1diosnuely Joyiny 1duosnuely Joyiny 1diiosnuely Joyiny

1duosnuely Joyiny

Author manuscript

-~ HHS Public Access
«

Proc ACM Int Cont Ubiquitous Comput. Author manuscript; available in PMC 2018 April

06.

Published in final edited form as:
Proc ACM Int Conf Ubiquitous Comput. 2017 September ; 2017: 959-964. doi:
10.1145/3123024.3124568.

Emu: Engagement Modeling for User Studies

Bo-Jhang Ho,
University of California, Los Angeles, Los Angeles, CA 90095, USA

Nima Nikzad,
Scripps Translational Science Institute, La Jolla, CA 92037, USA

Bharathan Balaji, and
University of California, Los Angeles, Los Angeles, CA 90095, USA

Mani Srivastava
University of California, Los Angeles, Los Angeles, CA 90095, USA

Abstract

Mobile technologies that drive just-in-time ecological momentary assessments and interventions
provide an unprecedented view into user behaviors and opportunities to manage chronic
conditions. The success of these methods rely on engaging the user at the appropriate moment, so
as to maximize questionnaire and task completion rates. However, mobile operating systems
provide little support to precisely specify the contextual conditions in which to notify and engage
the user, and study designers often lack the expertise to build context-aware software themselves.
To address this problem, we have developed Emu, a framework that eases the development of
context-aware study applications by providing a concise and powerful interface for specifying
temporal- and contextual-constraints for task notifications. In this paper we present the design of
the Emu API and demonstrate its use in capturing a range of scenarios common to smartphone-
based study applications.

Keywords

Context-aware; mobile applications; engagement; just-in-time assessment; push notifications; user
studies; mhealth

ACM Classification

H.5.m [Information interfaces and presentation (e.g., HCI)]; Miscellaneous; D.3.3 [Language
Constructs and Features]; Frameworks

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Ho et al. Page 2

Introduction

In recent years, many behavior and health related studies have leveraged mobile apps to
improve study protocol adherence and participant engagement [11, 16]. Notifications from
such apps can help with adherence to study requirements - such as updating a food diary
after each meal or measuring blood pressure after exercise - while reducing the cognitive
load associated with participation in such studies [11]. However, phone users already receive
a mean of 63 notifications per day [15], and ill-timed interruptions can be distracting and
affect productivity [2]. To maximize participation value and improve study adherence,
notifications must be both contextually relevant and timely [5].

While prior works have presented robust and efficient context-recognition algorithms [8],
adoption of these techniques to drive study-related notifications has been slow. Specifying
contexts precisely is challenging because: (i) keeping track of interrelated event- and
context-driven tasks can be complex and error prone, and (ii) there is no interface for
tracking user behavior and adjust app logic. Thus in practice, most such applications are
simply driven by time-based constraints, e.g. notify to log food at 8AM and 6PM [5, 11].

To address these challenges, we introduce Emu, a framework for developers to concisely and
precisely specify when and how to engage users. Emu relieves the developer of the burden of
tracking contextual states and delivers notifications when the required conditions are met.
Emu tracks responses to notifications and schedules future notifications accordingly. We
show that Emu can concisely capture a wide variety of scenarios common to user studies.

Building a Context-aware Study App

We consider three stakeholders in the life cycle of a study app: (i) a study designer, the
domain expert conducting the study, (ii) a developer, who translates study specifications
into code, and (iii) a user, the study participant. In our example study, the designer would
like to collect blood pressure (BP) measurements after each workout to monitor the health
status of hypertensive patients. These requirements translate to detailed specifications for the
developer.

For simplicity, we only consider running as workout. When a run session exceeds 15
minutes, the study app will notify the user to take a BP measurement. Each user is provided
a Bluetooth enabled BP monitor that communicates with the study app, and the app will
only remind the user to take measurements if they are close to the BP instrument within an
hour of their run session. If the user ignores the notification, the app will retry displaying the
notification two times. If the user fails to measure BP for a week, an encouragement is sent
to comply with the study requirements. This example highlights just some of the features
that a robust study app must support, and is informed by literature review and informal
discussions with study designers.

Challenges in Scheduling Notifications

Smartphone OSes and third-party libraries provide some support for building such apps.
Android and i0S support detection of contexts such as running and proximity to Bluetooth

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Ho et al. Page 3

devices, and Apple ResearchKit! assists development of questionnaires and intervention
tasks. But, scheduling of notifications is limited to time or location based reminders.

Matching complex events—Consider the condition for sending a notification as running
for 15 minutes. The app needs to start a countdown timer when the user starts running. If the
user stops running before the timer hits zero, the timer is invalidated; otherwise, the
notification is sent. The complexity increases as we add more conditions: if the study
accepts either running for 15 minutes or walking for 1 hour, then two independent timers
will need to monitor each activity. When the condition requires ordered events, such as a run
session followed by closeness to BP machine within 1 hour, the app needs to implement the
transition logic and maintain timers accordingly. Maintaining different timers is akin to
parallel programming and is known to be difficult and error prone. Emu handles all of the
timing and condition matching for the developer.

Monitoring the user—If the user doesn’t goes for a run or gets close to the BP machine,
then the app needs to check this condition to nudge the user to comply. If the user ignores
the notification, the app needs to monitor it’s status and send a reminder. When the user
successfully measures the BP after a notification is sent, the app should stop creating more
notifications. Emu keeps track of all these aspects for the developer and reports the status
with a single callback after the task is finished.

Historical matching—Sometimes the condition may depend on previous activities. In our
example, a notification is sent if the user does not take BP measurements for a week. The
developer needs to create a database to store this information and update it each time user
measures BP. Emu automatically logs these events and queries the database internally for
developers.

Related Work

Prior works have studied interruptibility extensively [6, 9, 14]. These works focus on
identifying interruptibility from sensor data [6], prior interactions [9], physical activities [13]
and other contexts [14]. However, these works do not consider application specific
requirements for engaging the user. Bainomugisha et al. [3] propose a language for
programming context-aware apps. However, their system does not support timing constructs
essential for scheduling notifications. STFL [4] proposes a spatio-temporal framework to
specify contextual triggers and is closest to our work. STFL is a Python library and is an
independent system. In contrast, Emu is designed for interruptibility using smartphones and
wearables. Hence, Emu keeps track of user actions, snoozes notifications, logs events for

querying.
Emu: Framework Overview

Design of Emu was informed by a thorough literature survey, prototype building, and
interviews with two study designers experienced in developing seven research studies that

1http://rcscarchkit.org/

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

http://researchkit.org/

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Ho et al.

Emu Tasks

Page 4

utilized mobile apps for monitoring of subjects. This section presents the design and features
of Emu.

To ‘register’ a notification, a developer specifies: (i) when the notification should be
triggered, e.g., at 6PM, or when the user’s heart rate is high, (ii) the content of the
notification, e.g. a message of encouragement, and (iii) what action to take when the
notification is selected or replied to. While specifying the content of a notification is
straightforward via the standard APIs, managing the timing of notifications is not: such code
is typically event-driven, requiring callback functions that track changes in user context and
time, and respond accordingly. Emu bundles the aforementioned components and calls it a
Task. The life cycle of a Task is summarized in Figure 1.

The TaskBuilder class is used to specify the details relevant to a task’s content, contextual
trigger, and any actions to trigger when replied to. To tackle the complexity of specifying
variety of options in a task, we use the the builder design patternz. With this pattern, the
developer can concisely create the task in a flexible, step by step manner.

Developers can register a repeating task by specifying the frequency (e.g., “every 2 days”)
via the repeat () method. The interval () method gives the time period in which
notification can be sent, e.g., “10am to 12pm”. The when () and then () methods specify
the contextual condition, such as “walking for 1 hour or running for 10 minutes”. The
notify () method specifies the content of a notification and options such as priority and the
number of times to repeat the notification if it is not acted on. After the user responds to the
notification, the view (or Activity in Android) given in launch () will appear. report ()
specifies the callback method to which the result of the Task (completed, ignored, failed to
trigger, etc.) is provided. Finally, startTask () registers the task with an ID, with which
the developer can modify or check the status of a Task later. Figure 3 summarizes the
purposes of Emu methods, and Figure 2 implements the blood pressure example using
TaskBuilder.

We designed the Task structure to be flexible for developers. They can skip when () if they
only want randomized time-based notifications. They can skip notify () for internal
context tracking if user action is not required. report () can be used to activate other tasks

based on user actions.

Contextual Triggers

Emu uses when () and then () to support complex contextual conditions. The condition can
be a boolean expression with and, or, and not operators, €.g. “running and heartRate
> 100”. Developer can specify the duration for which a condition must hold using the for
keyword, e.g. “walking for 10 minutes”. The developer can choose to log events such
as BP measurements and query historical values, e¢.g. “BPMeasurements < 2 in the
past 1 week”. A sequence of contextual triggers, each evaluated only after the previous is

2https://cn.wikipcdia.org/wiki/BuiIdchattcm

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

https://en.wikipedia.org/wiki/Builder_pattern

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Ho et al.

Page 5

satisfied, can be specified with when () followed by then (). There can be multiple then ()
clauses in a task for a sequence of conditions. Contexts included in the boolean expression
are monitored in parallel and the Task is triggered when the expression evaluates to true.

System Architecture

Figure 4 shows the system architecture of Emu. When a task is started, the Query Parser
extracts the string parameters and uses timed automata [1] to unambiguously encode the
contextual conditions and transitions to generate a Task object, and registers it with the Task
Manager. To evaluate the status of the task, Task Manager maintains several clocks to trace
the states of the automata. The Task Manager makes use of the User Preference Manager to
account for user preferences (e.g. “Don’t make sounds while at work™) and Presentation
Manager to decide the style of notification (e.g. auditory channel via Alexa). All sensing and
context inference is handled by various Sensing Modules, which are simply wrappers around
existing OS- and library-provided context inference modules, derived from both built-in
phone sensors (e.g. walking derived from inertial sensors) or external IoT devices (e.g. BP
machine). Emu records all the task reports and developer specified events along with their
timestamps in the Event Database. Historical queries are directed to this database.

Discussion and Future Work

In our literature review, we identified a wide range of studies that leveraged mobile apps to
assess subject behavior, provide health-related interventions, and keep subjects engaged. We
provide details on 22 such studies in a separate document due to lack of space3. A subset of
such studies are listed in Table 1. Emu can successfully capture the scenarios presented by
these studies and reduce code complexity for the developer.

Returning to our earlier example of requiring a user to take a blood pressure measurement
after running, an implementation of the logic that manages notifying users to take measures
at the appropriate time consisted of 20 lines with the Emu framework. A native Android
implementation required more code (62 lines) and much higher complexity (due to
managing timers).

In this paper we introduced the interface and architecture of the Emu framework, which
allows app developers to concisely and precisely specify when and how to engage their
users. In future work, we will implement Emu and evaluate its ease of use and performance
characteristics.

Acknowledgments

We thank Monowar Hossain, Alethea Marti, Santosh Kumar and our reviewers for their feedback. This research is
funded in part by the National Science Foundation under awards # 11S-1636916 and ACI-1640813, and by the NIH
Center of Excellence for Mobile Sensor Data to Knowledge under award # 1U54EB020404-01. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the funding agencies.

3User study papers from literature review: https://goo.gl/QujviY

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

https://goo.gl/QujviY

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Ho et al.

References
1

10

12.

13.

14.

16.

17.

Page 6

. Alur, Rajeev, Dill, David L. A theory of timed automata. Theoretical computer science. 1994;

126(2):183-235. (1994).

. Bailey, Brian P., Konstan, Joseph A., Carlis, John V. The Effects of Interruptions on Task

Performance, Annoyance, and Anxiety in the User Interface. Interact. 2001; 1:593—601.

. Bainomugisha, Engineer, Vallejos, Jorge, De Roover, Coen, Carreton, Andoni Lombide, De Meuter,

Wolfgang. Proc of the ACM international symposium on New ideas, new paradigms, and reflections
on programming and software. ACM; 2012. Interruptible context-dependent executions: a fresh look
at programming context-aware applications; p. 67-84.

. Bamis, Athanasios, Savvides, Andreas. Proc of the 2nd International Conference on PErvasive

Technologies Related to Assistive Environments. ACM; 2009. STFL: a spatio temporal filtering
language with applications in assisted living; p. 5

. Czerwinski, Mary, Gilad-Bachrach, Ran, Igbal, Shamsi, Mark, Gloria. Proc of the 2016 ACM

International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM; 2016.
Challenges for designing notifications for affective computing systems; p. 1554-1559.

. Fogarty, James, Hudson, Scott E., Atkeson, Christopher G., Avrahami, Daniel, Forlizzi, Jodi,

Kiesler, Sara, Lee, Johnny C., Yang, Jie. Predicting human interruptibility with sensors. ACM
Transactions on Computer-Human Interaction (TOCHI). 2005; 12(1):119-146. (2005).

. Gustafson, David H., McTavish, Fiona M., Chih, Ming-Yuan, Atwood, Amy K., Johnson, Roberta

A., Boyle, Michael G., Levy, Michael S., Driscoll, Hilary, Chisholm, Steven M., Dillenburg, Lisa, et
al. A smartphone application to support recovery from alcoholism: a randomized clinical trial.
JAMA psychiatry. 2014; 71(5):566-572. (2014). [PubMed: 24671165]

. Lu, Hong, Yang, Jun, Liu, Zhigang, Lane, Nicholas D., Choudhury, Tanzeem, Campbell, Andrew T.

Proc of the 8th ACM conference on embedded networked sensor systems. ACM; 2010. The Jigsaw
continuous sensing engine for mobile phone applications; p. 71-84.

. Mehrotra, Abhinav, Hendley, Robert, Musolesi, Mirco. Proc of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing. ACM; 2016. PrefMiner: mining user’s

preferences for intelligent mobile notification management; p. 1223-1234.

. Mikesell, Lisa M., Marti, Alethea F., GuzmAan, Jennifer R., McCreary, Michael, Zima, Bonnie.
Communicative Uses of mHealth Technology during Early ADHD Stimulant Medication Titration
In-Office Visits. Journal of Applied Communication Research. In review. (In review).

. Nahum-Shani, Inbal, Smith, Shawna N., Spring, Bonnie J., Collins, Linda M., Witkiewitz, Katie,

Tewari, Ambuj, Murphy, Susan A. Just-in-Time Adaptive Interventions (JITAIs) in mobile health:

key components and design principles for ongoing health behavior support. Annals of Behavioral

Medicine. 2016:1-17. (2016). [PubMed: 26318593]

Naughton, Felix, Hopewell, Sarah, Lathia, Neal, Schalbroeck, Rik, Brown, Chlo&, Mascolo,

Cecilia, McEwen, Andy, Sutton, Stephen. The feasibility of a context sensing smoking cessation

smartphone application (Q Sense): a mixed methods study. 2016; 2016

Okoshi, Tadashi, Ramos, Julian, Nozaki, Hiroki, Nakazawa, Jin, Dey, Anind K., Tokuda, Hideyuki.
Proc of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
ACM; 2015. Reducing users’ perceived mental effort due to interruptive notifications in multi-
device mobile environments; p. 475-486.

Pejovic, Veljko, Musolesi, Mirco. Proc of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing. ACM; 2014. InterruptMe: designing intelligent prompting
mechanisms for pervasive applications; p. 897-908.

. Pielot, Martin, Church, Karen, De Oliveira, Rodrigo. Proc of the 16th international conference on
Human-computer interaction with mobile devices & services. ACM; 2014. An in-situ study of
mobile phone notifications; p. 233-242.

Shiffman, Saul, Stone, Arthur A., Hufford, Michael R. Ecological momentary assessment. Annual
Review of Clinical Psychology. 2008; 4:1-32. (2008).

Van Dantzig, Saskia, Geleijnse, Gijs, van Halteren, Aart Tijmen. Toward a persuasive mobile
application to reduce sedentary behavior. Personal and ubiquitous computing. 2013; 17(6):1237—
1246. (2013).

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Ho et al. Page 7

l Task registered

Context Trigger time out
Monitoring

report()
l Success
Notification :lN""'ﬁC&”O"
w o e got snoozed
Delivering -
Notification
I time out
User responds
the notification ~ "€POrt()
. Intervention
Intervention e kit
Intervention report()
complete
report()
Figure 1.
Life of a task.

Proc ACM Int Cont Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Ho et al. Page 8

Task taskBP = TaskBuilder.create()
.repeat(‘every day’)
.when(‘walking for 1 hours
or running for 15 minutes’
.then(‘nearBPMachine within 1 hours’)
.notify(‘Measure blood pressure’,

PRIORITY_MEDIUM,

‘snooze 2 times’', ‘every 15 mins’)
.launch(bpActivity)
.report(bpCallBack, ‘timeout 2 hours’)
.startTask (BP_TASK_ID);

Figure 2.
Example code of registering a task in Emu. The bold font are reserved keywords in Emu.

Proc ACM Int Cont Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Ho et al.

.repeat(frequency): Specify
the periodicity of the Task. If
omitted, it is a one-time Task.

.interval(period): The effec-
tive period of the Task.

.when(condition): A context
required to display the Task.

.then(condition): An (op-
tional) context to wait for,
after when has been satisfied,
before triggering the Task.

.notify(text, param): The
content of the notification.
Parameters include the prior-
ity, number of times allowed
to snooze the notifications,
and the retry interval.

Jaunch(view): The view
presents the requirements,
for instance, interventions.
The view appears when the
user clicks the notification.

.report(callback): Spec-
ify the callback function to
report task results to.

.startTask(taskld): Reg-
ister the Task to the Task
Manager.

Summary of the fields in Task class.

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

Page 9

1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Ho et al.

. User
Presentation | | preference
9 Manager
Event Query
Database Parser

Task Manager

Sensing
Module

Sensing
Module

Figure 4.
System architecture.

Proc ACM Int Cont Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

Page 10

1duosnuey Joyiny 1duosnuelp Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Ho et al.

Table 1

Examples of app-based studies whose behavior can be concisely expressed using the Emu framework.

Description

Naughton et al [12] Provide just-in-time intervention when a smoker enters a smoking area.

A-CHESS [7] Help people quit alcohol. Relaxation instruction are provided when near liquor stores or bars.
MH2[10] Aim for delivering therapy to ADHD kids. Time-based reminder for surveys and taking medicine.
SitCoach [17] When prolonged sitting is detected, users are asked to walk for 10 minutes.

Proc ACM Int Conf Ubiquitous Comput. Author manuscript; available in PMC 2018 April 06.

Page 11

	Abstract
	Introduction
	Building a Context-aware Study App
	Challenges in Scheduling Notifications
	Matching complex events
	Monitoring the user
	Historical matching

	Related Work
	Emu: Framework Overview
	Emu Tasks
	Contextual Triggers
	System Architecture

	Discussion and Future Work
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

