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Abstract—Chaotic systems, such as Lorenz systems or logistic
functions, are known for their rapid divergence property. Even
the smallest change in the initial condition will lead to vastly
different outputs. This property renders the short-term behavior,
i.e., output values, of these systems very hard to predict. Because
of this divergence feature, lorenz systems are often used in cryp-
tographic applications, particularly in key agreement protocols
and encryptions. Yet, these chaotic systems do exhibit long-term
deterministic behaviors - i.e., fit into a known shape over time.
In this work, we propose a fast dynamic device authentication
scheme that leverages both the divergence and convergence
features of the Lorenz systems. In the scheme, a device proves its
legitimacy by showing authentication tags belonging to a pre-
determined trajectory of a given Lorenz chaotic system. The
security of the proposed technique resides in the fact that the
short-range function output values are hard for an attacker to
predict, but easy for a verifier to validate because the function
is deterministic. In addition, in a multi-verifier scenario such
as a mobile phone switching among base stations, the device
does not have to re-initiate a separate authentication procedure
each time. Instead, it just needs to prove the consistency of its
chaotic behavior in an iterative manner, making the procedure
very efficient in terms of execution time and computing resources.

Index terms — Lorenz System, Authentication, PUF.

I. INTRODUCTION

Chaotic systems (maps) are usually characterized by their
high input sensitivity. The smallest alterations or variations
in the initial condition will result in significant changes on
the output values. Therefore, collecting a large set of system
outputs may not – and in general does not – lead to a good
prediction of the chaotic system’s output values. For such a
map, the system parameters are central to the system chaotic
properties. The parameters need to be selected in a manner
which ensures that the system divergence is highly sensitive
to changes in the input values.

There are many types of chaotic systems. In this work,
we focus on the 3D Lorenz systems. The original Lorenz
system was introduced to describe and model fluid or air
applications that are uniformly heated from bottom and cooled
from above [1]. However, due to its divergence property, it has
also been used as a cryptographic primitive or component. Its
most common application is in encryption. Researchers have
suggested using the chaotic functions in block ciphers [2],
as well as image encryption [3]. Unlike conventional secret
key-based encryptions, which use one key to obfuscate the
entire piece of data, chaotic systems are able to spawn a new
key or random vector for each block, which can be precisely
re-generated during decryption. This block-based obfuscation
technique only requires one set of pre-shared system para-
meters. Another common use is to facilitate key agreements

* Hai Cheng participated in this research while he was a visiting scholar
with the Adaptive and Secure Computing Systems Laboratory.

[4]. Other applications include image digest algorithms [5] and
random number generators [6].

However, two issues are often overlooked when developing
or implementing chaotic systems like Lorenz:

◦ Convergence: Besides their divergence property, Lorenz
systems do have a convergence property as well. Al-
though, this convergence property is rarely used. With
a given set of system parameters, all the output values
are centralized around two attractors on the function
trajectory. Although the outputs of the Lorenz system are
still highly unpredictable with varying initial conditions,
the trajectory is determined statistically according to the
system parameters.

◦ Static System Parameters: Unlike keyed cryptographic
schemes where the keys can be any vectors, the system
parameters of chaotic functions cannot be arbitrarily
chosen. They must be selected in a way that ensures
both convergence and divergence. Thus, they cannot be
arbitrarily updated as the public key systems.

To address these two issues, we propose a novel authentica-
tion scheme based on Lorenz systems. The major contributions
of the paper are:

1. We leverage both the convergence and divergence proper-
ties of the Lorenz systems in the authentication procedure.
The convergence property is used to provide a fast but
rough verification of the function output values. The
divergence of the function is used for slower but more
accurate authentication. We combine the two properties to
implement an adaptive verification scheme and improve
the efficiency of the procedure;

2. To enhance the security of the Lorenz system-based
scheme, we outline an approach for dynamically updating
the system parameters while still maintaining all the
chaotic nature of the system;

3. The proposed scheme works specially well for use-cases
when a device needs to be authenticated frequently by
multiple verifiers. An illustrative scenario is shown in Fig.
1. The device only needs to prove the consistency of its
chaotic behavior in an iterative manner, instead of re-
initiating a new authentication session each time.

Fig. 1: While a phone is switching among the base stations (or a
vehicle being authenticated by other automobiles in the network), it
needs to be authenticated at every transition. All base stations rely
on an authentication center (AuC) for this process, which shares the
same secret with the device.978-1-5386-8398-9/18/$31.00 ©2018 IEEE



The rest of the paper is organized as follows: Section II
presents the relevant background on Lorenz chaotic functions.
Section III introduces the hardware primitive required by the
scheme. Section IV outlines the authentication protocol.

II. PRELIMINARIES OF THE LORENZ CHAOTIC SYSTEMS

In this section we will introduce the concept and property
of the Lorenz chaotic systems. To better facilitate the presen-
tation, we define the following notations:

• σ, β, ρ: the system parameters of Lorenz functions;
• pn = (xn, yn, zn): an output of a Lorenz system after
n iterations, which is a point on the trajectory with
coordinates (xn, yn, zn);

• LFσ,β,ρ(p0, n): a Lorenz function with system para-
meters σ, β, ρ. Where p0 is the initial condition and pn
the outputs after n iterations.

A. Lorenz Chaotic Systems
There exist many types of chaotic systems with different

dimensions. For example, there are one-dimensional (1D)
logistic map, two-dimensional (2D) Van der Pol system, and
three-dimensional (3D) Chua circuit. In this work, we focus
on the Lorenz system, which is a 3D chaotic map. The
Lorenz functions can be formulated by a system of differential
equations with three parameters as shown in the equation
below: 
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where σ, β, and ρ are the system parameters. The Lorenz
system was introduced originally to model the consequent
bidirectional convection of air or fluid. And the three system
parameters were defined as follows:

◦ σ = 10 as the Prandtl number, to denote the ratio of
thermal conductivity and viscosity of the studied material;

◦ ρ = 28 as the Rayleigh number, to represent the differ-
ence between the system’s top and bottom temperatures;

◦ β = 2.6667 as the ratio of the area’s width and height in
which the air or fluid convection is formed.

Fig 2 shows the chaotic map of the Lorenz function with
the above parameters. Since then Lorenz systems have been
applied in many fields such as dynamos, lasers, chemical
reactions, and cryptography, these parameters can take on
other values as long as the convergence and divergence are
maintained.

Fig. 2: The trajectory of a 3D Lorenz system, which is usually in a
pattern of a butterfly or “8”.

For digital applications of Lorenz functions, the discrete
equations are given below:

xn+1 = xn + σ(xn − yn)4t

yn+1 = yn + (ρxn − xnzn − yn)4t

zn+1 = zn + (xnyn − βzn)4t

(2)

where 4t determines the resolution of the map. In the pro-
posed design and its FPGA implementation, we adopt the
fixed-point multiplication version of [Eq. 2].

B. The Key Properties of Lorenz Chaotic Systems
1) Stationary points: In [Eq. 2], when ρ > 1, there are two

distinct stationary points:

C1, C2 = (±
√

β(ρ− 1),±
√

β(ρ− 1), ρ− 1) (3)

These two points are located at mirror symmetry with
respect to the vertical plane x + y = 0. Although C1
and C2 are not physically on the trajectory, they serve
as the attractors that balance out and kill off the initial
transients, and evolve the system towards its typical be-
havior. It should be highlighted that σ does not determine
the space location of the two attractors, but rather the size
of the map.

2) Convergence: The attractors bring in the convergence
property of a chaotic system. In other words, even if the
initial state p0 is not a point on the trajectory, it will
converge to the orbit in a finite number of iterations. In
addition, although the coordinates of individual Lorenz
system outputs are or seem highly unpredictable in the
short-range, over time they all conform to the butterfly
pattern.
Another straightforward representation of the convergence
property is the z-axis (x = y = 0). All trajectories which
start on the z-axis, will remain on it and tend to evolve
towards the origin (0, 0, 0) in a clockwise direction.
The convergence attribution can be described by Haus-
dorff dimension dimHK [7] bounded by:

dimHK ≤ 3−
2(σ + β + 1)

σ + 1 +
√

(σ − 1)2 + 4ρσ
(4)

3) Divergence: The divergence property has been adopted
in many cryptographic applications because of its high
unpredictability. With a tiny variation of the initial con-
dition p0, the output pn will largely fluctuate. Lyapunov
exponent can be used to evaluate the divergence of a given
chaotic system:

|δ(p)| ≈ |δ(0)|eλp, (5)

where for a trajectory T (p)’s nearby orbit T (p) + δ(p),
δ(p) is a vector with infinitesimal initial length. The
maximal λ is known to be approximately 0.9056 [8].

III. LORENZ SYSTEM-BASED AUTHENTICATION

PRIMITIVE (LAP)
Before introducing the proposed fast authentication tech-

nique, we will first present its core building block, termed
the Lorenz System-Based Authentication Primitive (LAP).
The LAP primitive (cf., Fig. 3) anchors the security of the
scheme in the uniqueness of the device hardware. It is used to
dynamically update the system parameters and generate unique
tokens for authentication.

A. The Three Basic Units of a LAP
As shown in Fig. 3, there are three major components

in a LAP: U1, U2, and an input control unit (ICU). U1
consists of a physical unclonable function (PUF) and a Lorenz





4) To configure a device with the selected system para-
meters, the verifier sends the challenges CHLi0 , CHLi1 ,
CHLi2 to the device’s LAP.

5) The ICU switches from idle to Mode 1 and accepts the
three outputs from the U1 unit to set (σ2, β2, ρ2) locally
in U2 using [Eq. 7].

It should be emphasized that the above procedure is secure
against eavesdropping since CHLi leaks no information of
RSPi. Furthermore, the U1 PUF could be made larger to
increase the system’s unpredictability as shown in Fig. 6.
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Fig. 6: As the size of the PUF increases from 16 to 128 bits, the
variation of LF1()’s inputs also enlarges. This leads to the increasing
randomness of U1’s output. The randomness is evaluated by the p-
value of the National Institute of Standards and Technology (NIST)
SP 800-22 test [13].

C. Mode 2: Trajectory Landing
When the ICU is in this mode, the goal is to produce the

first point p1 that lands on the trajectory. The verifier sends
two random numbers CHLR1

and CHLR2
to the device as the

request. The PUF uses the request, i.e., challenge, to generate
two outputs:

p0 = LF1(RSPR1
,m)

n = LF1(RSPR2
,m)

(8)

The (p0, n) is then fed into LF2() as the initial condition
by the ICU. The U2 unit can generate its first output:

p1 = LF2(p0, [n]), (9)

where [n] is defined as:

[n] = n mod(v − u) + u, (10)

and u and v are the lower and upper bounds of n.
The derivation of p1 in U2 using [Eq. 9] has to ensure that

p1 lands on the trajectory featured by (σ2, β2, ρ2). Therefore,
the U2 operation may take multiple iterations to meet this
convergence requirement. The lower bound u of iterations is
determined by the resolution variable 4t in [Eq. 2]. Essen-
tially, it regulates how fast an arbitrary point can be attracted
to the trajectory, as shown in Fig 7.

In this work, we use a high resolution 4t = 0.00001,
which has the lower bound of u = 220 iterations for the
landing. On the other hand, v limits the maximum number
of iterations to save computation resources and time. Here we
choose the bounds to be 220 ≤ [n] ≤ 250.

D. Mode 3: Authentication Token Generation
Once U2 in the LAP outputs the first point p1 on the orbit,

the ICU switches the initial condition of U2 from p0 to pj ,
where j > 0. Thus the LAP’s outputs will be:

pj = LF2(pj−1, [n]), (11)

where the set {pj} will be used for fast authentication among
multiple verifiers.
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Fig. 7: The smaller 4t is, the more iterations are needed for an
arbitrary point to enter into the trajectory.

IV. FAST DYNAMIC AUTHENTICATION BASED ON

LORENZ CHAOTIC SYSTEMS

First, we briefly outline the protocol, then we describe in
the subsections in more detail each of the steps. The advantages
of the proposed technique are:

1) Unlike conventional authentication schemes that require
at least two messages to be communicated between every
verifier and device, the proposed scheme uses two mes-
sages for the first verifier, and only one message for each
of the consequent verifications;

2) The technique rests on the fact that it is hard for an
adversary to predict the correct responses to a challenge
because to the Lorenz function’s divergence and the
dynamic configuration of the system parameters, yet, it is
easy for a verifier to authenticate because of the function
does converge under the right criteria;

3) The proposed protocol only involves fixed-point multipli-
cation and addition (rather than exponential operations in
conventional approaches). Moreover, the authentication is
carried out in an adaptive manner for better efficiency.

The adaptive authentication protocol using the Lorenz
chaotic system is outlined in Protocol IV.1.

In the pre-configuration step, the verifier determines the
Lorenz system parameters of the device to be authenticated.
It then notifies the device in an eavesdrop-resistant manner
using the PUF’s CRP feature. The device switches to Mode
1 to dynamically configure its (σ2, β2, ρ2) accordingly. It is
worth noting that the pre-configuration does not have to be
run every time an authentication procedure is initiated. Once a
set of system parameters is determined, the PAL can generate
248·3 unique authentication tokens under this set, which is
sufficient for most applications. The system parameters only
need to be re-set in the event of an information leakage, in
other words, when the verifier or the device suspects that the
current (σ2, β2, ρ2) 3-tuple may have been compromised.

When the first verifier tries to authenticate the device, it
sends two arbitrary CHLR1

and CHLR2
to the device. The

device transitions into Mode 2 to generate an on-trajectory
point p1, and then shifts to Mode 3 to generate p2 based on
p1. At that moment, the two points are sent to the verifier for
their fast authentication.

When the device encounters another verifier, let us say
verifier j, it only needs to generate one point pj+1 for
authentication, and does not need to wait for the verifier’s
request. pj+1 can be authenticated based on the pj sent to
the previous verifier (j− 1). All verifiers share this correlated






