
Evaluating Disaster Time-line from Social Media

with Wavelet Analysis

Amrita Anam

University of Maryland

Baltimore County

amrita1@umbc.edu

Aryya Gangopadhyay

University of Maryland

Baltimore County

gangopad@umbc.edu

Nirmalya Roy

University of Maryland

Baltimore County

nroy@umbc.edu

Abstract—For over a decade, social media has proved to
be a functional and convenient data source in the Internet of
things. Social platforms such as Facebook, Twitter, Instagram,
and Reddit have their own styles and purposes. Twitter, among
them, has become the most popular platform in the research
community due to its nature of attracting people to write
brief posts about current and unexpected events (e.g., natural
disasters). The immense popularity of such sites has opened a
new horizon in ‘social sensing’ to manage disaster response.
Sensing through social media platforms can be used to track
and analyze natural disasters and evaluate the overall response
(e.g., resource allocation, relief, cost and damage estimation).
In this paper, we propose a two-step methodology: i) wavelet
analysis and ii) predictive modeling to track the progression of a
disaster aftermath and predict the time-line. We demonstrate that
wavelet features can preserve text semantics and predict the total
duration for localized small scale disasters. The experimental
results and observations on two real data traces (flash flood in
Cummins Falls state park and Arizona swimming hole) showcase
that the wavelet features can predict disaster time-line with an
error lower than 20% with less than 50% of the data when
compared to ground truth.

Index Terms—Flash Flood, Disaster Response, Wavelet Anal-
ysis, Social Media

I. INTRODUCTION

In recent years, the frequent occurrence of disasters has

caused devastation that is beyond imagination. Last year alone,

an alarming number of hurricanes, earthquakes and floods [1],

[2], [3], [4] stunned the world. Irrespective of the cause of

a disaster, it is vital for the authorities to be prepared for

an emergency situation and act to the best of their ability.

The outdated, traditional approaches of response operations

are falling short. Therefore, a need has emerged to build

data driven, automated, robust and resilient communication

platforms to help the authority make efficient decisions. This

once overreaching ambition is now achievable by establishing

human-in-the-loop cyber-physical systems with the help of

social media because of its ubiquitous connectivity with the

rest of the world. The power of social media lays across many

different domains that provide social good. Social media can

help accelerate the detection and monitoring of an emergency

event in real time. During hurricane Harvey, people used social

media to draw attention to rescue requests, finding safe shelters

and relief inquiries [5]. The appropriate sensing through social-

media can help in estimating the damages and recovery costs,

reconstructing national infrastructures, creating social aware-

ness and providing just-in-time aid [7], [8], [9]. As mentioned

in the federal research document [6], social media can be

used systematically to conduct emergency communications,

spread awareness, and receive information from the victims.

In fact, FEMA has been using social media to send and receive

information on disasters since 2011 by curating and processing

them manually [6]. This leads to the research question of how

to automatically process real-time information from different

social sensing platforms and use them to manage disaster

response.

Wavelet analysis is applied to find patterns or anomalies

with respect to both time and frequency of a signal. Wavelets

are oscillations that start and end with an amplitude of zero and

oscillates in between [10]. Conversations following a disaster

on social media follow the same pattern which manipulates

the occurrence of words specific to an incident (e.g., ‘water’

during a flood and ‘wind’ during a storm). Throughout the

event, the words oscillate and follow a sharp decrease when

the event ends. In this paper, we demonstrate: i) a scalable

framework that creates a temporal representation of context

from Twitter similar to physical sensor data, and ii) an

algorithm to estimate the rate of change of uncertainty and

time-line of disaster response using wavelet entropy. In the

process, we make the assumption that every physical event

has an identifiable context that is reflected in social media

by a list of unique words which we will be referring to as

‘context words’. Each context word can be represented as

time-dependent signals, corresponding to a frequency spec-

trum, and amplitudes that vary with time. This representation

of sensing and processing the context words as signals is robust

and scalable. Our observations reveal that temporal attributes

depict the progression of storyline whereas, the frequency

spectrum indicates the concentration and diffusion of a topic

during an event.

Our key contributions are summarized in the following

points:

1) We present a scalable method to create a feature from

wavelet entropy to assess change in ongoing events

2) We propose an iterative nonlinear interpolation model

utilizing the new feature to predict the trajectory and

time-line of the response at a very early stage of a

disaster
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3) We illustrate that wavelets can preserve text semantics

without having to maneuver supervised natural language

models

4) We substantiate the assumptions by investigating two

recent local flash floods in the USA – Cummins Falls

state park and a swimming hole in Arizona

II. DATA

We identified two flash flood events in two different lo-

cations with very similar response time. The tweets were

collected using query terms specific to the two events (e.g.,

“cummins falls + flash flood”, “cummins falls + flood”,

“arizona + swimming hole”, “arizona + flood”, etc). During

the flash flood in Cummins Falls State Park, 40 people were

trapped behind the falls, a 73 year-old woman and a 45-year-

old woman were reported missing. Their bodies were found

after three days of frantic rescue operations. The flash flood

in Arizona hit a swimming hole at the Tonto national forest.

A group of 15 people was in the swimming hole when the

flood hit the popular recreation area killing nine people from

the same family. The rescue operation was carried out by 40-

50 professionals. Snapshots of two Twitter posts of the flash

floods are shown in Fig. 1.

We collected Twitter data using the REST API. In Twit-

ter, the re-tweets provide a shared perspective and spread

of information, whereas, individual tweets provide unique

perspectives and a diverse set of information. If a group of

Figure 1: Snapshots of tweets about flash floods in Cummins

Falls state park (top) and Arizona swimming hole (bottom).
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(a) Daily tweet count
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(b) Hourly tweet count

Figure 2: Temporal pattern of social media posts

people individually tweet about the same physical event, then

they are legitimizing that the event has really happened. To

get more individual perspectives and avoid redundancy, we

removed weather alerts and re-tweets of news broadcasts. The

number of unique tweets for Cummins Falls Flash Flood is

338 and Arizona Swimming Hole is 599. Since these are

small-scale local events that mostly spurred a reaction near

the origin of the event, there are not many unique tweets. The

tweets were collected before, during and after the event. The

tweet count from both the flash floods for every day and every

hour is shown in Fig. 2a and Fig. 2b respectively. Both the

distributions in Fig. 2a are unimodal because there is only

one day with the most significant incident, the flash flood

itself. The distributions may have different characteristics for

different scale and type of events. Note that the daily count

spikes on the day 1 right after the flash flood and slowly

diminishes. The hourly count in Fig. 2b varies with the time-

of-day making the graphs multimodal. Particularly, most of

the tweets occur between evening and late night. It depicts

that people tweet at their convenience and the news takes a

few hours to spread [12].

III. BACKGROUND AND RELATED WORK

Researchers have been studying the effectiveness of social

media in acquiring and analyzing real-time information for

almost a decade. In [12] and [13], the authors explained

information diffusion, influence score, and propagation of

news by analyzing people’s tendency to tweet. In [14], [15],

and [16], the authors demonstrated that social media can be

used in all phases of disaster management, such as monitoring

causes and effects, broadcasting alerts, helping in search and

rescue, and relief management. The wordwide popularity of

social media among the emergency management organizations

to disseminate their message to the communities and first

responders was discussed in [6], [9], [8]. Event detection has

been a very popular field in social media analytics [19], [20],

[21]. Multiple tools and systems have been designed to track

and monitor real-life incidents on Twitter. TwitterMonitor is a

web-based system that detects emerging topics and trends by

extracting and grouping bursty keywords from Twitter streams.

[18]. TweetTracker was built in collaboration with Human-

itarian Aid and Disaster Relief (HADR) to track targeted
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disasters on Twitter that can guide first responders in gaining

awareness regarding an emergency situation [17]. The authors

of [22] fused the events detected from Twitter and Instagram

which performs better than their individual detetction. In

[23], invented a system, StoryLine that can identify and track

events and sub-events from Twitter by tracing the change in

entropy and information gain of keyword pairs. These tools

and platforms utilize natural language features (e.g., keywords,

word associations, probabilities, position in a sentence, etc.)

to assess social media posts which require prior knowledge.

Some previous research works show that wavelet analysis

on social media can be used to analyze content dynamically

without any prior knowledge. We took inspiration from the au-

thors of [24] who used discrete wavelet transform and wavelet

entropy for event detection. The authors of [26] created time-

varied signals of clicks, hash-tags, and phrases and converted

them to wavelets and developed a clustering algorithm to find

the temporal pattern of content. In [27], the authors explored

the diversity of content where diversity is defined by the

change in entropy in a different spectrum of the wavelets cre-

ated from different contents. In [28], a wavelet based pattern

matching algorithm was proposed for user recommendation. In

[25], the authors used wavelet transform in detecting events

of different scales by analyzing temporal and spatial features

together. Some of the challenges of these approaches include

merging the text processing with wavelet transform and the

complexity of wavelet analysis on massive data sets. To tackle

this challenge, we opted for a discrete representation of the

context, binned with a fixed duration to create signals similar

to sensors. In addition, instead of applying CWT on the full

signal, we developed an overlapping, sliding window approach

that processes a fixed number of bins at a time. The advantages

of our approach are: i) it makes the model scalable, ii) it

captures a continuous change in the data, and iii) it does not

require any prior knowledge or training.

IV. TEXT TO SIGNAL PROCESSING

During a natural disaster, social media, much like physical

sensors, constantly provide real-time information. Taking ad-

vantage of this behavior, we converted the unstructured text

into a list of words, each represented by numeric vectors of

fixed length. Every value in the numeric vector is associated

with a temporal stage. The new representation has unique

words as entries and time bins as features. The tweets from

the two events are processed separately. The architecture that

we followed to create the word signals from the social media

posts is presented in Fig. 3.

A. Text preprocessing

In the preprocessing stage, we tokenize the tweets into

unigrams. We filter out stop words and query words (i.e.,

’Cummins Falls’, ’Arizona’, ’flash flood’, etc.). In this paper,

we refer to tweets from an event by Tevent (Cummins Falls

as Tcf and Arizona as Taz) and the set of context words by

Uevent (Ucf and Uaz). A Tevent is associated with only one

Preprocessing 

Remove re-tweets and 
duplicate entries 

Remove stop-words, 
numbers and symbols 

Tokenize 

Temporal Binning 

Fixed  sampling intervals 
(∆t) 

Repeat for {∆t = 1s, 30s, 
60s…} 

Observe the data 
distribution 

Event specific Tweets 

Document frequency(df) 

as amplitude 

Word Signals 

Figure 3: The conversion of text to time dependent signals

Uevent. We denote the total number of unique words in an

event by m, Uevent = u1, u2, ..., um.

B. Temporal Binning

The temporal granularity of Twitter is one second which

means that data can be collected for every second. However,

for small scale local events, the data flow for every second

created from a Tevent is sparse with little variation. Therefore,

we discretize the occurance of the context words into n bins

with a fixed duration ∆t where ∆t >= 1. ∆t = 1 is the

continuous and ∆t > 1 is the discrete representation of the

context words. We refer to this representation of context words

as ‘word signal’. We used document frequency (df ) as the

amplitude of the word signals [24]. If the tweets for a disaster

have m unique words, then the df of the ith word for the jth

bin is, df(uij) = Number of tweets in bin j that contain ui.

Let, t0 denote the start time of a word signal, then the next bin

is t1 = t0 +∆t and amplitude is the df of the word between

0 1 2 3 4 5 6 7 8 9

10
5

0

0.5

1
bin duration = 1s

0 200 400 600 800 1000 1200
0

2

4
bin duration = 600s

Figure 4: Signal representation of the word ”woman”
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Figure 5: Temporal representation of context

t0 to t1. The continuous (∆t = 1s) and discrete (∆t = 600s)

representations of a word signal from the Cumins Falls Flash

Flood is shown in Fig. 4. The continuous representation

has less variability than the discrete representation. the data

structure of the word signals is given in Fig. 5. By calculating

df for n bins we create a signal for the word u. After,

repeating this step for m words, we get an mxn matrix, S
where m = number of signals and n = number of bins and

sij = df(uij) as shown below.

S =

⎡

⎢

⎢

⎢

⎣

s11 s12 s13 . . . s1n
s21 s22 s23 . . . s2n

...
...

...
. . .

...

sm1 sm2 sm3 . . . smn

⎤

⎥

⎥

⎥

⎦

We observed the data distribution and sparsity of the signals

by varying ∆t from one second to one hour. For both the

events, the data appears to be very sparse. We observed the

log-density distribution of all the word signals starting from

one second to one hour. Fig. 6 shows the sparsity of the

data for different values of ∆t. The overall variance is very

low for the lower values of ∆t. By manually comparing

the incidents in the the two data sets, we found that ∆t =

600 seconds captures the variation in the data flow without

losing information. The document frequencies of words by

time articulates this story and its progression quite accurately.

We did not normalize df with the number of documents per

bin for the following reasons: i) in a single platform, signal

parameters are evaluated on the same scale ii), reduces overall

Figure 6: Sparsity of the Signals

Figure 7: Wavelet coefficients of the word signal ”woman”

variance in the data and iii) creates an unbalanced comparison

of importance between terms in different bins.

V. WAVELET ANALYSIS

After the context words and converted to word signals, we

perform wavelet analysis to create new features.

A. Continuous Wavelet Transform

The wavelet analysis consists of two parts: i) applying

Continuous Wavelet Transform (CWT) on the word signals

and ii) calculating the normalized Shannon Wavelet Entropy

(SWE) i.e., H-measure of the wavelet coefficinets. We used

Morse wavelet as the mother wavelet [29] with the symmetry

parameter γ = 3. The Morse mother wavelet converts one

dimensional real or complex vector into a time-frequency

matrix of complex coefficients. We split the discrete word

signals into chronological windows where each window con-

tain six adjacent bins and apply CWT on each window. To

maintain the continuity of the wavelets, we overlap the last

bin of a window with the next window. Since CWT is the

most computationally expensive part of our framework, the

windowing approach addresses the problem by fixing the input

size of one wavelet transform. The complexity of the wavelet

transform increases linearly with the number of word signals

m and the number of windows. In this paper, we represent

window length by ∆w and number of bins in a window by p,

p = ∆w/∆t. The dimensions of the CWT for each iteration is,

R
p or Cp ⇒ C

p×q where p is the number of bins in a window

and q is the total number of frequencies extracted from the

input signal during the wavelet transform. Fig. 7 illustrates

Word signal, Su 

Create window  
w = 1hr = 6 bins 

Perform CWT 
for window = w 

Calculate SWE 
for window = w 

Repeat for all the 
windows 

Figure 8: Wavelet Analysis Process
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Figure 9: The total H-measures of the two events

the wavelet coefficients of the word signal with ∆t = 600 in

Fig. 4.

B. Trajectory of Uncertainty

After applying CWT, we calculate H-measure of the

wavelet coefficients for each window. The process is repeated

for all the words. The method of calculating H-measure of a

word signal is shown in Fig. 8 and the equations are given

in Appendix. B. We define the trajectory of an event by

linearly summing over H-measure of all the word signals,

Htotal = H1 +H2 + ...+Hm where H1, H2, ..., Hm are the

H-measures of word signals s1, s2, ..., sm respectively. The

trajectory of uncertainty of the two events are presented in

Fig. 9. By observing the trail of H-measures of the events, we

can assert that the uncertainty is at the peak when the event

starts and diminishes depending on the following aftermath

(i.e., rescue, damage and casualty). The trajectory depicts how

a real event is projected in the social media. The diminishing

pattern of the trajectory mirrors a quadratic nature where the

height of the total H-measure depends on the initial reaction of

the physical event in the social media and the descent depends

on the response of the event and its aftermath.

VI. PREDICTION OF EVENT CHARACTERISTICS

As one of the many possible applications, we have designed

an iterative nonlinear interpolation model using the total H-

measure as the input feature. The model predicts the trajectory

and total duration of the event from the moment it is detected.

We make predictions every hour by processing all the context

words during that hour. The algorithm is designed to suit batch

processing technique on streaming data. The total number of

data points (H-measure) is N where N represents the number

of windows. For the kth iteration, the model predicts the

future N − k data points from the past k input data points by

fitting a quadratic diminishing curve. Since the number of data

points increases with every iteration, so does the prediction

accuracy of the model. Algorithm 1. shows the function of

the polynomial interpolation and Algorithm 2 shows the steps

of the iterative predictive model. We define the start of the

event when the H-measure is at the peak and start the first

iteration from the next hour.

Algorithm 1 Fit H-measure to Learn Event Parameters

INPUT: x, y co-ordinates with independent variable x and

depedndent variable y = f(x)
OUTPUT: ȳ, fitted values, β = β0, β1, β2

function FITTRAJECTORY:(x, y)

while all β values have not converged do

Fit ȳ = β0 + β1(x− β2)
2

end while

end function

Return: ȳ, β

Algorithm 2 Predict Event Trajectory and Duration

1: N ← Total number of data points

2: t ← Time sequence of the event

3: h ← H-measures of the event, h = f(t)
4: k ← Number of data points to fit the regression

5: D ← Total duration of the event

6: for i = 2 : t[end] do

7: Call: FITTRAJECTORY(x, y) to fit (t, h)[1 : i]
8: Learn: event coefficients β = β0, β1, β2

9: Predict: h̄[i : end] with learned β = β0, β1, β2

10: Derive: event duration, D̄ =
√

−β0

β1

+ β2

11: Calculate: error, 1

N

∑N
i=1

(ȳ − y)2

12: end for

To evaluate the predictive model, we calculated the mean

squared error (MSE), MSE = 1

N

∑N
k=1

(ȳ − y)2 between

predicted H-measures with the original H-measures for every

iteration. The performance of the predictive model for the

two data sets is depicted in Fig. 10 and Fig. 11. The sub-

graphs Fig. 10a and Fig. 11a display the H-measures of all the

context words. The randomly scattered points at the beginning

of the graphs correspond to the entropy of the words that are

extracted from the tweets collected before the event started.

When the event starts, the H-measures rise abruptly and then

slowly decay with time. The sub-graphs Fig. 10b and Fig. 11b

demonstrate the iterative prediction of the H-measures for

different values of k. With each iteration, more information is

known which makes the learning algorithm perform better and

the predicted trajectory moves closer to the original (entropy

shown in solid line). Fig. 10c and Fig. 11c show the MSE

values of the prediction with every iteration, projected on top

of the original H-measures. The MSE values are quite high

initially, but they gradually decrease as the event progresses.

The decrease in MSE with increasing percentage of k is given

in Table. I. It shows that for Arizona Flash flood, the MSE

drops to 15% from 45% only with 10% increase in the data,

however for Cummins Falls flash flood, the model takes 50%

of data for the MSE to drop to 18% which indicates the

percentage of data needed for 85% accuracy vary for different

events. This gives the confidence that even with less than

20% of the data points we can achieve up to 85% accuracy

which can help inform the responsible authorities to make a
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Figure 10: Arizone Swimming Hole - Prediction results
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Figure 11: Cummins Falls State Park - Prediction results

Table I: Percentage error of event duration prediction

Data% MSE % (UCF) MSE% (UAZ)

10% 59.37% 45.88%

20% 50.44% 15.60%

30% 39.40% 14.05%

40% 27.89% 8.70%

50% 18.76% 7.64%

60% 10.04% 6.70%

70% 7.45% 2.83%

80% 6.51% 0.55%

90% 4.48% 0.53%

100% 2.92% 0.44%

better decision with their disaster management effort. Using

this method we can make predictions during the events using

wavelets without any prior knowledge and adjust the estimates

with time.

VII. SEMANTIC ANALYSIS WITH WAVELETS

In this section, we illustrate, that it is actually possible to

explain semantics with wavelets by comparing the time and

the frequency values of the high magnitude coefficients to the

actual event. The word signals vary in both time and frequency.

When people post on social media reacting to a physical

event, they use words that reflect the incidents, the news, and

their emotions. Instead of processing social media posts based

on only time or frequency of their occurrence, it is more

meaningful to process both together to capture the dynamic

movement of the context. Fig. 12 shows the scalograms of

the wavelets of some of the most frequent words from the

tweets of Cummins Falls flash flood. The scalograms display

the magnitude of the complex coefficients of the wavelets with

time in the x-axis and frequency in the y-axis. The white

dashed line represents the cone of influence that marks where

edge effects become significant. The color scale depicts the

energy distribution of the coefficients throughout the event.

The blue region is caused by the low magnitude values of the

coefficients and the illuminated region is caused by the high

magnitude values of the coefficients. The blue region seems

to be dominating due to the sparsity of the input signals. The

word “people” is spread out on both time and frequency axes

because the word is used in multiple context throughout the

event (e.g., “40 people were stranded on the park’”, “people

were searching”, etc.). On the other hand, the word “woman”

only appears in the context of the elderly woman who got

washed away. The wavelet coefficients corresponding to the

word “woman” has high magnitude value at the beginning of

the scalogram which is consistent with the actual event because

the woman got washed away during the flood and her body

was found after two days of search. The word “search” and

“missing” are also spread out but “missing” is brighter because

it appears more in the tweets than “search”. The word “rescue”

dominates a few time intervals because there are tweets about

the rescue process throughout the event. However, “rescued”

has its high magnitude coefficients towards the end because
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Figure 12: Scalograms of word-wavelets

the process had ended by then. The word “helicopter” has high

magnitude coefficients at the middle of the scalogram when the

rescue teams were searching for the missing woman’s body.

The word “found” has two strong appearances. We manually

looked into it and saw that in the beginning, the conversations

were about “woman not being found” which changed later to

her body being “found”.

VIII. CONCLUSION

Social sensing opens a whole new world of disaster manage-

ment where the information goes well beyond the structured

realm of physical sensors. To be able to access this data freely

is a reward on its own. It should be fully explored into building

applications and services that benefit the source community.

The success of the domain lies in exploring fresh, creative

and efficient methods to analyze the data. In every phase of a

natural disaster, the responsible authority continuously makes

estimates and predictions before and during the disasters.

However, when an unexpected natural disaster takes place,

it is impossible for the authorities to make predictions and

preparations before the event. Even with the most accurate

predictions and preparations, the aftermath can be devastating

which is why it is vital to build models that can adjust

as the event progresses. The experiment presented in this

paper shows that, with wavelet analysis of social media data,

predictions can be made about the aftermath during the event.

The prediction of the event trajectory and duration will help

the authorities make preparations and allocate resources based

on the projected duration. The framework can also be used

to track aftermath such as, damage status, victim sentiments

during a disaster, which can improve the management of

the future disasters. This method is not confined to any

language or platform. This can effectively be extended to other

social media and news articles to analyze the major topics

of conversation during natural disasters. The algorithm can

be built into an end-to-end tool that tracks social media data

and provides feedback to the authority and first responders.

Since the method is focused on traditional signal processing, it

can be fused with other cyber-physical systems by combining

physical sensor data with social media data. Apart from

the evolution of text, the methodology shows an interesting

observation that wavelets can be an efficient alternative to

traditional methods in explaining and analyzing text semantics.

Wavelet analysis can be used to process conventional natural

language parameters (e.g., context, word co-occurrences, syn-

onyms, antonyms, etc.) that will go beyond the scope of social

media and disaster management. We are currently working

on advancing this project in multiple directions including

identifying sub-events, extending to other social media and

news articles and building an end-to-end system that tracks

social media data and provides feedback to the authority and

first responders.

ACKNOWLEDGEMENT

This work is partially supported by the NSF CNS grant

1640625.

REFERENCES

[1] J. L. Beven, “Tropical storm harvey discussion number 2.” August
2017, [Online; 17 Aug. 2017, 5:00 PM AST]. [Online]. Available:
http://www.nhc.noaa.gov/archive/2017/al09/al092017.discus.002.shtml.

[2] E. S. Blake, “Tropical storm irma discussion number 2.” August
2017, [Online; 30 Aug. 2017, 5:00 PM AST]. [Online]. Available:
http://www.nhc.noaa.gov/archive/2017/al11/al112017.discus.002.shtml.

47



[3] R. Pasch, “Tropical storm maria discussion number 4.” September
2017, [Online; 17 Sept. 2017, 5:00 AM AST]. [Online]. Available:
http://www.nhc.noaa.gov/archive/2017/al15/al152017.discus.004.shtml.

[4] “Man captures dramatic rescue at mexico school on video,” September
2017. [Online]. Available: https://www.cbsnews.com/news/mexico-
earthquake-school-rescue-children-caught-on-video-enrique-rebsamen/.

[5] M. Rhodan, “‘please send help.’ hurricane harvey victims turn to twitter
and facebook.”

[6] B. R. Lindsay, “Social media and disasters: Current uses, future options,
and policy considerations,” 2011.

[7] J. Yin, A. Lampert, M. Cameron, B. Robinson, and R. Power, “Using so-
cial media to enhance emergency situation awareness,” IEEE Intelligent

Systems, vol. 27, no. 6, pp. 52–59, 2012.

[8] B. Stollberg and T. De Groeve, “The use of social media within the
global disaster alert and coordination system (gdacs),” in Proceedings

of the 21st International Conference on World Wide Web. ACM, 2012,
pp. 703–706.

[9] M. A. Cameron, R. Power, B. Robinson, and J. Yin, “Emergency
situation awareness from twitter for crisis management,” in Proceedings

of the 21st International Conference on World Wide Web. ACM, 2012,
pp. 695–698.

[10] A. Graps, “An introduction to wavelets,” IEEE computational science

and engineering, vol. 2, no. 2, pp. 50–61, 1995.

[11] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
real-time event detection by social sensors,” in Proceedings of the 19th

international conference on World wide web. ACM, 2010, pp. 851–860.

[12] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international

conference on World wide web. ACM, 2010, pp. 591–600.

[13] R. Bandari, S. Asur, and B. A. Huberman, “The pulse of news in social
media: Forecasting popularity.” ICWSM, vol. 12, pp. 26–33, 2012.

[14] H. Gao, G. Barbier, and R. Goolsby, “Harnessing the crowdsourcing
power of social media for disaster relief,” IEEE Intelligent Systems,
vol. 26, no. 3, pp. 10–14, 2011.

[15] D. E. Alexander, “Social media in disaster risk reduction and crisis
management,” Science and Engineering Ethics, vol. 20, no. 3, pp. 717–
733, 2014.

[16] M. Imran, S. Elbassuoni, C. Castillo, F. Diaz, and P. Meier, “Extracting
information nuggets from disaster-related messages in social media.” in
ISCRAM, 2013.

[17] S. Kumar, G. Barbier, M. A. Abbasi, and H. Liu, “Tweettracker: An
analysis tool for humanitarian and disaster relief.” in ICWSM, 2011.

[18] M. Mathioudakis and N. Koudas, “Twittermonitor: trend detection
over the twitter stream,” in Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data. ACM, 2010, pp.
1155–1158.

[19] A. Ritter, O. Etzioni, S. Clark et al., “Open domain event extraction
from twitter,” in Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2012, pp.
1104–1112.

[20] C. Li, A. Sun, and A. Datta, “Twevent: segment-based event detection
from tweets,” in Proceedings of the 21st ACM international conference

on Information and knowledge management. ACM, 2012, pp. 155–164.

[21] H. Abdelhaq, C. Sengstock, and M. Gertz, “Eventweet: Online localized
event detection from twitter,” Proceedings of the VLDB Endowment,
vol. 6, no. 12, pp. 1326–1329, 2013.

[22] S. Wang, P. Giridhar, L. Kaplan, and T. Abdelzaher, “Unsupervised event
tracking by integrating twitter and instagram,” in Proceedings of the 2nd

International Workshop on Social Sensing. ACM, 2017, pp. 81–86.

[23] S. Wang, P. Giridhar, H. Wang, L. Kaplan, T. Pham, A. Yener, and
T. Abdelzaher, “Storyline: Unsupervised urban geo-event demultiplexing
on social media without location information.”

[24] J. Weng and B.-S. Lee, “Event detection in twitter.” ICWSM, vol. 11,
pp. 401–408, 2011.

[25] X. Dong, D. Mavroeidis, F. Calabrese, and P. Frossard, “Multiscale event
detection in social media,” Data Mining and Knowledge Discovery,
vol. 29, no. 5, pp. 1374–1405, 2015.

[26] J. Yang and J. Leskovec, “Patterns of temporal variation in online
media,” in Proceedings of the fourth ACM international conference on

Web search and data mining. ACM, 2011, pp. 177–186.

[27] M. De Choudhury, S. Counts, and M. Czerwinski, “Find me the right
content! diversity-based sampling of social media spaces for topic-
centric search.” in ICWSM, 2011.

[28] G. Arru, D. Feltoni Gurini, F. Gasparetti, A. Micarelli, and G. Sansonetti,
“Signal-based user recommendation on twitter,” in Proceedings of the

22nd International Conference on World Wide Web. ACM, 2013, pp.
941–944.

[29] S. C. Olhede and A. T. Walden, “Generalized morse wavelets,” IEEE

Transactions on Signal Processing, vol. 50, no. 11, pp. 2661–2670, 2002.

APPENDIX A

CONTINUOUS WAVELET TRANSFORM

The formal definition of CWT of a continuous time-function

x(t),

Xw =

∫

∞

−∞

x(t)ψ̄(t)dt (1)

where ψ̄(t) is either a real or a complex function, known as

the mother wavelet. The mother wavelet works as the source

function to generate a group of child wavelets, which are then

scaled and shifted versions of the mother wavelet. The child

wavelet at scale a with a shift b is given by,

ψa,b(t) =
1

|a|1/2
ψ(

t− b

a
) (2)

where a ∈ R+ and b ∈ R.

APPENDIX B

SHANNON WAVELET ENTROPY

SWE of a Tevent can be calculated by the following steps

[24].

Let, j, k be the scale and time components of a wavelet and

Cj(k) be the wavelet coefficient at time k and scale j, then

the wavelet energy Ej can be calculated by,

Ej =
∑

k

|Cj(k)|
2 (3)

The total energy can be calculated by,

Etotal =
∑

j

Ej (4)

The Relative Wavelet Energy (RWE) at scale j can be

retrieved by,

ρj =
Ej

Etotal
(5)

RWE represents the distribution of wavelet energy across

different scales. We can calculate SWE of a signal s at for a

window w by summing over the entropy of the RWE values

of all the scales.

SWE(sw) = −
∑

j

ρj · logρj (6)

The normalized SWE is known as H-measure,

H = SWE(s)/SWEmax (7)

Total H-measure for an event,

Htotal =
m
∑

1

H, where m ∈ Uevent (8)
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