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SUMMARY

The incremental graph connectivity (IGC) problem is to maintain a data structure that can quickly answer
whether two given vertices in a graph are connected, while allowing more edges to be added to the graph.
IGC is a fundamental problem and can be solved efficiently in the sequential setting using a solution to the
classical union-find problem. However, sequential solutions are not sufficient to handle modern-day large,
rapidly-changing graphs where edge updates arrive at a very high rate.

We present the first shared-memory parallel data structure for union-find (equivalently, IGC) that is
both provably work-efficient (i.e. performs no more work than the best sequential counterpart) and
has polylogarithmic parallel depth. We also present a simpler algorithm with slightly worse theoretical
properties, but which is easier to implement and has good practical performance. Our experiments on large
graph streams with various degree distributions show that it has good practical performance, capable of
processing hundreds of millions of edges per second using a 20-core machine.

Copyright © 2016 John Wiley & Sons, Ltd.

Received ...

1. INTRODUCTION

The classical Union-Find problem (see, e.g., [5]) seeks to maintain a collection of disjoint sets,
supporting the following two operations:
(1) union(u,v): given elements u and v, combine the sets containing # and v into one set and
return (a handle to) the combined set; and
(2) find(v): given an element v, return (a handle to) the set containing v. If # and v belong to the
same set, it is guaranteed that find(«) = find(v).
This problem has many applications, including incremental graph connectivity on undirected
graphs. Whereas the basic graph connectivity question asks whether there is a path between two
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given vertices, the incremental graph connectivity (IGC) problem seeks an answer to the graph
connectivity question as edges are added over time. IGC has a well-known solution that uses Union-
Find. In this case, each set in the union-find data structure is one connected component. Therefore,
answering whether # and v are connected amounts to checking whether find(u) = find(v).
Furthermore, adding an edge (w,x) to the graph amounts to invoking union(w, x) on the union-
find data structure.

With a sharp increase in the amount of linked data, IGC now often has to be solved at a much
larger scale than before. Every minute, a staggering amount of linked data is being generated from
social media interactions, the Internet of Things (IoT) devices, among others—and timely insights
from them are much sought after. These data are usually cast as a stream of edges with the goal of
maintaining certain local and global properties on the accumulated data. On the one hand, modern
streaming systems (e.g., IBM Streams [10] and Spark Streaming [23]) provide a software platform
for using parallelism to achieve high-throughput processing. On the other hand, scalable, parallel,
and dynamic algorithms are still scarce but needed to effectively utilize such platforms. This paper
makes a step forward in designing parallel algorithms for IGC, where the input is a graph stream
consisting of a sequence of edges, and the queries are connectivity queries. Our main ingredient is
a novel parallel algorithm for Union-Find.

A data stream that has a high rate of flow is still inherently sequential in the sense that each data
item, often called a tuple, arrives one after another. To facilitate parallel processing, many streaming
systems (e.g., Apache Spark Streaming [23]) adopt a “discretized stream” input model: a stream
is divided into a sequence of minibatches, so that each minibatch is simply an array of data tuples
and can be processed as such. Using this model, we design parallel algorithms to efficiently process
a minibatch of edges and a minibatch of queries. More precisely, for a fixed vertex set V, a graph
stream A is a sequence of minibatches A;, Ao, ..., where each minibatch A; is a set of edges on V.
The graph at the end of observing A;, denoted by G;, is G; = (V, Ui_,A;) containing all the edges
up to r. The minibatches A;s may have different sizes. Equivalently, each edge (u,v) can be viewed
as a single union(u, v) operation that merges the sets containing « and v, and a minibatch A; is a set
of union’s that have to be applied in parallel.

With this setup, the data structure that we will design has to support two operations. We use
union-find and connectivity terminologies interchangeably:

(1) The Bulk-Union operation takes as input a minibatch of edges A; and adds them to the
graph—this involves multiple union operations, one per edge.

(2) The Bulk-Same-Set operation takes a minibatch of vertex-pairs {(u;,v;)}*_, and returns
for each query, whether the two vertices are connected on the edges observed so far in the

stream—this conceptually involves multiple find operations, two per vertex-pair.

On this data structure, the Bulk-Union and Bulk-Same-Set operations are each invoked with
a (potentially large) minibatch of input, each processed using a parallel computation. But a bulk
operation, say a Bulk-Union, must complete before the next operation, say a Bulk-Same-Set, can
begin. By not allowing unions and finds in the same batch, the model provides clean semantics for

what constitutes the graph being queried.
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Contributions

The main contribution of this paper is the first shared-memory parallel algorithm for union-find, and
hence, for IGC, that is provably work-efficient and has polylogarithmic parallel depth. The detailed
contributions are as follows:

— Simple Parallel Algorithm. We first present a simple parallel algorithm for Union-Find
(Section 4). This is easy to implement and has good theoretical properties. On a graph with
n vertices, a Bulk-Union operation with b edges, and a Bulk-Same-Set involving b queries
each require O(blogn) work and O(polylog(n)) parallel depth. The data structure consumes
O(n) memory.

— Work-Efficient Parallel Algorithm. We then present an improved parallel algorithm for Union-
Find (Section 5), with total work O((m + g)a(m + g,n)), where m is the total number of
union operations across all minibatches and ¢ is the total number of £ind operations across
all minibatches, and & is an inverse Ackermann’s function (see Section 2). Equivalently,
this is a parallel algorithm for IGC with total work O((m + q)ct(m + g,n)), where m is the
total number of edges across all minibatches, ¢ is the total number of connectivity queries
across all minibatches. This bound on work matches the work of the theoretically time-
optimal sequential counterpart i.e., it is work-efficient. Further, processing a minibatch takes
O(polylog(m, n)) parallel depth. Hence, the sequential bottleneck in the runtime of the parallel
algorithm is very small, and the algorithm is capable of using almost a linear number of
processors efficiently. We are not aware of a prior parallel algorithm for Union-Find with
such provable properties on work and depth.

— Implementation and Evaluation. We implemented and benchmarked a variation of our simple
parallel algorithm on a shared-memory machine. Our experimental results show that the
algorithm achieves good speedups in practice and is able to efficiently use available
parallelism. On a 20-core machine, it can process hundreds of millions of edges per second,
and realize a speedup of 8—11x over its single threaded performance. Further analysis shows
good scalability properties as the number of threads is varied. We describe this in Section 6.

We assume the concurrent-read, concurrent-write (CRCW) model of shared memory. Our
algorithm designed for the CRCW model can work in other shared memory models such as
exclusive-read, exclusive-write (EREW) PRAM, however with a depth, as well as work, that is
a logarithmic factor worse. Hence, it will not be work-efficient in the EREW model. One of the
bottlenecks in making it work-efficient in the EREW model is that our algorithm uses parallel integer
sort, for which there is a work-efficient algorithm in the CRCW model, but not in the EREW model.

We note that this paper extended an earlier paper that appeared in Euro-Par 2016 [21].

2. RELATED WORK

Let n denote the number of vertices, m the number of operations, and o an inverse Ackermann’s
function (very slow-growing, practically a constant independent of n). In the sequential setting, the
basic data structure for incremental connectivity is the well-studied union-find data structure [5].

Tarjan [22] presented an analysis that showed an amortized time of O(o(m,n)) per £ind, which
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has been shown to be optimal (see Seidel and Sharir [18] for an alternate analysis). Such solutions,
however, often are unable to exploit parallelism.

Recent work on streaming graph algorithms mostly focuses on minimizing the memory
requirement, with little attention paid to the use of parallelism. This type of work has largely focused
on the “semi-streaming model” [8], which allows O(n - polylog(n)) space usage. In this case, the
union-find data structure [22] solves incremental connectivity in O(n) space and a total time nearly
linear in m. McGregor’s recent survey paper [15] discusses variants of this problem.

Under the condition that only o(n) of workspace is allowed (sublinear memory), there are
interesting tradeoffs for multi-pass algorithms. With O(s) workspace, an algorithm can compute
the connected components of a graph in Q(n/s) passes [8]. Demetrescu et al. [7] consider the W-
stream model, which allows the processing of streams in multiple passes in a pipelined manner:
the output of the i-th pass is given as input to the (i + 1)-th pass. They demonstrate a tradeoff
between the number of passes and the memory needed. With O(s) space, their algorithm computes
connected components in O((nlogn)/s) passes. Demetrescu et al. [6] present a simulation of a
PRAM algorithm on the W-Stream model, allowing existing PRAM algorithms to run sequentially
in the W-Stream model.

McColl et al. [14] present a parallel algorithm for maintaining connected components in a
fully dynamic graph. As part of a bigger project (STINGER), their work focuses on engineering
algorithms that work well on real-world graphs and gives no theoretical analysis of the parallel
complexity. Our work gives a provable bound on the cost of the parallel computation. In particular,
we achieve work equal to the best sequential algorithm while keeping depth polylogarithmic.
However, compared with our work, their algorithm addresses a more general setting that allows
for arbitrary edge deletions and additions. Manne and Patwary [13] present a parallel Union-Find
algorithm. However, their algorithm is for distributed memory computers while ours is for shared-
memory machines. Patwary et al. [16] present a shared-memory parallel algorithm for computing
a spanning forest that uses the Union-Find data structure, but this does not provide theoretical
guarantees of work-efficiency.

Berry et al. [2] present methods for maintaining connected components in a parallel graph
stream model, called X-Stream, which periodically ages out edges. Their algorithm is essentially
an “unrolling” of the algorithm of [7], and edges are passed from one processor to another until
the connected components are found by the last processor in the sequence. When compared with
our work, the input model and notions of correctness differ. Our work views the input stream as
a sequence of batches, each a set of edges or a set of queries, which are unordered within the set.
Their algorithm strictly respects the sequential ordering of edges and queries. Further, they age out
edges (we do not). Also, they do not give provable parallel complexity bounds.

There are multiple parallel (batch) algorithms for graph connectivity including [20, 9] that are
work-efficient (linear in the number of edges) and that have polylogarithmic depth. However, these
algorithms assume that edges are all known in advance. The work of these parallel algorithms is of
the same order as that of the best sequential algorithm for connected components of a static graph.
However, these algorithms are not efficient for a dynamic graph. If the graph changes due to the
addition of a few edges, then the entire algorithm will have to be re-run to update the connected

components in the graph. Hence, they would not be suitable for parallel IGC.
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Shiloach and Vishkin (as presented by J4ja [11]) describe a batch parallel algorithm for graph
connectivity based on Union-Find that runs in O(mlogn) work and polylogarithmic depth. Like
ours, their algorithm also relies on a union-find-like forest and linking together trees (“grafting” in
their terminology); however, theirs relies on pointer jumping to keep the tree shallow to the point of
keeping stars. As far as we know, there is no easy way to port their algorithm to our setting, let alone
perform parallel path compression. Our algorithm is simpler as it sidesteps concurrent grafting.

Prior work on wait-free implementations of the union-find data structure [1] focuses on the
asynchronous model, where the goal is to be correct under all possible interleavings of operations;
unlike us, they do not focus on bulk processing of edges and the parallel depth of the computation.
There is also a long line of work on sequential algorithms for maintaining graph connectivity on an
evolving graph. See the recent work by [12] that addresses this problem in the general dynamic case

and the references therein.

3. PRELIMINARIES AND NOTATION

Throughout the paper, let [n] denote the set {0,1,...,n}. A sequence is written as X =
{x1,X2,...,Xx|), where |X| denotes the length of the sequence. For a sequence X, the i-th element
is denoted by X; or X[i]. Following the set-builder notation, we denote by (f(x) : ®(x)) a sequence
generated (logically) by taking all elements that satisfy ®(x), preserving their original ordering,
and transform them by applying f. For example, if T is a sequence of numbers, the notation
{1+ f(x) : xe T and x odd) means a sequence created by taking each element x from 7 that are
odd and map x to 1 + f(x), retaining their original ordering. Furthermore, we write S @ T to mean
the concatenation of S and 7.

We design algorithms in the work-depth model assuming an underlying CRCW PRAM machine
model. The work of a parallel algorithm is the total operation count across all processors, and the
depth (also called parallel time or span) is the length of the longest chain of dependencies within
a parallel computation. The gold standard for a parallel algorithm in this model is to perform the
same amount of work as the best sequential counterpart (work-efficient) and to have polylogarithmic
depth.

We use standard parallel operations such as filter, prefix sum, map (applying a constant-cost
function), and pack, all of which can be implemented with O(n) work and O(log?(n)) depth on an
input sequence of length n. Given a sequence of n numbers, there is a duplicate removal algorithm
removeDup that runs in O(n) work and O(log® n) depth [11]. We also use the following result on
sorting integer keys in a small range faster than a typical comparison-based algorithm:

Theorem 1 (Parallel Integer Sort [17])
There is an algorithm, intSort, that takes a sequence of integers ay, as, . . . , a,, where a; € [0, ¢ - n],

¢ = 0(1), and produces a sorted sequence in O(n) work and polylog(n) depth.

Parallel Connectivity: For a graph G = (V, E), a connected component algorithm (CC) computes a
sequence of connected components <C,~>f:1, where each C; is a list of vertices in the component.
There are algorithms for CC that have O(|V| + |E|) work and O(polylog(|V|,|E]|)) depth (e.g.,
[9, 20]), with Gazit’s algorithm [9] requiring O(log |V|) depth.
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4. SIMPLE BULK-PARALLEL DATA STRUCTURE

This section describes a simple bulk-parallel data structure for Union-Find and IGC. The data
structure is conceptually simple but will be instructive for the theoretical improvements presented in
the section that follows. As before, n is the number of vertices in the graph stream, or equivalently

the total number of elements across all disjoint sets. The main result for this section is as follows:

Theorem 2
There is a bulk-parallel data structure for Union-Find and IGC, given by Algorithms
Simple-Bulk-Union and Simple-Bulk-Same-Set, where
(1) The total memory consumption is O(n) words.
(2) A minibatch of b edges is processed by Simple-Bulk-Union in O(blogn) work and
O(log max(b, n)) parallel depth.
(3) A minibatch of g connectivity queries is answered by Simple-Bulk-Same-Set in O(logn)
parallel depth and O(q log n) total work.

In a nutshell, we show how to bootstrap a standard union-find structure to take advantage
of parallelism while preserving the height of the union-find forest to be at most O(logn). For
concreteness, we will work with union by size, though other variants (e.g., union by rank) will
also work. The crux here is to handle concurrent union operations efficiently.

Sequential Union-Find Implementation: We review a basic union-find implementation that uses
union by size. Conceptually, the union-find data structure maintains a union-find forest with one
tree for each set in the partition. In this view, £ind(u«) returns the vertex that is the root of the tree
containing u and union(u, v) joins together the roots of the tree containing « and the tree containing
v, by pointing the root of one tree to the root of the other. The trees in a union-find forest are typically
represented by remembering each node’s parent, in an array parent of length n, where parent|u]
is the tree’s parent of u or parent[u]| = u if it is the root of its component.

The running time of the union and find operations depends on the maximum height of a tree in
the union-find forest. To keep the height small, at most O(log n), a simple strategy, known as union
by size, is for union to always link the tree with fewer vertices into the tree with more vertices.
The data structure also keeps an array for the sizes of the trees. The following results are standard

(see [18], for example):

Lemma 3 (Sequential Union-Find)

On a graph with vertices [n], a sequential union-find data structure implementing the union-by-size
strategy consumes O(n) space and has the following characteristics:

* Every union-find tree has height O(log n) and each find takes O(logn) sequential time.

¢ Given two distinct roots u and v, the operation union(u, v) implementing union by size takes x

sequential time.

Our data structure maintains an instance of this union-find data structure, called U. Notice that
the find operation is read-only. Unlike the more sophisticated variants, this version of union-find

does not perform path compression.
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4.1. Answering Connectivity Queries in Parallel

Connectivity queries can be easily answered in parallel, using read-only finds on U. To answer
whether u and v are connected, we compute U.find(v) and U.find(u), and report if the
results are equal. To answer multiple queries in parallel, we note that because the finds are
read-only, we can answer all queries simultaneously independently of each other. We present
Simple-Bulk-Same-Set in Algorithm 1.

Algorithm 1: Simple-Bulk-Same-Set(U, {(u;, v;))L_ ;).

Input: U is the union find structure, and (u;, v;) is a pair of vertices, fori = 1,...,q.
Qutput: For each i, whether or not u; and v; are in the same set (i.e., connected in the graph).
1. fori=1,2,...,qdo in parallel
2: ‘ a; <— (Uflnd(u,) == Uflnd(V,))
3. return {ai,asz,...,daq)

Correctness follows directly from the correctness of the base union-find structure. The parallel
complexity is simply that of applying g operations of U.find in parallel:

Lemma 4
The parallel depth of Simple-Bulk-Same-Set is O(logn), and the work is O(qlogn), where g is
the number of queries input to the algorithm.

4.2. Adding a Minibatch of Edges

How can one incorporate (in parallel) a minibatch of edges A into an existing union-find structure?
Sequentially, this is simple: invoke union on the endpoints of every edge of A. But it is dangerous
to blindly apply the union operations in parallel since union updates the forest, potentially leading
to inconsistencies in the structure.

However, it is safe to run multiple unions in parallel as long as they operate on different
trees. Because there may be many union operations involving the same tree, this idea alone is not
sufficient—running these sequentially will result in a large parallel depth. For instance, consider
adding the edges of a star graph (with a very high degree) to an empty graph. Because all the edges
share a common endpoint (the center), this vertex is involved in every union, and hence no two
operations can proceed in parallel.

To tackle this problem, our algorithm transforms the minibatch of edges A into a structure
that can be connected up easily in parallel. For illustration, we revisit the example when
the minibatch is itself a star graph. Suppose there are seven edges within the minibatch:
(vi,v2), (v1,v3), (v1,v4),...,(v1,vs). By examining the minibatch, we find that all of vq,...,vg
will belong to the same component. We now apply these connections to the graph.

In terms of connectivity, it does not matter whether we apply the actual edges that arrived, or
a different, but equivalent set of edges; it only matters that the relevant vertices are connected up.
To connect up these vertices, our algorithm schedules the unions in only three parallel rounds as
follows. The notation X||Y indicates that X and Y are run in parallel:

1: union(vy,ve)|union(vs, v4)|lunion(vs, vg)union(vz, vg)
2: union(vy,vs)|lunion(vs, vy)

3: union(vy,vs)

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
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As we will soon see, such a schedule can be constructed for a component of any size, provided
that no two vertices in the component are connected previously. The resulting parallel depth is
logarithmic in the size of the minibatch.

Algorithm 2: Simple-Bulk-Union(U,A)
Input: U: the union find structure, A: a set of edges to add to the graph.
> Relabel each (u,v) with the roots of u and v

1. A — {(pu, pv) : (u,v) € A where p, = U.find(u) and p, = U.find(v))
> Remove self-loops

2 A” — {(u,v) : (u,v) € A’ where u # v)

3 C «— CC(A™)

4: foreach C € C do in parallel

5. | Parallel-Join(U,C)

To add a minibatch of edges, our Simple-Bulk-Union algorithm, presented in Algorithm 2,
proceeds in three steps:

> Step 1: Relabel edges as links between existing components. An edge {u, v} € A does not simply
join vertices # and v. Due to potential existing connections in G, it joins together C, and C,,
the component containing # and the component containing v, respectively. In our representation,
the identifier of the component containing u is U.find(u), so C, = U.find(u) and similarly
C, = U.find(v). Lines 1-2 in Algorithm 2 create A” by relabeling each endpoint of an edge with
the identifier of its component, and dropping edges that are within the same component.

> Step 2: Discover new connections arising from A. After the relabeling step, we are implicitly
working with the graph H = (V,A”), where Vj is the set of all connected components of G
that pertain to A (i.e., all the roots in the union-find forest reachable from vertices incident on
A) and A” is the connections between them. In other words, H is a graph on “supernodes” and
the connections between them using the edges of A. In this view, a connected component on H
represents a group of existing components of G that have just become connected as a result of
incorporating A. While never materializing the vertex set V, Line 3 in Algorithm 2 computes
C, the set of connected components of H, using a linear-work parallel algorithm for connected
components, CC (see Section 3).

> Step 3: Commit new connections to U. With the preparation done so far, the final step only has to
make sure that the pieces of each connected component in C are linked together in U. Lines 4-5 of
Algorithm 2 go over the components of C in parallel, seeking help from Parallel-Join, the real
workhorse that links together the pieces.

Connecting a Set of Components within U: Let vq,vs, ..., v € [n] be distinct tree roots from the
union-find forest U that form a component in C, and need to be connected together. Algorithm
Parallel-Join connects them up in O(logk) iterations using a divide-and-conquer approach.
Given a sequence of tree roots, the algorithm splits the sequence in half and recursively connects the
roots in the first half, in parallel with connecting the roots in the second half. Since components in
the first half and the second half have no common vertices, handling them in parallel will not cause
a conflict. Once both calls return with their respective new roots, they are unioned together.
Correctness of Parallel-Join is immediate since the order that the union calls are made does
not matter, and we know that different union calls that proceed in parallel always work on separate

sets of tree roots, posing no conflicts. This means that the work and depth of Parallel-Join follow
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Algorithm 3: Parallel-Join(U,C)

Input: U: the union-find structure, C: a seq. of tree roots
Output: The root of the tree after all of C are connected

1. if |C] == 1 then

22 | return C[1]

3: else

e | L—[Cl2]

5: u «— Parallel-Join(U,C[1,2,...,/]) in parallel with
v« Parallel-Join(U,C[{ + 1,4+ 2,...,|C|])

6: return U.union(u,v)

the recurrences

W (k) = 2W(k/2) + O(1)
D(k) = D(k/2) + O(1),

which solve to W (k) = O(k) and D(k) = O(log k). Hence:

Lemma 5
Given k distinct roots of U, Algorithm Parallel-Join runs in O(k) work and O(log k) depth.

Lemma 6 (Correctness of Simple-Bulk-Union)

Let U be the shared-memory union-find data structure after calling Simple-Bulk-Union on every
minibatch of edges whose union equals a graph G, then for any u,v € V, U.find(u) = U.find(v)
if and only if u and v are connected in G.

Proof

We will prove this lemma inductively on the minibatches. The lemma is vacuously true initially
when there are no edges. Now consider a minibatch of edges A. Let G; be the set of edges
that arrived prior to A and U; the state of the union-find structure corresponding to Gy (i.e.,
prior to A). Further, let Go = G; U A and let Uy be the state of the union-find structure after
Simple-Bulk-Union(U;,A). We will assume inductively that U; is correct with respect to G
and show that U, is correct with respect to Ga.

Let x # y be a pair of vertices in V. We consider the following two cases:

Case I: x and y are not connected in G3. We know that x and y are not connected in G4, either.
Therefore, if r, = U;.find(x) and r, = U;.find(y), then r, # r, by our inductive assumption.
We also know that r, and r, will belong to different components of C, the connected components
generated in Simple-Bulk-Union. Hence, they will continue to be in separate components after
Parallel-Join—U,.find(x) = U,.find(ry) # Us.find(ry) = Us.find(y).

Case I1: x and y are connected in Go. We know that there must be a path x = vy,vo, ..., v, =
y in Go. We will show that Us.find(v1) = Us.find(ve) = ... = Us.find(v,), leading to the
conclusion that Us.find(x) = Us.find(y). To this end, consider any pair v; and v; 1, 1 <i <
(t —1).Letr; = Uy.find(v;) and r;11 = U;.find(v;11) denote the roots of the trees that contain
v; and v;11, respectively, in U;.

If r;, =riy1, then it will remain true that Us.find(v;) = Us.find(r;) = Us.find(riyq1) =
Us.find(v;11). If, however, r; # r; 11, then v; and v,y are not connected in Gy, so {v;,v;;1} € A.
Thus, in Steps 1 and 2 of Simple-Bulk-Union, the edge {r;,ri11} is present in A” (note
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this edge is not a self-loop and is not eliminated in Step 2). Therefore, in Step 3, when
the connected components of A” are computed, r; and r;,1 are in the same component of
C. Consequently, Parallel-Join will eventually join the trees of r; and r;;; into the same
component in Us. Hence, Us.£find(r;) = Us.£ind(r;41). Since Us.find(v;) = Us.find(r;) and
Us.find(vi1) = Us.find(ri41), we have Us.find(v;) = Us.find(v;41). Proceeding thus, we
have Us.find(x) = Us.find(y) in Case II.

O

Lemma 7 (Complexity of Simple-Bulk-Union)
On input a minibatch A with b edges/union’s, Simple-Bulk-Union takes O(blogn) work and
O(log max(b, n)) depth.

Proof

There are three parts to the work and depth of Simple-Bulk-Union. First is the generation of A’
and A”. For each (u,v) € A, we invoke U.find on u and v, requiring O(logn) work and depth per
edge. Since the edges are processed in parallel, this leads to O(blogn) work and O(logn) depth.
Then, A” is derived from A’ through a parallel filtering algorithm, using O(|A’|) = O(b) work and
O(log b) depth. The second part is the computation of connected components of A” which can be
done in O(]A”|) = O(b) work and O(log max(b,n)) depth using the algorithm of Gazit [9]. The
third part is Parallel-Join. As the number of components cannot exceed b, and using Lemma 5,
we have that the total work in Parallel-Join is O(b) and depth is O(logn). Adding the three
parts, we arrive at the lemma. O

5. WORK-EFFICIENT PARALLEL ALGORITHM

Whereas the best sequential data structures (e.g., [22]) require O((m + q)o(m + g,n)) work to
process m edges and g queries, our basic data structure from the previous section needs up to
O((m + q) logn) work for the same input stream. This section describes improvements that make
it match the best sequential work bound while preserving the polylogarithmic depth guarantee. The
main result for this section is as follows:

Theorem 8
There is a bulk-parallel data structure for Union-Find and IGC with the following properties:
(1) The total memory consumption is O(n) words.
(2) The depth of Bulk-Union and Bulk-Same-Set is O(polylog(n)) each.
(3) Over the lifetime of the data structure, the total work for processing m edge updates (across
all Bulk-Union) and g queries is O((m + g)a(m + g, n)).

Overview: All sequential data structures with a O((m + g)o(n)) bound use a technique called path
compression, which shortens the path that £ind traverses on to reach the root, making subsequent
operations cheaper. Our goal in this section is to enable path compression during parallel execution.
We present a new parallel £find procedure called Bulk-Find, which answers a set of £ind queries

in parallel and performs path compression.
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Figure 1. A: An example union-find tree with sample queries circled; B: Bolded edges are paths, together

with their stopping points, that result from the traversal in Phase I; C: The traversal graph Ry recorded as

a result of Phase I; and D: The union-find tree after Phase II, which updates all traversed nodes to point to
their roots.

Algorithm 4: Bulk-Find(U, S)—find the root in U for each s € S with path compression.

Input: U is the union find structure. For i = 1, ..., |S|, S[i] is a vertex in the graph
Output: A response array res of length |S| where res[i] is the root of the tree of the vertex
S[i] in the input.
> Phase I: Find the roots for all queries
: Ry «— <(S[k],null) s k= 0,1,2,..., |S| - ].>
. Fy < mkFrontier(Ry, ), roots — &, visited — &, i — 0
- while R; # ¢J do
visited — visited U F;
Rit1 < {(parent[v],v) : v € F; and parent[v] # v)
roots < roots U {v : v € F; where parent[v] = v}
Fy1 < mkFrontier(R; 1, visited),i — i + 1
> Set up response distribution
8: Create an instance of RD with R, = Ry ®R1 ®--- DR;
> Phase II: Distribute the answers and shorten the paths
9: Do < {(r,r) : reroots}, i — 0
10: while D; # ¢ do
11 For each (v, r) € D, in parallel, parent[v] < r
12: Div1 < Uppep, {(u,7) © u€ RD.allFrom(v) and u # null}. That is, create Djy1 by
expanding every (v, r) € D; as the entries of RD.allFrom(v) excluding null, each
inheriting r.
13: i—i+1
14: Fori =0,1,2...,|S| — 1, in parallel, make res[i] < parent[S[i]]
15: return res

def mkFrontier(R, visited):
// nodes to go to next

1: reg— v : (v,-) ER A
not visited[v])

2: return removeDup(req)

N o g R b2

To understand the benefits of path compression, consider a concrete example in Figure 1A, which
shows a union-find tree 7 that is typical in a union-find forest. The root of 7" is r = 19. Suppose we
need to support £find’s from u = 1 and v = 7. When all is done, both find(«) and find(v) should
return r. Notice that in this example, the paths to the root # v~ r and v \~~ r meet at common vertex
w = 4. That is, the two paths are identical from w onward to r. If find’s were done sequentially,
say find(u) before find(v), then find(u#)—with path compression—would update all nodes on
the u v~ r path to point to r. This means that when find(v) traverses the tree, the path to the root
is significantly shorter: at this point, the next hop after w is already r.

The kind of sharing and shortcutting illustrated, however, is not possible when the find
operations are run independently in parallel. Each find, unaware of the others, will proceed all

the way to the root, missing out on possible sharing.
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We fix this problem by organizing the parallel computation so that the work on different “flows”
of £inds is carefully coordinated. Algorithm 4 shows an algorithm Bulk-Find, which works in two
phases, separating actions that only read from the tree from actions that only write to it:

> Phase I: Find the roots for all queries, coalescing flows as soon as they meet up. This phase
should be thought of as running breadth-first search (BFS), starting from all the query nodes S
at once. As with normal BFS, if multiple flows meet up, only one will move on. Also, if a flow
encounters a node that has been traversed before, that flow no longer needs to go on. We also need

to record the paths traversed so we can distribute responses to the requesting nodes.

> Phase 1I: Distribute the answers and shorten the paths. Using the transcript from Phase I, Phase
IT makes sure that all nodes traversed will point to the corresponding root—and answers delivered to
all the finds. This phase, too, should be thought of as running breadth-first search (BFS) backwards
from all the roots reached in Phase I. This BFS reverses the steps taken in Phase I using the trails
recorded. There is a technical challenge in implementing this. Back in Phase I, to minimize the
cost of recording these trails, the trails are kept as a list of directed edges (marked by their two
endpoints) traversed. However, for the reverse traversal in Phase II to be efficient, it needs a means
to quickly look up all the neighbors of a vertex (i.e., at every node, we must be able to find every flow
that arrived at this node back in Phase I). For this, we design a data structure that takes advantage
of hashing and integer sorting (Theorem 1) to keep the parallel complexity low. We discuss our
solution to this problem in the section that follows (Lemma 9).

Example: We illustrate how the Bulk-Find algorithm works using the union-find forest from
Figure 1A. The queries to the Bulk-Find are nodes that are circled. The paths traversed in Phase I
are shown in panel B. If a flow is terminated, the last edge traversed on that flow is rendered as .

Notice that as soon as flows meet up, only one of them will carry on. In general, if multiple flows
meet up at a point, only one will go on. Notice also that both the flow 1 — 2 — 4 and the flow
7 — 8 — 9 — 4 are stopped at 4 because 4 is a source itself, which was started at the same time as
1 and 7. At the finish of Phase I, the graph (in fact a tree) given by R, is shown in panel C. Finally,
in Phase II, this graph is traversed and all nodes visited are updated to point to their corresponding
root (as shown in panel D).

5.1. Response Distributor

Consider a sequence R, = {(from;,t0;)»* ,. We need a data structure RD such that after some
preprocessing of R, can efficiently answer the query RD.allFrom(f) which returns a sequence
containing all fo; where from; = f.

To meet the overall running time bound, the preprocessing step cannot take more than O(A)
work and O(polylog(A)) depth. As far as we know, we cannot afford to generate, say, a sequence of
sequences RD where RD[ f] is a sequence containing all fo; such that from; = f. Instead, we propose

a data structure with the following properties:

Lemma 9 (Response Distributor)
There is a data structure, response distributor (RD), that from input R, = {(from;, t0;))*_, can be

constructed in O(A) work and O(polylog(n)) depth. Each allFrom query can be answered in
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O(log ) depth. Furthermore, if F is the set of unique from; (i.e.,F = {from; : i =1,...,4}), then

E| ) Work(RD.allFrom(f)) | = O(A).
feF

Proof

Let i be a hash function from the domain of from,’s (a subset of [n]) to [p], where p = 3A. To
construct an RD, we proceed as follows. Compute the hash for each from; using h(-) and sort the
ordered pairs (from;, to;) by their hash values. Call this sorted array A. After sorting, we know that
pairs with the same hash value are stored consecutively in A. Now create an array o of length p + 1
so that 0; marks the beginning of pairs whose hash value is i. If none of them hash to i, then 0; = 0;1.
These steps can be done using intSort and standard techniques in O(A) work and O(polylog(1))
depth because the hash values range within O(1).

To support al1From(f), we compute k¥ = h(f) and look in A between oy and 0,41 — 1, selecting
only pairs whose from matches f. This requires at most O(log |ox+1 — 0x|) = O(log A) depth. The
more involved question is, how much work is needed to support al1From over all? To answer this,
consider all the pairs in R, with from; = f. Let ny denote the number of such pairs. These ny pairs
will be gone through by queries looking for f and other entries that happen to hash to the same value
as f does. The exact number of times these pairs are gone through is By := #{s e [ : h(f) = h(s)}.
Hence, across all queries f € F, the total work is >} g n¢fr. ButE[f] <1+ IF‘

S EmB < (145 Y ny < (14 fa <24

feF feF

because [F| < A and };; .z ny = A, completing the proof. O

With this lemma, the cost of Bulk-Find can be stated as follows.

Lemma 10
Bulk-Find(U, S) does O(|R_|) work and has O(polylog(n)) depth.

Proof

The R;’s, F;’s, and D;’s can be maintained directly as arrays. The roots and visited sets can be
maintained as bit flags on top of the vertices of U as all we need are setting the bits (adding/removing
elements) and reading their values (membership testing). There are two phases in this algorithm. In
Phase I, the cost of adding F; to visited in iteration i is bounded by |R;|. Using standard parallel
operations [11], the work of the other steps is clearly bounded by |R;;1]|, including mkFrontier
because removeDup does work linear in the input, which is bounded by |R;1|. Thus, the work of
Phase I is at most O(3; |R;|) = O(|R_|). In terms of depth, because the union-find tree has depth
at most O(logn), the while loop can proceed for at most O(logn) times. Each iteration involves
standard operations with depth at most O(log? 1), so the depth of Phase I is at most O(log® n).

In Phase II, the dominant cost comes from expanding D; into D;,; by calling RD.allFrom.
By Lemma 9, across all iterations, the work caused by RD.allFrom, run on each vertex once, is
expected O(|R_|), and the depth is O(polylog(|R,]|)) < O(polylog(|R,|)). Overall, the algorithm
requires O(|R|) work and O(polylog(n)) depth. O
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5.2. Bulk-Find’s Cost Equivalence to Serial find

In analyzing the work bound of the improved data structure, we will show that what Bulk-Find
does is equivalent to some sequential execution of the standard find and requires the same amount
of work, up to constants.

To gather intuition, we will manually derive such a sequence for the sample queries S =
{1,3,4,7} used in Figure 1. The query of 4 went all the way to the root without merging with
another flow. But the queries of 1 and 7 were stopped at 4 and in this sense, depended upon the
response from the query of 4. By the same reasoning, because the query of 3 merged with the query
of 1 (with 1 proceeding on), the query of 3 depended on the response from the query of 1. Note that
in this view, although the query of 3 technically waited for the response at 2, it was the query of 1
that brought the response, so it depended on 1. To derive a sequence execution, we need to respect
the “depended on” relation: if a depended on b, then a will be invoked after b. As an example, one
sequential execution order that respects these dependencies is find(4), £ind(7), find(1), find(3).

We can check that by applying £inds in this order, the paths traversed are exactly what the parallel
execution does as U.find performs full path compression.

We formalize this idea in the following lemma:

Lemma 11

For a sequence of queries S with which Bulk-Find(U, S) is invoked, there is a sequence S’ that is
a permutation of S such that applying U.find to S’ serially in that order yields the same union-find
forest as Bulk-Find’s and incurs the same traversal cost of O(|R_|), where R, is as defined in the
Bulk-Find algorithm.

Proof

For this analysis, we will associate every (parent, child) € R with a query g € S. Logically, every
query g € S starts a flow at g ascending up the tree. If there are multiple flows reaching the same
node, removeDup inside mkFrontier decides which flow to go on. From this view, for any nonroot
node u appearing in R, there is exactly one query flow from this node that proceeds up the tree.
We will denote this flow by own(u). All the auxiliary graphs mentioned in this proof are only for
analysis purposes; they are never constructed in the execution of the algorithm.

If a query flow is stopped partway without reaching the corresponding root, the reason is either it
merged in with another flow (viamkFrontier) or it recognized another flow that traversed the same
path before (via visited). For every query ¢ that is stopped partway, let r(g) be the furthest point in
the tree it has advanced to, i.e., r(g) is the endpoint of the maximal path in R, for the query flow g.

In this set up, a query flow whose furthest point is # will depend on the response from the query
own(u). Therefore, we form a dependency graph G, (“u depends on v”) as follows. The vertices are
all the vertices from S. For every query flow ¢ that is stopped partway, there is an arc own(r(g)) — g.

Let S’ be a topologically-ordered sequence of Gg,. Multiple copies of the same query vertex
can simply be placed next to each other. If we apply U.find serially on §', then all queries that a
query vertex g depends on in G, will have been called prior to U.find(g). Because of full path
compression, this means that U.find(q) will follow u v~ r(q) — t (note: r(q) — t is one step),
where ¢ is the root of the tree. Hence, every U.find(g) traverses the same number of edges as
u ~ r(q) plus 1. As every R, edge is part of a query flow, we conclude that the work of running
U.find on §' in that order is O(|R_|). O
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Finally, to obtain the bounds in Theorem 8, we modify Simple-Bulk-Same-Set and
Simple-Bulk-Union (in the relabeling step) to use Bulk-Find on all query pairs. The depth
clearly remains O(polylog(n)) per bulk operation. Aggregating the cost of Bulk-Find across calls
from Bulk-Union and Bulk-Same-Set, we know from Lemma 11 that there is a sequential order
that has the same work. Therefore, the total work is bounded by O((m + q)o(m + g, n)).

6. IMPLEMENTATION AND EVALUATION

This section discusses an implementation of the proposed data structure and its empirical

performance, evaluated using a number of large graphs of varying degree distributions.

6.1. Implementation

With an eye towards a simple implementation that delivers good practical performance, we set
out to implement the simple bulk-parallel data structure from Section 4. The underlying union-
find data structure U maintains two arrays of length n—parent and sizes—one storing a parent
pointer for each vertex, and the other tracking the sizes of the trees. The find and union
operations follow a standard textbook implementation. On top of these operations, we implemented
Simple-Bulk-Same-Set and Simple-Bulk-Union as described earlier in the paper. We use
standard sequence manipulation operations (e.g., filter, prefix sum, pack, remove duplicate) from
the PBBS library [19]. There are two modifications that we made to improve the performance:

Path Compression: We wanted some benefits of path compression but without the full complexity
of the work-efficient parallel algorithm from Section 5, to keep the code simple. We settled
with the following pragmatic solution: The find operations inside Simple-Bulk-Same-Set and
Simple-Bulk-Union still run independently in parallel. But after finding the root, each operation
traverses the tree one more time to update all the nodes on the path to point to the root. This
leads to shorter paths for later bulk operations with clear performance benefits. However, for large
minibatches, the approach may still perform significantly more work than the work-efficient solution
because the path compression from one find operation may not benefit other find operations
within the same minibatch.

Connected Components: The algorithm as described uses as a subroutine a linear-work parallel
algorithm to find connected components. These linear work algorithms expect a graph representation
that gives quick random access to the neighbors of a vertex. We found the processing cost to meet
this requirement to be very high and instead implemented the algorithm for connectivity described
in Blelloch et al. [3]. Although this has worse theoretical guarantees, it can work with a sequence of

edges directly and delivers good real-world performance.

6.2. Experimental Setup

Environment: We performed experiments on an Amazon EC2 instance with 20 cores (allowing for
40 threads via hyperthreading) of 2.4 GHz Intel Xeon E5-2676 v3 processors, running Linux 3.11.0-
19 (Ubuntu 14.04.3). We believe this represents a baseline configuration of midrange workstations

available in a modern cluster. All programs were compiled with Clang version 3.4 using the flag
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Graph  #Vertices #Edges Notes
3Dgrid 99.9M  300M  3-d mesh

random 100M 500M 5 randomly-chosen neighbors per node
local5 100M 500M  small separators, avg. degree 5
locall6 100M 1.6B  small separators, avg. degree 16
rMat5 134M 500M  power-law graph using rMat [4]
rMat16 134M 1.6B  adenser rMat graph

Table 1. Characteristics of the graph streams used in our experiments, showing for every dataset, the total
number of nodes (n), the total number of edges (m), and a brief description.

---------- random === local5 == rMats
==+ 3Dgrid -=- local16 - - rMat16
10" . . . .
10° ]
10° ]
10* .
10° ]
“ :
L, %,
10° ! ! H ! n "\L
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Figure 2. The numbers of connected components for each graph dataset at different percentages of the total
graph stream processed.

-03. This version of Clang has the Intel Cilk runtime, which uses a work-stealing scheduler known
to impose only a small overhead on both parallel and sequential code. We report wall-clock time
measured using std: :chrono: :high_resolution_clock.

For robustness, we perform three trials and report the median running time. Although there
is randomness involved in the connected component (CC) algorithm, we found no significant

fluctuations in the running time across runs.

Datasets: Our experiments aim to study the behavior of the algorithm on a variety of graph streams.
To this end, we use a collection of synthetic graph streams created using well-accepted generators.
We include both power-law-type graphs and more regular graphs in the experiments. These are
graphs commonly used in dynamic/streaming graph experiments (e.g., [14]). A summary of these
datasets appear in Table 1.

The graph streams in our experiments differ substantially in how quickly they become connected.
This input characteristic influences the data structure’s performance. Figure 2 shows for each graph
stream, the number of connected components at different points in the stream. The locall6 graph
becomes fully connected right around the midpoint of the stream. Both rMat5 and rMat16 continue
to have tens of millions of components after consuming the whole stream. Note that in this figure,

random and local5 are almost visually indistinguishable until the very end.
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UF UF Bulk-Parallel Using Batch Size
(nop.c.) (p.c) 500K 1M M 10M

random 44.63 1842 6543 6657 7520 77.89
3Dgrid 30.26 1437 61.10 62.00 71.74  75.07

Graph

local$ 4494 1851 6584 66777 7533  78.23
locall6 154.40 46.12 11434 10892 114.80 117.55
rMat5 33.39 1847 6698  68.48 7497  78.69

rMatl6 81.74 3529 8327 76.64 T76.03 77.62

Table II. Running times (in seconds) on 1 thread of the baseline union-find implementation (UF) with and
without path compression and the bulk-parallel version as the batch size is varied.

Baseline: Because most prior algorithms in this space either focus on parallel graphs or streaming
graphs, not parallel streaming graphs, we directly compare our algorithms with sequential union
find implementations (denoted UF), using both the union by size variant and a time-optimal path
compression variant. We note that the algorithm of McColl et al. [14] that works in the parallel
dynamic setting is not directly comparable to ours. Their algorithm focuses on supporting arbitrary
insertion and deletion of edges, whereas ours is designed to take advantage of the insert-only setting.

6.3. Results

How does the bulk-parallel data structure perform on a multicore machine? To this end, we
investigate the parallel overhead, speedup, and scalability trend:

— Parallel Overhead: How much slower is the parallel implementation running on one core
compared to a sequential union-find? When running on one core, the parallel implementation should
not take much longer than the sequential implementation, showing empirical “work efficiency.”

— Parallel Speedup: How much faster is the parallel version on many cores compared to the
parallel version on one core? A good parallel algorithm should achieve a good speedup.

— Scalability Trend: How does the algorithm scale with more cores? Complementing the previous
analysis, this helps predict performance on a machine with more cores.

What is the parallel overhead of our implementation? Table II shows the timings for the baseline
sequential implementation of union-find UF with and without path compression and the bulk-parallel
implementation on a single thread for four different batch sizes, 500K, 1M, 5M, and 10M. Notice
that the sequential UF implementations do not depend on the batch size. To measure overhead,
we first compare our implementation to union find without path compression: our implementation is
between 1.01x and 2.5x slower except on local16, in which the bulk parallel achieves some speedups
even on one thread. This is mainly because the number of connected components in locall6 drops
quickly to 1 as soon as midstream (Figure 2). With only 1 connected component, there is little work
for bulk-parallel after that. Compared to union find with path compression, our implementation,
which does pragmatic path compression, shows nontrivial—but still acceptable—overhead, as to be
expected because our solution does not fully benefit finds within the same minibatch.

How much does parallelization help increase processing throughput? Table III shows the average
throughputs (million edges/second) of Bulk-Union for different batch sizes. Here 77 denotes the
throughput on 1 thread and 72, the throughput using 40 (hyper-) threads (the machine has only
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Using b = 500K Using b = IM Using b = 5M Using b = 10M
i Tooe T20y T Tooe T20¢/ry T Tro, T20c/ry T Tao, T20c/my

random 7.64 36.87 4.8x 7.51 46.02 6.1x 6.65 60.66 9.1x 642 63.90 10.0x
3Dgrid 491 2797 5.7x 483 3497 7.2x 4.18 4427 10.6x 3.99 4524 11.3x
local5 759 3841 5.1x 749 4832 6.5x 6.64 6461 9.7x 639 6409 10.0x
locall6 13.99 78.83 5.6x 14.69 9557 6.5x 1394 122.69 8.8x 13.61 122.03 9.0x
rMat5 747 26.08 3.5x 730 3419 4.7x 6.67 4992 75x 635 5037 7.9x
rMatl6 19.21 5494 29x 20.88 78.10 3.7x 21.05 143.63 6.8x 20.61 167.68 8.1x

Graph

Table III. Average throughput (in million edges/second) and speedup of Bulk-Union for different batch
sizes b, where T is throughput on 1 thread and 72, is the throughput on 20 cores.

20 physical cores). We also show the speedup factor, as given by Too./T1. We observe consistent
speedup on all six datasets under all four batch sizes. Across all datasets, the general trend is that
the larger the batch size, the higher the speedup factor. This is to be expected since a larger batch
size means more work per core to fully utilize the cores, and less synchronization overhead.

How does the implementation scale with more cores? Figure 3 shows the average throughput
(edges/sec) as the number of threads increases from 1 to 20 threads, then to 40 (denoted as 20c).
Three different batch sizes were used for the experiments: 1M, SM and 10M. The top chart show
the results on the random dataset, the middle chart on the locall6 dataset, and the bottom chart on
the rMat16 dataset. Overall, the speedup is significant: with 40 (hyper-) threads, a batch size of
10M edges yields speedups between 8—11x. Smaller batch sizes yield somewhat lower speedups.
In general, it is clear that as the number of threads increases, the average throughput increases for
all batch sizes. An exception to this trend is the rMat16 dataset (bottom) using 1M batch size: the
throughput drops slightly when the number of threads increases beyond 20. This is because rMat16
is sparsely connected, as is evident from the high number of components after consuming the whole
stream (Figure 2), which in fact has the same order of magnitude as the number of components
at the beginning. As a result, in a given minibatch, a large fraction of the edges are links between
existing connected components and are discarded quickly at the start of the minibatch, resulting in
relatively small work done per minibatch. Hence, at this batch size, there is not enough work to
realize additional benefits beyond 20 threads.

7. CONCLUSION

We have presented a shared-memory parallel data structure for the union-find problem (hence,
incremental graph connectivity) in the minibatch arrival model. Our algorithm has polylogarithmic
parallel depth and its total work across all processors is of the same order as the work due to the best
sequential algorithm for the problem. We also presented a simpler parallel algorithm that is easier
to implement and has good practical performance.

This still leaves open several natural problems. We list some of them here. (1) In case all edge
updates are in a single minibatch, the total work of our algorithm is (in a theoretical sense),

superlinear in the number of edges in the graph. Whereas, the optimal batch algorithm for graph
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Figure 3. Average throughput (edges per second) as the number of threads is varied from 1 to 40 (denoted
by 20c as they run on 20 cores with hyperthreading). The graph streams shown are (top) random, (middle)
locall6, and (bottom) rMat16.

connectivity, based on a depth-first search, has work linear in the number of edges. Is it possible
to have an incremental algorithm whose work is linear in the case of very large batches, such as
the above, and falls back to the union-find type algorithms for smaller minibatches? Note that for
all practical purposes, the work of our algorithm is linear in the number of edges, due to very slow
growth of the inverse Ackerman’s function. (2) Can these results on parallel algorithms be extended

to the fully dynamic case when there are both edge arrivals as well as deletions?
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