
Butterfly Counting in Bipartite Networks
Seyed-Vahid Sanei-Mehri

Iowa State University

Ames, Iowa

vas@iastate.edu

Ahmet Erdem Sarıyüce

University at Buffalo

Buffalo, New York

erdem@buffalo.edu

Srikanta Tirthapura

Iowa State University

Ames, Iowa

snt@iastate.edu

ABSTRACT

We consider the problem of counting motifs in bipartite affiliation

networks, such as author-paper, user-product, and actor-movie

relations. We focus on counting the number of occurrences of a

“butterfly”, a complete 2 × 2 biclique, the simplest cohesive higher-

order structure in a bipartite graph. Our main contribution is a suite

of randomized algorithms that can quickly approximate the number

of butterflies in a graph with a provable guarantee on accuracy. An

experimental evaluation on large real-world networks shows that

our algorithms return accurate estimates within a few seconds, even

for networks with trillions of butterflies and hundreds of millions

of edges.

ACM Reference Format:

Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sarıyüce, and Srikanta Tirthapura.

2018. Butterfly Counting in Bipartite Networks. In KDD ’18: The 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining,

August 19–23, 2018, London, United Kingdom. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3219819.3220097

1 INTRODUCTION

Graph motifs are used to model and examine interactions among

small sets of vertices in networks. Finding frequent patterns of

interactions can reveal functions of participating entities [3, 7, 11, 12,

22, 27] and help characterize the network. Also known as graphlets

or higher-order structures, motifs are regarded as basic building

blocks of complex networks in domains such as social networks,

food webs, and neural networks [16]. For this reason, finding and

counting motifs are among the most important and widely used

network analysis procedures. The triangle is the most basic motif

in a unipartite network, and graph mining literature is abundant

with triangle counting algorithms for stationary networks [27, 29]

as well as dynamic networks [8, 14, 21]. There are also studies that

consider structures with more than 3 vertices [11, 12, 22], but these

primarily focus on cliques, such as 4-cliques and 5-cliques.

In this work, we focus on bipartite (affiliation) networks, an im-

portant type of network for many applications [6, 13]. For example,

relationships between authors and papers can be modeled as a bi-

partite graph, where authors form one vertex partition, papers form

the other vertex partition, and an author has an edge to each paper

that she published. Other examples include user-product relations,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’18, August 19–23, 2018, London, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3220097

word-document affiliations, and actor-movie networks. Bipartite

graphs can represent hypergraphs that capture many-to-many re-

lations among entities. A hypergraph H = (VH ,EH) with vertex

set VH and edge set EH , where each hyper-edge h ∈ EH is a set

of vertices, can be represented as a bipartite graph with vertex set

VH ∪ EH with one partition for VH and another for EH , and an

edge from a vertex v ∈ VH to an edge h ∈ EH if v is a part of h in

H . For example, a hypergraph corresponding to an author-paper

relation where each paper is associated with a set of authors can be

represented using a bipartite graph with one partition for authors

and one for papers.

A common approach to handle a bipartite network is to reduce

it to a unipartite co-occurrence network by a projection [17, 18]. A

projection selects a vertex partition as the set of entities, and creates

a unipartite network whose vertex set is the set of all entities and

where two entities are connected if they share an affiliation in the

bipartite network. For the author-paper network, a projection on the

authors creates a unipartite co-authorship network. However, such

a projection causes the number of edges in the graph to explode,

artificially boosts the number of triangles and clustering coefficients,

and results in information loss. For instance, we observed up to 4

orders of magnitude increase in size when the bipartite network

between wikipedia articles and their editors in French is projected

onto a unipartite network of articles – number of edges goes from

22M to more than 200B. As a result, it is preferable to analyze

bipartite networks directly.

While there is extensive work onmotif counting in unipartite net-

works, these do not apply to bipartite networks. Motifs in bipartite

networks are very different frommotifs in a unipartite network. The

most commonly studied motifs in a unipartite network are cliques

of small sizes, but a bipartite graph does not have any cliques with

more than two vertices, not even a triangle! Instead, natural motifs

in a bipartite network are bicliques of small size.

The most basic motif that models cohesion in a bipartite network

is the complete 2×2 biclique, also known as a butterfly [4, 26] or a

rectangle [31]. Although there have been attempts at defining other

cohesive motifs in bipartite networks, such as the complete 3 × 3

biclique [6] and 4-path [19], the butterfly remains the smallest unit

of cohesion, and has been used in defining basic metrics such as

the clustering coefficient in a bipartite graph [15, 23]. In particular,

it is the smallest subgraph that has multiple vertices on each side

with multiple common neighbors. It can be considered as playing

the same role in bipartite networks as the triangle did in unipartite

networks – a building block for community structure. We aim to

derive methods which can accurately estimate the number of but-

terflies in a given large bipartite graph. We view butterfly counting

as a first, but important step towards general methods for motif

counting and analysis of bipartite affiliation networks.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2150

https://doi.org/10.1145/3219819.3220097
https://doi.org/10.1145/3219819.3220097

Contributions: We present fast algorithms to accurately esti-

mate the number of butterflies in a bipartite network. Our algo-

rithms are simple to implement, backed up by theoretical guaran-

tees, and have good practical performance.

• Exact Butterfly Counting: We first present an efficient exact

algorithm, ExactBFC, for counting the number of butterflies in

a network. We use a simple measure, the sum of the squares of

vertex degrees, to choose which vertex partition of the bipartite

graph to start the algorithm from. Leveraging the imbalance

between vertex partitions yields significant speedups over the

state-of-the-art [31].

• Randomized Approximate Butterfly Counting: We intro-

duce efficient randomized algorithms to find the approximate

number of butterflies in a network by sampling. Our algorithms

are able to derive accurate estimates with error as low as 1%

within a few seconds, are much faster than the exact algorithms,

and have an insignificant memory print. We present two types

of randomized algorithms.

– One-shot Sparsification techniques assume that the entire

graph is available for processing. They thin-down the graph to

a much smaller sparsified graph through choosing each edge of

the original graph with a certain randomized procedure. Exact

butterfly counting is then applied on the sparsified graph to

estimate the number of butterflies in the original graph. We

present two such algorithms – ESpar and ClrSpar.

– Local Sampling algorithms, on the other hand, can work un-

der limited access to the input graph. They randomly sample

small subgraphs local to an element of the graph, and use them

to compute an estimate. This is in contrast to sparsification,

which needs a global view of the graph. We investigate sam-

pling of subgraphs localized around a vertex (VSamp), edge

(ESamp), and a wedge (WSamp). Sampling algorithms are es-

pecially useful when there is a rate-limited API that provides

random samples, such as the GNIP framework for Twitter [1]

and the Graph API of Facebook [2]. In the rest of this paper,

when we say “sampling algorithms”, we mean local sampling

algorithms.

• ProvableGuarantees:Weprove that the randomized algorithms

yield estimates that are equal to the actual number of butterflies

in the graph, in expectation. Through a careful analysis of their

variance, we show that it is possible to reduce the estimation error

to any desired level, through independent repetitions (sampling)

or through an appropriate choice of parameters (sparsification).

• Experiments on real-world networks:We present results of

an evaluation of our algorithms on large real-world networks.

These results show that the algorithms can handle massive graphs

with hundreds of millions of edges and trillions of butterflies. Our

most efficient sampling algorithm, which we call ESamp+Fast-

eBFC, gives estimates with a relative error less than 1 percent

within 5 seconds, even for large graphs with trillions of butterflies.

On such large graphs, (exact) algorithms from prior work took

tens of thousands of seconds. We observed a similar behavior

with our best one-shot sparsification algorithm, ESpar, which

typically yields estimates with error less than 1 percent, within 4

secs.

a

b

c

d

e

x

y

w

z

(G) = |{{a, b, x, y}, {a, c, x, y},
{b, c, x, y}, {c, d, w, z}}|

a= 2

c= 3

d= 1

(b, y)= 2

= 1

= 0
(c, w)

(e, z)

Figure 1: There are 4 butterflies in the entire graph, and the

number of per-vertex and per-edge butterflies are shown for

some vertices/edges.

2 PRELIMINARIES

We consider simple, unweighted, bipartite graphs, where there are

no self-loops or multiple edges between vertices. Let G = (V ,E) be
a simple bipartite graph with n = |V | vertices andm = |E | edges.
Vertex setV is partitioned into two sets L and R such thatV = L∪R
and L∩R = ∅. The edge set E ⊆ L×R. Forv ∈ V , Γv = {u |(v,u) ∈ E}
denotes the set of vertices adjacent to v (neighbors) and dv = |Γv |
is the degree ofv . ∆ denotes the maximum degree of a vertex in the

graph. In addition, Γ2v = {w |(w,u) ∈ E ∧w , v, ∀ u ∈ Γv } is the
set of vertices that are exactly in distance 2 from v , i.e., neighbors
of the neighbors of v (excluding v itself). A wedge inG is a path of

length two.

A biclique is a complete bipartite subgraph, and is parameterized

by the number of vertices in each partition; for integers α , β , an
α × β biclique in a bipartite graph is a complete subgraph with α
vertices in L and β vertices in R. A butterfly in G is a 2 × 2 biclique

and consists of four vertices {a,b,x ,y} ⊂ V where a,b ∈ L and

x ,y ∈ R such that edges (a,x), (a,y), (b,x), and (b,y) all exist in E.
Let (G) denote the number of butterflies inG (we use notation

when G is clear from the context). For vertex v ∈ V , let v denote

the number of butterflies that contain v . Similarly, for edge e ∈ E,
let e denote the number of butterflies containing e (See Figure 1).
Our goal is to compute (G) for a graph G. We summarize our

notation in Table 1.

When estimating the number of butterflies, we look for provable

guarantees on the estimates computed using the following notion of

randomized approximation. For parameters ϵ,δ ∈ [0, 1], an (ϵ,δ) −
approximation of a number Z is a random variable Ẑ such that

Pr[|Ẑ − Z | > ϵZ] ≤ δ .

Networks and Experimental Setup. Since we frequently present

evaluation results close to the algorithm descriptions, we give

some details about the data used for evaluation. We used massive

real-world bipartite networks, selected from the publicly available

KONECT network repository
1
. The graphs that we have used are

summarized in Table 2. We converted all graphs to simple, undi-

rected graphs by removing edge directions (if graph was directed)

and by removing multiple edges and vertices with degree zero.

1
http://konect.uni-koblenz.de/

G = (V , E) simple bipartite graph with vertices V and edges E
V = L ∪ R vertex partitions L and R

Γv set of vertices adjacent to v , i.e., {u |(v, u) ∈ E }
dv degree of vertex v , i.e., |Γv |

n,m, ∧ number of vertices (|V |), edges (|E |), and wedges (

∑
v∈V

(dv
2

)
)

∆ maximum degree of a vertex in the graph

Γ2v distance-2 neighbors of v (excluding itself)

(G) (or) number of butterflies in graph G

v (e) number of butterflies that contain vertex v (edge e)

Table 1: Notations

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2151

http://konect.uni-koblenz.de/

Bipartite graph |L | |R | |E |
∑

ℓ∈L d2

ℓ

∑
r ∈R d2

r

10
4 × 10 biclique 10K 10 100K 1M 1B 2.2B

DBPedia-Location 172K 53K 293K 629K 245M 3.7M

Wiki-fr 288K 3.9M 22M 2.1T 795M 601B

Twitter 175K 530K 1.8M 74.1M 1.9B 206M

Amazon 2.1M 1.2M 5.7M 828M 437M 35.8M

Journal 3.2M 7.4M 112M 9.5B 5.4T 3.3T

Wiki-en 3.8M 21.4M 122M 12.5T 23.2B 2T

Deli 833K 33.7M 101M 85.9B 52.7B 56.8B

Orkut 2.7M 8.7M 327M 156M 4.9T 22.1T

Web 27.6M 12.7M 140M 1.7T 211T 20T

Table 2: Bipartite network datasets. L and R are vertex parti-

tions, E is the edge set. The sum of degree squares for L and

R, and the number of butterflies are shown. K, M, B, T stand

for 10
3, 106, 109, 1012, respectively.

We implemented all algorithms in C++ and are publicly available

on Github
2
[24]. The source codes are compiled with Visual C++

2015 compiler (Version 14.0), and report the runtimes on a machine

equipped with a 3.50 GHz Intel(R) Xeon(R) CPU E3-1241 v3 and

16.0 GB memory.

3 RELATED WORK

Bipartite graph motifs: Modeling the smallest unit of cohesion

enables a principled way to analyze networks. While the literature

is quite rich with the studies on counting triangles and small cliques

in unipartite graphs [3, 7, 11, 12, 21, 22, 27, 28], these works are

not applicable to bipartite networks. To the best of our knowledge,

Borgatti and Everett [6] are the first to consider cohesive structures

in bipartite networks to analyze social networks. They proposed to

use the 3 × 3 biclique as the smallest cohesive structure, motivated

by the fact that a triangle in a unipartite graph has three vertices,

and the same should be considered for both vertex sets of the

bipartite graph. Opsahl also proposed a similar approach to define

the clustering coefficient in affiliation networks [19]. Robins and

Alexander argued that the smallest structure with multiple vertices

on both vertex sets is a better model for measuring cohesion in

bipartite networks [23], as also discussed in a later work [15]. They

used the ratio of the number of 2 × 2 bicliques (butterflies) to the

number of 3-paths (a path of three edges) to define the clustering

coefficient in bipartite graphs. The butterfly is also adopted in a

recent work by Aksoy et al. [4] to generate bipartite graphs with

community structure. Butterfly counting is also applicable to the

study of graphical codes (Halford and Chugg [9]). The numbers of

cycles of length д, д + 2, and д + 4 in bipartite graphs, where д is

the girth
3
, characterize the decoding complexity – note that the

butterfly is the simplest non-trivial cycle in a bipartite graph.

RandomSampling forMotif Counting:There has beenmuch

interest in recent years for counting motifs via random sampling,

mostly focused on unipartite graphs and triangles. Works on trian-

gle counting include edge sampling [29], subsequently improved

by colorful sampling [20], on vertex and edge sampling [10, 32],

wedge sampling [27], a hybrid scheme that considers the edge and

wedge sampling [30], neighborhood sampling [21], and a recent

space-efficient algorithm [8] based on reservoir-sampling. To the

2
https://github.com/beginner1010/butterfly-counting

3
length of the shortest cycle in a graph

Algorithm 1: ExactBFC (V, E): Exact Butterfly Counting

Input :Graph G = (V = (L, R), E)
Output : (G)

1 A ← L, ← 0

2 if

∑
u∈L (du)2 <

∑
v∈R (dv)2 then

3 A ← R

4 for v ∈ A do

5 C ← hashmap // initialized with zero

6 for u ∈ Γv do

7 for w ∈ Γu : w ≺ v do

8 C[w] ← C[w] + 1 // dist-2 multiplicities

9 for w ∈ C : C[w] > 0 do

10 ← +
(C[w]

2

)
11 return /2 ()

best of our knowledge, random sampling for butterfly counting in

bipartite networks has not been studied in the past.

Butterfly Counting: The closest work to ours is by Wang et

al. [31], who presented exact algorithms for butterfly (rectangle)

counting. Their algorithms outperform genericmatrix-multiplication

based methods for counting cycles in a graph [5]. We present an

improved algorithm for exact butterfly counting, and then present

more efficient randomized algorithms for approximate butterfly

counting.

4 EXACT BUTTERFLY COUNTING

We first present the basic equation for the number of butterflies

in a bipartite graph G and the base (state-of-the-art) algorithm by

Wang et al. [31] that implements the equation.

Lemma 1. For a bipartite graph G = (V = (L ∪ R),E),
(1) (G) = 1

2

∑
v ∈L v .

(2) v =
∑
u ∈Γv

∑
(unique)w ∈Γu \v

(|Γv∩Γw |
2

)
=
∑
w ∈Γ2v

(|Γv∩Γw |
2

)
.

(3) (G) = 1

2

∑
v ∈L

∑
w ∈Γ2v

(|Γv∩Γw |
2

)
.

Proof. As each butterfly has exactly two vertices in the set L,
Equation (1) holds. For a vertex v in L, each butterfly it participates

has one other vertex w ∈ L (w , v) and two vertices u,x ∈ R. By
definition,w ∈ Γ2v . In order to find the number of u,x pairs that v
andw form a butterfly, we compute the intersection of the neighbor

sets ofv andw . Number of the pairs in the intersection is defined by(|Γv∩Γw |
2

)
, as in Equation (2). Replacing v in Equation (1) by the

right-most hand side of Equation (2), we obtain Equation (3). �

An efficient implementation of Equation (3) is given in Algorithm 1

ExactBFC (ignore the colored lines). Instead of performing set

intersection at each step, we count and store the number of paths

from a vertex v ∈ L to each of its distance-2 neighbor w ∈ L by

using a hash map C (in lines 5 to 8). Additional space complexity

of ExactBFC is O(|V |), which is used by the hash map C. Compu-

tational complexity of ExactBFC (without colored lines) is given

by the following.

Lemma 2. On input graph G = (V = (L ∪ R),E), time complexity

of ExactBFC (without colored lines) is O(
∑
u ∈R d

2

u).

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2152

http://konect.uni-koblenz.de/networks/dbpedia-location
http://konect.uni-koblenz.de/networks/edit-frwiki
http://konect.uni-koblenz.de/networks/munmun_twitterex_ut
http://konect.uni-koblenz.de/networks/amazon-ratings
http://konect.uni-koblenz.de/networks/livejournal-groupmemberships
http://konect.uni-koblenz.de/networks/edit-enwiki
http://konect.uni-koblenz.de/networks/delicious-ui
http://konect.uni-koblenz.de/networks/orkut-groupmemberships
http://konect.uni-koblenz.de/networks/trackers-trackers
https://github.com/beginner1010/butterfly-counting

Algorithm 2: vBFC (v, G): Per Vertex Butterfly Counting

Input: A vertex v ∈ V in G = (V = (L ∪ R),E)
Output: v , number of butterflies in G that contain v

1 v ← 0, C ← hashmap // initialized with zero

2 for u ∈ Γv do

3 forw ∈ Γu do if w , v then C[w] ← C[w] + 1

4 forw ∈ C do v ← v +
(C[w]

2

)
5 return v

Proof. For each v ∈ L, we find a distance-2 neighbor vertex

w ∈ L such that there exists au ∈ R where (v,u) ∈ E and (w,u) ∈ E.
In lines 6 to 8, the nested for loop performs O(1) computation for

each tuple (v,u,w) where v ∈ L,u ∈ Γv , and w ∈ Γu . The number

of such triples is exactly the number of paths in the graph of length

two, with the midpoint (u) in R, which is equal to

∑
u ∈R

(du
2

)
=

O(
∑
u ∈R (du)

2). �

We have two observations about Equation (3) and Algorithm 1.

First, the intersection operation need not be performed for each

ordered pairv,w in L, but instead can be performed for all (ordered)

pairsw ≺ v , thus preventing double counting of a butterfly.

Second, instead of iterating over the vertex set L in Equation (3),

we can also use other vertex set, R;

(4) (G) = 1

2

∑
u ∈R

∑
x ∈Γ2u

(|Γu∩Γx |
2

)
Clearly, Equations (3) and (4) give the same answer overall, but

their computational costs can be significantly different. We show

(Lemma 2) that the runtime of the algorithm is O(
∑
u ∈R (du)

2) if

we use A = L. Based on this analysis, we propose to use an O(n)
time pre-computation step that compares the sum of degrees in L
and R to choose the cheaper option. If

∑
v ∈L(dv)

2 <
∑
u ∈R (du)

2
,

then we choose the right side, R; otherwise we choose the left side,
L. This is done in the lines 2 and 3 (in pink).

ExactBFC algorithm (including colored lines) has the complex-

ity of O(min(
∑
u ∈R (du)

2,
∑
v ∈L (dv)

2) and improves upon the time

complexity of the algorithm due to Wang et al. [31], which is

O
(∑

u ∈R (du)
2
)
. The main difference is that their algorithm always

starts from the left vertex set L, while we choose the cheaper option
depending on the sum of degrees in each side.

4.1 Performance of Exact Butterfly Counting

We compare the runtime of our algorithm (ExactBFC) with Wang

et al. [31] (WFC). From our theoretical analysis in Section 4, our

algorithm is expected to be faster thanWFC. Figure 2 shows a com-

parison of the runtimes of the two algorithms.We note the following

points. (1) ExactBFC is always faster thanWFC. This also shows

that theO(n) pre-processing step in ExactBFC to choosewhich side

to proceed from is effective. (2) In many cases, ExactBFC achieves

significant speedup when compared withWFC. This is especially

true in cases where

∑
ℓ∈L d

2

ℓ
and

∑
r ∈R d

2

r differ significantly. In

particular, ExactBFC is 700 times faster thanWFC on Journal net-
work and 35 times faster on Orkut. For the Web network, WFC did

not complete in 40, 000 seconds while ExactBFC completed in

≈ 9, 000 secs.

Algorithm 3: eBFC (e, G): Per Edge Butterfly Counting

Input: An edge e = (u,v) ∈ E in G = (V ,E)
Output: e , number of butterflies in G that contain e

1 e ← 0

2 forw ∈ Γu \ {v} do
3 for x ∈ Γw do if x ∈ Γv \ {u} then e ← e + 1

4 return e

4.2 Local Butterfly Counting

We present two algorithms for local butterfly counting, vBFC (Al-

gorithm 2) for counting the number of butterflies v that contain

a given vertex v , and eBFC (Algorithm 3) for counting the number

of butterflies e that contain an edge e . Both algorithms employ

procedures similar to the inner loop (lines 5 to 10) of ExactBFC.

We will use vBFC and eBFC as building blocks in our sampling

algorithms (Section 5).

Lemma 3. Time complexity for vBFC(v,G) is O(|Γ2v |) = O(∆ dv)
where ∆ is the maximum degree in G, and for eBFC(e=(u,v),G) is
O(|Γ2u | + |Γv |) = O(∆ du + dv) where du < dv w.l.o.g..

Proof. vBFC iterates through each vertex in Γ2v spending O(1)

time per iteration. Since |Γ2v | is bounded by ∆ dv , the time complex-

ity follows. For eBFC, the only extra work is to check whether an

x ∈ Γ2u also exists in Γv and it can be done by a hash map which

requires dv preprocessing time. �

5 APPROXIMATION BY LOCAL SAMPLING

In this section, we present approaches to approximating (G) using
random sampling. The intuition behind sampling is to examine

a randomly sampled subgraph of G and compute the number of

butterflies in the subgraph to derive an estimate of (G). Since the
subgraph is typically much smaller than G, it is less expensive to
perform an exact computation. The size of the chosen subgraph,

the cost of computing on it, and the accuracy of the estimate vary

according to the method by which we choose the random subgraph.

This sampling process can be repeated multiple times, and averaged,

in order to get a better accuracy.

We consider three natural sampling methods: vertex sampling

(VSamp), edge sampling (ESamp), and wedge sampling (WSamp). In

VSamp, the subgraph is chosen by first choosing a vertex uniformly

at random, followed by the induced subgraph on the distance-2

neighborhood of the vertex. In ESamp, a random edge is chosen,

followed by the induced subgraph on the union of the immediate

neighborhoods of the two endpoints of the edge. In WSamp, a ran-

dom wedge (path of length two) is chosen, followed by the induced

subgraph on the intersection of the immediate neighborhoods of

the two endpoints of the wedge. While the methods themselves

are simple, the analysis of their accuracy involves having to deal

carefully with the interactions of different butterflies being sampled

together.

5.1 Vertex Sampling (Algorithm VSamp)

The idea in VSamp is to sample a random vertex v and count the

number of butterflies that containv – this is accomplished by count-

ing the number of butterflies in the induced subgraph consisting of

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2153

10
-2

100

102

104

(
10 4

, 10
)
-Biclique

DBPedia-Location

Wiki-fr
Twitter

Amazon
Journal

Wiki-en
Deli

Orkut
Web

T
im

e(
se
c)

Graphs

ExactBFC
WFC

Figure 2: Runtimes for Exact Butterfly Counting, showing speedups up to 3 orders of magnitude for ExactBFC overWFC. For

the Web graph, WFC did not finish in 40,000 secs.

v

w

v′

w′

u

x

u′

x′

(a) Type 0v : No vertex in

common

v

w

v′

w′

u

x

u′

(b) Type 1v : One vertex in

common

v

w

v′

w′

u

x

(c) Type 2v : Two vertices in

common but no edge

v

w

v′

u

x

u′

(d) Type 1e : One edge in

common

v

w

u

x

u′

(e) Type 1w : One wedge in

common

Figure 3: A pair of butterflies in G can be of one of the above five types.

Algorithm 4: VSamp (single iteration)

Input: A bipartite graph G = (V ,E)
Output: An estimate of (G)

1 Choose a vertex v from V uniformly at random.

2 v ← vBFC (v,G) // Algorithm 2

3 return v · n/4

the distance-2 neighborhood of v in the graph. We show that the

algorithm, described in Algorithm 4, yields an unbiased estimate of

(G), and also analyze the variance of the estimate. The variance

is reduced by taking the mean of multiple independent runs of the

estimator.

Let YV denote the return value of Algorithm 4. Let pV denote

the number of pairs of butterflies in G that share a single vertex.

Lemma 4. E [YV] = , and Var [YV] ≤
n
4
(+ pV)

Proof. Consider that the butterflies in G are numbered from

1 to . Let X = v , the number of butterflies that contain the

vertex v , which is sampled uniformly. For i = 1, . . . , , let Xi be

an indicator random variable equal to 1 if the ith butterfly includes

the vertex v . We have X =
∑
i=1 Xi . Since each butterfly has four

vertices, E [Xi] = Pr [Xi = 1] = 4/n. Thus, E [X] =
∑
i=1 E [Xi] =∑

i=1 Pr [Xi = 1] = 4

n . Since YV = X · n
4
, we have E [YV] = .

For the variance of YV , we consider the joint probabilities of

different butterflies being sampled together. The set of all pairs

of butterflies are partitioned into different types as follows. This

partitioning will help not only with analyzing this algorithm, but

also in subsequent sampling algorithms. A pair of butterflies is said

to be of type:

• 0v if they share zero vertices (Figure 3a)

• 1v if they share one vertex (Figure 3b)

• 2v if they share two vertices but no edge (Figure 3c)

• 1e if they share two vertices and exactly one edge (Figure 3d)
• 1w if they share three vertices and two edges i.e. share a

wedge (Figure 3e)

It can be verified that every pair of distinct butterflies must be one

of the above types {0v, 1v, 2v, 1e, 1w}, and other combinations such

as three vertices and more than two edges are not possible. For each

type t ∈ {0v, 1v, 2v, 1e, 1w}, let pt denote the number of pairs of

butterflies of that type. In addition, let pV = p1v +p2v +p1e +p1w
be the number of pairs of butterflies that share at least one vertex.

Var [YV] = Var

[
n
4

∑
i=1

Xi

]
=
n2

16

Var

[∑
i=1

Xi

]
=
n2

16

[∑
i=1
Var [Xi] +

∑
i,j
Cov

(
Xi , X j

)]
=
n2

16

[(
4

n
−

16

n2

)
+
∑
i,j

(
E
[
XiX j

]
− E [Xi]E

[
X j

])]
Consider the different types of butterfly pairs (i, j):

• Type 0v , there is zero probability of i and j being counted within

v , hence E
[
XiX j

]
= 0. Cov

(
Xi ,X j

)
= −16/n2.

• Type 1v , E[XiX j] = Pr[Xi = 1] Pr[X j = 1|Xi = 1] = (4/n)(1/4) =

1/n. Cov
(
Xi ,X j

)
= 1/n − 16/n2.

• Type 2v , E[XiX j] = (4/n)(1/2) = 2/n. Cov
(
Xi ,X j

)
= 2/n − 16/n2

• Type 1e , E[XiX j] = (4/n)(1/2) = 2/n. Cov
(
Xi ,X j

)
= 2/n − 16/n2

• Type 1w , E[XiX j] = (4/n)(3/4) = 3/n. Cov
(
Xi ,X j

)
= 3/n − 16/n2.

By ignoring the negative contributions and adding up the other

contributions, we arrive:

Var[YV] ≤
n

4

+
n

16

p1v +
n

8

p2v +
n

8

p1e +
3n

16

p1w ≤
n

4

(+ pV)

�

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2154

Algorithm 5: ESamp (single iteration)

Input :A bipartite graph G = (V ,E)
Output: An estimate of (G)

1 Choose an edge e from E uniformly at random.

2 e ← eBFC (e,G) // Algorithm 3

3 return e ·m/4

LetZ be the average ofα = 8n
ϵ 2

(
1 +

pV
)
independent instances

of YV . Using Var[Z] = Var[YV]/α and Chebyshev’s inequality:

Pr [|Z − | ≥ ϵ] ≤
Var[Z]

ϵ2 2
=
Var[YV]

αϵ2 2
≤

n(+ pV)

4αϵ2 2
=

1

32

We can turn the above estimator into an (ϵ,δ) estimator by taking

the median of O(log(1/δ)) estimators, using standard methods.

Lemma 5. There is an algorithm that uses
˜O

(
n

(
1 +

pV
))

iter-

ations
4
of VSamp (Algorithm 4) and yields an (ϵ,δ)-estimator of

(G) using expected time
˜O

(
m∆

(
1 +

pV
))
. Expected additional

space is O

(
m∆
n

)
.

Proof. An iteration of VSamp samples a vertexv and calls vBFC

(Algorithm 2) for local butterfly counting once, which takes O(|Γ2v |)
time. Hence, the expected runtime of an iteration is O

(
E
[
|Γ2v |

])
,

where the expectation is taken over a uniform random choice of a

vertex. We note that |Γ2v | ≤ dv ∆ where dv is v’s degree and ∆ is

the maximum degree in the graph. Thus E
[
|Γ2v |

]
≤
∑
v ∈V

1

ndv∆ =
∆
n
∑
v ∈V dv =

m∆
n . The space of VSamp is same with vBFC (Al-

gorithm 2); O(|Γ2v |) for handling vertex v . The expected value is

O(m∆
n). �

5.2 Edge Sampling (Algorithm ESamp)

In this algorithm, the idea is to sample a random edge and count

the number of butterflies that contain this edge, using eBFC (Algo-

rithm 3). We present ESamp in Algorithm 5, and state its properties.

The proofs of the lemmas are omitted due to space constraints, and

can be found in the full version [25].

Let YE denote the return value of ESamp (Algorithm 5). Let pE
be the number of pairs of butterflies that share at least one edge.

Then, pE = p1e + p1w .

Lemma 6. E [YE] = and Var [YE] ≤
m
4
(+ pE). Using

˜O

(
m

(
1 +

pE
))

iterations of ESamp yields an (ϵ,δ)-estimator of

(G) using time
˜O

(
m2∆
n

(
1 +

pE
))
. The additional space complexity

is O

(
m∆
n

)
.

5.3 Wedge Sampling (Algorithm WSamp)

In WSamp, we first choose a random “wedge", a path of length two

in the graph. This already yields three vertices that can belong

to a potential butterfly. Then, we count the number of butterflies

that contain this wedge by finding the intersection of the neighbor-

hoods of the two endpoints of the wedge. Algorithm 6 describes

theWSamp algorithm. The correctness and complexity are stated

4
We use the notation

˜O(f) to suppress the factor
log(1/δ)
ϵ2

, i.e. mean O

(
f · log(1/δ)

ϵ2

)

Algorithm 6: WSamp (single iteration)

Input :A bipartite graph G = (V ,E)
Output: An estimate of (G)

1 ∧ ←
∑
u ∈V

(du
2

)
// number of wedges in G

2 Choose a vertex u ∈ V with probability

(du
2

)
/∧

3 Choose two distinct vertices v,w ∈ Γu uniformly at random

4 β ← |Γv ∩ Γw | − 1 // # butterflies that has (u,v,w)

5 return β · ∧/4

VSamp ESamp WSamp√
(+pV)n

4
error %

√
(+pE)m

4
error %

√
(+p

1w)h
4

error %

Deli 2.8 × 1013 494.9 2.1 × 1012 38.3 7.7 × 1011 13.6

Journal 2.3 × 1015 708.56 2.1 × 1013 6.4 1.4 × 1014 99.3

Orkut 5 × 1015 223.6 2 × 1014 9.2 2.9 × 1014 13.3

Web 6.8 × 1016 3431.5 8.2 × 1013 4.1 4.3 × 1016 2194.8

Wiki-en 1.3 × 1016 6823.6 3.8 × 1013 19 1.4 × 1015 703.4

Table 3: Standard deviations of estimators on large graphs.

For each method, the theoretical upper bound on the stan-

dard deviation is shown in the left column, and the “error",

the ratio between the (theoretical) standard deviation and

the number of butterflies, is shown in the second column.

here, with proofs deferred to the full version [25]. Let YW denote

the return value of Algorithm 6.

Lemma 7. E [YW] = , and Var [YW] ≤
∧
4
(+ p1w). Using

˜O
(
∧
(
1 +

p1w))
iterations of WSamp yields an (ϵ,δ)-estimator of

(G) in time
˜O

(
(∆+logn)∧

(
1 +

p1w
))

and space O(n).

5.4 Accuracy and Runtime of Sampling

Accuracy of a Single Iteration. In order to understand the relation

between the three sampling algorithms, we compare the variance of

the estimates returned by these algorithms. Note that each of them

returns an unbiased estimate of the number of butterflies. The stan-

dard deviations (square root of variances) of VSamp, ESamp, and

WSamp for different graphs are estimated and summarized in Ta-

ble 3. The results show that the variances of VSamp andWSamp are

much higher than the variance of ESamp. Note that these are esti-

mates of an upper bound on the variances, and the actual variances

could be (much) smaller.

The variance of VSamp is proportional to npV where pV is the

number of pairs of butterflies that share a vertex and n is the number

of vertices. The variance of ESamp is proportional tompE where

pE is the number of pairs of butterflies that share an edge andm is

the number of edges. Note that typically ≪ pV ,pE and hence

+pV ≈ pV and +pE ≈ pE . If two butterflies share an edge, they
certainly share a vertex, hence pE ≤ pV . Since it is possible that
two butterflies share a vertex but do not share an edge, pE could

be much smaller than pV . It turns out that in most of these graphs,

pE was much smaller than pV . On the other hand, the number

of vertices in a graph (n) is comparable to the number of edges

(m). Typically m < 10n, and only in one case (Orkut), we have

m ≈ 30n. Thus, npV ≪mpE for the graphs we consider. As a result,

the variance of VSamp is much larger than the variance of ESamp,

which is reflected clearly in Table 3.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2155

Algorithm 7: Fast-eBFC (replaces eBFC in ESamp)

Input: An edge e = (v,u) ∈ E in G = (V ,E)
Output: An estimate of e

1 Choose a vertexw from Γu uniformly at random

2 Choose a vertex x from Γv uniformly at random

3 if (u,v,w,x) forms a butterfly then β ← 1

4 else β ← 0

5 return β · du · dv

Comparing ESamp with WSamp, we note that the variance of

WSamp is proportional to ∧ ·p1w , where ∧ is the number of wedges

in the graph (O(
∑
v d2v)) andp1w is the number of pairs of butterflies

that share a wedge. The variance of ESamp is proportional tompE .
p1w ≤ pE since each pair of butterflies that shares a wedge also

shares an edge. At the same time, we see that ∧ is substantially

greater thanm. Overall, there is no clear winner amongWSamp and

ESamp in theory, but ESamp seems to have the smaller variance

on real-world networks, typically, sometimes much smaller, as in

graph Wiki-en.

Runtime per Iteration: The performance of a sampling algorithm

depends not only on the variance of an estimator, but also on how

quickly an estimator can be computed. Figure 4 shows the time

taken to compute a single estimator using different sampling algo-

rithms for the five largest networks. We note that ESamp (which

calls eBFC) requires the largest amount of time per sampling step,

among all estimators. This decreases the overall accuracy of ESamp,

despite its smaller variance.

5.5 Faster Edge Sampling using Fast-eBFC

Since ESamp had a low variance, but a high runtime per iteration,

we tried to achieve different tradeoffs with respect to runtimes

and accuracy, which led to our next algorithm Fast-eBFC, a faster

variant of butterfly counting per edge (eBFC). Like ESamp, we

first sample a random edge from the graph, but instead of exactly

counting the number of butterflies that contain the sampled edge,

which leads to (relatively) expensive iterations, Fast-eBFC only

estimates the number of butterflies per edge, through a further

sampling step (replacing eBFC in line 2 of ESamp (Algorithm 5)). For

an edge (u,v) this estimation is performed by randomly choosing

one neighbor each of u and of v , and checking if the four vertices

form a butterfly. Algorithm 7 presents a single iteration of Fast-

eBFC. This procedure is repeated a few times for a given edge,

to improve the accuracy of the estimate. In our implementation

we repeated it 1000 times for each sampled edge, and it was still

significantly faster than eBFC (Figure 4). We use it instead of the

eBFC algorithm in ESamp. While the estimate from each iteration

is less accurate than in ESamp, more iterations are possible within

the same time. Fast-eBFC (with 1000 repetitions) is faster than

eBFC by 15x-357x, when used in ESamp. Overall, in large graphs,

this leads to an improvement in accuracy over eBFC in ESamp. Let

YF E denote the return value of Algorithm 7.

Lemma 8. E [YF E] = e and Var [YF E] ≤ e (du · dv) (Proof is
deferred to [25]).

Let Z be the average of α = 32(du · dv)/(ϵ
2

e) independent

instances of YF E . Using Chebyshev’s inequality, we arrive that Z is

an (ϵ, 1/32)-estimator of e .

Fast Wedge Sampling: We also experimented with a faster

version of WSamp, where the number of butterflies containing a

wedge was estimated using sampling. But this did not yield good

results, partly because the time for each iteration of WSamp was

already relatively small. For example, in Deli graph,WSamp had

less than 2% error after 5 secs while Fast Wedge Sampling ended

up with 29% error after 10 secs. In Web also the error percentage of

Fast Wedge Sampling was 60% higher than WSamp’s.

5.6 Comparing Sampling-based Approaches

We compare the sampling algorithmsVSamp, ESamp+ eBFC, ESamp+

Fast-eBFC, and WSamp. A sampling algorithm immediately starts

producing estimates that get better as more iterations are executed.

We record the number of iterations and relative percent error of

sampling algorithms up to 60 seconds. Figure 5 shows the relative

percent error with respect to the runtime for five large bipartite

graphs. We report the median error of the 30 trials of sampling

methods for each data point.

Our experiments show that VSamp performs poorly when com-

pared with ESamp and WSamp under the same time budget – this

is along expected lines, based on our analysis of the variance. The

accuracy of ESamp andWSamp are comparable, with ESamp be-

ing slightly better. Note that ESamp has a better variance, while

WSamp has faster iterations. For instance, on the Wiki-en network,
1000 iterations of WSamp yields 51% error in 0.13 secs, whereas

1000 iterations of ESamp yields 29% error in 33 seconds. Across all

the graphs, ESamp using Fast-eBFC, which combines the benefits

of faster iterations with a good variance, yields the best results, and

is superior to all other sampling methods; it leads to less than 1%

relative error within 5 seconds.

6 APPROXIMATION BY

ONE-SHOT SPARSIFICATION

We present methods for estimating (G) using one-shot sparsifica-

tion – where we thin down the input graph into a smaller graph

through a global sampling step. The number of butterflies in the

sparsified graph is used to estimate (G). Unlike algorithms such

as ESamp andWSamp, which work on a small subgraph constructed

around a single randomly sampled edge or a wedge, sparsification

methods put each edge in the graph into the sample with a certain

probability. We consider two approaches to sparsification (1) ES-

par in Section 6.1, where edges are chosen independently of each

other and (2) ClrSpar in Section 6.2, based on a sampling method

where different edges are not independently chosen, but dense re-

gions appear with higher probability in the sample – based on a

similar idea in the context of triangle counting due to Pagh and

Tsourakakis [20].

6.1 Edge Sparsification (ESpar)

In ESpar, the input graphG is sparsified by independently retaining

each edge in G in the sampled graph G ′, with a probability p. The
number of butterflies in G ′, obtained using ExactBFC, is used to

construct an estimate of (G), after applying a scaling factor. This

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2156

0

10

T
im

e(
se
c)

ESamp+Fast-eBFC

Figure 4: Average time per iteration of sampling algorithms.

Conference’17, July 2017, Washington, DC, USA Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sarıyüce, and Srikanta Tirthapura

0
1

10
100

10 20 30 40 50

E
rr
or
(%

)

Time(sec)

ESamp with Fast-eBFC

0.1

1

10

100

10 20 30 40 50

E
rr
o
r(
%
)

Time(sec)

(a) Deli

0.1

1

10

100

10 20 40 5030
Time(sec)

(b) Journal

0.1

1

10

100

10 20 40 5030
Time(sec)

(c) Orkut

0.1

1

10

100

10 20 40 5030
Time(sec)

(d) Web

0.1

1

10

100

10 20 40 5030
Time(sec)

(e) Wiki-en

Figure 5: Relative error as a function of runtime, for sampling algorithms. ESamp with Fast-eBFC yields < 1% relative error

within 5 seconds for all networks.

0.100
1.000
10.000

100.000

0.000 0.001 0.004 0.016 0.062 0.250 1.000
0.5001.0002.0004.0008.00016.00032.00064.000128.000256.000

E
rr
or
(%

)

T
im

e(
se
c)

Probability p

ESpar(Error vs Probability) ClrSpar(Error vs Probability) ESpar(Time vs Probability) ClrSpar(Time vs Probability)

0.01

0.1

1.0

10.0

100.0

0.004 0.25 1.0
1

4

16

64

256

E
rr
or
(%

)

T
im

e(
se
c)

0.016 0.062
Probability (p)

(a) Deli

0.01

0.1

1.0

10.0

100.0

0.25 1.0
0.5
1

2

4

8

16

32

64

E
rr
o
r(
%
)

T
im

e(
se
c)

Probability (p)
0.0620.0160.004

(b) Journal

0.01

0.1

1.0

10.0

100.0

0.004 0.25
2

4

8

16

32

64

128

256

512

E
rr
or
(%

)

T
im

e(
se
c)

0.016 0.062
Probability(p)

1.0

(c) Orkut

0.01

0.1

1.0

10.0

100.0

0.004 0.016
1

4

16

64

256

1024
E
rr
o
r(
%
)

T
im

e(
se
c)

 Probability (p)
0.062 0.25

(d) Web

0.01

0.1

1.0

10.0

100.0

0.004 0.25 1.0
0.5

1

4

16

64

E
rr
or
(%

)

T
im

e(
se
c)

 Probability (p)
0.0620.016

(e) Wiki-en

Figure 6: Accuracy (on left y-axis) and runtime performance (on right y-axis) of sparsification algorithms for different proba-

bilities (on x-axis). ESpar performs better than ClrSpar, and yields < 1% relative error within 4 seconds for all networks.

Algorithm 8: ESpar: Edge Sparsification

Input :A bipartite graph G = (V ,E), parameter p, 0 < p < 1

1 Construct E ′ by including each edge e ∈ E independently

with probability p

2 β ← ExactBFC(V ,E ′) // Algorithm 1

3 return β · p−4

is much faster than working with the original graph G since the

number of edges in G ′ can be much smaller. The ESpar algorithm

is described in Algorithm 8.

Lemma 9. Let YES denote the output of ESpar on input graph

G. Then E [YES] = (G). If p > max

(
4

√
24 ,

√
24∆ , 24∆

2

)
, then

Var [YES] ≤
2/8.

We provide a sketch of the proof below, and the full proof can be

found in the full version of the paper [25]. The proof of the expec-

tation is straightforward. For bounding the variance, the analysis

has to deal with the fact that although different edges are sampled

independently, the random variables corresponding to different

butterflies being sampled are not independent of each other, since

butterflies may share edges. By accounting for the covariances, we

arrive that the following types of pairs of butterflies impact the

variance: Type 0e (share zero edges), Type 1e (one edge), and Type

1w (one wedge). Let the numbers of such pairs be p0e ,p1e , and p1w
respectively. We arrive at a bound on the variance of YES using

the following observation (whose proof is in [25]), which allows a

bound on the variance in terms of ∆ and .

Observation 1. p2v ≤ ∆2
, p1e ≤ ∆2

, and p1w ≤ ∆.

Using Chebyshev’s inequality and standard methods, the esti-

mator YES can be repeated O(log(1/δ)/ϵ2) times to get an (ϵ,δ)
estimator of (G).

6.2 Colorful Sparsification (ClrSpar)

The idea in ClrSpar is to sample edges at a rate of p, as in ESpar,

but add dependencies between the sampling of different edges,

such that there is a greater likelihood that a dense structure, such

as the butterfly, is preserved in the sampled graph. The algorithm

randomly assigns one of N colors to vertices, and sample only those

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2157

Algorithm 9: ClrSpar

Input :Bipartite graph G = (V ,E), number of colors N
1 Let f : V → {1, . . . ,N } // map to random colors

2 E ′ ← {(u,v) ∈ EG | f (u) = f (v)}

3 β ← ExactBFC (V ,E ′) // Algorithm 1

4 return β · p−3 where p = 1/N

edges whose endpoints have the same color. TheClrSpar algorithm

for approximate butterfly counting is presented in Algorithm 9.

We developed this method due to the following reason. Suppose

p = 1/N . Though the expected number of edges in the sampled

graph ismp, the same as in ESpar, it can be seen that the expected

number of butterflies in the sampled graph is equal top3 , which is

higher than in the case of ESpar (p4). Thus, for a sampled graph

of roughly the same size, we expect to find more butterflies in the

sampled graph. Note however that this does not directly imply a

lower variance of the estimator due to ClrSpar.

Lemma 10. Let Y be the output of ClrSpar on input G, and p =

1/N . E [Y] = (G). If p > max

(
3

√
32 ,

√
32∆ , 32∆

2)
, then Var [Y] ≤

2/8.

6.3 Comparison of Sparsification Algorithms

The parameter p controls the probability of an edge being included

in the sparsified graph. As p increases, we expect the accuracy as

well as the runtime to increase. The relative accuracies of the two

methods depend on the variances of the estimators. We estimated

the variances using our analysis, and Table 4 presents the results.

We observe that the variance of ESpar is predicted to be much

lower than that of ClrSpar. To understand this, we begin with

Lemmas 9 and 10 which show expressions bounding the variances

in terms of p1w ,p1e , and p2v , also summarized in Table 4. The

difference in the variance between ClrSpar and ESpar boils down

to (p−3 +p2vp
−1 − p−4). In our experiments, we found that p2v ,

the number of pairs of butterflies that share two vertices without

sharing an edge, was very high, much larger than p1e , p1w , and .

This explains why the variance of ClrSpar was higher.

This observation about variance is consistent with our experi-

mental results. In Figure 6, we report the relative percent error as

well as the runtime as the sampling probability p increases. Results

show that ESpar obtains less than one percent error when 5 per-

cent of edges are sampled. However, as shown in Figures 6b, 6d

and 6e, ClrSpar requires a larger sampling probability to achieve

a reasonable accuracy.

Graph

Algorithm
ESpar

p−4 + p1wp
−2 + p1ep

−1
ClrSpar

p−3 + p1wp
−2 + p1ep

−1 + p2vp
−1

Deli 4.047 × 1015 9.163 × 1020

Journal 1.413 × 1019 2.042 × 1025

Orkut 5.576 × 1019 8.514 × 1025

Web 7.760 × 1020 4.692 × 1027

Wiki-en 1.303 × 1020 3.062 × 1026

Table 4: Upper bounds on ESpar&ClrSpar variances,p=0.1.

ESamp (with Fast-eBFC) ESpar

Deli 3.4 2.1

Journal 5.0 1.7

Orkut 3.4 3.4

Web 4.1 3.9

Wiki-en 4.8 2.3

Table 5: Time (in seconds) to obtain 1% relative percent error

for the best sampling and sparsification algorithms.

6.4 Sampling or Sparsification?

The accuracy of the best sampling algorithm, ESamp with Fast-

eBFC, is compared with the best sparsification algorithm, ESpar,

in Table 5. Overall, two algorithms take similar times to reach a 1%

error on all graphs we considered, in the range of 1.7-5 sec, with

ESpar achieving this accuracy faster than ESamp with Fast-eBFC.

However, ESpar has other downsides when compared with

ESamp. First, the memory consumption of ESpar isO(mp) where p
is a parameter, and is larger than ESamp with Fast-eBFC, whose

memory consumption is O(∆). As a result, we expect the memory

of ESpar to be linearly in the size of the graph, showing that it

may be easier for ESamp to scale to graphs of even larger sizes.

Next, ESpar needs to decide on a sampling parameter p to balance

between accuracy and runtime. If p is too large, then the runtime is

high, and if p is too small, then the accuracy is low. Finally, one-shot

sparsification algorithms assume that the entire graph is available

whereas the ESamp needs access to only a subgraph of the graph.

Thus if one has to pay for data about the graph, or if the data about

edges is hard to obtain, then sampling may be the better alternative.

Overall, local sampling algorithms can find a larger application

space in real-world problems. If the entire graph is available, and

memory is not a bottleneck, it may be better to go with ESpar. For

more restrictive scenarios, ESamp combined with Fast-eBFC is the

better option.

7 CONCLUSION

We introduced a suite of algorithms for butterfly counting in bipar-

tite networks. We first showed that a simple statistic about vertex

sets, which is cheap to obtain, helps drastically to reduce the run-

time of exact algorithms. We then presented scalable randomized

algorithms that approximate the number of butterflies in a graph,

with provable accuracy guarantees.

Randomized algorithms using one-shot sparsification are appli-

cable when the entire graph is available locally, and rely on a global

sampling step to compute a smaller “sparsified” subgraph, which

is used to compute an accurate estimate. On the other hand, if the

access to the graph data is limited, local sampling algorithms can

be used to randomly sample small subgraphs of the entire graph,

and analyze them to compute an estimate. Sampling algorithms

are especially beneficial when there is a rate-limited API that pro-

vides random samples of the network data, such as the GNIP [1]

and Facebook Graph API [2]. Our best sampling and sparsification

algorithms yield less than 1% relative error within ≈ 4 and ≈ 5

seconds for all the networks we considered, whereas the state-of-

the-art exact algorithm does not complete even in 40,000 secs on

the Web graph.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2158

There are many promising directions to follow. Here, we only

focused on the butterfly motif, but one can consider other motifs

suitable to bipartite graphs. Note that the combinatorial explosion

for the number of butterflies is more serious than the triangles in

unipartite graphs. Thus, it is challenging to consider even larger

motifs, but the ideas in this work can serve as building blocks

for considering different motifs. Another direction is adapting our

algorithms for the streaming scenario. Given a single pass over the

graph, the question is how to sample/sparsify the graph stream to

accurately estimate the number of butterflies. Sparsification-based

algorithms may be adapted to the streaming scenario quite easily,

but same cannot be said for the local sampling algorithms.

ACKNOWLEDGMENT

The work of SS and ST is supported in part by the National Science

Foundation through grants 1527541 and 1725702.

REFERENCES

[1] 2017. GNIP. (https://gnip.com/about/).

[2] 2017. The Graph API for the Facebook Social Graph.

(https://developers.facebook.com/docs/graph-api).
[3] N. K. Ahmed, J. Neville, R. A. Rossi, N. Duffield, and T. L. Willke. 2016. Graphlet

Decomposition: Framework, Algorithms, and Applications. KAIS (2016), 1–32.

[4] S. Aksoy, T. G. Kolda, and A. Pinar. 2017. Measuring and Modeling Bipartite

Graphs with Community Structure. Journal of Complex Networks 5, 4 (2017),

581–603.

[5] N. Alon, R. Yuster, and U. Zwick. 1997. Finding and counting given length cycles.

Algorithmica 17, 3 (1997), 209–223.

[6] Stephen P. Borgatti and Martin G. Everett. 1997. Network analysis of 2-mode

data. Social Networks 19, 3 (1997), 243 – 269.

[7] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. 2017. Counting Graphlets: Space vs Time. InWSDM. 557–566.

[8] L. De Stefani, A. Epasto, M. Riondato, and E. Upfal. 2016. TRIÈST: Counting

Local and Global Triangles in Fully-Dynamic Streams with Fixed Memory Size.

In KDD. 825–834.

[9] T. R. Halford and K. M. Chugg. 2006. An algorithm for counting short cycles in

bipartite graphs. IEEE Transactions on Information Theory 52, 1 (2006), 287–292.

[10] Alon Itai and Michael Rodeh. 1978. Finding a Minimum Circuit in a Graph. SIAM

J. Comput. 7, 4 (1978), 413–423.

[11] Shweta Jain and C. Seshadhri. 2017. A Fast and Provable Method for Estimating

Clique Counts Using Turán’s Theorem. InWWW. 441–449.

[12] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling: A Fast and Provable

Method for Estimating 4-Vertex Subgraph Counts. InWWW. 495–505.

[13] M. Latapy, C. Magnien, and N. Del Vecchio. 2008. Basic notions for the analysis

of large two-mode networks. Social Networks 30, 1 (2008), 31 – 48.

[14] Yongsub Lim and U Kang. 2015. MASCOT: Memory-efficient and Accurate

Sampling for Counting Local Triangles in Graph Streams. In KDD. 685–694.

[15] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005. Cycles and

clustering in bipartite networks. Phys. Rev. E 72 (2005), 056127. Issue 5.

[16] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002.

Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 5594

(2002), 824–827.

[17] M.E.J. Newman. 2001. Scientific collaboration networks. II. Shortest paths,

weighted networks, and centrality. Phys. Rev. E 64 (2001), 016132. Issue 1.

[18] M. E. J. Newman. 2001. Scientific collaboration networks. I. Network construction

and fundamental results. Phys. Rev. E 64 (2001), 016131. Issue 1.

[19] Tore Opsahl. 2013. Triadic closure in two-mode networks: Redefining the global

and local clustering coefficients. Social Networks 35, 2 (2013), 159 – 167. Special

Issue on Advances in Two-mode Social Networks.

[20] Rasmus Pagh and Charalampos E Tsourakakis. 2012. Colorful triangle counting

and a mapreduce implementation. Inform. Process. Lett. 112, 7 (2012), 277–281.

[21] A. Pavan, K. Tangwongsan, S. Tirthapura, and K. Wu. 2013. Counting and

Sampling Triangles from a Graph Stream. PVLDB 6, 14 (2013), 1870–1881.

[22] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE: Efficiently

Counting All 5-Vertex Subgraphs. InWWW. 1431–1440.

[23] Garry Robins and Malcolm Alexander. 2004. Small Worlds Among Interlocking

Directors: Network Structure and Distance in Bipartite Graphs. Computational

& Mathematical Organization Theory 10, 1 (2004), 69–94.

[24] S.-V. Sanei-Mehri, A. Erdem Sariyuce, and S. Tirthapura. 2018. Butterfly Counting

in Bipartite Networks. https://github.com/beginner1010/butterfly-counting.

[25] S.-V. Sanei-Mehri, A. Erdem Sariyuce, and S. Tirthapura. 2018. Butterfly Counting

in Bipartite Networks. ArXiv e-prints (Dec. 2018). arXiv:1801.00338

[26] Ahmet Erdem Sarıyüce and Ali Pinar. 2018. Peeling Bipartite Networks for Dense

Subgraph Discovery. InWSDM.

[27] C. Seshadhri, A. Pinar, and T. G. Kolda. 2014. Triadic Measures on Graphs: The

Power of Wedge Sampling. Statistical Analysis and Data Mining 7, 4 (2014),

294–307.

[28] K. Tangwongsan, A. Pavan, and S. Tirthapura. 2013. Parallel Triangle counting

in massive streaming graphs. In CIKM. 781–786.

[29] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009.

Doulion: counting triangles in massive graphs with a coin. In KDD. 837–846.

[30] D. Turkoglu and A. Turk. 2017. Edge-BasedWedge Sampling to Estimate Triangle

Counts in Very Large Graphs. In 2017 IEEE ICDM. 455–464.

[31] J. Wang, A. W. C. Fu, and J. Cheng. 2014. Rectangle Counting in Large Bipartite

Graphs. In 2014 IEEE International Congress on Big Data. 17–24.

[32] B. Wu, K. Yi, and Z. Li. 2016. Counting Triangles in Large Graphs by Random

Sampling. IEEE TKDE 28, 8 (2016), 2013–2026.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2159

https://github.com/beginner1010/butterfly-counting
http://arxiv.org/abs/1801.00338

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Exact Butterfly Counting
	4.1 Performance of Exact Butterfly Counting
	4.2 Local Butterfly Counting

	5 Approximation by Local Sampling
	5.1 Vertex Sampling (Algorithm VSamp)
	5.2 Edge Sampling (Algorithm ESamp)
	5.3 Wedge Sampling (Algorithm WSamp)
	5.4 Accuracy and Runtime of Sampling
	5.5 Faster Edge Sampling using Fast-eBFC
	5.6 Comparing Sampling-based Approaches

	6 Approximation by One-Shot Sparsification
	6.1 Edge Sparsification (ESpar)
	6.2 Colorful Sparsification (ClrSpar)
	6.3 Comparison of Sparsification Algorithms
	6.4 Sampling or Sparsification?

	7 Conclusion
	References

