2018 IEEE International Conference on Smart Computing

Evaluating Disaster Time-line from Social Media
with Wavelet Analysis

Amrita Anam
University of Maryland
Baltimore County
amrital @umbc.edu

Abstract—For over a decade, social media has proved to
be a functional and convenient data source in the Internet of
things. Social platforms such as Facebook, Twitter, Instagram,
and Reddit have their own styles and purposes. Twitter, among
them, has become the most popular platform in the research
community due to its nature of attracting people to write
brief posts about current and unexpected events (e.g., natural
disasters). The immense popularity of such sites has opened a
new horizon in ‘social sensing’ to manage disaster response.
Sensing through social media platforms can be used to track
and analyze natural disasters and evaluate the overall response
(e.g., resource allocation, relief, cost and damage estimation).
In this paper, we propose a two-step methodology: i) wavelet
analysis and ii) predictive modeling to track the progression of a
disaster aftermath and predict the time-line. We demonstrate that
wavelet features can preserve text semantics and predict the total
duration for localized small scale disasters. The experimental
results and observations on two real data traces (flash flood in
Cummins Falls state park and Arizona swimming hole) showcase
that the wavelet features can predict disaster time-line with an
error lower than 20% with less than 50% of the data when
compared to ground truth.

Index Terms—Flash Flood, Disaster Response, Wavelet Anal-
ysis, Social Media

I. INTRODUCTION

In recent years, the frequent occurrence of disasters has
caused devastation that is beyond imagination. Last year alone,
an alarming number of hurricanes, earthquakes and floods [1],
[2], [3], [4] stunned the world. Irrespective of the cause of
a disaster, it is vital for the authorities to be prepared for
an emergency situation and act to the best of their ability.
The outdated, traditional approaches of response operations
are falling short. Therefore, a need has emerged to build
data driven, automated, robust and resilient communication
platforms to help the authority make efficient decisions. This
once overreaching ambition is now achievable by establishing
human-in-the-loop cyber-physical systems with the help of
social media because of its ubiquitous connectivity with the
rest of the world. The power of social media lays across many
different domains that provide social good. Social media can
help accelerate the detection and monitoring of an emergency
event in real time. During hurricane Harvey, people used social
media to draw attention to rescue requests, finding safe shelters
and relief inquiries [5]. The appropriate sensing through social-
media can help in estimating the damages and recovery costs,
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reconstructing national infrastructures, creating social aware-
ness and providing just-in-time aid [7], [8], [9]. As mentioned
in the federal research document [6], social media can be
used systematically to conduct emergency communications,
spread awareness, and receive information from the victims.
In fact, FEMA has been using social media to send and receive
information on disasters since 2011 by curating and processing
them manually [6]. This leads to the research question of how
to automatically process real-time information from different
social sensing platforms and use them to manage disaster
response.

Wavelet analysis is applied to find patterns or anomalies
with respect to both time and frequency of a signal. Wavelets
are oscillations that start and end with an amplitude of zero and
oscillates in between [10]. Conversations following a disaster
on social media follow the same pattern which manipulates
the occurrence of words specific to an incident (e.g., ‘water’
during a flood and ‘wind’ during a storm). Throughout the
event, the words oscillate and follow a sharp decrease when
the event ends. In this paper, we demonstrate: i) a scalable
framework that creates a temporal representation of context
from Twitter similar to physical sensor data, and ii) an
algorithm to estimate the rate of change of uncertainty and
time-line of disaster response using wavelet entropy. In the
process, we make the assumption that every physical event
has an identifiable context that is reflected in social media
by a list of unique words which we will be referring to as
‘context words’. Each context word can be represented as
time-dependent signals, corresponding to a frequency spec-
trum, and amplitudes that vary with time. This representation
of sensing and processing the context words as signals is robust
and scalable. Our observations reveal that temporal attributes
depict the progression of storyline whereas, the frequency
spectrum indicates the concentration and diffusion of a topic
during an event.

Our key contributions are summarized in the following
points:

1) We present a scalable method to create a feature from

wavelet entropy to assess change in ongoing events

2) We propose an iterative nonlinear interpolation model

utilizing the new feature to predict the trajectory and
time-line of the response at a very early stage of a
disaster
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3) We illustrate that wavelets can preserve text semantics
without having to maneuver supervised natural language
models

We substantiate the assumptions by investigating two
recent local flash floods in the USA — Cummins Falls
state park and a swimming hole in Arizona

4)

II. DATA

We identified two flash flood events in two different lo-
cations with very similar response time. The tweets were
collected using query terms specific to the two events (e.g.,
“cummins falls + flash flood”, “cummins falls + flood”,
“arizona + swimming hole”, “arizona + flood”, etc). During
the flash flood in Cummins Falls State Park, 40 people were
trapped behind the falls, a 73 year-old woman and a 45-year-
old woman were reported missing. Their bodies were found
after three days of frantic rescue operations. The flash flood
in Arizona hit a swimming hole at the Tonto national forest.
A group of 15 people was in the swimming hole when the
flood hit the popular recreation area killing nine people from
the same family. The rescue operation was carried out by 40-
50 professionals. Snapshots of two Twitter posts of the flash
floods are shown in Fig. 1.

We collected Twitter data using the REST APIL In Twit-
ter, the re-tweets provide a shared perspective and spread
of information, whereas, individual tweets provide unique
perspectives and a diverse set of information. If a group of

911 calls released in deadly Cummins Falls
State Park Flash Flood

011 calls reinased in deadly Cummins Falls Slate Park Flash Flood
You can hear attermpts for haip as Rash foods swept over Gummirs Fads State Park
Wicanenctay. killng two women Peggy McDanss was st swapt sway by he fiood

Five children among three generations killed
in 6ft-high horror flash flood at Arizona
swimming hole mirror.co.uk/news/world-new

Figure 1: Snapshots of tweets about flash floods in Cummins
Falls state park (top) and Arizona swimming hole (bottom).
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Figure 2: Temporal pattern of social media posts

people individually tweet about the same physical event, then
they are legitimizing that the event has really happened. To
get more individual perspectives and avoid redundancy, we
removed weather alerts and re-tweets of news broadcasts. The
number of unique tweets for Cummins Falls Flash Flood is
338 and Arizona Swimming Hole is 599. Since these are
small-scale local events that mostly spurred a reaction near
the origin of the event, there are not many unique tweets. The
tweets were collected before, during and after the event. The
tweet count from both the flash floods for every day and every
hour is shown in Fig. 2a and Fig. 2b respectively. Both the
distributions in Fig. 2a are unimodal because there is only
one day with the most significant incident, the flash flood
itself. The distributions may have different characteristics for
different scale and type of events. Note that the daily count
spikes on the day 1 right after the flash flood and slowly
diminishes. The hourly count in Fig. 2b varies with the time-
of-day making the graphs multimodal. Particularly, most of
the tweets occur between evening and late night. It depicts
that people tweet at their convenience and the news takes a
few hours to spread [12].

III. BACKGROUND AND RELATED WORK

Researchers have been studying the effectiveness of social
media in acquiring and analyzing real-time information for
almost a decade. In [12] and [13], the authors explained
information diffusion, influence score, and propagation of
news by analyzing people’s tendency to tweet. In [14], [15],
and [16], the authors demonstrated that social media can be
used in all phases of disaster management, such as monitoring
causes and effects, broadcasting alerts, helping in search and
rescue, and relief management. The wordwide popularity of
social media among the emergency management organizations
to disseminate their message to the communities and first
responders was discussed in [6], [9], [8]. Event detection has
been a very popular field in social media analytics [19], [20],
[21]. Multiple tools and systems have been designed to track
and monitor real-life incidents on Twitter. TwitterMonitor is a
web-based system that detects emerging topics and trends by
extracting and grouping bursty keywords from Twitter streams.
[18]. TweetTracker was built in collaboration with Human-
itarian Aid and Disaster Relief (HADR) to track targeted



disasters on Twitter that can guide first responders in gaining
awareness regarding an emergency situation [17]. The authors
of [22] fused the events detected from Twitter and Instagram
which performs better than their individual detetction. In
[23], invented a system, StoryLine that can identify and track
events and sub-events from Twitter by tracing the change in
entropy and information gain of keyword pairs. These tools
and platforms utilize natural language features (e.g., keywords,
word associations, probabilities, position in a sentence, etc.)
to assess social media posts which require prior knowledge.

Some previous research works show that wavelet analysis
on social media can be used to analyze content dynamically
without any prior knowledge. We took inspiration from the au-
thors of [24] who used discrete wavelet transform and wavelet
entropy for event detection. The authors of [26] created time-
varied signals of clicks, hash-tags, and phrases and converted
them to wavelets and developed a clustering algorithm to find
the temporal pattern of content. In [27], the authors explored
the diversity of content where diversity is defined by the
change in entropy in a different spectrum of the wavelets cre-
ated from different contents. In [28], a wavelet based pattern
matching algorithm was proposed for user recommendation. In
[25], the authors used wavelet transform in detecting events
of different scales by analyzing temporal and spatial features
together. Some of the challenges of these approaches include
merging the text processing with wavelet transform and the
complexity of wavelet analysis on massive data sets. To tackle
this challenge, we opted for a discrete representation of the
context, binned with a fixed duration to create signals similar
to sensors. In addition, instead of applying CWT on the full
signal, we developed an overlapping, sliding window approach
that processes a fixed number of bins at a time. The advantages
of our approach are: i) it makes the model scalable, ii) it
captures a continuous change in the data, and iii) it does not
require any prior knowledge or training.

IV. TEXT TO SIGNAL PROCESSING

During a natural disaster, social media, much like physical
sensors, constantly provide real-time information. Taking ad-
vantage of this behavior, we converted the unstructured text
into a list of words, each represented by numeric vectors of
fixed length. Every value in the numeric vector is associated
with a temporal stage. The new representation has unique
words as entries and time bins as features. The tweets from
the two events are processed separately. The architecture that
we followed to create the word signals from the social media
posts is presented in Fig. 3.

A. Text preprocessing

In the preprocessing stage, we tokenize the tweets into
unigrams. We filter out stop words and query words (i.e.,
’Cummins Falls’, ’Arizona’, *flash flood’, etc.). In this paper,
we refer to tweets from an event by Teyepn: (Cummins Falls
as T.y and Arizona as T,.) and the set of context words by
Uecvent (Ucy and Uyz). A Teyent is associated with only one
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Figure 3: The conversion of text to time dependent signals

Uevent- We denote the total number of unique words in an
event by m, Uepent = U1, U2,y «evy U,

B. Temporal Binning

The temporal granularity of Twitter is one second which
means that data can be collected for every second. However,
for small scale local events, the data flow for every second
created from a T,epy is sparse with little variation. Therefore,
we discretize the occurance of the context words into n bins
with a fixed duration At where At >= 1. At = 1 is the
continuous and At > 1 is the discrete representation of the
context words. We refer to this representation of context words
as ‘word signal’. We used document frequency (df) as the
amplitude of the word signals [24]. If the tweets for a disaster
have m unique words, then the df of the i** word for the j**
bin is, df (u;;) = Number of tweets in bin j that contain u,.
Let, ¢ty denote the start time of a word signal, then the next bin
is t; = to + At and amplitude is the df of the word between

bin duration = 1s

0 1 2 3 4 5 6 7 8 9

bin duration = 600s

2
P Y [

0 200 400 600 800 1000 1200

Figure 4: Signal representation of the word “woman”
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Figure 5: Temporal representation of context

to to t1. The continuous (At = 1s) and discrete (At = 600s)
representations of a word signal from the Cumins Falls Flash
Flood is shown in Fig. 4. The continuous representation
has less variability than the discrete representation. the data
structure of the word signals is given in Fig. 5. By calculating
df for n bins we create a signal for the word u. After,
repeating this step for m words, we get an man matrix, S
where m = number of signals and n = number of bins and
si; = df (u;;) as shown below.

S11 S12 513 Sin

S21 S22 S23 S2n
S =

Sm1 Sm2 Sm3 Smn

We observed the data distribution and sparsity of the signals
by varying At from one second to one hour. For both the
events, the data appears to be very sparse. We observed the
log-density distribution of all the word signals starting from
one second to one hour. Fig. 6 shows the sparsity of the
data for different values of At. The overall variance is very
low for the lower values of At. By manually comparing
the incidents in the the two data sets, we found that At =
600 seconds captures the variation in the data flow without
losing information. The document frequencies of words by
time articulates this story and its progression quite accurately.
We did not normalize df with the number of documents per
bin for the following reasons: i) in a single platform, signal
parameters are evaluated on the same scale ii), reduces overall

Log Density Distribution

\ —-==- At =300s
=== At =600s
=== At =900s

~=- At=1200s
=== At =1500s
At = 1800s

0 2 4 6 8 10 12
Document Frequencies of Unigrams

Figure 6: Sparsity of the Signals
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Figure 7: Wavelet coefficients of the word signal "woman”

variance in the data and iii) creates an unbalanced comparison
of importance between terms in different bins.

V. WAVELET ANALYSIS

After the context words and converted to word signals, we
perform wavelet analysis to create new features.

A. Continuous Wavelet Transform

The wavelet analysis consists of two parts: i) applying
Continuous Wavelet Transform (CWT) on the word signals
and ii) calculating the normalized Shannon Wavelet Entropy
(SWE) i.e., H-measure of the wavelet coefficinets. We used
Morse wavelet as the mother wavelet [29] with the symmetry
parameter v = 3. The Morse mother wavelet converts one
dimensional real or complex vector into a time-frequency
matrix of complex coefficients. We split the discrete word
signals into chronological windows where each window con-
tain six adjacent bins and apply CWT on each window. To
maintain the continuity of the wavelets, we overlap the last
bin of a window with the next window. Since CWT is the
most computationally expensive part of our framework, the
windowing approach addresses the problem by fixing the input
size of one wavelet transform. The complexity of the wavelet
transform increases linearly with the number of word signals
m and the number of windows. In this paper, we represent
window length by Aw and number of bins in a window by p,
p = Aw/At. The dimensions of the CWT for each iteration is,
RP or CP = CP*4 where p is the number of bins in a window
and ¢ is the total number of frequencies extracted from the
input signal during the wavelet transform. Fig. 7 illustrates

Word signal, S,

Create window
w = lhr = 6 bins

Repeat for all the
windows

Calculate SWE Perform CWT
for window = w for window = w

Figure 8: Wavelet Analysis Process




Figure 9: The total H-measures of the two events

the wavelet coefficients of the word signal with A¢ = 600 in
Fig. 4.

B. Trajectory of Uncertainty

After applying CWT, we calculate H-measure of the
wavelet coefficients for each window. The process is repeated
for all the words. The method of calculating H-measure of a
word signal is shown in Fig. 8 and the equations are given
in Appendix. B. We define the trajectory of an event by
linearly summing over H-measure of all the word signals,
Hiotaqy = H1 + Hy + ... + H,,, where Hq, Ho, ..., H,, are the
H-measures of word signals si, ss, ..., s, respectively. The
trajectory of uncertainty of the two events are presented in
Fig. 9. By observing the trail of H-measures of the events, we
can assert that the uncertainty is at the peak when the event
starts and diminishes depending on the following aftermath
(i.e., rescue, damage and casualty). The trajectory depicts how
a real event is projected in the social media. The diminishing
pattern of the trajectory mirrors a quadratic nature where the
height of the total H-measure depends on the initial reaction of
the physical event in the social media and the descent depends
on the response of the event and its aftermath.

VI. PREDICTION OF EVENT CHARACTERISTICS

As one of the many possible applications, we have designed
an iterative nonlinear interpolation model using the total H-
measure as the input feature. The model predicts the trajectory
and total duration of the event from the moment it is detected.
We make predictions every hour by processing all the context
words during that hour. The algorithm is designed to suit batch
processing technique on streaming data. The total number of
data points (H-measure) is /N where N represents the number
of windows. For the k! iteration, the model predicts the
future N — k data points from the past &k input data points by
fitting a quadratic diminishing curve. Since the number of data
points increases with every iteration, so does the prediction
accuracy of the model. Algorithm 1. shows the function of
the polynomial interpolation and Algorithm 2 shows the steps
of the iterative predictive model. We define the start of the
event when the H-measure is at the peak and start the first
iteration from the next hour.

45

Algorithm 1 Fit H-measure to Learn Event Parameters
INPUT: z,y co-ordinates with independent variable x and
depedndent variable y = f(z)
OUTPUT: y, fitted values, S = By, f1, B2
function FITTRAJECTORY:(x, )
while all 3 values have not converged do
Fit § = fo + B1(x — f2)?
end while
end function

Return: g, 8

Algorithm 2 Predict Event Trajectory and Duration

1: N < Total number of data points

2: t < Time sequence of the event

3: h < H-measures of the event, h = f(¢)

4: k < Number of data points to fit the regression
5: D < Total duration of the event

6: for i = 2 : t[end] do

7: Call: FITTRAJECTORY(z, y) to fit (¢, h)[1 : 4]
8: Learn: event coefficients 5 = g, 51, B2

9:  Predict: hli : end] with learned 3 = 3, B1, B2
10: Derive: event duration, D = _ﬁf‘) + Ba

11:  Calculate: error, & N | (7 —y)?

12: end for

To evaluate the predictive model, we calculated the mean
squared error (MSE), MSE = % Z,S’:l(g — y)? between
predicted H-measures with the original H-measures for every
iteration. The performance of the predictive model for the
two data sets is depicted in Fig. 10 and Fig. 11. The sub-
graphs Fig. 10a and Fig. 11a display the H-measures of all the
context words. The randomly scattered points at the beginning
of the graphs correspond to the entropy of the words that are
extracted from the tweets collected before the event started.
When the event starts, the H-measures rise abruptly and then
slowly decay with time. The sub-graphs Fig. 10b and Fig. 11b
demonstrate the iterative prediction of the H-measures for
different values of k. With each iteration, more information is
known which makes the learning algorithm perform better and
the predicted trajectory moves closer to the original (entropy
shown in solid line). Fig. 10c and Fig. 11c show the MSE
values of the prediction with every iteration, projected on top
of the original H-measures. The MSE values are quite high
initially, but they gradually decrease as the event progresses.
The decrease in MSE with increasing percentage of k is given
in Table. I. It shows that for Arizona Flash flood, the MSE
drops to 15% from 45% only with 10% increase in the data,
however for Cummins Falls flash flood, the model takes 50%
of data for the MSE to drop to 18% which indicates the
percentage of data needed for 85% accuracy vary for different
events. This gives the confidence that even with less than
20% of the data points we can achieve up to 85% accuracy
which can help inform the responsible authorities to make a
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Table I: Percentage error of event duration prediction

H Data% ‘ MSE % (UCF) ‘ MSE% (UAZ) H

10% 59.37% 45.88%
20% 50.44% 15.60%
30% 39.40% 14.05%
40% 27.89% 8.70%
50% 18.76% 7.64%
60% 10.04% 6.70%
70% 7.45% 2.83%
80% 6.51% 0.55%
90% 4.48% 0.53%
100% 2.92% 0.44%

better decision with their disaster management effort. Using
this method we can make predictions during the events using
wavelets without any prior knowledge and adjust the estimates
with time.

VII. SEMANTIC ANALYSIS WITH WAVELETS

In this section, we illustrate, that it is actually possible to
explain semantics with wavelets by comparing the time and
the frequency values of the high magnitude coefficients to the
actual event. The word signals vary in both time and frequency.
When people post on social media reacting to a physical
event, they use words that reflect the incidents, the news, and
their emotions. Instead of processing social media posts based
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on only time or frequency of their occurrence, it is more
meaningful to process both together to capture the dynamic
movement of the context. Fig. 12 shows the scalograms of
the wavelets of some of the most frequent words from the
tweets of Cummins Falls flash flood. The scalograms display
the magnitude of the complex coefficients of the wavelets with
time in the x-axis and frequency in the y-axis. The white
dashed line represents the cone of influence that marks where
edge effects become significant. The color scale depicts the
energy distribution of the coefficients throughout the event.
The blue region is caused by the low magnitude values of the
coefficients and the illuminated region is caused by the high
magnitude values of the coefficients. The blue region seems
to be dominating due to the sparsity of the input signals. The
word “people” is spread out on both time and frequency axes
because the word is used in multiple context throughout the
event (e.g., “40 people were stranded on the park’, “people
were searching”, etc.). On the other hand, the word “woman”
only appears in the context of the elderly woman who got
washed away. The wavelet coefficients corresponding to the
word “woman” has high magnitude value at the beginning of
the scalogram which is consistent with the actual event because
the woman got washed away during the flood and her body
was found after two days of search. The word ‘“search” and
“missing” are also spread out but “missing” is brighter because
it appears more in the tweets than “search”. The word “rescue”
dominates a few time intervals because there are tweets about
the rescue process throughout the event. However, “rescued”
has its high magnitude coefficients towards the end because



People Woman

Search Missing

Rescued

Rescue

Helicopter Found

Figure 12: Scalograms of word-wavelets

the process had ended by then. The word “helicopter” has high
magnitude coefficients at the middle of the scalogram when the
rescue teams were searching for the missing woman’s body.
The word “found” has two strong appearances. We manually
looked into it and saw that in the beginning, the conversations
were about “woman not being found” which changed later to
her body being “found”.

VIII. CONCLUSION

Social sensing opens a whole new world of disaster manage-
ment where the information goes well beyond the structured
realm of physical sensors. To be able to access this data freely
is a reward on its own. It should be fully explored into building
applications and services that benefit the source community.
The success of the domain lies in exploring fresh, creative
and efficient methods to analyze the data. In every phase of a
natural disaster, the responsible authority continuously makes
estimates and predictions before and during the disasters.
However, when an unexpected natural disaster takes place,
it is impossible for the authorities to make predictions and
preparations before the event. Even with the most accurate
predictions and preparations, the aftermath can be devastating
which is why it is vital to build models that can adjust
as the event progresses. The experiment presented in this
paper shows that, with wavelet analysis of social media data,
predictions can be made about the aftermath during the event.

The prediction of the event trajectory and duration will help
the authorities make preparations and allocate resources based
on the projected duration. The framework can also be used
to track aftermath such as, damage status, victim sentiments
during a disaster, which can improve the management of
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the future disasters. This method is not confined to any
language or platform. This can effectively be extended to other
social media and news articles to analyze the major topics
of conversation during natural disasters. The algorithm can
be built into an end-to-end tool that tracks social media data
and provides feedback to the authority and first responders.
Since the method is focused on traditional signal processing, it
can be fused with other cyber-physical systems by combining
physical sensor data with social media data. Apart from
the evolution of text, the methodology shows an interesting
observation that wavelets can be an efficient alternative to
traditional methods in explaining and analyzing text semantics.
Wavelet analysis can be used to process conventional natural
language parameters (e.g., context, word co-occurrences, syn-
onyms, antonyms, etc.) that will go beyond the scope of social
media and disaster management. We are currently working
on advancing this project in multiple directions including
identifying sub-events, extending to other social media and
news articles and building an end-to-end system that tracks
social media data and provides feedback to the authority and
first responders.
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APPENDIX A
CONTINUOUS WAVELET TRANSFORM

The formal definition of CWT of a continuous time-function

x(t),
/.

where 1)(t) is either a real or a complex function, known as
the mother wavelet. The mother wavelet works as the source
function to generate a group of child wavelets, which are then
scaled and shifted versions of the mother wavelet. The child
wavelet at scale a with a shift b is given by,

1 t—2>
|a|1/2 1/’(7)

a

Xo= [ x(t)p(t)dt (1

wu,b(t) =

where a € R, and b € R.

2

APPENDIX B
SHANNON WAVELET ENTROPY
SWE of a Teyent can be calculated by the following steps
[24].
Let, j, k be the scale and time components of a wavelet and
C;(k) be the wavelet coefficient at time k and scale j, then
the wavelet energy E; can be calculated by,

E; =Y |C(k)? 3)
k

The total energy can be calculated by,

Etotul = Z EJ
J

The Relative Wavelet Energy (RWE) at scale j can be
retrieved by,

“)

E; s)

Etotal

RWE represents the distribution of wavelet energy across
different scales. We can calculate SWE of a signal s at for a
window w by summing over the entropy of the RWE values
of all the scales.

Pj

SWE(sy) = — Z p; - logp; (6)
J
The normalized SWE is known as H-measure,
H = SWE(s)/SW Epmas (7
Total H-measure for an event,
m
Hyotar = H, where m € Ueyent ®)
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