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An accurate measure of mental workload level has diverse neuroergonomic applications

ranging from brain computer interfacing to improving the efficiency of human operators.

In this study, we integrated electroencephalogram (EEG), functional near-infrared

spectroscopy (fNIRS), and physiological measures for the classification of three

workload levels in an n-back working memory task. A significantly better than chance

level classification was achieved by EEG-alone, fNIRS-alone, physiological alone,

and EEG+fNIRS based approaches. The results confirmed our previous finding that

integrating EEG and fNIRS significantly improved workload classification compared to

using EEG-alone or fNIRS-alone. The inclusion of physiological measures, however,

does not significantly improves EEG-based or fNIRS-based workload classification.

A major limitation of currently available mental workload assessment approaches is

the requirement to record lengthy calibration data from the target subject to train

workload classifiers. We show that by learning from the data of other subjects, workload

classification accuracy can be improved especially when the amount of data from the

target subject is small.

Keywords: fNIRS, EEG, heart rate variability, respiration rate, n-back, mental workload, multimodal fusion, brain

computer interface

INTRODUCTION

Mental workload refers to the cognitive and psychological effort required to complete given
tasks. Continuous evaluation of mental workload enables real-time adjustment in the task load
assigned to human operators so that their workload can be kept at a moderate level for improving
human performance (Parasuraman et al., 1992; Parasuraman, 2003). Studies have thus far mainly
decoded humanworkload levels from brain activity electroencephalogram (EEG)measures (Gevins
et al., 1998; Brouwer et al., 2012). Cerebral hemodynamics have recently gained attention for
applications in brain-computer interfaces (Naseer and Hong, 2015) and the decoding of mental
workload level with the emergence of the portable measurement technique known as functional
near-infrared spectroscopy (fNIRS) (Sassaroli et al., 2008; Ayaz et al., 2012; Herff et al., 2014).
Previous studies have adopted a combination of EEG and non-brain measures such as heart rate
variability, respiration rate, and eye movement (Hankins and Wilson, 1998; Wilson and Russell,
2003; Fairclough, 2009) for mental workload assessment. Moreover, results from our previous study
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suggests that when combining EEG and fNIRS workload
classification accuracies, they outperform the EEG-alone and
fNIRS-alone results in mental workload level classification (Liu
et al., 2017).

Before mental workload can be decoded from brain and body
signals, it is typical that a time-consuming calibration process is
required to derive a decoder for each individual operator. This is
primarily due to the challenge that psychophysiological signals
vary considerably between different people and over time. In
the traditional calibration approach, lengthy psychophysiological
signals (i.e., calibration data) need to be recorded from an
operator so that a decoder can learn both the signal patterns
specific to this operator and the variations of these patterns over
time.

This problem is not unique to mental workload decoding.
The lengthy calibration process is also required to decode other
types of mental activities such as motor imagery (Blankertz et al.,
2006). To address this problem for motor imagery decoding,
Lotte and Guan proposed an alternative calibration approach
(Lotte and Guan, 2010). In this approach, a decoder is derived
using calibration data from both the target subject and some
other subjects. Lotte and Guan argued that despite the large inter-
subject variations, similar signal patterns can be found across
some individuals so that less calibration data from the target
subject is required to derive a decoder. This approach has been
further investigated by other researchers, with positive results
(Devlaminck et al., 2011; Samek et al., 2013). An alternative
approach to learning from other subjects, is to identify which
models incorporate the inter-subject variations from a large
database (Fazli et al., 2009).

For mental workload decoding, only one preliminary study
to date has explored the reduction of calibration time using
a simulated aviation task (Wang et al., 2012). Authors have
shown that calibrating decoders using data from both the target
subject and a pool of other subjects did not degrade the decoding
accuracies compared to using data only from the target subject.
However, no benefit of including data from the other subjects has
been shown.

In this study, the integration of EEG, fNIRS, and physiological
signals was investigated for the classification of three workload
levels induced by the n-back working memory task. The objective
was two-fold: first, to compare the classification performance
using the different modalities and their combinations; and,
second, to investigate learning in a workload decoder using
data from other subjects as an approach to improve workload
classification performance when the sample size of the target
subject is small.

MATERIALS AND METHODS

Participants
A total of 25 volunteers were recruited for participation in this
study. Two of the participants were unable to finish the protocol.
Another two participants were rejected from the analyses due to
excessive movement. Consequently, a total of 21 valid subjects
[all right-handed, 12 female, ages 25.9 ± 4.9 (mean ± SD)] were
included in the analysis. The Edinburgh Handedness Inventory
(Oldfield, 1971) showed that participants were right handed and

the average Laterality Quotient (L.Q.) and Decile is 78.7 ± 22.2
and 6.2 ± 3.4, respectively. Participants self-reported that they
had their vision corrected to 20/20, did not have any history
of neurological or psychiatric disorders and that they did not
take any medication known to affect brain activity. Prior to the
experiment, participants gave written informed consent for their
participation in the study. The protocol was approved by the
Institutional Review Board of Drexel University.

Recording
EEG, fNIRS, Heart rate, R-R interval, breath rate, and breath
depth were simultaneously recorded during data collection.
Figure 1 shows an overview of the recording setup.

EEG were recorded using a Neuroscan Nuamp amplifier
by Compumedics Neuroscan (http://compumedicsneuroscan.
com/) from 26 locations according to the International 10–
10 system (See Figure 2). Three additional electrodes, one
placed above Nasion, the other two placed below the left/right
outer canthus were used for electrooculography (EOG) artifact
correction according to Schlögl et al. (2007). All 29 channels (26
EEG + 3 EOG) were band-pass filtered 0.1–100 Hz, digitally
sampled at 500 Hz and referenced to a linked mastoid.

Prefrontal fNIRS were recorded from the forehead at a 2Hz
sampling rate using a 16-optode continuous wave fNIRS system
developed at Drexel University (Ayaz et al., 2012, 2013) and
manufactured by fNIR Devices LLC (http://fnirdevices.com/).
The sensor included 4 light sources (LED) that can emit 730
and 850 nm wavelength light and 10 photon detectors (See
Figure 3). The distance between light sources and detectors was
2.5 cm which allowed for a ∼1.2 cm penetration depth. To
ensure repeatable sensor placement, the center of the sensor was
aligned to the midline and the bottom of the sensor touched the
participant’s eye brow.

Systemic NIR were recorded from the right cheek at a 4Hz
sampling rate using a 2-optode continuous wave wireless fNIRS
system developed at Drexel University (Ayaz et al., 2013) and
manufactured by fNIR Devices LLC. The systemic NIR was not
used in the current study.

Heart rate, R-R interval, breath rate, and breath depth were
recorded using a Zephyr Bioharness chest band (https://www.
zephyranywhere.com/).

FIGURE 1 | Recording setup.
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FIGURE 2 | EEG channels according to the International 10–10 system. The

26 recorded channels were highlighted.

FIGURE 3 | fNIRS sensor layout with 16 optodes from prefrontal cortex.

Experiment
Subjects sat comfortably in front of an LED screen. Sequences
of capitalized letter stimuli (∼1.7◦ visual angle) were shown on
the center of the screen. The BCI2000 software was employed for
stimulus delivery and for the recording of EEG and behavioral
data (Schalk et al., 2004). Each letter was displayed for a duration
of 480 ms and the inter-stimulus interval (ISI) was 2,520 ms.
Subjects were instructed to click a keypad button with their
right index finger in response to a “match stimulus” and click
another keypad button with their right middle finger in response
to a “non-match stimulus” as fast as possible. There were three
workload conditions. In the 0-back condition, letter “X” was the
match. In the 2-back condition, a letter was the match if it was
shown two screens back. In the 3-back condition, a letter was the
match if it was shown three screens back.

The letter stimuli were grouped into n-back blocks. Each block
included 6 s of instruction, 45 s of task performance, and 15 s of
fixation. The instruction period informed the subject which task
(0-, 2-, or 3-back) to perform. During the task period, 15 letters
were shown to the participants on the screen in a pseudo random
order. Four of the letters were targets. No letters appeared more
than twice in succession within a block. In the fixation period,
subjects were instructed to focus their eye gaze on a white plus
sign located at the center of the screen allowing fNIRS signals to
return to the baseline. Figure 4 shows the time line of a typical
n-back block.

There were four recording sessions. Each session included
12 n-back blocks, 4 from each condition. Hence, there were
48 n-back blocks for the entire experiment, 16 from each
condition. To reduce the correlation between adjacent samples
and to balance time induced experimental factors such as fatigue
across the three workload conditions, the 48 n-back blocks were
grouped into 16 repetitions. Each repetition included one block
from each workload conditions. The order of the blocks was
further randomly shuffled so that no workload condition was
repeated twice in succession within a session. Before the start of
the first session, subjects practiced one block from each condition
for familiarization with the procedure and an ∼5min long EOG
calibration session was performed during which subjects were
instructed to rotate, blink and move (up/down, left/right) their
eyes. A 5min break was given to the subjects between the
recording sessions. The entire recording time was about 1 h.
Figure 5 shows the outline of the experiment.

EEG Signal Processing
In this work, we extracted for each EEG channel the band powers
of 1–3, 4–7, 8–12, 13–19, and 20–30Hz bandwidths. This was
performed at a single stimulus level, forming a feature vector fEEG
of 6 bands× 26 channels= 156 length for each of the 48 blocks×
15 stimuli= 720 sample epochs for each subject.

Raw EEG and EOG signals are band-pass filtered 1–35Hz.
A regression-based approach was adopted to reduce EOG
contamination by using the calibration data recorded before
the n-back sessions started (Schlögl et al., 2007). Epochs were
extracted 0–2.8 s and baseline corrected −0.2 to 0 s with respect
to stimulus onset. The power spectral density of each epoch was
then estimated using the Multitaper method (Thomson, 1982)
with 8 Discrete Prolate Spheroidal Sequences (DPSS) window of
3 s long for subsequent analysis.

fNIRS Signal Processing
The average oxygenated hemoglobin (oxy-Hb) and deoxygenated
hemoglobin (deoxy-Hb) amplitude change between (25 s, 45 s)
and (−5 s, 5 s) with respect to the block start was used as a
feature. The features were extracted from 14 forehead optodes,
forming a feature vector fNIR of 14 × 2(oxy/deoxy-Hb) = 28
length for each of the 48 sample blocks. Optode 1 and 15 were
rejected from analysis because they are over the hairline for most
of the subjects. The average activation amplitude with respect to a
baseline was adopted as the feature for characterizing the mental
activities in many studies (Ayaz et al., 2007, 2012; Merzagora
et al., 2009; Herff et al., 2012; Liu et al., 2013). This feature
extraction strategy has been shown to be more reliable when
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FIGURE 4 | Timeline of an n-back block.

FIGURE 5 | Experiment outline.

compared to other possible feature choices in our preliminary
analysis.

Raw light intensities recorded from prefrontal fNIRS were first
visually inspected to reject those optodes with inadequate contact
or those positioned over the hairline. Raw light intensities were
converted into concentration changes in oxy-hemoglobin (oxy-
Hb) and deoxy-hemoglobin (deoxy-Hb) using themodified Beer-
Lambert law (Cope and Delpy, 1988). Oxy-Hb/deoxy-Hb signals
are band-pass filtered at 0.005–0.1Hz for reducing artifacts
from physiological signals (e.g., heartbeat and respiration) before
subsequent analysis.

Heart Rate Variability (HRV) Processing
Heart rate variability (HRV) was estimated according to Clifford
(2002) and Gritti et al. (2013). The R-to-R interval recorded
by the Bioharness was first interpolated to form a 4Hz time
series. Epochs were extracted for each n-back block with (0 s,
45 s) time windows with respect to the onset of the first
stimulus and the power spectral density (PSD) were estimated
using a single DPSS window of 45 s long (Thomson, 1982) for
evaluating the variability of the R-to-R interval. The average
PSD in the bandwidths 0.02–0.06Hz (mainly originated from
body temperature regulation), 0.07–0.14Hz (related to regulation
of blood pressure), and 0.15–0.5Hz (momentary respiratory
influences on heart rate) were extracted as suggested by Scerbo
et al. (2001).

In addition to HRV, the average of heart rate,
breath rate, and breath depth for each n-back
block recorded by Bioharness were extracted as
features.

Multimodality Workload Classification
We considered the three-class classification problem of 3- vs.
2- vs. 0-back. A multiclass linear discriminant analysis (LDA)
was adopted for classification. To prevent a covariance matrix
from becoming singular due to small sample size, an automatic
shrinkage using the Ledoit-Wolf lemma (Schafer and Strimmer,
2005) was adopted. The following eight different classifications
were considered dependent on the adopted modalities
(See Figure 6):

1) EEG-alone. A LDA was trained to classify EEG features
at the single stimulus level (3 s time window with respect
to a single stimulus). At the block level (45 s time
window, included 15 stimuli), the LDA predicted probabilities
for each of the 15 stimuli were Naïve-Bayes combined
(Kuncheva et al., 2001) to produce P

(

L|fEEG
)

where
L ∈ {0-back, 2-back, 3-back}, which determined the
predicted workload levels. More specifically, in Naïve-
Bayes fusion, the product of the predicted probabilities
from the 15 stimuli was calculated and normalized as
follows:

P
(

L|fEEG
)

=

∏15
i= 1 P

(

L|f iEEG
)

∏15
i= 1 P

(

0-back|f iEEG
)

+
∏15

i= 1 P
(

2-back|f iEEG
)

+
∏15

i= 1 P
(

3-back|f iEEG
)

(1)
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FIGURE 6 | EEG+fNIRS+PHY workload classification. A Linear Discriminant Analysis (LDA) was trained to classify EEG band power features at the single stimulus

level (4 s epoch). The output probabilities from the 15 stimuli (of a block) were Naïve-Bayes combined to produce P
(

L|fEEG
)

. A second LDA was trained to classify

fNIRS features extracted from each block (45 s epoch) to produce P
(

L|fNIR
)

. A third LDA was trained to classify PHY features extracted from each block to produce

P
(

L|fPHY
)

. P
(

L|fEEG
)

, P
(

L|fNIR
)

, and P
(

L|fPHY
)

were Naïve-Bayes combined for EEG+fNIRS+PHY classification. All of the above procedures were conducted on

calibration data. The LDA classifiers were then applied on testing data to evaluate the classification performance.

2) fNIRS-alone. A LDA was trained to classify fNIRS features
at the block level. The LDA probability output was termed
P

(

L|fNIR
)

.
3) PHY-alone. A LDAwas trained to classify PHY features (HRV,

heart rate, respiration rate, and respiration depth) at the block
level. The LDA probability output was termed P

(

L|fPHY
)

.
4) EEG+fNIRS. P

(

L|fEEG
)

and P
(

L|fNIR
)

were Naïve-Bayes
combined for a final decision. More specifically, the product
of the predicted probabilities from the two modalities was
calculated and the output class c was determined as follows:

c = arg maxL[P
(

L|fEEG
)

· P
(

L|fNIR
)

] (2)

5) EEG+PHY. P
(

L|fEEG
)

and P
(

L|fPHY
)

were Naïve-Bayes
combined for a final decision.

6) fNIRS+PHY. P
(

L|fNIR
)

and P
(

L|fPHY
)

were Naïve-Bayes
combined for a final decision.

7) EEG+fNIRS+PHY. P
(

L|fEEG
)

, P
(

L|fNIR
)

and P
(

L|fPHY
)

were Naïve-Bayes combined.

Learning from Other Participants
We consider the following calibration approaches:

• Traditional calibration, which derives a classifier only with
data from a specific subject. In terms of a LDA classifier, the
mean and covariance matrix of the feature vector µi and 6

were estimated from a feature matrix extracted from the data
of a target subject for estimating the posterior probability of
a class given a feature vector. To obtain good classification
accuracy, µi and 6 need to be estimated from a large data set
recorded during a lengthy calibration session.

• Proposed calibration, which derives a classifier with data
from both a specific subject and a pool of other subjects. As
Lotte and Guan proposed, µi and 6 can be estimated from
the target subject and a pool of other subjects to reduce the

calibration time of the target subject (Lotte and Guan, 2010).
For each subject, the features were first z-score transformed to
reduce the between-subject variations. For the target subject,
only the training data was used for estimating the mean and
variance of each feature. The mean and covariance matrix of
the feature vector of each subject was then estimated. Finally,
the mean and covariance matrices from all subjects were
combined according to Equation (3) and Equation (4).

µi = (1− λ) µt
i + λ

1

|St (�)|

∑

j∈St(�)

µ
j
i (3)

6 = (1− λ) 6t + λ
1

|St(�)|

∑

j∈St(�)

6j (4)

where µt
i and 6t are the mean and covariance estimated from

the target subject, St(�) is a set of subjects that does not include
the target subject (leave-one-subject-out) and λ ∈ [0, 1] was a
parameter representing the weight of other subjects. In this study,
λ was empirically chosen to be 0.5.

When the sample size from the target subject is small,
we expect that an improved classification performance can be
achieved by incorporating the mean and covariance matrices
estimated from other subjects.

Performance Evaluation
A repeated learning-testing method (Burman, 1989) was adopted
for performance evaluation. The procedure was done as follows:

For subject j = 1, . . . , 21:

1) For iteration i = 1, . . . , 100:

a. Data splitting:
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The data of the target subject j were randomly split into
a calibration set and a testing set three times with varying
calibration sample size:

i. 13 min calibration (12 samples), 39 min testing
(36 samples).

ii. 26 min calibration (24 samples), 26 min testing
(24 samples).

iii. 39 min calibration (36 samples), 13 min testing
(12 samples).

b. Classifier calibration:

i. For traditional calibrations, the calibration sets were
used to train the classifiers using LDA.

ii. For the proposed calibrations, the calibration sets and
data from all other subjects were used to train the
classifiers.

c. Classifier evaluation:

i. The testing sets were used to evaluate the classification
accuracy.

2) For each of the evaluated approaches, testing accuracies from
the 100 iterations are averaged for a stable performance
evaluation.

Multiple Comparisons
To correct for multiple testing, we adopted false discovery
rate (FDR) control with the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995). Without specification, we
rejected null hypotheses for FDR q < 0.05.

RESULTS

Behavior Performance
To verify the successful manipulation of workload level with
the adopted protocol, we evaluated the following three behavior
measures:

1) d-prime, which was the key-press true positive rate minus
false positive rate:

d-prime =
N(stim = match and responded = match)

N(stim = match)

−
N(stim = non−match and responded = match)

N(responded = match)

(5)

where N(event) is the number of cases of an event,
stim = match/unmatch represent the true stimulus type, and
responded = match/unmatch represent subject’s response.

2) Accuracy, which was the key-press accuracy.
3) Response delay: The time elapsed between stimulus onset and

key-press.

For all three behavioral measures, one-way repeated measures
ANOVAs revealed a significant effect of workload and post-hoc
tests revealed significant differences (FDR q < 0.05) between all
three workload levels, suggesting the successfully manipulation

of workload level (Figure 7). The generalized eta-squared (η2)
as reported by the ezANOVA library of R was used (Bakeman,
2005).

Effect of Workload on EEG Band Powers
Figure 8 depicts the topographic map of EEG band powers.
A repeated measures ANOVA was applied to assess the effect
of workload on the six mid-line channels Fz, FCz, Cz, CPz,
Pz, and Oz and the results are shown in Table 1. For delta
activity, a significant effect of workload was found at Cz and
CPz (FDR q < 0.05) where the delta band power decreased
with increased workload. Workload had a significant effect on
theta band at channel Fz and Cz (FDR q < 0.05). At Fz, theta
band increased with increased workload whereas at Cz, theta
band power decreased with increased workload. Workload had
a significant effect on alpha band power at all of the six midline
channels Fz, FCz, Cz, CPz, Pz, and Oz (FDR q < 0.05). At all six
channels, alpha band power decreased with increased workload.
Workload has a significant effect on low beta band power at the
sixmidline channels Fz, FCz, Cz, CPz, Pz, andOz (FDR q< 0.05).
At all six channels, low beta band power decreased with increased
workload. Workload had a significant effect on high beta band
power at Fz, FCz, Cz, CPz, and Pz (FDR q < 0.05). At these
five channels, high beta band power decreased with increased
workload. The significant effects that has been found in the low
and high beta band may be confounded by motor responses as
the 13–30 Hz range is typically associated with motor responses
(Pfurtscheller et al., 1996, 2006). To investigate the effect of motor
responses, a 2 (key press type: middle/index finger)× 3 workload
level (0-/2-/3-back) ANOVA with repeated measures on both
factors was conducted using the amount of key-press responses
as the dependent. No significant effect of workload level [F(2, 42)
= 0.83, p= 0.44, η2 < 0.01] or the interaction between key-press
type and workload level [F(2, 42) = 2.01, p = 0.15, η2 = 0.03]
was found. Mean and standard deviations of the number of key-
presses within each block across the 21 participants for each of
the three workload conditions can be found in Supplementary
Table 1.

Effect of Workload on fNIRS Measures
Figure 9 shows the results from oxy-Hb. A common average
reference approach was applied to remove the average oxy-Hb
across all optodes and from each individual optode for reducing
the effect of systemic physiological artifacts. Repeated measures
ANOVA revealed a significant effect of workload on optode 5,
7, 8, and 14. Post-hoc tests revealed a significant 3-back > 0-
back and 2-back > 0-back at optode 14. A optode 7, there was
a significant effect of 3-back < 0-back and 3-back < 2-back. At
optode 8, there was a significant effect of 3-back < 0-back and 2-
back < 0-back. No significant post-hoc test results were detected
at optode 5.

Effect of Workload on Physiological
Measures
The effect of workload on physiological measurements are shown
in Figure 10. For each subject, the average heart rate at 0-back,
2-back, and 3-back blocks were calculated respectively and the
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FIGURE 7 | Effect of workload on behavioral results. One-way repeated measures ANOVA results and the η2 effect sizes with workload as the independent variable

are shown. Error bars represent the bootstrapped 95% confidence interval.

three heart rate values were z-score standardized before analysis.
The same preprocessing procedure was applied to the other
physiological measurements: breath rate, breath amplitude and
HRV. A repeated measures ANOVA revealed a significant effect
of workload on breath amplitude, breath rate, heart rate, HRV
0.07–0.14Hz, and HRV 0.15–0.5Hz (FDR q < 0.05). Post-hoc
tests revealed significant differences between 3-back and 0-back
and also between 2-back and 0-back for breath amplitude, breath
rate, heart rate HRV 0.07–0.14Hz, and HRV 0.15–0.5Hz (FDR
q < 0.05).

Workload Classification
Workload classification results are shown in Table 2,
Figures 11, 12 and Supplementary Tables 2, 3. For all
investigated approaches and with the different calibration
sample sizes, classification accuracy was significantly better
than chance level (33.3%) as revealed by one-tailed Wilcoxon
signed rank tests. Figure 11 compares the accuracy using
traditional and proposed calibration approaches. The results
of the repeated measures ANOVAs indicate that the proposed
calibration approach significantly outperforms the traditional

calibration approach for EEG-based classification, fNIRS-based
classification, physiological based classification, and EEG-fNIRS
multimodal classification (p < 0.05). The effect size of the results
are shown in Table 3. Post-hoc analysis was conducted using
a Wilcoxon Signed Rank test with FDR correction and the
results are shown in Supplementary Table 4. For the calibration
sample size of 13 min, the proposed calibration approach
significantly outperformed the traditional calibration approach
for EEG-alone, fNIRS-alone, PHY-alone, and EEG+fNIRS
(FDR q < 0.05). For the calibration sample size of 26 min, the
proposed calibration approach significantly outperformed the
traditional calibration approach for EEG-alone, fNIRS-alone,
and EEG+fNIRS (FDR q < 0.05). While for the calibration
sample size of 39 min, no significant difference in classification
accuracy can be found between the proposed and traditional
calibration approach for all of the four modalities.

Figure 12 compares the classification accuracy using EEG-
alone, fNIRS-alone with those using both EEG and fNIRS.
A repeated measures ANOVA revealed that EEG-fNIRS
significantly outperforms EEG-alone or fNIRS-alone for both
traditional calibration approach and the proposed calibration
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FIGURE 8 | Topographic maps of EEG band powers at the five frequency bands and three workload conditions averaged over 21 participants.

approach (p < 0.001). For the traditional calibration approach,
an effect size dz of 0.81 [t(20) = 3.70], 0.84 [t(20) = 3.83],
and 0.85 [t(20) = 3.88] has been achieved for a calibration
sample size of 13, 26, and 39 min, respectively, when comparing
the EEG-alone and EEG+fNIRS approach. For the proposed
calibration approach, an effect size dz of 0.89 [t(20) = 4.07], 1.18
[t(20) = 5.43], and 0.94 [t(20) = 4.33] has been achieved for a
calibration sample size of 13, 26, and 39 min, respectively, when
comparing the EEG-alone and EEG+fNIRS approach. Post-hoc
analysis was performed using aWilcoxon Signed Rank test with
FDR correction comparing EEG-alone and EEG+fNIRS with
the results reported in Supplementary Table 5. For all three

calibration sample sizes and for both traditional and proposed
calibration approaches, EEG+fNIRS significantly outperformed
EEG-alone (FDR q < 0.05).

The effect of including a physiological-based classifier and
combining them with EEG-alone, fNIRS-alone, and EEG-
fNIRS classifier was studied and no significant improvement in
classification was found.

DISCUSSION

In this study, the integration of EEG, fNIRS, and physiological
measures investigated the classification of three workload levels.

Frontiers in Human Neuroscience | www.frontiersin.org 8 July 2017 | Volume 11 | Article 389

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Liu et al. Multisubject “Learning” Mental Workload Classification

To our knowledge, this is the first study that investigated the
integration of fNIRS, EEG, and physiological signals for mental
workload assessment. The n-back working memory task was
adopted to induce three workload levels and the behavioral
results suggested successful manipulation of the workload levels.

We first showed that in our data the EEG delta, alpha, low beta,
and high beta activities decreased with increased workload levels

TABLE 1 | Effect of workload on EEG band powers.

Delta Theta Alpha Low beta High beta

F(2, 40), η
2 F(2, 40), η

2 F(2, 40), η
2 F(2, 40), η

2 F(2, 40), η
2

Fz 0.3, 0.01 3.5, 0.15 21.2, 0.51 67.3, 0.77 17.8, 0.47

FCz 2.9, 0.13 2.1, 0.10 23.5, 0.54 66.4, 0.77 22.6, 0.53

Cz 7.3, 0.27 5.9, 0.23 14.5, 0.42 98.9, 0.83 31.6, 0.61

CPz 3.9, 0.16 1.7, 0.08 13.9, 0.41 85.8, 0.81 31.9, 0.61

Pz 1.0, 0.05 1.5, 0.07 13.4, 0.40 73.0, 0.78 28.6, 0.59

Oz 0.1, <0.01 2.7, 0.12 14.0, 0.41 10.7, 0.35 1.0, 0.05

F-ratio statistics and the η2 effect sizes are reported. Bold highlighted results are significant

after correcting for multiple comparisons using FDR (Benjamini and Hochberg, 1995) (FDR

q < 0.05).

Interpretation of the effect size η2 are 0.02 = small, 0.13 = medium, and 0.26 or greater

is large (Bakeman, 2005).

whereas theta activity increased with an increased workload level
at the frontal site Fz. The suppression of alpha power in the
posterior areas and increased theta power in the midline frontal
areas under workload matches with the results reported in the
literature (Gevins et al., 1997). It has been reported that beta
activity decreased as workload increased at the midline central
site Cz (Gevins et al., 1998). A previous study also suggested
that the delta band decreased with increased workload level
and the delta band carried information needed to characterize
mental workload levels (Zarjam et al., 2011). Our results match
those reported in the literature. A concern is that the workload
effect on beta activities found in our study maybe caused by
motor responses. The effect of workload and key-press type
(middle/index finger) was assessed based on the number of key-
press within each block and no significant effect of workload and
the interaction between workload and key-press type was found.
It is possible that motor activities other than key-presses could
be affected by workload levels (e.g., subject may be more restless
in the low workload condition) which need to be investigated in
future studies.

For the fNIRS data, three prefrontal sites were found to be
sensitive to workload changes with the 3-back task showing
the highest level of activations. Previous fNIRS-based mental
workload studies suggested that fNIRS was sensitive to workload
changes (Ayaz et al., 2012; Fishburn et al., 2014; Herff et al., 2014).

FIGURE 9 | Effect of workload on fNIRS oxy-Hb. (A) Average fNIRS oxy-Hb at each workload level; (B) ANOVA F- ratio statistics and η2 effect size of workload

effect; (C) Average oxy-Hb for each optode. Highlighted optodes showed a significant workload effect (optode 5, 7, 8, and 14, FDR q < 0.05). Error bars illustrated

the bootstrapped 95% confidence interval. Interpretation of the effect size η2 are 0.02 = small, 0.13 = medium, and 0.26 or greater is large (Bakeman, 2005).
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FIGURE 10 | Effect of workload on physiological measurements. One-way repeated measures ANOVA results and the η2 effect sizes with workload as the

independent variable are shown. All measures except for HRV (0.02–0.06 Hz) showed a significant effect of workload (FDR q < 0.05). Error bars represented the

bootstrapped 95% confidence interval. BRAmplitude, breath amplitude. Interpretation of the effect size η2 are 0.02 = small, 0.13 = medium, and 0.26 or greater is

large (Bakeman, 2005).

TABLE 2 | Classification results using the traditional and proposed calibration approach.

Modality Calibration sample size (min)

13 26 39

Proposed Traditional Proposed Traditional Proposed Traditional

EEG-alone 56.0 ± 10.8 52.0 ± 10.6 61.1 ± 11.1 59.3 ± 11.5 63.4 ± 12.1 62.3 ± 12.5

fNIRS-alone 48.0 ± 10.1 46.1 ± 9.9 51.6 ± 12.0 49.8 ± 12.0 53.9 ± 12.8 51.9 ± 12.8

PHY-alone 41.0 ± 8.0 39.4 ± 8.1 41.8 ± 9.3 40.8 ± 9.5 42.2 ± 10.4 41.8 ± 10.0

EEG+fNIRS 56.9 ± 10.9 53.3 ± 11.0 62.6 ± 11.1 60.8 ± 11.8 65.0 ± 12.3 64.0 ± 12.7

EEG+PHY 55.9 ± 10.8 52.0 ± 10.4 61.1 ± 11.1 59.3 ± 11.4 63.4 ± 12.3 62.2 ± 12.5

fNIRS+PHY 48.7 ± 10.0 46.7 ± 9.7 52.7 ± 11.9 50.6 ± 12.1 55.0 ± 12.6 53.5 ± 13.1

EEG+fNIRS+PHY 56.8 ± 10.9 53.3 ± 10.9 62.5 ± 11.2 60.7 ± 11.7 65.1 ± 12.3 64.1 ± 12.6

Mean ± standard deviation of the classification accuracies are shown.

Again, our findings are consistent with the reported results in the
literature.

For the physiological data, breath amplitude, breath rate, heart
rate, HRV mid band (0.07–0.14Hz), and HRV high band (0.15–
0.5Hz) were found to be sensitive to workload changes. The
suppression of HRV spectral power in the 0.07–0.14Hz range
and 0.15–0.5Hz range under workload was reported by the
literature (Veltman and Gaillard, 1996; Nickel and Nachreiner,
2003). They suggested increased blood pressure and increased
heart rate under high workload. Also reported was that breath
rate increased with increased workload (Wilson and Eggemeier,
1991). Our results reflected these phenomena.

For workload classification, a significantly better than chance
level classification was achieved by all investigated modalities:
EEG-alone, fNIRS-alone, physiological alone, and EEG+fNIRS
hybrid classification. For improving the classification accuracy
when the calibration sample size is small, we proposed to
calibrate classifiers using data from both the target subject and
a pool of other subjects. Our results indicate that the proposed
calibration approach significantly outperformed the traditional
calibration approach which only used data from the target subject
to calibrate classifiers regardless of the modality adopted. To
our knowledge, this was the first study which demonstrated that
learning from the data of multiple subjects outperforms learning
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FIGURE 11 | Comparing the classification accuracies of traditional and proposed calibration approaches using EEG, fNIRS, PHY, and EEG+fNIRS.

TABLE 3 | Effect size and t-statistics of the improvement of the proposed

calibration approach over the traditional approach.

Modality Calibration sample

size (min)

t(20) Cohen’s dz Effect size

EEG 13 8.66 1.89 Large

EEG 26 4.20 0.92 Large

EEG 39 1.76 0.38 Small

fNIRS 13 5.84 1.27 Large

fNIRS 26 3.63 0.79 Medium

fNIRS 39 2.75 0.60 Medium

PHY 13 3.96 0.87 Large

PHY 26 1.93 0.42 Small

PHY 39 0.77 0.17 Small

EEG+fNIRS 13 6.88 1.50 Large

EEG+fNIRS 26 3.55 0.78 Medium

EEG+fNIRS 39 1.77 0.39 Small

from a single subject for mental workload decoding accuracy.
In the literature, various multisubject learning approaches have
been proposed for the classification of different types of tasks.
For example, Lotte et al. investigated multisubject learning for
the classification of motor imagery tasks (Lotte and Guan,
2010) using EEG. To account for the inter-subject variability,
they adopted a data-driven approach to select for each target
subject a relevant subset of other subjects whose data can
be used to improve the classification of the target subject.
Reichert et al. investigated the classification of the phenomenal
content of perception using fMRI (Reichert et al., 2014). To
achieve cross-subject generalization, the weights of the classifiers
trained from individual subjects were combined according
to the individual classifier performance. Samek et al. found
that the changes between training and testing data is similar
across subjects and transferring this non-stationary information
between subjects can help improve classification (Samek et al.,
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FIGURE 12 | Comparing the classification accuracies of EEG+fNIRS multimodal model and EEG-alone model.

2013). Our approach differs from these approaches in that the
features for each subject were standardized before training to
minimize the inter-subject variability. A further improvement
to our approach may be achieved by performing subject subset
selection as adopted by Lotte et al. or by weighting the mean
and covariance matrices of each subject by their classification
performance before applying Equation (3) and Equation (4).
Finally, in this study, the hyperparameter λ in Equation (3) and
Equation (4) is empirically chosen to be 0.5. The effect of λ

on classification accuracies is provided in the Supplementary
Figure 1. Estimating λ based on the individual classifier
performance and the number of available samples from the
target subject may further improve the performance of proposed
approach.

Our results also suggest that EEG+fNIRS hybrid classification
significantly outperformed EEG-alone or fNIRS-alone workload
classification. These findings are consistent with our recent study
(Liu et al., 2017) and indicate that there is complementary
information about workload in EEG and fNIRS. However, the
improvement of EEG+fNIRS over EEG-alone is only about 1–
2% in classification accuracy. One possible reason behind this
is the relatively low fNIRS-alone performance. It can be seen
from Table 2 that fNIRS-alone classification accuracy is about
10% lower than EEG-alone classification. A recent fNIRS-based
workload estimation study reports that using only the forehead
optodes resulted in a much-reduced workload estimation
accuracy compared to using optodes from the whole head (Unni
et al., 2017). We speculated that by using whole head coverage,
the fNIRS-alone and EEG+fNIRS performance can be much
improved. Finally, integrating physiological measures with EEG
or fNIRS does not significantly improve workload classification.
A reason for the lack of improvement in classification may be
due the reduced reliability of the physiological based workload
classification in comparison to the brain signal based approaches.

Another possibility may be that the physiological measurements
do not provide additional information about workload to the
brain signal measurements.

In conclusion, the current study presented various approaches
for mental workload classification and demonstrated that with
the integration of EEG and fNIRS and learning classifiers
using the data from other subjects, workload classification
performance can be improved. The proposed approaches may
have applications in neuroegonomics research and applications
such as adaptive aiding systems that are designed to improve the
efficiency and safety of human-machine systems during critical
tasks.
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