

images as covariates. In particular, a tensor is defined as a multi-dimensional array, in which

a two-dimension image X is a special case of a tensor. Zhou, Li, and Zhu (2013) proposed

a general linear model framework for image regression, in which a link function g(·) is used

to link the mean of the response denoted by µ to the image covariate. That is

g(µ) = α+ 〈B,X〉, (6)

where α is a constant term and, 〈·, ·〉 is the inner product of two tensors. Here B is a

tensor containing the regression parameters with certain structures so that its elements can

be estimated. The details of the estimation can be found in Zhou, Li, and Zhu (2013).

Wang and Zhu (2017) proposed a scalar-on-image regression framework. While the general

model is the same as in (6), Wang and Zhu (2017) modeled the tensor coefficient B as a

piecewise smooth function and developed a new estimation method based on total variation

analysis. The challenge of applying such advanced methods to lifetime regression is the need

to deal with censoring. For degradation data with image covariates, handling correlations

among images taken at different time points is also a challenging problem. However, these

challenges provide opportunities for future research.

4 Machine Learning and Reliability Analysis

Machine learning can provide useful tools for reliability analysis, especially in dealing with

data complexity. Here we discuss several machine learning techniques that can be used for

reliability analysis.
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Figure 7: Example of sensor data for two channels with respect to specifically defined events.

4.1 Signal Clustering

With the increasing development of sensor and communication technologies, multi-channel

sensor signals can be obtained in real time arriving at a high rate (e.g., per second or

millisecond). Hence, data generated by these sensors are increasing enormously due to the

high volume. From online signals, certain events can be detected, and it is often of interest to

categorize those events into different types. Thus, different actions can be taken for different

types of events. These sensor data can be treated as multivariate functional data. Because

not all variables are useful for clustering, it is important to include only those variables that

are useful in the clustering procedure. Figure 7 shows an example of sensor data for two

channels with respect to specific defined events. In the literature, Jacques and Preda (2014)

considered multivariate functional data clustering. Wang and Zhu (2008) studied model

based clustering with variable selections. Here we briefly describe a clustering algorithm for

multivariate functional data with automatic variable selection.

We use functional principal component analysis to transform the functional data into

multivariate data. The multivariate functional data can be decomposed according to the

Karhunen-Loeve expansion. In this setting, the multivariate functional data X(t) can be

represented as

X(t) = µ(t) +

∞
∑

l=1

p
∑

j=1

Cljflj(t), t ∈ [0, T ]. (7)

Here, µ(t) is the mean function, flj(t) are functional principal factors, and Clj are principal
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components. Similar to univariate cases, Clj are uncorrelated random variables with mean

zero and variance λlj . In practice, the expansion in (7) is often truncated to provide the

series with a finite number of terms. That is,

X(t) ≈ µ(t) +

L
∑

l=1

p
∑

j=1

Cljflj(t), t ∈ [0, T ].

Here, L should be chosen to be large enough so that at least 95% of the variation in the data is

explained. Using the available data, Xi, the principal components Clj can be estimated using

functional data analysis techniques, which are denoted by cilj. In this way, the functional

data Xi are transformed to multivariate data cilj .

We then use a model-based algorithm with a penalty term to do clustering. The method

does clustering with automatic variable selection through a penalty term, assuming the data

are generated from a Gaussian mixture distribution. That is, the pdf is

g(ci) =

K
∑

k=1

πkgk(ci;µk,Σ),

where ci is a vector containing the cilj values with the same i, and gk(·) is a pdf with mean

µk and covariance matrix Σ. Here the mean vector is µk containing µklj values and the

coordinate of variable (lj) corresponding to cluster k. The constant K is a pre-set value for

the number of clusters (usually it is large enough). The algorithm will automatically select

the number of clusters based on the data. Let δik be the indicator for membership of unit i

in cluster k. The log likelihood function with a penalty term is

lP (θ) =

n
∑

i=1

K
∑

k=1

δik[log πk + log fk(ci;µk,Σ)]− λ

p
∑

j=1

max
k,l

(|µklj|).

The penalty λ
∑p

j=1maxk,l(|µklj|) will automatically remove those variables with little con-

tribution to the clustering. Because the δik indicator parameters are not observed, the

expectation and maximization (EM) algorithm can be used for parameter estimation.

4.2 Deep Learning and Reliability Prediction

Deep learning methods were developed to solve prediction problems. Because many problems

in reliability involve predictions, there seems to be a natural intersection between these two

areas. However, we see little applications of deep learning in reliability. Traditionally, relia-

bility predictions are mostly based on parametric models due to the need for extrapolation.

The arrival of big data provides the opportunity to apply deep learning method in reliability

predictions. A good resource for deep learning is Goodfellow, Bengio, and Courville (2016).
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The complex nature of big data provides different types of covariates, and forms com-

plicated covariate history. Product usage history becomes so complicated that it will be a

challenge to use covariate within the traditional regression framework. One idea is to make

reliability predictions based on similarity of product usage histories. With multi-layers of a

deep network, the method can automatically match individual histories and thus be expected

to provide accurate predictions when failures are driven by usage variables.

4.3 Text Analytics

Text data also appears in reliability datasets, especially in warranty claim databases, main-

tenance databases, and after service businesses. For example, customer complaints may

indicate product reliability issues. Also, technicians comments about the diagnostics and re-

pairs provide failure information. With the wide availability of smartphones, online reviews,

and social media, text becomes an important format of unstructured data for extracting

reliability information. Text analytics and text mining are important tools for achieving

that goal.

Kakde and Chaudhuri (2015) discussed leveraging unstructured data to detect emerging

reliability issues. Customer complaint texts were used for text mining to identify useful

topics or customer concerns. For example, customers may discuss topics such as airbags,

engine, fuel system, and power steering locks. If over a period of time there is a detection of

an increase of a particular topic, such as power steering locks, this may provide an indication

that the power steering system may have emerging reliability issues.

5 Emerging Application Areas

5.1 Weathering and Usage-Based Warranty Predictions

Big data will bring important changes to the practice of warranty prediction and spare parts

provisioning. Liu and Tang (2015) presented a description of reliability analysis and spares

provisioning for repairable systems with dependent failure processes and a time-varying in-

stalled base. Limon et al. (2016) presented reliability estimation considering use rate profiles

and warranty claims. King, Hong, and Meeker (2017) used product component genealogy

information, which is readily available in production databases, to improve prediction accura-

cy. He et al. (2018) developed a warranty prediction method that uses a concept of learning

effects in reliability and used a log-linear regression model to estimate learning effects.

With the advancement of reliability analysis techniques and big data, it is possible to

generate individualized, not-one-size-fit-all, warranty predictions. Certain products such as
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a coating that are sensitive weather conditions can have personalized prediction using the

spatio-temporal covariates about the weather condition in the products environment. Prod-

ucts subject to different use profiles, such as automobiles, can also have different warranty

predictions based on the usage information.

5.2 Early Warning Systems for Reliability and Warranty Data

Early warning of reliability issues of systems and products is important for many applications.

Such early warning can be issued based on monitoring of claims in warranty database and

reliability data from the field. Wu and Meeker (2002) developed an early detection procedure

for reliability problems using information from warranty databases, which is a nonparametric

approach based on claim counts. Yashchin (2012) used a CUSUM (i.e., cumulative sum

control chart) based approach to monitor lifetime data streams, which can detect abrupt

changes in parameters that could be related to reliability issue. The developed procedure

was deployed in the IBM Personal Systems Division. Lawless, Crowder, and Lee (2012)

developed CUSUM procedures for monitoring warranty claims, which can detect changes

in claim rates in a timely manner. With the help of big data, especially the real-time

availability of data streams that contain reliability information, more advanced procedures

can be developed for early warning systems for reliability and warranty data.

5.3 Usage-Based Insurance

Usage based insurance (UBI) is a type of insurance in which the cost of the insurance is

based on the usage, use behavior, and product location. One important task is to access

the future risk at individual level to develop pricing plans. With some modifications and

customization, reliability models that are used to assess product failure risks can be used

to predict events for UBI. Thus, UBI will be an interesting area to apply reliability analysis

techniques.

5.4 Energy Sector

Due to the development of renewable energy technology, the reliability of photovoltaic (PV)

systems and components is great interest. One of the goals in PV industry is to demonstrate

that the PV products can last at least 30 years so that banks will be willing to finance

investments of large-scale PV systems. Due to highly compact and integrated nature of PV

modules, assessing field reliability via laboratory accelerated tests is challenging. Also, PV

systems have multiple failure mechanisms such as material degradation as well as mechanical
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and electrical component failures. This complexity provides opportunities to develop new

reliability analysis methods for test planning and reliability prediction.

A smart grid is an extremely complicated system which connects power generation, trans-

mission, and distribution systems, involving substation, factories, home and building, and

even with those distributed generation systems. Reliability is important for smart-grid sys-

tem maintenance. The data collected from a smart grid tend to have a large volume but also

with a high level of variety and complexity. Traditional reliability analysis methods need to

be extended, which opens doors for research to develop new reliability analysis methods.

5.5 Internet of Things

The Internet of Things (IoT) is a broadly defined network in which things and objects

can all be connected. The introduction of such connectors has started to change people’s

life. Conceptually, the IoT has four layers: an application layer, a connectivity layer, an

information processing layer, and a physical layer. The IoT, like other products or systems,

will also fail during operation. Thus, reliability problems also exist in the IoT. Reports

of current research on the reliability of the IoT systems is sparse. Zin, Tin, and Hama

(2016) discussed the reliability and availability measures for the IoT. Thus, the IoT will

become an emerging area for reliability analysis, including methods to define reliability

metrics, reliability tests, data collection, and the development of methods to make reliability

predictions.

5.6 Big Data and Test Planning

Reliability test planning has been a challenging problem due to limited time, budget, and

facility, and the fact that products may last a long time in the field (e.g., Hong et al. 2015).

How big data technology can be applied in the design of experiments for reliability study is

an interesting area of research. For example, King et al. (2016) studied the test planning

of polymer composites under an ordinary test planning framework, where the response was

the cycles to failure and the accelerating variable was the level of stress applied to the test

coupon. With advanced measurement instruments, it is possible to measure how microstruc-

tural changes occur during the accelerated test process, which can possibly lead to a better

understanding of the failure mechanism and prediction of lifetime at use conditions. With

the help of physical models and physics-based computer simulation models, it is possible to

use microstructure data to build reliability models with stronger predictive power, which can

lead to a reduction in test duration and the number of samples that need to be tested.
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6 Concluding Remarks

In this paper, we provide a review and discussion on some aspects of reliability analysis

that is related to the complexity dimension of big data. In summary, the arrival of big

data provides lots of opportunities for developing and applying new statistical methods.

Anderson-Cook (2015) provided a comprehensive discussion on opportunities for statistical

research in emerging areas. In reliability analysis, the complexity aspect of big data provides

lots of opportunities for applying existing methods and expansion of areas of reliability

analysis.

We observe the following trend. New technology leads to new types of data, and even-

tually leads to new statistical methods. This trend has been observed in reliability and the

development of new statistical techniques such as functional data analysis, and image re-

gression provide new tools for reliability analysis. Reliability analysis techniques can also be

applied to new areas such as renewable energy and to solve important emerging problems.

Our discussion focuses mostly on data modeling and analysis for reliability prediction.

Big data also brings many opportunities in other areas of reliability such as maintenance.

For example, Zhang (2015) discussed big data and its applications in maintenance, especially

through conditional monitoring and fault detection. Big data can be expected to become a

major driving force for the innovation on reliability data analysis and reliability engineering

in the broader picture.
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