
ForkTail: A Black-Box Fork-Join Tail Latency Prediction Model
for User-Facing Datacenter Workloads

Minh Nguyen
The University of Texas at Arlington

mqnguyen@mavs.uta.edu

Sami Alesawi∗
The University of Texas at Arlington

salesawi@kau.edu.sa

Ning Li
The University of Texas at Arlington

ning.li@uta.edu

Hao Che
The University of Texas at Arlington

hche@cse.uta.edu

Hong Jiang
The University of Texas at Arlington

hong.jiang@uta.edu

ABSTRACT
The workflows of the predominant user-facing datacenter services,
including web searching and social networking, are underlaid by
various Fork-Join structures. Due to the lack of understanding the
performance of Fork-Join structures in general, today’s datacen-
ters often resort to resource overprovisioning, operating under low
resource utilization, to meet stringent tail-latency service level ob-
jectives (SLOs) for such services. Hence, to achieve high resource
utilization, while meeting stringent tail-latency SLOs, it is of para-
mount importance to be able to accurately predict the tail latency
for a broad range of Fork-Join structures of practical interests.

In this paper, we propose ForkTail, a black-box Fork-Join tail
latency prediction model that covers a wide range of Fork-Join
structures. In ForkTail, all Fork nodes are treated as black boxes,
admitting both homogeneous and inhomogeneous cases, and dif-
ferent requests in the request flow are allowed to spawn different
numbers of tasks forked to different numbers of Fork nodes. On
the basis of the central limit theorem for queuing models under
heavy load, we are able to arrive at a highly computational effective,
empirical expression for the tail latency as a function of the means
and variances of the task response times. Since this expression
can be applied to request sub-flows at any granularities, it can be
used for tail-latency prediction for services in a consolidated en-
vironment, where different services and applications may share
the same datacenter cluster resources. Our extensive testing results
based on model-based and trace-driven simulations, as well as a
real-world case study in a cloud environment demonstrate that
the expression can consistently predict the tail latency within 20%
and 15% prediction errors at 80% and 90% load levels, respectively.
Moreover, our sensitivity analysis demonstrates that such errors
can be well compensated for with no more than 5% and 3% resource
overprovisioning at these two load levels, respectively. This, to-
gether with its extremely low computational complexity, makes
∗The author is also with Faculty of Computing and Information Technology in Rabigh,
King Abdulaziz University, Saudi Arabia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5785-2/18/06. . . $15.00
https://doi.org/10.1145/3208040.3208058

ForkTail a viable tool for both offline and online job scheduling and
resource provisioning for user-facing datacenter applications.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies;

KEYWORDS
tail latency, Fork Join queuing networks, datacenter resource provi-
sioning, user-facing datacenter workloads.

1 INTRODUCTION
Fork-Join structures underlay many user-facing datacenter services,
including web searching and social networking. A Fork-Join struc-
ture is a critical building block in the request processing workflow
that constitutes a major part of request processing time and hard-
ware cost, e.g., more than two-third of the total processing time
and 90% hardware cost for a Web search engine [22]. In a Fork-Join
structure (e.g., Fig. 1), each request in a flow spawns multiple tasks,
which are forked to, queued and processed at different fork nodes
in parallel; the task results are merged at a join node; and the final
results are returned. Due to barrier synchronization, the request re-
sponse time is determined by the slowest task, making it extremely
challenging to predict the request performance, in particular, the
request tail latency. This is because tail latency is a probabilistic
performance measure concerning the tail probability, which is hard
to capture, from both modeling and measurement points of view.
In particular, it is harder but more important1 to predict the tail
latency under heavy load conditions than light ones. This is because
as the load becomes heavier, so does the tail distribution, e.g., the
99th percentile of memcached request latencies on a server jumps
from less than 1ms at the load of 75% to 1s at the load of 89% [8].

Tail latency is considered to be the most important performance
measure for user-facing datacenter applications [10] and it is nor-
mally expressed as a high percentile request response time, e.g.,
the 99th percentile response time of 200ms, to satisfy as many user
requests as possible. Unfortunately, without a good tail-latency pre-
diction model, especially in the high load region, to provide high
assurance of meeting tail-latency SLOs for user-facing services, the
current practice is to overprovision resources, which however, re-
sults in low resource utilization in datacenters [16, 34]. For example,
1In the low load region, tail-latency requirements can be easily satisfied as the available
resources are abundant. In contrast, in the heavy load region in which the leftover
resource is scarce, resource allocation with high precision must be exercised to meet
user tail-latency requirements.

https://doi.org/10.1145/3208040.3208058

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA M. Nguyen et al.

aggregate CPU and memory utilizations in a 12,000-server Google
cluster are mostly less than 50%, leaving 50% and 40% allocated
CPU and memory resources, respectively, idle almost at any time
[34]. Similarly, in a large production cluster at Twitter, aggregate
CPU usage is within 20%–30% even thought CPU reservations are
up to 80% and aggregate memory usage is mostly within 40%–50%
while memory allocation consistently exceeds 75% [16]. Hence,
how to improve resource utilization or the load from currently less
than 50% to, say, 80-90%, while meeting stringent SLOs has been
a challenging issue for datacenter service providers [16]. To this
end, a key challenge to be tackled is how to accurately capture the
tail latency with respect to various Fork-Join structures at high load.

Fork-Join structures are traditionally modeled by a class of queu-
ing network models, known as Fork-Join queuing networks (FJQNs)
[9]. FJQNs are white-box models in the sense that all the Fork no-
des are explicitly modeled as queuing servers with given queuing
discipline and service time distribution. In this paper, we argue
that attempting to use FJQNs to cover a sufficiently wide range
of Fork-Join structures of practical interests is not a viable solu-
tion. Instead, a black-box solution that can cover a broad range of
Fork-Join structures must be sought.

On one hand, FJQNs are notoriously difficult to solve in general.
Despite the great effort made for more than half a century, to date,
no exact solution is available even for the simplest FJQN where all
the queuing servers are M/M/1 queues [37]. Although empirical
solutions for some FJQNs are available, e.g., [11, 25, 29, 33, 38],
they can only be applied to a very limited number of Fork-Join
structures, e.g., homogeneous case, the case of First-In-First-Out
(FIFO) queuing discipline, and a limited number of service time
distributions.

On the other hand, the design space of Fork-Join structures
of practical interests is vast. It encompasses (a) a wide range of
queuing disciplines and service time distributions (e.g., both light–
tailed and heavy-tailed) [9]; (b) the case with multiple replicated
servers per Fork node for failure recovery, task load balancing,
and/or redundant task issues for tail cutting [14, 39] or fast reco-
very from straggling tasks [42]; (c) the case where the number of
spawned tasks per request may vary from one request to another
[31]; and (d) the case of consolidated services, where different types
of services and applications may share the same datacenter cluster
resources [15]. Clearly, the existing FJQNs can hardly cover such a
design space in practice.

To tackle the above challenges, in this paper, we propose to study
a black-box Fork-Join model, called ForkTail, to cover a broad range
of Fork-Join structures of practical interests. By “black-box”, we
mean that each Fork node is treated as a black box, regardless of how
many replicated servers there are and how tasks are distributed,
queued, and processed inside the box. It also allows the number of
spawned tasks per request, k , to be a random integer taking values
in [1,N], where N is the maximum number of Fork nodes. As we
shall see, our solution to this black-box model indeed adequately
covers the above design space.

However, a general solution to ForkTail is unlikely to exist, given
the limited success in solving the white-box FJQNs. Nevertheless,
we found that for the black-box model, empirical solutions under
heavy load conditions do exist. Inspired by the central limit theorem
for G/G/m queuing servers under heavy load [23, 26], we were

able to demonstrate [30] that in a load region of 80% or higher,
where resource provisioning with precision is most desirable and
necessary, an empirical expression of the tail-latency for a special
case of the black-box model, i.e., k = N for all the requests, exists,
which can predict the tail latencies within 20% and 15% errors at
load levels of 80% and 90%, respectively, for the cases (a) and (b) in
the design space mentioned above. As our sensitivity analysis in
Section 5 shows, such prediction errors can be well compensated
for with no more than 5% and 3% resource overprovisioning at these
load levels, respectively.

The work in this paper makes the following contributions. First,
it generalizes the solution in [30] to also cover cases (c) and (d)
in the design space, hence, making it applicable to most Fork-Join
structures of practical interests. Second, it gives the first empirical,
universal solution to any white-box FJQNs at high load and hence, it
makes a contribution to the queuing network theory as well. In fact,
as we shall show in Section 4.1, for any white-box FJQN with M/G/1
Fork queuing servers, our approach leads to closed-form approxi-
mate solutions, which are on par with the most elaborate white-box
solutions in terms of accuracy across the entire load range at much
lower computational complexity. Third, comprehensive testing and
verification of the proposed solution is performed for all (a)-(d)
Fork-Join structures, based on model-based and trace-driven simu-
lation, as well as a real-world case study. Fourth, sensitivity analysis
indicates that ForkTail can lead to accurate resource provisioning
for user-facing interactive datacenter services in a consolidated
datacenter environment at high load. Finally, preliminary ideas are
provided as to how to use this solution to facilitate tail-latency-
SLO-guaranteed job scheduling and resource provisioning.

The rest of the paper is organized as follows. Section 2 reviews
the relatedwork. Section 3 introduces ForkTail and the empirical tail
latency approximations. Section 4 performs extensive testing of the
accuracy of the approximations. Section 5 presents the sensitivity
analysis for ForkTail. Section 6 discusses how ForkTail may be used
to facilitate effective job scheduling and resource provisioning with
tail-latency-SLO guarantee. Finally, Section 7 concludes the paper
and discusses future work.

2 RELATEDWORK
Fork-Join structures are traditionally modeled by FJQNs. To date,
the exact solution exists for a two-Fork-node FJQN only [18, 29].
Most works primarily focus on the approximation of mean response
time [4, 29, 38] and its bounds [5, 12]. For networks with general
service time distribution, several works have introduced hybrid
approaches that combine analysis and simulation to derive the
empirical approximation for mean response time [11, 29].

Some analytic results are available on redundant task issues
[19, 32, 41]. They either address only a single replicated server
subsystem with exponential task service time distribution [19] or
parallel request load balancing without task spawning [32, 41].

In terms of tail-latency related research, several works dealt with
the approximation of response time distribution assuming a simple
queuing model for each Fork node, e.g., M/M/1 [6] or M/M/k [25].
Computable stochastic bounds on request waiting and response
time distributions for some FJQNs are provided in a recent work
[35]. The most interesting and relevant work is given in [33]. The

ForkTafifl HPDC’18,June11–15,2018,Tempe,AZ,USA

authorsoffthfisworkproposedamethodffortheapproxfimatfion
offtafiflflatencyfforhomogeneousFJQNsbasedontheanaflytficafl
resufltsffromsfingfle-nodeandtwo-nodecases.Theapproxfimatfion
appflfiestoFJQNswfithanyservficetfimedfistrfibutfionthatcanbe
transfformedfintoaphase-typedfistrfibutfion.InSectfion4.1,weappfly
ourapproachtotheseFJQNs,whficharethencomparedagafinst
theapproxfimatfionsffromthfiswork,fintermsoffbothpredfictfion
accuracfiesandcomputatfionaflcompflexfity.Aflthoughoutperfformfing
oursoflutfionsbyaffewpercentagepofintsfintermsofftafiflpredfictfion,
fitscomputatfionaflcompflexfityrendersfitfinffeasfibfletoffacfiflfitateonflfine
resourceprovfisfionfing.Moreover,thfisworkcanonflycoverasmaflfl
ffractfionofftheafforementfioneddesfignspaceandhence,cannotbe
usedtoffacfiflfitateresourceprovfisfionfingfinpractfice.
Duetotheflackofftheoretficaflunderpfinnfing,theexfistfingtafifl-

flatency-SLO-awareresourceprovfisfionfingproposaflscannotprovfide
tafifl-flatencySLOguaranteebydesfign.Instead,varfioustechnfiques
suchastafifl-cuttfingtechnfiques[14,39],acombfinatfionoffjobprfiorfity
andrateflfimfitfingbasedonnetworkcaflcuflus[44]areempfloyedto
findfirectflyprovfidehfighassuranceoffmeetfingtafifl-flatencySLOs.As
findfirectsoflutfions,however,theycannotensureprecfiseresource
aflflocatfiontomeettafifl-flatencySLOs,whfifleaflflowfinghfighresource
utfiflfizatfion,andhencemayresufltfinresourceoverprovfisfionfing.
Yet,anotheraflternatfivesoflutfionfistotrackthetargettafifl-flatency
SLOthroughonflfine,dfirecttafifl-flatencymeasurementanddynamfic
resourceprovfisfionfing[17,40].Thfisapproach,however,maynot
beeffectfive,especfiaflflyfinenfforcfingstrfingenttafiflflatencySLOs.To
seewhythfisfistrue,consfiderthe99.9thpercentfiflerequestresponse
tfimeoff200ms,fi.e.,probabfiflfistficaflfly,onflyoneoutoff1000requests
shoufldexperfiencearesponsetfimegreaterthan200ms.Assume
thattheaveragerequestarrfivaflratefis50persecond.Totrack,
throughdfirecttafifl-flatencymeasurement,whetherthfistafiflflatency
SLOfisvfioflatedornotwfithreasonabflyhfighconfidence,oneneeds
tocoflflect,e.g.,100Ksampflestoseefifftherearemorethan100
requestswhoseresponsetfimesexceed200ms.Thfis,however,takes
about100K/50=2000secondsorabout33mfinutesoffmeasurement
tfime!Gfivenpossfibflyhfighvoflatfiflfityoffdatacenterworkfloads,the
tafiflflatencySLOmayhavebeenvfioflatedmufltfipfletfimesdurfingthfis
measurementperfiod,eventhoughthetotaflnumberoffrequests
whoseresponsetfimesexceedfing200msmaybeweflflwfithfin100.
Insummary,asoflutfionthatcanpredfictthetafiflflatencyusfinga

smaflflnumberoffsampflescoflflectedfinashortperfiodofftfimeasfinput
andthatappflfiestoaflargedesfignspaceoffFork-Jofinstructuresmust
besought,theprfimarymotfivatfionoffthecurrentwork.

3 FORKTAIL

Thebflack-boxmodefldescrfibedfinthfissectfion,caflfledForkTafifl,gre-
atflyextendsthescopeoffthebflack-boxmodeflfintroducedfin[30]to
addresstheentfiredesfignspacementfionedfinSectfion1.
Consfiderabflack-boxFork-Jofinmodeflwfitheachrequestorjob

(hereaffter,thesetwotermsareusedfinterchangeabfly)finthefinco-
mfingrequestflowspawnfingktasksmappedtokoutoffNFork
nodeswherek≤N,asdepfictedfinFfig.1.Theresufltsffromaflflk
tasksarefinaflflymergedataJofinnode(fi.e.,thetrfiangfleontherfight).
Requestsarrfiveffoflflowfingarandomarrfivaflprocesswfithaverage
arrfivaflrateλ.Aflthoughtheproposedsoflutfionappflfiestoarbfitrary
arrfivaflprocesses,weconsfideronflyPofissonarrfivaflprocess,asfitfis

wfideflyrecognfizedtobeareasonabflyaccuratemodeflffordatacenter
appflficatfionsfinpractfice[28].EachForknodemaybecomposedoff
morethanonerepflficatedserversffortask-fleveflffauflttoflerance,fload
baflancfing,tafifl-cuttfing,and/orstraggflerrecovery.AnexampfleFork
nodewfiththreeserverrepflficasfisdepfictedfinFfig.1.
Theabovemodefldeaflswfithageneraflcasewherek≤N.Note

thatthetradfitfionaflFJQNscoveronflyasmaflflffractfionoffthfisdesfign
space,fi.e.,k=N

1

N

Tj1

Tjk

Rj

1

3

2

Dfispatcher

λ λ

,homogeneousForknodeswfithasfingfleserver
pernode,whfichfismodefledasaFIFOqueufingsystem.Generafl

Ffigure1:Bflack-boxFork-Jofinmodefl.

soflutfionstoForkTafiflareunflfikeflytoexfists.Fortunatefly,wearemost
finterestedfinfindfingsoflutfionsfinhfighfloadregfionswhereprecfisere-
sourceprovfisfionfingfishfighflydesfirabfleandnecessary.Therefisaflarge
bodyoffresearchresufltsfinthecontextoffqueufingperfformance
finhfighfloadregfions(e.g.,see[36]andtherefferencestherefin).In
partficuflar,acflassficresuflt,knownasthecentraflflfimfittheoremffor
heavytraficqueufingsystems[23,26]statesthatfforaG/G/mqueue
(fi.e.,generaflarrfivaflprocess,generaflservficetfimedfistrfibutfion,and
mservers)underheavyfload,thewafitfingtfimedfistrfibutfioncanbe
approxfimatedbyanexponentfiafldfistrfibutfion.Cflearfly,thfistheorem
appflfiestotheresponsetfimedfistrfibutfionasweflfl,sfincetheresponse
tfimedfistrfibutfionconvergestothewafitfingtfimedfistrfibutfionasthe
traficfloadfincreases.Thefintufitfionbehfindthfisapproxfimatfionfis
thatfinthehfighfloadregfion,theflongqueufingeffectheflpseffectfivefly
smoothoutservficetfimefluctuatfions(fi.e.,theflawoffflargenumbers),
whfichcausestheresponsetfimetoconvergetoadfistrfibutfioncflo-
seflysurroundfingfitsmeanvaflue,fi.e.,theshort-tafifledexponentfiafl
dfistrfibutfion,regardflessofftheactuaflarrfivaflprocessandservfice
tfimedfistrfibutfion.Inspfiredbythfisresuflt,wepostuflatethatffortasks
mappedtoabflack-boxForknodeandfinahfighfloadregfion,the
taskresponsetfimedfistrfibutfionFT(x)fforanyarrfivaflprocesscan
beapproxfimatedasageneraflfizedexponentfiafldfistrfibutfionffunctfion
[20],asffoflflows,

FT(x)=(1−e
−x/β)α, x>0,α>0,β>0, (1)

whereαandβareshapeandscafleparameters,respectfivefly.
Themeanandvarfianceoffthetaskresponsetfimearegfivenby[20]

E[T] = β[ψ(α+1)−ψ(1)], (2)

V[T] = β2[ψ′(1)−ψ′(α+1)], (3)

whereψ(.)andfitsderfivatfivearethedfigammaandpoflygamma
ffunctfions.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA M. Nguyen et al.

From Eqs. (2) and (3), it is clear that the distribution in Eq. (1)

is completely determined by the mean and variance of the task

response time. In other words, the task response time distribution

can be measured by treating each Fork node as a black box as shown

in Fig. 2. The rationale behind the use of this distribution, instead of

the exponential distribution, is that it can capture both heavy-tailed

and light-tailed task behaviors depending on the parameter settings

and meanwhile, it degenerates to the exponential distribution at

α = 1 and E[T] = β . In [30], we showed that this distribution

significantly outperforms the exponential distribution in terms of

tail latency predictive accuracy.

λ λ

Figure 2: A Fork node as a black box.

Now, with all the Fork nodes in Fig. 1 being viewed as black

boxes, the response time distribution for any request with k tasks

can be approximated using the order statistics [37] as follows,

F
(k)
X

(x) =
k∏
i=1

FTi (x) =
k∏
i=1

(1 − e−x/βi)αi , (4)

Note that the above expression is exact if the response times for

tasks mapped to different Fork nodes are independent random vari-

ables. This, however, does not hold true for any Fork-Join structures,

simply because the sample paths of the task arrivals at different

Fork nodes are exactly the same, not independent of one another.

This is the root cause that renders the Fork-Join models extremely

difficult to solve in general. Our postulation is that as load rea-

ches 80% or higher where precise resource provisioning is desirable

and necessary, the tail-latency prediction errors introduced by this

assumption will become small enough for resource provisioning

purpose. Our extensive testing results in this paper provide strong

support of the postulation, making our modeling approach the only

practically viable one.

Tail latency xp , defined as the pth percentile request response
time, can then be written as,

xp = F
(k)
X

−1
(p/100) . (5)

Eq. (5) simply states that in a high load region, the tail latency

can be approximated as a function of the means and variances

of task response times for all k tasks at their corresponding Fork

nodes, irrespective of what workloads cause the heavy load. The

implication of this is significant. It means that this expression is

applicable to a consolidated datacenter cluster where more than one

service/application share the same cluster resources. Moreover, this

expression allows tail latency to be predicted using a limited num-

ber of request samples from the same service or different services

with similar task service time statistics, thanks to its dependence on

the first two moments of task response times only, i.e., the means

and variances. Using the same example given in Section 2, with only

20 seconds of measurement time, one can collect 20×50 = 1000 task

samples at individual Fork nodes to allow a reasonably accurate

estimation of the means and variances of task response times. With

moving average for a given time window, e.g., 20 seconds, these

means and variances and hence, the tail latency prediction, can

be updated every tens of milliseconds, making it possible to use

ForkTail to enable fast online tail-latency-guaranteed job sched-

uling and resource provisioning. This is in stark contrast to the

33-minute window required for the tail latency prediction based

on direct tail-latency measurement.

The results so far is general, applying to the inhomogeneous

case, where task response time distributions may be different from

one task to another, due to, e.g., the use of heterogeneous Fork

nodes and/or uneven background workloads. As a result, the tail

latency predicted by Eq. (5) may be different from one request to

another or even for the two identical requests, as long as their

respective Fork nodes do not completely coincide with one another,

or they are issued at different times. In other words, Eq. (5) is a

fine-grained tail latency expression. For certain applications, such

as offline resource provisioning (see Section 6 for explanations) and

coarse-grained, per-service-based tail-latency prediction, one may

be more interested in the homogeneous case only. In this case, the

response time distribution can be further simplified as,

F
(k)
X

(x) = (1 − e−x/β)kα . (6)

This is because the means and variances given in Eqs. (2) and (3) are

the same for the homogeneous case. A coarser-grained cumulative

distribution function (CDF) of the request response time can then

be written as,

FX (x) =
∑
ki

FX |K (x |ki)P(K = ki), (7)

where FX |K (x |ki) is the conditional CDF of the request response
time for requests with ki tasks, given by Eq. (6), i.e., FX |K (x |ki) =

F
(ki)
X

(x), and P(K = ki) = Pi is the probability that a request spawns
ki tasks.

Further assume that there are m request groups with distinct

numbers of tasks ki ’s, i = 1, . . . ,m, and corresponding probabilities

Pi ’s. We then have,

FX (x) =
m∑
i=1

Pi · F
(ki)
X

(x). (8)

Correspondingly, the tail latency for them groups of requests as a

whole can then be readily obtained, similar to Eq. (5), as follows,

xp = F−1X (p/100). (9)

For example, the tail latency for a given service can be predicted by

collecting statistics for ki ’s and Pi ’s, as well as mean and variance of
task response time and applying them to the tail latency expression

in Eq. (9).

3.1 Application to White-Box FJQNs

Clearly, the above black-box approach leads to closed-form solu-

tions for any white-box models whose analytical expressions for

the means and variances of task response times are available, whet-

her it is homogeneous or not. In fact, our solution works for the

case where different Fork nodes may have different service time

distributions and queuing disciplines. As an example, we apply our

approach to a large class of FJQNs, where each Fork node is an

M/G/1 queue.

ForkTail HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Number of nodes
100 500 1000

Er
ro

r (
%

)

-15
-10
-5
0
5

10
15
20
25

Erlang-2 - ForkTail vs. EAT - 99th

ForkTail-10%
EAT-10%

ForkTail-50%
EAT-50%

ForkTail-90%
EAT-90%

Number of nodes
100 500 1000

Er
ro

r (
%

)

-15
-10
-5
0
5

10
15
20
25

Exponential - ForkTail vs. EAT - 99th

ForkTail-10%
EAT-10%

ForkTail-50%
EAT-50%

ForkTail-90%
EAT-90%

Number of nodes
100 500 1000

Er
ro

r (
%

)

-15
-10
-5
0
5

10
15
20
25

Hyperexponential-2 - ForkTail vs. EAT - 99th

ForkTail-10%
EAT-10%

ForkTail-50%
EAT-50%

ForkTail-90%

Figure 3: Prediction errors for the 99th percentile response times for ForkTail and EAT.

LetW , S , and T denote random variables for task waiting time,
service time, and response time, respectively. SinceW and S are
independent random variables, the mean and variance of the task
response time are given as,

E[T] = E[W] + E[S],

V[T] = V[W] + V[S].

From Takács recurrence theorem [24], the kth moment of the
waiting time can be computed by

E[W k] =
λ

1 − ρ

k∑
i=1

(
k

i

)
E[Si+1]

i + 1
E[W k−i].

Using this theorem, the mean and variance of the task response
time can be derived as follows,

E[T] = E[S]

(
1 +

ρ

1 − ρ
·
1 +C2

S
2

)
, (10)

V[T] = E[W]2 +
λE[S3]

3(1 − ρ)
+ E[S2] − E[S]2, (11)

where E[Sk] is the kth moment of the service time; ρ is the server
utilization, ρ = λE[S]; C2

S is the squared coefficient of variation
of service times, C2

S = V[S]/E[S]
2; and E[W] is the mean waiting

time, E[W] = λE[S2]/[2(1 − ρ)].
The task response time distribution can then be approximated

by Eq. (1) whose parameters can be found by substituting Eqs. (10)
and (11) into Eqs. (2) and (3), respectively. Finally, the tail latency
for the homogeneous system can be obtained from Eq. (9).

4 TAIL LATENCY PREDICTION VALIDATION
In this section, ForkTail is extensively validated against the results
from model-based simulation, trace-driven simulation, and a case
study in Amazon EC2 cloud. The validation is performed for the
systems with k = N , k ≤ N , and consolidated services, separately.
The accuracy of the prediction is measured by the relative error be-
tween the value predicted from ForkTail, tp , and the one measured
from simulation or real-system testing, tm , i.e.,

error =
100(tp − tm)

tm
.

Due to the page limitation, in this paper, we only provide testing
results for the 99th percentile tail latencies. The testing results at the
99.9th percentile tail latencies are given in an extended version of

this paper, which is available online [3]. All the conclusions drawn
in this paper stay intact in [3].

4.1 Case 1: k = N
A notable example for this case is Web search engine [7] where a
search request looks up keywords in a large inverted index distri-
buted on all the servers in the cluster. We validate ForkTail with
three testing approaches, i.e., white-box and black-box model-based
testing as well as a real-world case study in Amazon EC2 cloud.

White-BoxModel-based Testing:Here we study the accuracy of
ForkTail when applied to homogeneous, single-server-Fork-node
Fork-Join systems with the assumption that the service time distri-
bution is known in advance, the approach taken in previous works
on performance analysis of FJQNs [37]. The tail latency prediction
involves the following steps:
– Compute the mean, variance, and third moment for the given
task service time distribution.

– Find the mean and variance of task response times from Eqs. (10)
and (11).

– Substitute the above mean and variance into Eqs. (2) and (3),
respectively, and solve that system of equations to find the scale
and shape parameters of the generalized exponential distribution
in Eq. (1), which is used to approximate the task response time
distribution.

– Calculate thepth percentile of request response times from Eq. (9).
First, we compare ForkTail against the state-of-the-art prediction

approach for homogeneous FJQNs [33], referred to as efficient approx-
imation for tails (EAT). This approximation is based on analytical
results from single-node and two-node systems. Fig. 3 shows the
comparative results for three service time distributions studied in
[33], i.e., Erlang-2, Exponential, and Hyperexponential-2, at the
loads of 10%, 50%, and 90%2 and numbers of nodes of 100, 500, and
1000.

EAT provides more accurate (from a few to several percentage
points) approximations for the 99th percentiles of response times
across all the cases studied. Much to our surprise, our approach
yields most of the errors within 10%, across the entire load range.
Although outperforming our approach, EAT has its limitations.
First, it can be applied only to homogeneous FJQNs where each
node can be generally modeled as a MAP/PH/1 queuing system,

2For EAT, the case for Hyperexponential-2 at the load of 90% is not available, due to a
numerical error running the code provided in [33].

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA M. Nguyen et al.

Empirical - 99th - single-server Truncated Pareto - 99th - single-server Weibull - 99th - single-server

Figure 4: Prediction errors of the 99th percentile response times for white-box systems with single-server Fork nodes.

i.e., Markovian arrival processes and phase-type service time dis-

tribution with one service center. Second, the method requires the

service time distribution to be known in advance and converted

into a phase-type distribution, which is nontrivial, especially for

heavy-tailed distributions [21]. Third, the method may incur high

computational complexity, depending on the selection of a constant

C , whose value determines the computational runtime and pre-

diction accuracy. It takes at least 2 seconds on our testing PC (Core

i7-4940MX Quad-core, 32GB RAM) to get the resulting percentiles

even at the lesser degree of accuracy with C = 100 (more than 300
seconds atC = 500). In contrast, our method takes less than 5 milli-

seconds to compute the required percentiles. As a result, similar to

other existing white-box solutions, EAT has limited applicability

for datacenter job scheduling and resource provisioning in practice.

To cover a sufficiently large workload space, we further consider

service time distributions with heavy tails, which are common in

practice [27] and cannot be easily dealt with by EAT, including the

following,

– Empirical distribution measured from a Google search test leaf

node provided in [27], which has a mean service time of 4.22ms,

a coefficient of variance (CV) of 1.12, and the largest tail value of

276.6ms;

– Truncated Pareto distribution [21] with the same mean service

time and a CV of 1.2, whose CDF is given by,

FS (x) =
1 − (L/x)α

1 − (L/H)α
0 ≤ L ≤ x ≤ H ,

where α is the shape parameter; L is the lower bound; andH is the

upper bound, which is set at the maximum value of the empirical

distribution above, i.e., H = 276.6ms, resulting in α = 2.0119 and

L = 2.14ms.
– Weibull distribution [9], also with the same mean service time

and a CV of 1.5, whose CDF is defined as,

FS (x) = 1 − exp[−(x/β)α] x ≥ 0,

where α = 0.6848 and β = 3.2630 are shape and scale parameters,

respectively.

Fig. 4 presents the prediction errors for the 99th percentile re-

sponse times for the above cases. The Weibull distribution, which

is less heavy-tailed, consistently yields smaller errors, well within

5%, for the entire load range studied, similar to the short-tailed dis-

tribution cases studied earlier. The empirical and truncated Pareto

distributions, which are more heavy-tailed, provide good approxi-

mations for the 99th percentiles at the load of 80% or higher, which

is well within 17% and 5% at the load of 80% and 90%, respectively,

agreeing with our postulation.

Black-Box Model-based Testing:We now validate ForkTail wit-

hout making assumption on the service time distribution at each

Fork node. We treat each Fork node as a black-box and empirically

measure the mean and variance of task response times at each gi-

ven arrival rate λ or load. These measures are then substituted into
Eqs. (2) and (3), respectively, to find the shape and scale parameters,

which are in turn used to predict the tail latency based on Eq. (9).

For all the three heavy-tailed FJQNs studied above, we consi-

der two types of Fork nodes, i.e., one with single server and the

other with three replicated servers. For the one with three servers,

we explore two task dispatching policies. The first policy is the

Round-Robin (RR) policy, in which the dispatcher will send tasks

to different server replicas in an RR fashion. The second policy

is still RR, but it also allows redundant task issues, a well-known

tail-cutting technique [14, 39]. This policy allows one or more re-

plications of a task to be sent to different server replicas in the Fork

node. The replications may be sent in predetermined intervals to

avoid overloading the server replicas. In our experiments, at most

one task replication can be issued, provided that the original one

does not finish within 10ms, which is around the 95th percentile of

the empirical distribution above.

Figs. 5–7 present the prediction errors at different load levels

and N ’s for the 99th percentile response times for all three FJQNs

with single server and three servers per Fork node, respectively.

First, we note that the prediction errors for the cases in Fig. 5 are

very close to those in Fig. 4. This is expected as the white-box and

black-box results, ideally, should be identical. The differences are

introduced due to simulation and measurement errors. Second, the

prediction performances of the cases with three replicas and the RR

policy in Fig. 6 are also very close to those of the cases in Fig. 5, with

errors being well within 20% and 10% at the loads of 80% and 90%,

respectively, for all the case studies, further affirming our postula-

tion. The two scenarios have similar performances because they are

compared at the same load levels, where the RR policy in the second

scenario simply balances the load among three replicas, making

each virtually identical to the single-server scenario. In contrast

to these two scenarios, Fig. 7 shows that with the application of

the tail-cutting technique, the prediction errors are substantially

reduced, with less than 10% at the load of 80% or higher. This is

consistent with the earlier observation, i.e., the shorter the tail, the

smaller the prediction errors. This suggests that the tail-cutting

techniques, often utilized in datacenters to curb the tail effects, can

ForkTail HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Empirical - 99th - single-server

10-node
100-node

500-node
1000-node

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Truncated Pareto - 99th - single-server

10-node
100-node

500-node
1000-node

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Weibull - 99th - single-server

10-node
100-node

500-node
1000-node

Figure 5: Prediction errors of the 99th percentile response times for black-box systems with single-server Fork nodes.

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Empirical - 99th - 3-server - Round-Robin

10-node
100-node

500-node
1000-node

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Truncated Pareto - 99th - 3-server - Round-Robin

10-node
100-node

500-node
1000-node

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Weibull - 99th - 3-server - Round-Robin

10-node
100-node

500-node
1000-node

Figure 6: Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and Round-
Robin dispatching policy.

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Empirical - 99th - 3-server - Redundant

10-node
100-node

500-node
1000-node

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Truncated Pareto - 99th - 3-server - Redundant

10-node
100-node

500-node
1000-node

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Weibull - 99th - 3-server - Redundant

10-node
100-node

500-node
1000-node

Figure 7: Prediction errors of the 99th percentile response times for black-box systemswith 3-server Forknodes and redundant-
task-issue dispatching policy.

help expand the load ranges in which ForkTail can be applied.

A Case Study in Cloud:We also assess the accuracy of ForkTail
for a real case study in Amazon EC2 cloud. We implement a simple
Unix grep-like program on the Apache Spark framework (version
2.1.0) [2]. It looks up a keyword in a set of documents and returns the
total number of lines containing that keyword, as depicted in Fig. 8.
The cluster for the testing includes one master node using an EC2
c4.4xlarge instance and 32 or 64 worker nodes using EC2 c4.large
instances. We use a subset of the English version of Wikipedia as
the document for lookup. Each worker node holds a shard of the
document whose size is 128MB, corresponding to the default block
size on HDFS (Hadoop Distributed File System) [1]. A client, which
runs a driver program, sends a flow of keywords, each randomly
sampled from a pool of 50K keywords, to the testing cluster for
lookup. Each worker searches through its corresponding data block
to find the requested keyword and counts the number of lines
containing the keyword. The line count is then sent back to the

client program to sum up. Clearly, this testing setup matches the
black-box model.

Cluster Manager

Driver Program

SparkContext

Worker 1

CacheTask

Executor

Worker n

CacheTask

Executor

W
ikipedia docum

ents

Figure 8: Experiment setup in Amazon EC2 cloud.

We measure the request response time, i.e., the time it takes to
finish processing each keyword at the client. We also collect the
task response times, composed of the task waiting time and task
service time. The task waiting time is the one between the time the
request the task belongs to is sent to the cluster and the time the

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA M. Nguyen et al.

3 3.5 4 4.5 5 5.5
0

2000

4000

6000
The 95.0th percentiles - 32-c4.large

Experiment Homogeneous Inhomogeneous

Arrival rate (requests/s)
3 3.5 4 4.5 5 5.5

0

2000

4000

6000
The 99.0th percentiles - 32-c4.large

La
te

nc
y

(m
s)

3 3.5 4 4.5 5 5.5
0

2000

4000

6000
The 95.0th percentiles - 64-c4.large

Experiment Homogeneous Inhomogeneous

Arrival rate (requests/s)
3 3.5 4 4.5 5 5.5

0

2000

4000

6000
The 99.0th percentiles - 64-c4.large

La
te

nc
y

(m
s)

Figure 9: Predicted tail latencies for keyword occurrence counts in Amazon cloud with 32 (left) and 64 (right) nodes.

task is sent to a given worker for processing. This is because in the
Spark framework, all the tasks spawned by a request are kept in
their respective virtual queues corresponding to their target wor-
kers centrally. A task at the head of a virtual queue cannot be sent
to its target worker until the worker becomes idle. Hence, to match
our black-box model, the task response time must include the task
waiting time, i.e., the task queuing time plus the task dispatching
time, and the task service time, which is the actual processing time
at the worker the task is mapped to. From the collected samples,
we compute the means and variances of task response times, which
are in turn used to derive the task response time distribution as in
Eq. (1). Ideally, the task response time distributions for all the tasks
are the same, given that the workers are identical. In other words,
one would expect that this case study is homogeneous. However,
our measurement indicates otherwise. A careful analysis reveals
that this is mainly due to the task scheduling mechanism in the
Spark framework. Each data block has three replicas distributed
across different workers. By default, the placement preference is
to send a task to an available worker where the data block resides.
Unfortunately, as the request arrival rate or load increases, more
tasks are mapped to workers that do not hold the required data
blocks for the tasks, causing long task response time due to the need
to fetch the required data blocks from the distributed file system.
This results in higher variability in the task response time distri-
butions among different workers. Therefore, the inhomogeneous
model given in Eq. (4) is found to be more appropriate in high load
regions. This observation is confirmed by the experimental results,
presented in Fig. 9. As one can see, the inhomogeneous model (the
blue lines) gives quite accurate prediction for both 95th and 99th
percentiles at both N = 32 and 64 cases, while the prediction from
the homogeneous model (the green lines) gets worse as the load
becomes higher. Based on the inhomogeneous prediction, the pre-
diction errors at both N = 32 and 64 and the 99th percentile are
well within 10% in a high load region, i.e., 60% or higher. Note that
the load here is measured in terms of request arrival rate. Since
the system is inhomogeneous, we estimated the equivalent loads
corresponding to different arrival rates based on the maximum
value of means of task service times across all the workers, as given
in Table. 1.

Finally, we note that to achieve a reasonably good confidence
of measurement accuracy for the 99th percentile tail latency, we

Table 1: Estimated loads (%) for the testing cluster based on
request arrival rates.

Request arrival rates (requests/s)

#workers 3.0 3.5 4.0 4.5 5.0 5.5

32 48.33 56.39 64.44 72.50 80.56 88.61
64 50.04 58.38 66.72 75.06 83.40 91.74

collected 80K samples in our experiments at the maximum possible
sampling rate equal to the average request arrival rate of 5.8 per
second, which translates into a measurement time of 13,793 seconds
or about 4 hours. It takes even more time to run the experiments
at lower arrival rates. The average runtime across all the request
arrival rates in the experiments is about 6 hours. Due to the costly
cloud services, we have to limit our experiments to 64 worker nodes.

This example clearly demonstrates that it can be expensive and
time consuming, if practical at all, to estimate tail latency based on
direct measurement. In contrast, ForkTail is able to do so with far
fewer number of samples at much lower cost. For example, with
800 samples collectable in less than three minutes, we can estimate
the response-time means and variances for all the tasks and hence
the tail latency with reasonably good accuracy. This means that
our prediction model can reduce the needed samples or prediction
time by two orders of magnitude than the direct measurement.

4.2 Case 2: Variable Number of Tasks k ≤ N
Notable examples for this case are key-value store systems in which
a key lookup may touch only a partial number of servers and web
rendering which requires to receive web objects or data from a
group of servers in a cluster.

In this case study, we assess the accuracy of our prediction model
(i.e., Eqs. (8) and (9)) for applications whose requests may spawn dif-
ferent numbers of tasks with distribution P(K = ki). Specifically, we
study two scenarios where P(K = ki) is nonzero for a specific value
of K and uniformly distributed. We further consider three different
service time distributions: two heavy-tailed ones, the empirical and
truncated Pareto as in Section. 4.1, and a light-tailed exponential
distribution, with the same mean service time, i.e., 4.22ms.

ForkTail HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Exponential - 99th - fixed k - 1000-node Truncated Pareto - 99th - fixed k - 1000-node Empirical - 99th - fixed k - 1000-node

Figure 10: Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job

is fixed (k = 100, 500, 900).

Exponential - 99th - uniform k - 1000-node Truncated Pareto - 99th - uniform k - 1000-node Empirical - 99th - uniform k - 1000-node

Figure 11: Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job

is uniformly distributed.

Scenario 1: Fixed Number of Tasks per Request: In this scena-

rio, we consider the cases when the number of forked tasks per

request is a fixed number k (k ≤ N), i.e., every incoming request
is split into exactly k tasks which are dispatched to k randomly

selected Fork nodes in an N -node cluster.

From Eqs. (6) and (8), we have,

FX (x) = (1 − e−x/β)kα , (12)

and the pth percentile is given by,

xp = −β log

(
1 −

(p

100

)1/kα)
. (13)

Fig. 10 shows prediction errors for the 99th percentile response

times for an 1000-node cluster with k = 100, 500, and 900 tasks.
ForkTail provides good prediction in high load regions, with all the

errors within 10% at the load of 90% and 20% at the load of 80%

for all the cases studied. The case with the light-tailed exponential

distribution gives quite accurate prediction for the entire range

under study, all within 6%.

Scenario 2: UniformDistribution:Herewe deal with caseswhen

an incoming request is forked to k random nodes in the cluster

where k is randomly sampled from an integer range [a,b], i.e.,
ki ∈ {a,a+1, . . . ,b−1,b} with probability Pi = P = 1/m∀i , where
m = b − a + 1. Therefore, the mean number of tasks is (a + b)/2.

From Eqs. (6) and (8), we have,

FX (x) = P ·

m∑
i=1

(1 − e−x/β)kiα . (14)

Fig. 11 presents prediction errors for an 1000-node cluster with

k in four different ranges, i.e., [80, 120], [400, 600], [800, 1000],

and [10, 990]. The results again show that ForkTail yields good

approximations for the 99th percentile request response times when

the system is under heavy load, i.e., 80% or higher. Furthermore,

again for all the cases with the exponential distribution, ForkTail

gives accurate predictions across the entire load range studied.

The above prediction model applies to the case where a single

tail-latency SLO is imposed on a service or application as a whole,

a practice widely adopted in industry. However, this practice can

be too coarse grained. To see why this is true, Table. 2 provides

the predicted tail latencies for some given requests with distinct

k values in a cluster of size 1000 and at the load of 90%. As one

can see, the 99th percentile tail latencies for requests at different

k’s can be drastically different, e.g., the 10-task and 900-task cases.
This suggests that even for a single application, finer grained tail

latency SLOs may need to be enforced to be effective, e.g., enforcing

tail-latency SLOs for request groups with each having k’s in a small
range. Table. 3 shows the accuracy of the prediction model at given

k’s, all well within 10% at load of 90%.

Table 2: The predicted 99th percentile of latencies (ms).

Number of forked tasks

Distribution 10 400 500 600 900

Exponential 291.32 446.97 456.38 464.08 481.19

Truncated Pareto 448.83 705.45 720.97 733.66 761.87

Empirical 391.27 616.22 629.83 640.95 665.68

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA M. Nguyen et al.

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Trace-based simulation - 99th - k = N

100-node
500-node

1000-node
5000-node

Load (%)
50 75 80 90

Er
ro

r (
%

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

Trace-based simulation - 99th - k = 50%N

100-node
500-node

1000-node
5000-node

Figure 12: Prediction errors of the 99th percentile target response times in a consolidated workload environment when the
tasks of each target job reach all the nodes (left plot) and randomly reach 50% number of nodes (right plot) in the cluster.

Table 3: Errors in the 99th percentile prediction when
tracking jobs with a given number of tasks at load of 90%.

Number of nodes

Distribution 10 400 500 600 900

Exponential -0.861 0.052 0.433 0.647 2.791
Truncated Pareto -0.571 -0.403 1.763 -0.489 -1.433
Empirical -2.814 -6.929 -6.239 -5.322 -6.541

4.3 Case 3: Consolidated Services
In this case study, we evaluate the accuracy of ForkTail when ap-
plied to the consolidated datacenter where multiple applications,
including latency-sensitive user-facing and background batch ones,
share cluster resources. We conduct a trace-driven simulation ba-
sed on a trace file derived from the Facebook 2010 trace, a widely
adopted approach in the literature to explore datacenter workloads
[13, 15, 43]. We test the accuracy of ForkTail in capturing the tail
latency for a given target application.
Workload: The trace file is generated based on the description of
the Facebook trace in some previously published works [13, 15, 43].
Specifically, we first generate the number of tasks for job arrivals
based on the distribution of the job size in terms of the number of
tasks per job, as suggested in [43]. It includes nine bins of given
ranges of the number of tasks and corresponding probabilities, assu-
ming that the number of tasks is uniformly distributed in the range
of each bin. We then generate the mean task service time based on
the Forked task processing time information in [13]. Individual task
times are drawn from a Normal distribution with the generated
mean and a standard deviation that doubles the mean as in [15].
The resulting trace file contains a total of two million requests, each
including the following information: request arrival time, number
of forked tasks, mean task service time, and the service times of
individual forked tasks.

In the experiments, the jobs in the trace file serve as the back-
ground workloads, which are highly diverse, involving a wide range
of applications with mean service times ranging from a few milli-
seconds to thousands of seconds. The target jobs are generated at
runtime using the same approach the trace file is generated. The
only difference is that the target jobs are statistically similar with
the same mean service time, to mimic a given application or simply
a group of jobs with similar statistic behaviors. For each simulation

run, a predetermined percentage, e.g., 10%, of target jobs are created
and fed into the cluster at random.
Simulation settings and results: In the simulation, the target
and background jobs are set at 10% and 90% of the total number of
jobs, respectively. We evaluate two cases, one with the number of
tasks per target job set at one half of the cluster size and the other
the same as the cluster size. The tests cover multiple cluster sizes,
i.e., 100, 500, 1000, and 5000 nodes with each having three servers.
All the cases are homogeneous.

The prediction errors for the 99th percentiles of target response
times for the two case studies at loads of 50%, 75%, 80%, and 90% are
shown in Fig. 12. As one can see, the prediction errors are within
15% for all the cases studied.

5 SENSITIVITY ANALYSIS
From all the experiments above, we can see that the proposed
model can be applied to a wide range of systems with reasonable
prediction errors for the 99th percentiles, within 20% and 15% at
the loads of 80% and 90%, respectively. Now, the question yet to
be answered is how much impact these errors will have on the
accuracy for resource provisioning at high loads. To this end, we
conduct a sensitivity analysis of tail latency as a function of load.

We perform experiments with different load levels in the high
load region, i.e., 78% to 95%, for FJQNs with different service time
distributions, i.e., exponential, Weibull, truncated Pareto, and empi-
rical. Fig. 13 shows results from both simulation and ForkTail for
the 99th percentile response times for 1000-node systems. First, we
note that ForkTail consistently overestimates the tail latency for
the exponential and Weibull cases, while mostly underestimates it
for the truncated Pareto and empirical cases. In other words, the
former causes resource overprovisioning, whereas the latter leads
to resource underprovisioning. Then the question is how much.
Take the exponential case as an example, the predicted tail latency
at 90% load is roughly equal to the simulated one at 90.5% load. This
means that ForkTail may lead to 0.5% resource over provisioning
for the exponential cases. Following the same logic, it is easy to find
that for both exponential and Weibull cases, ForkTail may result in
no more than 1% resource overprovisioning in the entire 78%-95%
load range. By the same token, we can find that for the truncated
Pareto and empirical cases, ForkTail may cause up to 4% resource
underprovisioning at 80% load and 2% at 90% load. This can be
well compensated for by leaving a 4% resource margin in practice.
This implies that in the worst-case when the actual service time

Load (%)
78 80 82 84 86 88 90 92 94 96

Ta
fifl
 fl
at
e
nc
y
(
ms
)

0

200

400

600

800

1000

1200

1400

1600
Exponentfiafl - 99th - 1000-node

Sfimuflatfion
ForkTafifl

ForkTafifl HPDC’18,June11–15,2018,Tempe,AZ,USA

Load (%)
78 80 82 84 86 88 90 92 94 96

Ta
fifl
 fl
at
e
nc
y
(
ms
)

0

200

400

600

800

1000

1200

1400

1600
Wefibuflfl - 99th - 1000-node

Sfimuflatfion
ForkTafifl

Load (%)
78 80 82 84 86 88 90 92 94 96

Ta
fifl
 fl
at
e
nc
y
(
ms
)

0

200

400

600

800

1000

1200

1400

1600
Truncated Pareto - 99th - 1000-node

Sfimuflatfion
ForkTafifl

Load (%)
78 80 82 84 86 88 90 92 94 96

Ta
fifl
 fl
at
e
nc
y
(
ms
)

0

200

400

600

800

1000

1200

1400

1600
Empfirficafl - 99th - 1000-node

Sfimuflatfion
ForkTafifl

Ffigure13:Dfifferencesfinthe99thpercentfifleresponsetfimesffromsfimuflatfionandForkTafiflffor1000-nodesystemswfithdfifferent
servficetfimedfistrfibutfions.

dfistrfibutfionfisshort-tafifled,ForkTafiflmaycauseupto5%and3%
resourceoverprovfisfionfingat80%and90%floadflevefls,respectfivefly.
Thfisfistoflerabfle,gfiventhatusfingourpredfictfionmodefl,wecan
fimprovedatacenterresourceutfiflfizatfionffromcurrentflyunder50%
aflflthewayto90%orhfigher.
OursensfitfivfityanaflysesfforotherFork-Jofinstructures,whfichare

notshownhere,havefledtothesfimfiflarconcflusfions.Thfismeansthat
ForkTafiflmayserveasapowerffuflmeanstoffacfiflfitatetafifl-flatency-
SLO-guaranteedjobscheduflfingandresourceprovfisfionfingfforuser-
ffacfingdatacenterappflficatfions.Theffoflflowfingsectfionprovfidesthe
preflfimfinaryfideashowthfismaybedone.

6 FACILITATINGRESOURCEPROVISIONING

Inthfissectfion,wedfiscusshowForkTafiflmaybeusedtoffacfiflfi-
tatebothtafifl-flatency-SLO-guaranteedjobscheduflfingandresource
provfisfionfing.Theproposedfideasarepreflfimfinaryandsomewhat
sketchy,butyet,theydoheflpreveaflthepromfisfingprospectsoff
ForkTafiflandpofintdfirectfionsfforffuturestudfiesonthfistopfic.
Jobscheduflfing:Wedescrfibethefideasoffhowatafifl-flatency-SLO-
guaranteedhybrfidcentraflfized-and-dfistrfibutedjobscheduflercan
bedevefloped,basedonForkTafifl.
Themafinfideafistoreflyondfistrfibutedmeasurementoffthemeans

andvarfiancesoffthetaskresponsetfimesandcentraflfizeddecfisfion
makfingastohowandwhethertherequesttafifl-flatencySLOcanbe
met,asdepfictedfinFfig.14.Inthemasterserverontheflefftresfides
thecentrafljobscheduflertowhfichuserssubmfitthefirrequestswfith
gfiventafifl-flatencySLOs.Aflfltheserversfinthecflustermeasuresthe
meansandvarfiancesofftaskresponsetfimesffortasksoffdfifferent
sfizesorfindfifferentbfinsonacontfinuousbasfis.Aflfltheservers
perfiodficaflflyconveythefirmeasurementstothecentraflschedufler.
Uponthearrfivafloffarequestwfithagfiventafifl-flatencySLOandgfiven
ktaskstospawn,basedonEq.(5),thecentraflscheduflerwfiflflrun
aFork-nodeseflectfionaflgorfithmtodetermfinewhfichkForknodes

shoufldbeusedsuchthatthetafifl-flatencySLOcanbemet.Iffsuch
kForknodesareffound,therequestwfiflflbeadmfitted,otherwfise,
efitherthetafifl-flatencySLOwfiflflberenegotfiatedortherequestwfiflfl
berejected.Atruntfime,thecentraflscheduflerperfiodficaflflyrunthe
predfictfionmodeflusfingtheup-to-datemeansandvarfiancesas
finputtoensurethatthetafifl-flatencySLOsffortheon-gofingrequests

Ma
st
er

Server 1

Server fi

Server N

User requests
{(m11

,v11),
…,(m1

j,v1j
)}

{(mfi1,vfi1),…,(mfij,vfij)}

{(m
N1,vN1),…,(m

Nj,vNj)}

contfinuetobemet.

Ffigure14:Ahybrfid,centraflfized-and-dfistrfibutedjobschedu-
fler.

ResourceProvfisfionfing:ForkTafiflfforthehomogeneouscase(fi.e.,
Eqs.(8)and(9))naturaflflyenabflesaresourceprovfisfionfingsoflutfion
finvoflvfingtwosteps:(a)theevafluatfionoffthetask-fleveflperffor-
mancerequfirementstoachfieveagfiventafifl-flatencySLO;and(b)
theseflectfionoffanunderflyfingpflatfformtomeettherequfirements.
Here,step(a)fispflatfformfindependentandhencefisportabfletoany
datacenterpflatfforms.
Forexampfle,consfideraservficedepfloymentscenarfiowfitha

gfiventafifl-flatencySLOandamfinfimumthroughputrequfirement,R.
AssumfingthatN,mandP(K=kfi)fforthegfivenservficeareknown,
Eq.(9)canbeusedtofirsttransflatethetafifl-flatencySLOfintoa
pafir,fi.e.,themeanandvarfianceoffthetaskresponsetfime.Thfis
pafirthenserveasthetaskperfformancebudgetsorthetask-flevefl

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA M. Nguyen et al.

performance requirements, which are platform independent and
portable. This completes step (a).

In step (b), a Fork node is set up, e.g., using three virtual machine
instances purchased from Amazon EC2 to form a 3-replica Fork
node, loaded with a data shard in the memory. Then run tasks at
increasing task arrival rate λ until the measured task mean and/or
variance are about to exceed the corresponding budget(s). At this
arrival rate λ, the tail-latency SLO is met without resource over-
provisioning. In other words, the λ value at this point would be the
maximum sustainable task throughput, or equivalently, the request
throughput, in order to meet the tail-latency SLO. If this throughput
is greater than R, the minimum throughput requirement is also met.
This means that the resource provisioning is successful and a cluster
with 3N VM instances can be deployed. Otherwise, repeat step (b)
by using a more powerful VM instance or with a re-negotiated
tail-latency SLO and/or minimum throughput requirement.

7 CONCLUSIONS AND FUTURE WORK
A key challenge in enabling tail-latency SLOs for user-facing data-
center services and applications is how to predict the tail latency for
a broad range of Fork-Join structures underlying those services and
applications. In this paper, we proposed to study a generic black-box
Fork-Join model that covers most Fork-Join structures of practical
interests. On the basis of a central limit theorem for queuing ser-
vers under heavy load, we were able to arrive at an approximate
tail latency solution for the black-box model. This approximation
was found to be able to predict the tail latency for most practical
scenarios consistently within 20% in a load region of 80% or hig-
her, resulting in at most 5% resource overprovisioning, making it
a powerful tool for resource provisioning at high load. Finally, we
discussed some preliminary ideas of how to make use of the propo-
sed prediction model to facilitate tail-latency-SLO-guaranteed job
scheduling and resource provisioning.

In our future work, based on ForkTail, we shall develop both job
scheduling and online/offline resource provisioning solutions with
tail-latency SLO guarantee.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
valuable feedback and helpful suggestions. This work is supported
by the NSF under awards CCF XPS 1629625 and CCF 1704504.

REFERENCES
[1] Apache Hadoop. https://hadoop.apache.org.
[2] Apache Spark. https://spark.apache.org.
[3] Extended version. http://crystal.uta.edu/~hche/publications/forktail-ext.pdf.
[4] F. Alomari and D. A. Menasce. 2014. Efficient Response Time Approximations for

Multiclass Fork and Join Queues in Open and Closed Queuing Networks. IEEE
Transactions on Parallel and Distributed Systems 25, 6 (2014), 1437–1446.

[5] S. Balsamo, L. Donatiello, and N. M. Van Dijk. 1998. Bound performance models
of heterogeneous parallel processing systems. IEEE Transactions on Parallel and
Distributed Systems 9, 10 (1998), 1041–1056.

[6] S. Balsamo and I. Mura. 1995. Approximate response time distribution in Fork
and Join systems. In SIGMETRICS ’95/PERFORMANCE ’95. 305–306.

[7] L. A. Barroso, J. Dean, and U. Hölzle. 2003. Web Search for a Planet: The Google
Cluster Architecture. IEEE Micro 23, 2 (2003), 22–28.

[8] G. Blake and A. G. Saidi. 2015. Where does the time go? Characterizing tail
latency in memcached. In ISPASS ’15. 21–31.

[9] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. 2006. Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer Science
Applications. Wiley-Interscience.

[10] J. Brutlag. 2009. Speed Matters for Google Web Search. https://services.google.
com/fh/files/blogs/google_delayexp.pdf.

[11] R. J. Chen. 2001. A hybrid solution of fork/join synchronization in parallel queues.
IEEE Transactions on Parallel and Distributed Systems 12, 8 (2001), 829–845.

[12] R. J. Chen. 2011. An Upper Bound Solution for Homogeneous Fork/Join Queuing
Systems. IEEE Transactions on Parallel and Distributed Systems 22, 5 (2011),
874–878.

[13] Y. Chen, S. Alspaugh, and R. Katz. 2012. Interactive Analytical Processing in Big
Data Systems: A Cross-Industry Study of MapReduce Workloads. Proceedings of
the VLDB Endowment 5, 12 (Aug 2012), 1802–1813.

[14] J. Dean and L. A. Barroso. 2013. The Tail at Scale. Commun. ACM 56, 2 (2013),
74–80.

[15] P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel. 2015. Hawk: Hybrid
Datacenter Scheduling. In USENIX ATC ’15. 499–510.

[16] C. Delimitrou and C. Kozyrakis. 2014. Quasar: Resource-Efficient and QoS-aware
Cluster Management. In ASPLOS ’14. 127–144.

[17] A. D. Ferguson, P. Bodik, E. Boutin, and R. Fonseca. 2012. Jockey: Guaranteed
Job Latency in Data Parallel Clusters. In EuroSys ’12. 99–112.

[18] L. Flatto and S. Hahn. 1984. Two Parallel Queues Created by Arrivals with Two
Demands I. SIAM J. Appl. Math. 44, 5 (1984), 1041–1053.

[19] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and A. Scheller-
Wolf. 2015. Reducing Latency via Redundant Requests: Exact Analysis. In SIG-
METRICS ’15. 347–360.

[20] R. D. Gupta and D. Kundu. 1999. Generalized Exponential Distributions. Austra-
lian & New Zealand Journal of Statistics 41, 2 (1999), 173–188.

[21] M. Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems:
Queueing Theory in Action (1st ed.). Cambridge University Press.

[22] M. Jeon, S. Kim, S. Hwang, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. 2014.
Predictive Parallelization: Taming Tail Latencies in Web Search. In SIGIR ’14.
253–262.

[23] J. F. C. Kingman and M. F. Atiyah. 1961. The single server queue in heavy traffic.
Proceedings of the Cambridge Philosophical Society 57 (1961), 902–904.

[24] L. Kleinrock. 1975. Queueing Systems, Vol. 1: Theory. Wiley-Interscience.
[25] S. S. Ko and R. F. Serfozo. 2004. Response Times in M/M/s Fork-Join Networks.

Advances in Applied Probability 36, 3 (2004), 854–871.
[26] J. Köllerström. 1974. Heavy Traffic Theory for Queues with Several Servers. I.

Journal of Applied Probability 11, 3 (1974), 544–552.
[27] D. Meisner, W. Junjie, and T. F. Wenisch. 2012. BigHouse: A Simulation Infra-

structure for Data Center Systems. In ISPASS ’12. 35–45.
[28] D. Meisner, C. M. Sadler, A. L. Barroso, W. D. Weber, and T. F. Wenisch. 2011.

Power Management of Online Data-Intensive Services. In ISCA ’11. 319–330.
[29] R. Nelson and A. N. Tantawi. 1988. Approximate Analysis of Fork/Join Synchro-

nization in Parallel Queues. IEEE Trans. Comput. 37, 6 (1988), 739–743.
[30] M. Nguyen, Z. Li, F. Duan, H. Che, Y. Lei, and H. Jiang. 2016. The Tail at Scale:

How to Predict It?. In USENIX HotCloud’16.
[31] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,

M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. 2013.
Scaling Memcache at Facebook. In NSDI ’13. 385–398.

[32] Z. Qiu and J. F. Perez. 2015. Evaluating the Effectiveness of Replication for
Tail-Tolerance. In CCGrid ’15. 443–452.

[33] Z. Qiu, J. F. Pérez, and P. G. Harrison. 2015. Beyond the Mean in Fork-Join Queues:
Efficient Approximation for Response-Time Tails. Performance Evaluation 91
(2015), 99–116.

[34] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. 2012. Hetero-
geneity and Dynamicity of Clouds at Scale. In SoCC ’12. 7:1–7:13.

[35] A. Rizk, F. Poloczek, and F. Ciucu. 2015. Computable Bounds in Fork-Join Queu-
eing Systems. In SIGMETRICS ’15. 335–346.

[36] S. Sani and O. A. Daman. 2014. Mathematical Modeling in Heavy Traffic Queuing
Systems. American Journal of Operations Research 4 (2014), 340–350.

[37] A. Thomasian. 2014. Analysis of Fork/Join and Related Queueing Systems. Com-
put. Surveys 47, 2 (2014), 1–71.

[38] E. Varki. 2001. Response time analysis of parallel computer and storage systems.
IEEE Transactions on Parallel and Distributed Systems 12, 11 (2001), 1146–1161.

[39] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. 2013.
Low Latency via Redundancy. In CoNEXT ’13. 283–294.

[40] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. 2012. Cake:
Enabling High-level SLOs on Shared Storage Systems. In SoCC ’12. 14:1–14:14.

[41] D. Wang, G. Joshi, and G. Wornell. 2014. Efficient Task Replication for Fast
Response Times in Parallel Computation. arXiv:1404.1328 (2014), 1–20.

[42] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz. 2014. Wrangler: Predictable
and Faster Jobs using Fewer Resources. In SoCC ’14. 26:1–26:14.

[43] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. 2010.
Delay scheduling: A Simple Technique for Achieving Locality and Fairness in
Cluster Scheduling. In EuroSys ’10. 265–278.

[44] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger. 2014.
PriorityMeister: Tail Latency QoS for Shared Networked Storage. In SoCC ’14.
29:1–29:14.

https://hadoop.apache.org
https://spark.apache.org
http://crystal.uta.edu/~hche/publications/forktail-ext.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 ForkTail
	3.1 Application to White-Box FJQNs

	4 Tail Latency Prediction Validation
	4.1 Case 1: k = N
	4.2 Case 2: Variable Number of Tasks k N
	4.3 Case 3: Consolidated Services

	5 Sensitivity Analysis
	6 Facilitating Resource Provisioning
	7 Conclusions and Future Work
	Acknowledgments
	References

