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ABSTRACT

We consider the problem of counting motifs in bipartite affiliation
networks, such as author-paper, user-product, and actor-movie
relations. We focus on counting the number of occurrences of a
“butterfly”, a complete 2 X 2 biclique, the simplest cohesive higher-
order structure in a bipartite graph. Our main contribution is a suite
of randomized algorithms that can quickly approximate the number
of butterflies in a graph with a provable guarantee on accuracy. An
experimental evaluation on large real-world networks shows that
our algorithms return accurate estimates within a few seconds, even
for networks with trillions of butterflies and hundreds of millions
of edges.
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1 INTRODUCTION

Graph motifs are used to model and examine interactions among
small sets of vertices in networks. Finding frequent patterns of
interactions can reveal functions of participating entities [3, 7, 11, 12,
22, 27] and help characterize the network. Also known as graphlets
or higher-order structures, motifs are regarded as basic building
blocks of complex networks in domains such as social networks,
food webs, and neural networks [16]. For this reason, finding and
counting motifs are among the most important and widely used
network analysis procedures. The triangle is the most basic motif
in a unipartite network, and graph mining literature is abundant
with triangle counting algorithms for stationary networks [27, 29]
as well as dynamic networks [8, 14, 21]. There are also studies that
consider structures with more than 3 vertices [11, 12, 22], but these
primarily focus on cliques, such as 4-cliques and 5-cliques.

In this work, we focus on bipartite (affiliation) networks, an im-
portant type of network for many applications [6, 13]. For example,
relationships between authors and papers can be modeled as a bi-
partite graph, where authors form one vertex partition, papers form
the other vertex partition, and an author has an edge to each paper
that she published. Other examples include user-product relations,
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word-document affiliations, and actor-movie networks. Bipartite
graphs can represent hypergraphs that capture many-to-many re-
lations among entities. A hypergraph H = (Vy, Efy) with vertex
set Vi and edge set Efy, where each hyper-edge h € Ep is a set
of vertices, can be represented as a bipartite graph with vertex set
Vg U Eg with one partition for Vg and another for Ey, and an
edge from a vertex v € Vi to an edge h € Ep if v is a part of h in
H. For example, a hypergraph corresponding to an author-paper
relation where each paper is associated with a set of authors can be
represented using a bipartite graph with one partition for authors
and one for papers.

A common approach to handle a bipartite network is to reduce
it to a unipartite co-occurrence network by a projection [17, 18]. A
projection selects a vertex partition as the set of entities, and creates
a unipartite network whose vertex set is the set of all entities and
where two entities are connected if they share an affiliation in the
bipartite network. For the author-paper network, a projection on the
authors creates a unipartite co-authorship network. However, such
a projection causes the number of edges in the graph to explode,
artificially boosts the number of triangles and clustering coefficients,
and results in information loss. For instance, we observed up to 4
orders of magnitude increase in size when the bipartite network
between wikipedia articles and their editors in French is projected
onto a unipartite network of articles — number of edges goes from
22M to more than 200B. As a result, it is preferable to analyze
bipartite networks directly.

While there is extensive work on motif counting in unipartite net-
works, these do not apply to bipartite networks. Motifs in bipartite
networks are very different from motifs in a unipartite network. The
most commonly studied motifs in a unipartite network are cliques
of small sizes, but a bipartite graph does not have any cliques with
more than two vertices, not even a triangle! Instead, natural motifs
in a bipartite network are bicliques of small size.

The most basic motif that models cohesion in a bipartite network
is the complete 2 X 2 biclique, also known as a butterfly [4, 26] or a
rectangle [31]. Although there have been attempts at defining other
cohesive motifs in bipartite networks, such as the complete 3 X 3
biclique [6] and 4-path [19], the butterfly remains the smallest unit
of cohesion, and has been used in defining basic metrics such as
the clustering coefficient in a bipartite graph [15, 23]. In particular,
it is the smallest subgraph that has multiple vertices on each side
with multiple common neighbors. It can be considered as playing
the same role in bipartite networks as the triangle did in unipartite
networks — a building block for community structure. We aim to
derive methods which can accurately estimate the number of but-
terflies in a given large bipartite graph. We view butterfly counting
as a first, but important step towards general methods for motif
counting and analysis of bipartite affiliation networks.
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Contributions: We present fast algorithms to accurately esti-
mate the number of butterflies in a bipartite network. Our algo-
rithms are simple to implement, backed up by theoretical guaran-
tees, and have good practical performance.

e Exact Butterfly Counting: We first present an efficient exact
algorithm, ExacTBFC, for counting the number of butterflies in
a network. We use a simple measure, the sum of the squares of
vertex degrees, to choose which vertex partition of the bipartite
graph to start the algorithm from. Leveraging the imbalance
between vertex partitions yields significant speedups over the
state-of-the-art [31].

e Randomized Approximate Butterfly Counting: We intro-
duce efficient randomized algorithms to find the approximate
number of butterflies in a network by sampling. Our algorithms
are able to derive accurate estimates with error as low as 1%
within a few seconds, are much faster than the exact algorithms,
and have an insignificant memory print. We present two types
of randomized algorithms.

— One-shot Sparsification techniques assume that the entire
graph is available for processing. They thin-down the graph to
amuch smaller sparsified graph through choosing each edge of
the original graph with a certain randomized procedure. Exact
butterfly counting is then applied on the sparsified graph to
estimate the number of butterflies in the original graph. We
present two such algorithms — ESPAR and CLRSPAR.

Local Sampling algorithms, on the other hand, can work un-

der limited access to the input graph. They randomly sample

small subgraphs local to an element of the graph, and use them
to compute an estimate. This is in contrast to sparsification,
which needs a global view of the graph. We investigate sam-
pling of subgraphs localized around a vertex (VSamp), edge

(ESamp), and a wedge (WSamp). Sampling algorithms are es-

pecially useful when there is a rate-limited API that provides

random samples, such as the GNIP framework for Twitter [1]

and the Graph API of Facebook [2]. In the rest of this paper,

when we say ‘sampling algorithms’, we mean local sampling
algorithms.

Provable Guarantees: We prove that the randomized algorithms

yield estimates that are equal to the actual number of butterflies

in the graph, in expectation. Through a careful analysis of their
variance, we show that it is possible to reduce the estimation error
to any desired level, through independent repetitions (sampling)
or through an appropriate choice of parameters (sparsification).

Experiments on real-world networks: We present results of

an evaluation of our algorithms on large real-world networks.

These results show that the algorithms can handle massive graphs

with hundreds of millions of edges and trillions of butterflies. Our

most efficient sampling algorithm, which we call ESAMP+FAsT-

EBFC, gives estimates with a relative error less than 1 percent

within 5 seconds, even for large graphs with trillions of butterflies.

On such large graphs, (exact) algorithms from prior work took

tens of thousands of seconds. We observed a similar behavior

with our best one-shot sparsification algorithm, ESPAR, which

typically yields estimates with error less than 1 percent, within 4

secs.
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X(6G) = {{a.b.z,y}, {a, e,z v},
{b.c.x.y}, {e,d,w, 2}}]

Xa=2 =2
X.=3 X(c,w): 1
Xg=1 X@’Z): 0
Figure 1: There are 4 butterflies in the entire graph, and the
number of per-vertex and per-edge butterflies are shown for

some vertices/edges.
2 PRELIMINARIES

We consider simple, unweighted, bipartite graphs, where there are
no self-loops or multiple edges between vertices. Let G = (V, E) be
a simple bipartite graph with n = |V| vertices and m = |E| edges.
Vertex set V is partitioned into two sets L and R such that V = LUR
and LNR = (. The edge set E C LXR.Forv € V,T;, = {u|(v,u) € E}
denotes the set of vertices adjacent to v (neighbors) and d;, = ||
is the degree of v. A denotes the maximum degree of a vertex in the
graph. In addition, T2 = {w|(w,u) € EAw # v, Y u € [} is the
set of vertices that are exactly in distance 2 from v, i.e., neighbors
of the neighbors of v (excluding v itself). A wedge in G is a path of
length two.

A biclique is a complete bipartite subgraph, and is parameterized
by the number of vertices in each partition; for integers «, f§, an
a X f biclique in a bipartite graph is a complete subgraph with «
vertices in L and f vertices in R. A butterfly in G is a 2 X 2 biclique
and consists of four vertices {a,b,x,y} C V where a,b € L and
X,y € R such that edges (a, x), (a,y), (b, x), and (b, y) all exist in E.
Let X(G) denote the number of butterflies in G (we use notation X
when G is clear from the context). For vertex v € V, let X,, denote
the number of butterflies that contain v. Similarly, for edge e € E,
let X, denote the number of butterflies containing e (See Figure 1).
Our goal is to compute X(G) for a graph G. We summarize our
notation in Table 1.

When estimating the number of butterflies, we look for provable
guarantees on the estimates computed using the following notion of
randomized approximation. For parameters €, € [0,1], an (¢, ) —
approximation of a number Z is a random variable Z such that
Pr[|Z - Z| > eZ] < 6.

n

o & o o R

Networks and Experimental Setup. Since we frequently present
evaluation results close to the algorithm descriptions, we give
some details about the data used for evaluation. We used massive
real-world bipartite networks, selected from the publicly available
KONECT network repository !. The graphs that we have used are
summarized in Table 2. We converted all graphs to simple, undi-
rected graphs by removing edge directions (if graph was directed)
and by removing multiple edges and vertices with degree zero.

!http://konect.uni-koblenz.de/

G = (V, E) |simple bipartite graph with vertices V and edges E

V =LUR |vertex partitions L and R
I, set of vertices adjacent to v, i.e., {u|(v, u) € E}
dy, degree of vertex v, i.e., [Ty |

n, m, A |number of vertices (|V|), edges (| E|), and wedges (3 ,,cv (dzv))

A maximum degree of a vertex in the graph
l"f) distance-2 neighbors of v (excluding itself)

X (G) (or X) | number of butterflies in graph G

X o(e) number of butterflies that contain vertex v (edge e)

Table 1: Notations


http://konect.uni-koblenz.de/
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Bipartite graph ILI| IRl | IEl| Seerdi | Brer 2 X
10* x 10 biclique 10K 10 | 100K M 1B 2.2B
DBPedia-Location 172K 53K | 293K 629K 245M 3.7M

Wiki-fr 288K 3.9M 22M 2.1T 795M 601B
Twitter 175K 530K | 1.8M 74.1M 1.9B 206M
Amazon 2.1M 1.2M | 5.7M 828M 437M | 35.8M
Journal 3.2M 7.4M | 112M 9.5B 5.4T 3.3T
Wiki-en 3.8M | 21.4M | 122M 12.5T 23.2B 2T
Deli 833K | 33.7M | 101M 85.9B 52.7B | 56.8B
Orkut 2.7M 8.7M | 327M 156M 4.9T | 22.1T
Web 27.6M | 12.7M | 140M 1.7T 211T 20T

Table 2: Bipartite network datasets. L and R are vertex parti-
tions, E is the edge set. The sum of degree squares for L and
R, and the number of butterflies are shown. K, M, B, T stand
for 103, 10°,10°, 1012, respectively.

We implemented all algorithms in C++ and are publicly available
on Github ? [24]. The source codes are compiled with Visual C++
2015 compiler (Version 14.0), and report the runtimes on a machine
equipped with a 3.50 GHz Intel(R) Xeon(R) CPU E3-1241 v3 and
16.0 GB memory.

3 RELATED WORK

Bipartite graph motifs: Modeling the smallest unit of cohesion
enables a principled way to analyze networks. While the literature
is quite rich with the studies on counting triangles and small cliques
in unipartite graphs [3, 7, 11, 12, 21, 22, 27, 28], these works are
not applicable to bipartite networks. To the best of our knowledge,
Borgatti and Everett [6] are the first to consider cohesive structures
in bipartite networks to analyze social networks. They proposed to
use the 3 X 3 biclique as the smallest cohesive structure, motivated
by the fact that a triangle in a unipartite graph has three vertices,
and the same should be considered for both vertex sets of the
bipartite graph. Opsahl also proposed a similar approach to define
the clustering coefficient in affiliation networks [19]. Robins and
Alexander argued that the smallest structure with multiple vertices
on both vertex sets is a better model for measuring cohesion in
bipartite networks [23], as also discussed in a later work [15]. They
used the ratio of the number of 2 X 2 bicliques (butterflies) to the
number of 3-paths (a path of three edges) to define the clustering
coeflicient in bipartite graphs. The butterfly is also adopted in a
recent work by Aksoy et al. [4] to generate bipartite graphs with
community structure. Butterfly counting is also applicable to the
study of graphical codes (Halford and Chugg [9]). The numbers of
cycles of length g, g + 2, and g + 4 in bipartite graphs, where g is
the girth3, characterize the decoding complexity — note that the
butterfly is the simplest non-trivial cycle in a bipartite graph.
Random Sampling for Motif Counting: There has been much
interest in recent years for counting motifs via random sampling,
mostly focused on unipartite graphs and triangles. Works on trian-
gle counting include edge sampling [29], subsequently improved
by colorful sampling [20], on vertex and edge sampling [10, 32],
wedge sampling [27], a hybrid scheme that considers the edge and
wedge sampling [30], neighborhood sampling [21], and a recent
space-efficient algorithm [8] based on reservoir-sampling. To the

Zhttps://github.com/beginner1010/butterfly-counting
3length of the shortest cycle in a graph
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Algorithm 1: ExacTBFC (V, E): Exact Butterfly Counting
Input :Graph G =(V = (L, R), E)
Output: X(G)

1 AL X0

2 if Y ep (du)2 < XoeR (dy)? then

3 ‘ A —R

4 forv € Ado

5 C < hashmap // initialized with zero
6 for u € T, do

7 forw eI, :w < vdo

8 L | Clw] < Clw]+1 // dist-2 multiplicities

forw e C: C[w] > 0do
| X x4+ ()

11 return X/2 (X)

©

10

best of our knowledge, random sampling for butterfly counting in
bipartite networks has not been studied in the past.

Butterfly Counting: The closest work to ours is by Wang et
al. [31], who presented exact algorithms for butterfly (rectangle)
counting. Their algorithms outperform generic matrix-multiplication
based methods for counting cycles in a graph [5]. We present an
improved algorithm for exact butterfly counting, and then present
more efficient randomized algorithms for approximate butterfly
counting.

4 EXACT BUTTERFLY COUNTING

We first present the basic equation for the number of butterflies
in a bipartite graph G and the base (state-of-the-art) algorithm by
Wang et al. [31] that implements the equation.

LEmMMA 1. For a bipartite graph G = (V = (LUR), E),
(1) X(G) = 3 Zyer Xo-
(2) Xy = Yyer, Z(unique)wefu\v (IFUFZNFW\) = Zwel"f,
(3) X(G) = } Toer Tyyerz (5™,

(lrvr;rwl).

Proor. As each butterfly has exactly two vertices in the set L,
Equation (1) holds. For a vertex v in L, each butterfly it participates
has one other vertex w € L (w # v) and two vertices u, x € R. By
definition, w € T2. In order to find the number of , x pairs that v
and w form a butterfly, we compute the intersection of the neighbor
sets of v and w. Number of the pairs in the intersection is defined by
(m’gr‘” |), as in Equation (2). Replacing X, in Equation (1) by the
right-most hand side of Equation (2), we obtain Equation (3). O
An efficient implementation of Equation (3) is given in Algorithm 1
ExacTBFC (ignore the colored lines). Instead of performing set
intersection at each step, we count and store the number of paths
from a vertex v € L to each of its distance-2 neighbor w € L by
using a hash map C (in lines 5 to 8). Additional space complexity
of ExacTBFC is O(|V]), which is used by the hash map C. Compu-
tational complexity of ExacTBFC (without colored lines) is given
by the following.

LEmMA 2. On input graph G = (V = (L U R), E), time complexity
of EXacTBFC (without colored lines) is O(2 er di)


http://konect.uni-koblenz.de/networks/dbpedia-location
http://konect.uni-koblenz.de/networks/edit-frwiki
http://konect.uni-koblenz.de/networks/munmun_twitterex_ut
http://konect.uni-koblenz.de/networks/amazon-ratings
http://konect.uni-koblenz.de/networks/livejournal-groupmemberships
http://konect.uni-koblenz.de/networks/edit-enwiki
http://konect.uni-koblenz.de/networks/delicious-ui
http://konect.uni-koblenz.de/networks/orkut-groupmemberships
http://konect.uni-koblenz.de/networks/trackers-trackers
https://github.com/beginner1010/butterfly-counting
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Algorithm 2: vBFC (v, G): Per Vertex Butterfly Counting

Algorithm 3: EBFC (e, G): Per Edge Butterfly Counting

Input: A vertexv € Vin G = (V = (LUR),E)

Output: X, number of butterflies in G that contain v
1 Xy < 0,C <« hashmap // initialized with zero
2 foru eI, do
3 L for w € I, do if w # v then C[w] « C[w] +1

4 forweCdo Xy «— Xy + (C[Zw])
5 return X,

Proor. For each v € L, we find a distance-2 neighbor vertex
w € L such that there exists au € R where (v,u) € E and (w, u) € E.
In lines 6 to 8, the nested for loop performs O(1) computation for
each tuple (v, u, w) where v € L,u € Iy,, and w € Iy,. The number
of such triples is exactly the number of paths in the graph of length
two, with the midpoint (u) in R, which is equal to ), cp (dz”) =
O(Zuer(du)?). o

We have two observations about Equation (3) and Algorithm 1.
First, the intersection operation need not be performed for each
ordered pair v, w in L, but instead can be performed for all (ordered)
pairs w < v, thus preventing double counting of a butterfly.
Second, instead of iterating over the vertex set L in Equation (3),
we can also use other vertex set, R;

4) X (G) =} Syer Syerz (M0

Clearly, Equations (3) and (4) give the same answer overall, but
their computational costs can be significantly different. We show
(Lemma 2) that the runtime of the algorithm is O(Y, cg(dy)?) if
we use A = L. Based on this analysis, we propose to use an O(n)
time pre-computation step that compares the sum of degrees in L
and R to choose the cheaper option. If 3,1 (do)? < Yer(du)?
then we choose the right side, R; otherwise we choose the left side,
L. This is done in the lines 2 and 3 (in pink).

ExAcTBFC algorithm (including colored lines) has the complex-
ity of O(min(¥, cg (du)?, Yver (dv)?) and improves upon the time
complexity of the algorithm due to Wang et al. [31], which is
O (T uer (dy)?). The main difference is that their algorithm always
starts from the left vertex set L, while we choose the cheaper option
depending on the sum of degrees in each side.

4.1 Performance of Exact Butterfly Counting

We compare the runtime of our algorithm (ExacTBFC) with Wang
et al. [31] (WFC). From our theoretical analysis in Section 4, our
algorithm is expected to be faster than WFC. Figure 2 shows a com-
parison of the runtimes of the two algorithms. We note the following
points. (1) EXxaAcTBFC is always faster than WFC. This also shows
that the O(n) pre-processing step in EXAcTBFC to choose which side
to proceed from is effective. (2) In many cases, ExaAcTBFC achieves
significant speedup when compared with WFC. This is especially
true in cases where /¢y d,?, and Y, cg d? differ significantly. In
particular, EXAcTBFC is 700 times faster than WFC on Journal net-
work and 35 times faster on Orkut. For the Web network, WFC did
not complete in 40,000 seconds while ExAcTBFC completed in
~ 9,000 secs.
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Input: An edge e = (u,v) € Ein G = (V,E)

Output: X, number of butterflies in G that contain e
1 Xe—0
2 forw eIy, \ {v} do
3 L forx el do if x €I, \ {u} then X, « X, +1

4 return X,

4.2 Local Butterfly Counting

We present two algorithms for local butterfly counting, vBFC (Al-
gorithm 2) for counting the number of butterflies X, that contain
a given vertex v, and EBFC (Algorithm 3) for counting the number
of butterflies X, that contain an edge e. Both algorithms employ
procedures similar to the inner loop (lines 5 to 10) of ExacTBFC.
We will use vBFC and EBFC as building blocks in our sampling
algorithms (Section 5).

LemMA 3. Time complexity for vBFC(v, G) is O(|T2]) = O(A dy,)
where A is the maximum degree in G, and for EBFC(e=(u, v), G) is
O(IT2| + |Ty|) = O(A dy, + dyy) wheredy, < dy, wlog..

Proor. VBFC iterates through each vertex in T2 spending O(1)
time per iteration. Since |T'2| is bounded by A d,,, the time complex-
ity follows. For EBFC, the only extra work is to check whether an
x € 2 also exists in Ty, and it can be done by a hash map which
requires dy, preprocessing time. m]

5 APPROXIMATION BY LOCAL SAMPLING

In this section, we present approaches to approximating X (G) using
random sampling. The intuition behind sampling is to examine
a randomly sampled subgraph of G and compute the number of
butterflies in the subgraph to derive an estimate of X(G). Since the
subgraph is typically much smaller than G, it is less expensive to
perform an exact computation. The size of the chosen subgraph,
the cost of computing on it, and the accuracy of the estimate vary
according to the method by which we choose the random subgraph.
This sampling process can be repeated multiple times, and averaged,
in order to get a better accuracy.

We consider three natural sampling methods: vertex sampling
(VSamp), edge sampling (ESamp), and wedge sampling (WSamp). In
VSawmp, the subgraph is chosen by first choosing a vertex uniformly
at random, followed by the induced subgraph on the distance-2
neighborhood of the vertex. In ESamP, a random edge is chosen,
followed by the induced subgraph on the union of the immediate
neighborhoods of the two endpoints of the edge. In WSamPp, a ran-
dom wedge (path of length two) is chosen, followed by the induced
subgraph on the intersection of the immediate neighborhoods of
the two endpoints of the wedge. While the methods themselves
are simple, the analysis of their accuracy involves having to deal
carefully with the interactions of different butterflies being sampled
together.

5.1 Vertex Sampling (Algorithm VSamp)

The idea in VSAMP is to sample a random vertex v and count the
number of butterflies that contain v - this is accomplished by count-
ing the number of butterflies in the induced subgraph consisting of
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Figure 2: Runtimes for Exact Butterfly Counting, showing speedups up to 3 orders of magnitude for ExactBFC over WFC. For
the Web graph, WFC did not finish in 40,000 secs.
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(a) Type 0v: No vertex in (b) Type 1v: One vertex in (c) Type 2v: Two verticesin (d) Type le: One edge in (e) Type 1w: One wedge in
common common common but no edge common common

Figure 3: A pair of butterflies in G can be of one of the above five types.

Algorithm 4: VSamp (single iteration) e leif they share two vertices and exactly one edge (Figure 3d)
o 1w if they share three vertices and two edges i.e. share a

wedge (Figure 3e)

Input: A bipartite graph G = (V, E)

Output: An estimate of X(G)
1 Choose a vertex v from V uniformly at random. It can be verified that every pair of distinct butterflies must be one
2 Xy < VBFC (v,G) // Algorithm 2 of the above types {0v, 1v, 2v, 1e, 1w}, and other combinations such
as three vertices and more than two edges are not possible. For each
type t € {0v, 1v, 20, le, 1w}, let p; denote the number of pairs of
butterflies of that type. In addition, let py = p1o + p2v + P1e + P1w
be the number of pairs of butterflies that share at least one vertex.

3 return X, -n/4

the distance-2 neighborhood of v in the graph. We show that the
algorithm, described in Algorithm 4, yields an unbiased estimate of

X(G), and also analyze the variance of the estimate. The variance n & n? X
is reduced by taking the mean of multiple independent runs of the Var[Yy] = Var " Z Xi| = EVar Z X;
estimator.

Let Yy denote the return value of Algorithm 4. Let py denote _ n’ Z Var [X;] + Z Cov (X, X;)
the number of pairs of butterflies in G that share a single vertex. 16 7

— n 2
Lemma 4. E[Yy] = X, and Var [Yy] < 2(X + py) = % [z (% - Lg) + > (E[X:X;] -E[X;]E [Xj])]
n —

Proor. Consider that the butterflies in G are numbered from e

1to X. Let X = X, the number of butterflies that contain the Consider the different types of butterfly pairs (i, j):

vertex v, which is sampled uniformly. Fori = 1, ..., X, let X; be
an indicator random variable equal to 1 if the i'® butterfly includes
the vertex v. We have X = ZiX: 1 Xi. Since each butterﬂy has four
vertices, E [X;] = Pr[X; = 1] = 4/n. Thus, E[X] = Z E[X;i] =
ZiX:l Pr(X;=1] = 4X .Since Yy = X - 4, we have E [YV] X.
For the variance of Yy, we consider the joint probabilities of
different butterflies being sampled together. The set of all pairs
of butterflies are partitioned into different types as follows. This

Type 0v, there is zero probability of i and j being counted within
X, hence E [Xin] = 0. Cov (Xi,Xj) =—16/n?.

Type 1v, E[X;X;] = Pr[X; = 1]Pr[X; = 1|X; = 1] = (4/n)(1/4) =
1/n. Cov (X;, Xj) = 1/n — 16/n?.

Type 2v, E[X;X;] = (4/n)(1/2) = 2/n. Cov (X;,X;) = 2/n — 16/n?

Type le, E[X;X;] = (4/n)(1/2) = 2/n. Cov (X;,X;) = 2/n — 16/n?

Type 1w, E[X;Xj] = (4/n)(3/4) = 3/n. Cov (X;, X;j) = 3/n — 16/n%.

partitioning will help not only with analyzing this algorithm, but By ignoring the negative contributions and adding up the other
also in subsequent sampling algorithms. A pair of butterflies is said contributions, we arrive:
to be of type:
. . . n n n n 3n n
e 0v if they share zero vertices (Figure 3a) Var[Yy] < " +1—6plv + §p2v + gple + Eplw < " (X +pv)

e 1v if they share one vertex (Figure 3b)

e 2v if they share two vertices but no edge (Figure 3c) o
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Algorithm 5: ESAmP (single iteration)

Algorithm 6: WSawmp (single iteration)

Input: A bipartite graph G = (V,E)

Output: An estimate of X(G)
1 Choose an edge e from E uniformly at random.
2 X « EBFC (¢,G) // Algorithm 3
3 return X, - m/4

8—"X (1 + %) independent instances

Let Z be the average of & = —
of Yy. Using Var[Z] = Var[Yy]/a and Chebyshev’s inequality:
Var[Z] _ Var[Yy] < n(X +py) 1
etx? ae?X? 4?2 X2 32
We can turn the above estimator into an (€, §) estimator by taking
the median of O(log(1/8)) estimators, using standard methods.

Pr{|Z - X| > eX] <

LEMMA 5. There is an algorithm that uses o (% (1 + %)) iter-
ations * of VSamp (Algorithm 4) and yields an (e, §)-estimator of
X(G) using expected time o} (mYA (1 + %)) Expected additional

space is O (mTA)

PROOF. Aniteration of VSamp samples a vertex v and calls vVBFC
(Algorithm 2) for local butterfly counting once, which takes O(|1"12, )
time. Hence, the expected runtime of an iteration is O (E [|T2|]),
where the expectation is taken over a uniform random choice of a
vertex. We note that |1"12,| < dy A where d;, is v’s degree and A is
the maximum degree in the graph. Thus E [|T2|] < ¥, ey 2doA =
% Dvevdy = "’TA. The space of VSamp is same with vBFC (Al-
gorithm 2); O(|T2|) for handling vertex v. The expected value is
o(mh). o

5.2 Edge Sampling (Algorithm ESamp)

In this algorithm, the idea is to sample a random edge and count
the number of butterflies that contain this edge, using EBFC (Algo-
rithm 3). We present ESAmP in Algorithm 5, and state its properties.
The proofs of the lemmas are omitted due to space constraints, and
can be found in the full version [25].

Let Yg denote the return value of ESamp (Algorithm 5). Let pg
be the number of pairs of butterflies that share at least one edge.
Then,pE = ple + P1w-

LEmMA 6. E[Yg] = X and Var[Yg] < ZH(X + pg). Using
0 (% (1 + %)) iterations of ESAMP yields an (e, §)-estimator of
X(G) using time O (";—ZXA (1 + %)) The additional space complexity

isO (mTA)

5.3 Wedge Sampling (Algorithm WSamp)

In WSaMP, we first choose a random “wedge’", a path of length two
in the graph. This already yields three vertices that can belong
to a potential butterfly. Then, we count the number of butterflies
that contain this wedge by finding the intersection of the neighbor-
hoods of the two endpoints of the wedge. Algorithm 6 describes
the WSamp algorithm. The correctness and complexity are stated

“We use the notation O(f) to suppress the factor bg(é%, i.e. mean O (f . bgﬁ#)
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Input: A bipartite graph G = (V, E)

Output: An estimate of X(G)
1A Yuev (dz“) // number of wedges in G
2 Choose a vertex u € V with probability (dZ“) /A
3 Choose two distinct vertices v, w € I3, uniformly at random
4 f—|I,NT,|—1 // # butterflies that has (u,v,w)
5 return - A/4

VSamp ESamp WSamp
\[ W error % \[ w error % ﬂ W error %
Deli | 2.8x 10" | 494.9| 2.1x 10" 38.3| 7.7x 10! 13.6
Journal | 2.3x 10 | 708.56 | 2.1x 103 6.4 1.4x10" 99.3
Orkut 5% 101 223.6| 2x10M 9.2| 2.9x 10" 13.3
Web 6.8 x 10 | 3431.5| 8.2x 103 4.1] 4.3x10%° |2194.8
Wiki-en| 1.3 x10'° | 6823.6| 3.8 x 10" 19| 1.4x10% | 703.4

Table 3: Standard deviations of estimators on large graphs.
For each method, the theoretical upper bound on the stan-
dard deviation is shown in the left column, and the “error",
the ratio between the (theoretical) standard deviation and
the number of butterflies, is shown in the second column.

here, with proofs deferred to the full version [25]. Let Yy, denote
the return value of Algorithm 6.

) LemMma 7. E[Yy] = X, and Var[Yy] < %(X + p1w). Using
O(£(1+ %)) iterations of WSamp  yields an (e, §)-estimator of

X(G) in time 0 (w (1 + %)) and space O(n).

5.4 Accuracy and Runtime of Sampling

Accuracy of a Single Iteration. In order to understand the relation
between the three sampling algorithms, we compare the variance of
the estimates returned by these algorithms. Note that each of them
returns an unbiased estimate of the number of butterflies. The stan-
dard deviations (square root of variances) of VSamp, ESamp, and
WSawmp for different graphs are estimated and summarized in Ta-
ble 3. The results show that the variances of VSamp and WSamp are
much higher than the variance of ESamp. Note that these are esti-
mates of an upper bound on the variances, and the actual variances
could be (much) smaller.

The variance of VSamp is proportional to npy where py is the
number of pairs of butterflies that share a vertex and n is the number
of vertices. The variance of ESAmP is proportional to mpg where
pE is the number of pairs of butterflies that share an edge and m is
the number of edges. Note that typically X < py, pg and hence
X +py = py and X +pg =~ pg. If two butterflies share an edge, they
certainly share a vertex, hence pg < py. Since it is possible that
two butterflies share a vertex but do not share an edge, pg could
be much smaller than py . It turns out that in most of these graphs,
pe was much smaller than py. On the other hand, the number
of vertices in a graph (n) is comparable to the number of edges
(m). Typically m < 10n, and only in one case (Orkut), we have
m = 30n. Thus, npy < mpg for the graphs we consider. As a result,
the variance of VSamp is much larger than the variance of ESamp,
which is reflected clearly in Table 3.
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Algorithm 7: FAsT-EBFC (replaces EBFC in ESamp)
Input: An edgee = (v,u) € Ein G = (V,E)
Output: An estimate of X,

Choose a vertex w from I, uniformly at random

Choose a vertex x from I'; uniformly at random
if (u, v, w, x) forms a butterfly then f < 1

else f «— 0

return f - dy, - dy

[ N TOR ORI

Comparing ESamP with WSAamP, we note that the variance of
WSaMmP is proportional to A - p1,,, where A is the number of wedges
in the graph (O(3.,, d2)) and py,, is the number of pairs of butterflies
that share a wedge. The variance of ESAMP is proportional to mpg.
p1w < pE since each pair of butterflies that shares a wedge also
shares an edge. At the same time, we see that A is substantially
greater than m. Overall, there is no clear winner among WSamp and
ESamP in theory, but ESAMP seems to have the smaller variance
on real-world networks, typically, sometimes much smaller, as in
graph Wiki-en.

Runtime per Iteration: The performance of a sampling algorithm
depends not only on the variance of an estimator, but also on how
quickly an estimator can be computed. Figure 4 shows the time
taken to compute a single estimator using different sampling algo-
rithms for the five largest networks. We note that ESamp (which
calls EBFC) requires the largest amount of time per sampling step,
among all estimators. This decreases the overall accuracy of ESamp,
despite its smaller variance.

5.5 Faster Edge Sampling using FasT-EBFC

Since ESamp had a low variance, but a high runtime per iteration,
we tried to achieve different tradeoffs with respect to runtimes
and accuracy, which led to our next algorithm FAsT-EBFC, a faster
variant of butterfly counting per edge (EBFC). Like ESamp, we
first sample a random edge from the graph, but instead of exactly
counting the number of butterflies that contain the sampled edge,
which leads to (relatively) expensive iterations, FAsT-EBFC only
estimates the number of butterflies per edge, through a further
sampling step (replacing EBFC in line 2 of ESamp (Algorithm 5)). For
an edge (u, v) this estimation is performed by randomly choosing
one neighbor each of u and of v, and checking if the four vertices
form a butterfly. Algorithm 7 presents a single iteration of FAsT-
EBFC. This procedure is repeated a few times for a given edge,
to improve the accuracy of the estimate. In our implementation
we repeated it 1000 times for each sampled edge, and it was still
significantly faster than EBFC (Figure 4). We use it instead of the
EBFC algorithm in ESamp. While the estimate from each iteration
is less accurate than in ESAMP, more iterations are possible within
the same time. FAsT-EBFC (with 1000 repetitions) is faster than
EBFC by 15x-357x, when used in ESamp. Overall, in large graphs,
this leads to an improvement in accuracy over EBFC in ESamp. Let
YrE denote the return value of Algorithm 7.

LEMMA 8. E[Yrg]| = Xe and Var [Yrg] < Xe(dy - dy) (Proof is
deferred to [25]).
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Let Z be the average of & = 32(dy, - d)/(€?X ) independent
instances of Yrg. Using Chebyshev’s inequality, we arrive that Z is
an (e, 1/32)-estimator of Xe.

Fast Wedge Sampling: We also experimented with a faster
version of WSamp, where the number of butterflies containing a
wedge was estimated using sampling. But this did not yield good
results, partly because the time for each iteration of WSamp was
already relatively small. For example, in Deli graph, WSamp had
less than 2% error after 5 secs while Fast Wedge Sampling ended
up with 29% error after 10 secs. In Web also the error percentage of
Fast Wedge Sampling was 60% higher than WSamp’s.

5.6 Comparing Sampling-based Approaches

We compare the sampling algorithms VSamp, ESamp+ EBFC, ESamp+
FasT-EBFC, and WSamp. A sampling algorithm immediately starts
producing estimates that get better as more iterations are executed.
We record the number of iterations and relative percent error of
sampling algorithms up to 60 seconds. Figure 5 shows the relative
percent error with respect to the runtime for five large bipartite
graphs. We report the median error of the 30 trials of sampling
methods for each data point.

Our experiments show that VSamp performs poorly when com-
pared with ESaAmP and WSamp under the same time budget — this
is along expected lines, based on our analysis of the variance. The
accuracy of ESamP and WSAMP are comparable, with ESaAmp be-
ing slightly better. Note that ESAMP has a better variance, while
WSaMmP has faster iterations. For instance, on the Wiki-en network,
1000 iterations of WSAMP yields 51% error in 0.13 secs, whereas
1000 iterations of ESAMP yields 29% error in 33 seconds. Across all
the graphs, ESamP using FAsT-EBFC, which combines the benefits
of faster iterations with a good variance, yields the best results, and
is superior to all other sampling methods; it leads to less than 1%
relative error within 5 seconds.

6 APPROXIMATION BY
ONE-SHOT SPARSIFICATION

We present methods for estimating X(G) using one-shot sparsifica-
tion — where we thin down the input graph into a smaller graph
through a global sampling step. The number of butterflies in the
sparsified graph is used to estimate X (G). Unlike algorithms such
as ESamp and WSamp, which work on a small subgraph constructed
around a single randomly sampled edge or a wedge, sparsification
methods put each edge in the graph into the sample with a certain
probability. We consider two approaches to sparsification (1) ES-
PAR in Section 6.1, where edges are chosen independently of each
other and (2) CLRSPAR in Section 6.2, based on a sampling method
where different edges are not independently chosen, but dense re-
gions appear with higher probability in the sample — based on a
similar idea in the context of triangle counting due to Pagh and
Tsourakakis [20].

6.1 Edge Sparsification (ESPAR)

In ESPAR, the input graph G is sparsified by independently retaining
each edge in G in the sampled graph G’, with a probability p. The
number of butterflies in G’, obtained using ExacTBFC, is used to
construct an estimate of X(G), after applying a scaling factor. This
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Figure 5: Relative error as a function of runtime, for sampling algorithms. ESamp with FasT-EBFC yields < 1% relative error

within 5 seconds for all networks.
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Figure 6: Accuracy (on left y-axis) and runtime performance (on right y-axis) of sparsification algorithms for different proba-
bilities (on x-axis). ESPAR performs better than CLRSPAR, and yields < 1% relative error within 4 seconds for all networks.

Algorithm 8: ESpar: Edge Sparsification

Input: A bipartite graph G = (V, E), parameter p,0 < p < 1
1 Construct E” by including each edge e € E independently
with probability p
2 f§ « ExactBFC(V,E’)
3 return - p~*

// Algorithm 1

is much faster than working with the original graph G since the
number of edges in G’ can be much smaller. The ESPAR algorithm
is described in Algorithm 8.

LEMMA 9. Let Ygs denote the output of ESPAR on input graph

G. Then E|[Ygs] X(G). If p > max (ﬂﬁ,,lﬂ,%), then

We provide a sketch of the proof below, and the full proof can be
found in the full version of the paper [25]. The proof of the expec-
tation is straightforward. For bounding the variance, the analysis
has to deal with the fact that although different edges are sampled
independently, the random variables corresponding to different

Var [Ygs] < X?/8.
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butterflies being sampled are not independent of each other, since
butterflies may share edges. By accounting for the covariances, we
arrive that the following types of pairs of butterflies impact the
variance: Type Oe (share zero edges), Type 1le (one edge), and Type
1w (one wedge). Let the numbers of such pairs be poe, p1e, and p1ay
respectively. We arrive at a bound on the variance of Ygg using
the following observation (whose proof is in [25]), which allows a
bound on the variance in terms of A and X.

OBSERVATION 1. pog, < XAZ,ple < XA?, and p1yw < XA.

Using Chebyshev’s inequality and standard methods, the esti-
mator Ygs can be repeated O(log(1/5)/€?) times to get an (e, §)
estimator of X(G).

6.2 Colorful Sparsification (CLRSPAR)

The idea in CLRSPAR is to sample edges at a rate of p, as in ESpAR,
but add dependencies between the sampling of different edges,
such that there is a greater likelihood that a dense structure, such
as the butterfly, is preserved in the sampled graph. The algorithm
randomly assigns one of N colors to vertices, and sample only those
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Algorithm 9: CLRSPAR

Input:Bipartite graph G = (V, E), number of colors N
1 Letf:V—>{1,...,N} // map to random colors
2 B — {(u,v) € Eglf(u) = f(v)}
3 B « ExacTtBFC (V,E’)
4 return f - p~3 wherep = 1/N

// Algorithm 1

edges whose endpoints have the same color. The CLRSPAR algorithm
for approximate butterfly counting is presented in Algorithm 9.

We developed this method due to the following reason. Suppose
p = 1/N. Though the expected number of edges in the sampled
graph is mp, the same as in ESPAR, it can be seen that the expected
number of butterflies in the sampled graph is equal to p* X, which is
higher than in the case of ESpaR (p* X). Thus, for a sampled graph
of roughly the same size, we expect to find more butterflies in the
sampled graph. Note however that this does not directly imply a
lower variance of the estimator due to CLRSPAR.

LEMMA 10. Let Y be the output of CLRSPAR on input G, and p =
1/N.E[Y] = X(G). Ifp > max(/ 2, 222, 28%)  then Var[Y] <
x2/8.

6.3 Comparison of Sparsification Algorithms

The parameter p controls the probability of an edge being included
in the sparsified graph. As p increases, we expect the accuracy as
well as the runtime to increase. The relative accuracies of the two
methods depend on the variances of the estimators. We estimated
the variances using our analysis, and Table 4 presents the results.
We observe that the variance of ESPAR is predicted to be much
lower than that of CLRSPAR. To understand this, we begin with
Lemmas 9 and 10 which show expressions bounding the variances
in terms of p14y,p1e, and pay, also summarized in Table 4. The
difference in the variance between CLRSPAR and ESPAR boils down
to (Xp~3 + payp~! = Xp~*). In our experiments, we found that py,,
the number of pairs of butterflies that share two vertices without
sharing an edge, was very high, much larger than pie, p1iv, and X.
This explains why the variance of CLRSPAR was higher.

This observation about variance is consistent with our experi-
mental results. In Figure 6, we report the relative percent error as
well as the runtime as the sampling probability p increases. Results
show that ESPAR obtains less than one percent error when 5 per-
cent of edges are sampled. However, as shown in Figures 6b, 6d
and 6e, CLRSPAR requires a larger sampling probability to achieve
a reasonable accuracy.

Algorithm ESpar CLRSPAR
Graph Xpt +prwp P A prep”" | Xp7P 4 prwp” 4 prep”t +prop”!
Deli 4.047 x 10%° 9.163 x 10%°
Journal 1.413 x 107 2.042 x 10%°
orkut 5.576 X 10'? 8.514 x 10%°
Web 7.760 x 1020 4.692 x 107
Wiki-en 1.303 x 10%° 3.062 x 102

Table 4: Upper bounds on ESPAR & CLRSPAR variances, p=0.1.
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ESamp (with FAsT-EBFC) | ESpar
Deli 3.4 2.1
Journal 5.0 1.7
Orkut 3.4 3.4
Web 4.1 3.9
Wiki-en 4.8 23

Table 5: Time (in seconds) to obtain 1% relative percent error
for the best sampling and sparsification algorithms.

6.4 Sampling or Sparsification?

The accuracy of the best sampling algorithm, ESamp with Fast-
EBFC, is compared with the best sparsification algorithm, ESPAR,
in Table 5. Overall, two algorithms take similar times to reach a 1%
error on all graphs we considered, in the range of 1.7-5 sec, with
ESpAR achieving this accuracy faster than ESamp with FAsT-EBFC.

However, ESPAR has other downsides when compared with
ESamp. First, the memory consumption of ESPAR is O(mp) where p
is a parameter, and is larger than ESamp with FAsT-EBFC, whose
memory consumption is O(A). As a result, we expect the memory
of ESPAR to be linearly in the size of the graph, showing that it
may be easier for ESAMP to scale to graphs of even larger sizes.
Next, ESPAR needs to decide on a sampling parameter p to balance
between accuracy and runtime. If p is too large, then the runtime is
high, and if p is too small, then the accuracy is low. Finally, one-shot
sparsification algorithms assume that the entire graph is available
whereas the ESAMP needs access to only a subgraph of the graph.
Thus if one has to pay for data about the graph, or if the data about
edges is hard to obtain, then sampling may be the better alternative.

Overall, local sampling algorithms can find a larger application
space in real-world problems. If the entire graph is available, and
memory is not a bottleneck, it may be better to go with ESPAR. For
more restrictive scenarios, ESAMP combined with FAST-EBFC is the
better option.

7 CONCLUSION

We introduced a suite of algorithms for butterfly counting in bipar-
tite networks. We first showed that a simple statistic about vertex
sets, which is cheap to obtain, helps drastically to reduce the run-
time of exact algorithms. We then presented scalable randomized
algorithms that approximate the number of butterflies in a graph,
with provable accuracy guarantees.

Randomized algorithms using one-shot sparsification are appli-
cable when the entire graph is available locally, and rely on a global
sampling step to compute a smaller “sparsified” subgraph, which
is used to compute an accurate estimate. On the other hand, if the
access to the graph data is limited, local sampling algorithms can
be used to randomly sample small subgraphs of the entire graph,
and analyze them to compute an estimate. Sampling algorithms
are especially beneficial when there is a rate-limited API that pro-
vides random samples of the network data, such as the GNIP [1]
and Facebook Graph API [2]. Our best sampling and sparsification
algorithms yield less than 1% relative error within ~ 4 and = 5
seconds for all the networks we considered, whereas the state-of-
the-art exact algorithm does not complete even in 40,000 secs on
the Web graph.
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There are many promising directions to follow. Here, we only
focused on the butterfly motif, but one can consider other motifs
suitable to bipartite graphs. Note that the combinatorial explosion
for the number of butterflies is more serious than the triangles in
unipartite graphs. Thus, it is challenging to consider even larger
motifs, but the ideas in this work can serve as building blocks
for considering different motifs. Another direction is adapting our
algorithms for the streaming scenario. Given a single pass over the
graph, the question is how to sample/sparsify the graph stream to
accurately estimate the number of butterflies. Sparsification-based
algorithms may be adapted to the streaming scenario quite easily,
but same cannot be said for the local sampling algorithms.
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