
Memristive Ion Channel-Doped Biomembranes
as Synaptic Mimics
Joseph S. Najem,†,# Graham J. Taylor,‡,# Ryan J. Weiss,§ Md Sakib Hasan,§ Garrett Rose,§

Catherine D. Schuman,∥ Alex Belianinov,⊥ C. Patrick Collier,*,⊥ and Stephen A. Sarles*,#

†Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
‡Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
§Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37916, United States
∥Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
⊥Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
#Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, United
States

*S Supporting Information

ABSTRACT: Solid-state neuromorphic systems based on
transistors or memristors have yet to achieve the
interconnectivity, performance, and energy efficiency of
the brain due to excessive noise, undesirable material
properties, and nonbiological switching mechanisms. Here
we demonstrate that an alamethicin-doped, synthetic
biomembrane exhibits memristive behavior, emulates key
synaptic functions including paired-pulse facilitation and
depression, and enables learning and computing. Unlike
state-of-the-art devices, our two-terminal, biomolecular
memristor features similar structure (biomembrane), switch-
ing mechanism (ion channels), and ionic transport modality
as biological synapses while operating at considerably lower
power. The reversible and volatile voltage-driven insertion
of alamethicin peptides into an insulating lipid bilayer creates conductive pathways that exhibit pinched current−voltage
hysteresis at potentials above their insertion threshold. Moreover, the synapse-like dynamic properties of the biomolecular
memristor allow for simplified learning circuit implementations. Low-power memristive devices based on stimuli-
responsive biomolecules represent a major advance toward implementation of full synaptic functionality in neuromorphic
hardware.
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D espite major progress in very-large-scale-integration
(VLSI) circuits,1−4 neuromorphic networks to date
have failed to achieve the neuronal density, power

efficiency, and complexity of the human brain. Unlike current
solid-state technology, the brain leverages sophisticated
molecular mechanisms to continually reconfigure connectivity
between neurons.5,6 Synaptic plasticity5 enables the brain to
remember patterns and adapt to incoming information,
perform parallel operations at immense scale, and operate at
exceptionally high efficiencies (∼20 W).7

VLSI networks emulate synaptic activities via three-terminal
transistors that bear little phenomenological similarity to
biosynapses8,9 and rely on expensive, power-hungry comple-
mentary metal-oxide−semiconductor circuitry. Alternatively,
two-terminal memory-resistive elements (memristors) have

been developed10−15 to mimic synapse plasticity and require
less power.16 A memristor can reconfigure its resistance
(synaptic weight) based on electrical activity of connected
“neurons”; this plasticity allows memory and computing to be
colocated as in biosynapses. The functionality offered by a
single memristor can be used to replace up to 10 transistors on
a chip,16 which makes them ideal for data storage, neuro-
morphic applications, and large-scale integration.11

Ion drift memristors,10,17,18 the most characterized examples
of solid-state memristors, offer variable resistance readouts over
large dynamic ranges. Yet their nonvolatility, fast resistive
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switching, rigidity, and electronic operation make them
biologically unrealistic. These features of first-generation
devices resulted in an inability to exhibit spike-timing-
dependent plasticity, an important aspect of learning that was
only recently emulated by second-generation ion drift
memristors.19,20 More recently, researchers developed an
inorganic diffusive memristor21,22 that closely emulated
synaptic Ca2+ dynamics. This approach yielded more bio-
logically realistic memristors and, consequently, fully mem-
ristive neural networks capable of unsupervised learning.22

Low-cost, low-power, and biocompatible organic polymeric
memristive devices have also been developed,23−25 but they
suffer from low resistance ratios, slow kinetics of ion diffusion
through the conductive polymer, and poor switching stability.
Other reported synthetic memristors include ferroelectric,26,27

manganite,28,29 and spintronic30 varieties.
A key takeaway is that the behaviors of synthetic memristors

are largely phenomenological; they bear no resemblance to the
structure, composition, or switching mechanisms of biosynap-
ses. Existing memristors emulate a handful of simple synaptic
functions, bypassing many others and ignoring the actual

mechanisms governing synaptic functionality. To solve the
exponentially increasing computing demands, avoid Moore’s
law and Dennard scaling,31 and enable efficient as well as
intelligent edge computing,32 a more faithful synaptic model
should target not only the integration density and computa-
tional power efficiency of current approaches but also the
degree of biological realism on both structural and functional
levels. This approach requires designing systems that are energy
efficient, soft, stochastic, fault tolerant, capable of self- or
external-healing, and preferably biological.
Here we report a biomolecular memristor with composition,

structure, switching mechanism, and ionic transport similar to
biosynapses. The two-terminal device consists of a highly
insulating (∼10 GΩ),33 3−5 nm thick planar lipid bilayer
(Figure 1a) assembled at the interface of lipid-encased aqueous
droplets held in an oil reservoir34 (Methods and Supplementary
Figure S1). Conductive and memristive ion channels were
realized through reversible, voltage-driven insertion of
alamethicin35 peptides (alm) into the insulating bilayer
membrane (Supplementary Figure S2). We demonstrate the
memristive nature of the device experimentally via pinched

Figure 1. Two-terminal biomolecular memristors that mimic the structure and switching mechanism of biosynapses and exhibit nonlinear
memristive behavior as well as bipolar threshold switching. (a) Illustration of the biomolecular memristor (left) versus an actual biosynapse
(right). In biosynapses, an action potential traversing the presynaptic neuron causes voltage-gated calcium channels to open, causing an influx
of Ca2+ ions. Upon binding with Ca2+ ions, neurotransmitter (NT)-loaded synaptic vesicles dock to the presynaptic plasma membrane and
fuse to release NTs into the synaptic cleft. The released NTs are received at the postsynaptic plasma membrane by AMPA and NMDA
receptors/ions channels, events that trigger ion flux into the postsynaptic neuron that depolarizes the cell.47 Importantly, these channels
remain closed, holding the membrane in an insulating state, until NTs bind to their receptors, at which point the conductance of postsynaptic
membrane increases exponentially. A lipid bilayer formed at the interface of lipid-coated water droplets establishes a two-terminal
biomolecular memristor that mimics the structure and composition of the synaptic plasma membranes. This embodiment of a biomolecular
memristor also includes alm ion channels for voltage-controlled signal transmission, imitating the switching mechanisms of synapses.
Representative nonlinear threshold switching I−V relationships measured at three different voltage sweep rates as shown for (b) a DPhPC-
memristor at room temperature and (c) DPhPC devices at two temperatures. For comparison, we used only positive voltages and found that
the switching threshold increased as the oil temperature increased to 50 °C. (d) BTLE-based memristor at room temperature. All devices were
constructed with droplets containing 1 μM alm.
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hysteresis36 in the current−voltage (I−V) plane and theoret-
ically through modeling. We find the inherent active properties
of this biomolecular memristor are analogous to those of ion
channels37 in pre- and postsynaptic neurons that are partially
responsible for short-term and long-term plasticity. We verify
this similarity by demonstrating paired-pulse facilitation (PPF)
and depression (PPD),38 which have previously required
sophisticated materials and fabrication processes to be achieved
in conventional solid-state memristors or other devices.21,39

Additionally, we showcase via simulation evidence of short-
term learning and, when paired with a nonvolatile metal-oxide
memristor, spike-timing-dependent plasticity (STDP).6 Due to
the ionic nature and low switching voltages (millivolts), all
computing operations occur at power consumption levels
(pico- to nanowatts) orders of magnitude lower than most
solid-state memristors (microwatts).40

RESULTS AND DISCUSSION

Two-Terminal, Biomimetic Memristor. In this study, we
reconstituted alm peptides into biomimetic membranes

assembled from two types of lipids: (i) diphytanoylphospha-
tidylcholine (DPhPC), a synthetic lipid known for its chemical
stability and low ion permeability,41 and (ii) porcine brain total
lipid extracts (BTLE), a mixture that resembles the
composition of human synapse membranes.42 Unlike state-of-
the-art memristors, which require expensive and sophisticated
fabrication methods and materials, planar lipid membranes
spontaneously self-assemble upon contact between lipid-
encased aqueous droplets due to the entropically driven
exclusion of oil43 and are inexpensive. At low transmembrane
voltages, where alm peptides are surface-bound (i.e., the resting
state), the biomembrane was highly resistive to ion transport.
However, the device abruptly switched into a voltage-
dependent conductive (active) state at voltages exceeding a
certain bias (Vthreshold), which varied by lipid type and
temperature (Table 1). Above Vthreshold, alm peptides inserted
into the membrane and self-organized to create transmembrane
channels capable of ion transport. As illustrated in Figure 1a,
this scheme resembles the voltage-modulated variable con-
ductance of a biosynapse. The typical interface diameter (∼250

Table 1. Time and Switching Characteristics of the Biomolecular Memristor for Different Lipid Types and Temperatures

lipid type temperature Vthreshold (mV) τr (ms) τp (ms) τd (ms)

DPhPC RT 120 6.8 ± 1.2 99.5 ± 17.7 1 ± 1.3

DPhPC 50 °C 150 3.7 ± 0.5 75.1 ± 11.1 8.55 ± 2.74

BTLE RT 25 100 ± 37 420 ± 61.2 23.3 ± 6.11

Figure 2. Time characteristics and endurance of the biomolecular memristor in response to above-threshold switching pulses. (a) The
DPhPC-based device at room temperature switched from an insulating state (OFF) to a low-resistance state (ON) in response to a switching
pulse greater than Vthreshold (140 mV). The response exhibited a delay time of ∼1 ms and potentiation time constant of ∼100 ms. When the
voltage was lowered to a subthreshold level, the device switched back to an insulating state with a relaxation time constant (τr, described in the
inset) of ∼7 ms. (b) Switching behavior of the DPhPC-based memristor at 50 °C. Similar switching dynamics were observed; however the
amplitude of the current in the ON-state was significantly lower, due to a higher Vthreshold. The inset describes the pulses that we used to
characterize our devices, where W is the width of the pulse (ON-time) and T is the duration between consecutive pulses (OFF-time). (c)
Nonlinear current response of the device described in (a) to multiple pulses with different amplitudes. The inset shows the resistance ratios
between the OFF- and ON-states (ROFF/RON) corresponding to each of the switching pulses. (d) Repeatable and consistent switching of the
device described in (a) in response to a pulse wave. (e) Bipolar endurance-cycling test of the device for more than 10 000 cycles at room
temperature. The inset describes one cycle of the pulse wave used in this experiment.
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μm) of our device was larger than the synaptic active zone
(∼300 ± 150 nm);44 however the interface diameter can be
reduced by decreasing the size of the droplets to dimensions
closer to those of natural synapses.45

To demonstrate that an alm-doped membrane is memristive,
we measured I−V relationships for multiple lipid types and
temperatures in response to triangular voltage waveforms at
various sweep rates (Figure 1b, c, and d). For all cases, we
observed pinched and symmetric hysteretic I−V loops,
highlighting the memristive behavior of the device as defined
by Chua et al.36 The system exhibited bipolar switching due to
alm inserting from both sides of the membrane, with net
conductance defined by the total number of alm channels. For
comparison, alm-free membranes were highly insulating and
exhibited far smaller changes in conductance at voltages less
than ±150 mV (Supplementary Figure S3).
Adjusting temperatures or membrane composition enabled

precise control of these alm-mediated responses. For example,
increasing the temperature of a DPhPC membrane to 50 °C
raised Vthreshold (Table 1), likely due to increasing the oil
content of the membrane,46 but reduced the I−V hysteresis.
Separately, replacing DPhPC with BTLE lipids lowered Vthreshold

and increased hysteresis. These data also showed that I−V
hysteresis is dependent on the voltage sweep rate (Vr), which is
a quality of generic memristors.36

Switching Characteristics. We characterized the dynamic
switching behavior of our biomolecular memristors in response
to stepwise voltage pulses. An alm−DPhPC memristor at room
temperature (RT) responded to a 500 ms, 140 mV switching
pulse with an exponential increase in current corresponding to
the insertion of alm peptides and formation of pores (RON ≈

2.5 MΩ). This increase in current exhibited a delay (td) of 1 ms
and potentiation time constant (τp) of ∼100 ms. The device
returned to an insulating state (ROFF ≈ 10 GΩ), with a
relaxation time constant (τr) of ∼7 ms when the voltage
dropped to 20 mV (<Vthreshold). At 50 °C, the same switching
pulse resulted in lower current output (RON ≈ 1.5 GΩ),
suggesting that fewer alm pores formed within the membrane,
which was consistent with the results displayed in Figure 1c.
We observed a smaller relaxation time constant, τr, in this case
(∼3 ms), due to the oil-rich membrane, which created
unfavorable conditions for alm incorporation.46 We also
performed these measurements on an alm−BTLE memristor
at room temperature (Supplementary Figure S4), where
significantly slower switching dynamics were observed. Table
1 summarizes the switching dynamics and relaxation time
constants obtained for all three cases. Note that the channel
decay rate (especially in the BTLE case) is similar to values of
N-methyl-D-aspartate (NMDA) receptor relaxation rates
observed in biosynapses, which usually lasts for milliseconds.48

In Figure 2c, we confirm that both the steady-state current
during the ON-state and the OFF/ON resistance ratios grew
exponentially with the amplitude of the switching pulse (100 <
ROFF/RON < 4000 for alm−DPhPC at RT). Conductance
changes of alm-based memristors can be tuned independently
with peptide and salt concentrations, as well as lipid type and
temperature, allowing for significant flexibility in optimizing
resistance ratios (ROFF/RON). For example, by extrapolating the
I−V responses shown in Figure 1d, we predict that ±180 mV
switching pulses would yield resistance ratios as high as 50 000
in alm−BTLE devices, values similar to those of biological
synapses.49

Figure 3. Short-term synaptic plasticity of the biomolecular memristor. (a) Demonstration of short-term synaptic plasticity PPF and PPD
behaviors of a DPhPC-based memristor at RT. PPF and PPD are forms of short-term plasticity that occur in the presynaptic neuron and are
caused by two presynaptic spikes that are evoked in succession.50 A series of 130 mV pulses with a 20 ms ON-time (W) and applied at variable
OFF-times (T) caused either accumulated increases (PPF) or decreases (PPD) in current output. (b) Measured response of a DPhPC-based
memristor at RT to a series of 130 mV, 50 ms pulses separated by an OFF-time of 10 ms. (c) Measurements of current versus time showing
PPF and PPD behaviors for an alm−DPhPC case at 50 °C. (d) Normalized (with respect to the current output from the first pulse) values of
RMS current measured for consecutive pulses at various OFF-time values.
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These switching characteristics were consistent from one
cycle to another when the OFF-time between unipolar
switching pulses was sufficiently long (2 s) (Figure 2d). We
also demonstrated repeatable switching and reading currents
for at least 10 000 cycles of bipolar pulses, shown in Figure 2e.
In addition to showcasing the switching durability, these two
tests highlight that surface-bound alamethicin present on one or
both sides of the membrane can be independently activated. In
the former, a positive, unipolar voltage inserts only alamethicin
peptides present on the positive electrode side of the
membrane. In the latter, alternating voltages at opposite
polarities drive the insertion of separate populations of
alamethicin peptides residing on opposite sides of the
membrane.
Short-Term Facilitation and Depression. In contrast to

long OFF-times, we discovered that switching pulses separated
by shorter OFF-times caused the biomolecular memristors to
accumulate changes in conductance, which emulated PPF and
PPD in biosynapses.50 Figure 3a shows the response of an
alm−DPhPC memristor at RT to a 130 mV, 20 ms pulse wave
with 1 ms OFF-time for the first 10 s, and 10 ms for the
remaining cycles. At 1 ms between pulses, the peak current
increased with successive pulses until reaching a steady state,
emulating PPF. During subsequent pulses separated by 10 ms,
we observed that the instantaneous current between pulses
approached zero, while the peak current gradually reduced,
emulating PPD. PPF-like accumulation of current also occurred
at OFF-times of 10 ms (W = 50 ms) (Figure 3b), despite the
instantaneous current returning to zero between pulses, when
pulses with shorter OFF-times were not applied beforehand.
Moreover, we measured PPF and PPD in alm−DPhPC

memristors at 50 °C (Figure 3c,d) and alm−BTLE memristors
at RT (Supplementary Figure S5) for varying OFF-times.
However, unlike alm−DPhPC at RT, a continuous series of
pulses with 1 ms OFF-times resulted in a nonmonotonic rise in
peak current for alm−DPhPC at 50 °C (Figure 3c). This is
analogous to PPF followed by PPD that can occur in
biosynapses due to excessive stimulation.

Physical Mechanisms and Simulations. Two phenom-
ena can occur when voltage (V) is applied to a droplet-based
bilayer containing alm: (1) surface-bound alm peptides insert
and aggregate to form conductive pores, and (2) the area of the
bilayer increases due to electrowetting (EW),34 providing more
space for alm insertion. These phenomena together drive an
exponential increase in the total number of open channels, N,
in the membrane, which creates an exponential increase in
current, I. Thus, we write the I−V relationship for our
biomolecular memristor as

=I G N A V( , )a m (1)

Here, G is the nominal conductance, which is dependent on
two state variables: the number of alamethicin pores per unit
area, Na, and the fractional change in membrane area, Am, due
to EW. The dynamic state equation for Na is given by

τ

= −
τ

N

t
N N

d

d

1

e
( e )

V V

V Va

0
/ 0

( / )
a

e

(2)

where τ0, Vτ, N0, and Ve represent the time constant for pore
closure, τ, at zero volts, the voltage required to drive an e-fold
increase in τ, a proportionality constant related to the number

Figure 4. Simulated response of the biomolecular memristor. (a) Simulation showing the increase in number of alm pores (red) in response to
a voltage pulse (220 mV,W = 500 ms, T = 2000 ms). For the results displayed in green, we considered that the system did not exhibit any EW.
(b) Percentage increase in lipid membrane area in response to the same voltage pulse. (c) Simulation showing the current output of the device
due to the combined effect of pore formation and EW in response to the same voltage pulse. (d and e) Simulations dissecting the role each
phenomenon plays in generating the PPF behavior. (d) The number of pores per area reached steady state in ∼100 ms, while the area increase
occurred over a period of several seconds in response to a pulse wave (described in inset). (e) Corresponding current response demonstrates
PPF-like behavior observed in experiments. All simulations were based on parameters for alm−DPhPC at room temperature (Tables 1, S1,
S4).
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of open pores at zero volts, and the potential required to
increase the number of pores e-fold.51

The state equation describing the fractional change in
membrane area, Am, is

τ

α= −
A

t
v A t

d

d

1
( ( ))m

ew

2
m

(3)

where τew and α are the time constant and proportionality
constant of EW, respectively.
Therefore, the total memconductance of our voltage-

controlled device becomes

= +G t G N V t A A t( ) ( , ) (1 ( ))u a m 0 m (4)

where Gu is the unit conductance for open pores and A0 is the
lipid membrane area at zero volts. A detailed derivation is
provided in the Supporting Information. Solving eqs 2 and 3
allows for the total current to be computed via eqs 1 and 4.
These state equations and our experimental results allow us to
characterize our biomolecular device as a “generic memris-
tor”.15,36

To distinguish the mechanisms that drive memristance and
volatility, and to explain PPF- and PPD-like responses, we
determined values for the state equation parameters (see
Methods, Tables S1−S4). These values enabled accurate
predictions via our model (see Supplementary Figures S6 and
S7) of the I−V behaviors we experimentally observed in Figure

1, and they reveal the source of I−V hysteresis and its rate
dependence: the finite kinetics of electrowetting (∼1 s) and
alamethicin channel potentiation (∼100 ms) cause the net
current to lag the applied voltage. As a result of these sources of
lag, Na and Am accumulate slowly to produce a larger net
current by the time the voltage is decreasing from a maximum
value than during the increasing leg of the voltage sweep. This
inherent lag time also affects the frequency response of the
system, where fewer channels can insert and smaller increases
in membrane area can occur as the sweep rate is increased from
100 to 500 mV/s. This mechanism is consistent with our
observations of minimal hysteresis for sweep rates slower than
20 mV/s and minimal resistive switching response at
frequencies of >5 Hz.
We then simulated dynamic current responses to switching

pulses as was performed experimentally for Figure 2. In the first
simulation, we applied a single voltage pulse (Figure 4a) and
saw that the total number of pores (red) increased
exponentially, accompanied by a slight increase in membrane
area (∼20%) (Figure 4b). Without EW (simulated by setting α
= 0), the total number of pores was lower by this same
percentage. However, reducing the voltage to less than Vthreshold

resulted in a rapid decay of N to zero (Supplementary Figure
S8 confirms the decay rate depends on the subthreshold
voltage), whereas the membrane area fell off much more slowly
(see also Supplementary Figure S9). The current output due to

Figure 5. Online learning circuit application. (a) A biomolecular memristor (M1) placed as a synapse between a neuron facilitated short-term
learning and updated its weight by continued activation in a relative time span. The current output from M1 into the post-neuron increased as
the pre-neuron produced voltage spikes closer together in time. (b) Resulting weight change of the synapse connection facilitated by M1. The
plot shows the change in output current of M1 recorded at the second pre-neuron spike in succession. Different time intervals between pre-
neuron spikes resulted in different output currents for the post-neuron to accumulate. For these simulations, the parameters for alm in a
BTLE membrane were used, since its slower dynamics were favorable for this implementation. (c) Circuit setup using M1 to facilitate STDP.
M1 works in conjunction with a nonvolatile memory device (M2) to update weight values. Flow control of the inputs into the STDP circuitry
uses two diodes and three switches. The diodes direct the pre-spike and inverted post-spike through the device. Assuming the spikes do not
overlap, the pre- and post-spikes activate M1 and produce different output currents based on the time difference between the spikes. While it
is possible M1 and M2 could be directly wired in series, a trans-impedance amplifier was included to hold M2 at constant voltage on the
bottom node to amplify the current output and cause switching in the nonvolatile memristor of any type. (d) Resulting weight changes for
long-term learning from ideal component simulations. Weight change was determined by the change in conductance of the nonvolatile
memristor (M2). Parameters for a DPhPC membrane at room temperature were used to simulate the STDP results, since faster dynamics are
favorable for this implementation.
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the combined effect of both phenomena is shown in Figure 4c.
This response emphasizes that while pore insertion (and
relaxation) are much faster than changes in membrane area, the
net current through the memristor is still fully dependent on
inserted alm channels, which only occurs when V > Vthreshold.
This means that channel dynamics dominate the dynamic
response to a single pulse.
However, the dynamics of area growth become important

when the OFF-time between pulses shrinks. For example, our
simulation shows that the maximum value of Na (blue)
saturated within 2−3 pulses (∼100 ms), whereas Am (red) grew
steadily over many seconds (Figure 4d) in response to 220 mV,
50 ms pulses separated by 10 ms delays at 20 mV (see also
Supplementary Figure S10a). This means that the dynamics of
N are limited by the rate of change in area (Figure 4e) and that
accumulation of changes in conductance (either PPF or PPD)
can be tuned by the frequency and duty cycle of the switching
pulse with respect to the time constants for each membrane
(Table 1, Tables S1−S4). The fact that values of τp are
generally larger than τr and that τew can be larger for positive
versus negative changes in Am (Supplementary Figure S10b)
means that PPF occurs when both the peak voltage exceeds
Vthreshold and the time between pulses is shorter than the
relaxation time of the membrane area after EW (<5τew). In
contrast, PPD can occur at the same pulse amplitude when
larger OFF-times cause the area of the membrane to decrease
and more channels to close.
These simulations allowed us to conclude that there are two

time scales for an alm-doped memristor and that both are
responsible for the plasticity and short-term memory exhibited
in our device (Figures 1, 3). In contrast, biosynapses rely on
only ion channel dynamics for short-term plasticity.38 None-
theless, the increase in membrane area observed in our device
can be likened to synthesis of additional α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors involved
in short-term plasticity or to the creation of additional synapse
area between nerves,6 properties that could be further
engineered to capture additional synaptic behaviors such as
long-term potentiation.
Circuit Implementations and Simulations. The demon-

strated properties of the biomolecular memristor (M1) suggest
that it can be used as a synapse model to implement online
learning functions, including spike-rate-dependent plasticity
(SRDP) and STDP, as well as short- and long-term plasticity.
We investigated these circuit implementations via simulations
based on the described model. For short-term learning, M1 can
be directly used as the synapse (Figure 5a), where the memory
state information based on activation time creates a changing
synaptic weight, similar to short-term plasticity in presynaptic
neurons (Figure 5b). The weight increases as the input spikes
occur with higher frequency (PPF), causing M1 to output
higher current. When the input frequency decreases, the
synapse returns to its original weight (PPD), due to its volatile
nature. Simulations of the ideal device model show this
functionality for a complete synaptic circuit (Figure 5a,b).
Our device, although volatile, can also be used to facilitate

long-term learning (STDP), via PPF/PPD-like responses that
update a nonvolatile metal-oxide memristor, M2 (Figure 5c).
This paired scheme is akin to how AMPA receptors store
memory but rely on NMDA receptors for learning. This
configuration allowed the time difference between spikes from
pre- and postneurons sent to M1 to adjust the current that can
be sent to M2. We maintained the voltage drop across M1 via

an amplifier that implemented a virtual ground on the input
node, and thus the voltage-drop in the simulation was binary
±240 mV. When pre- and postspikes occurred, the state of M1,
as well as its output current, was amplified and applied onto
M2. At that time, the state of M1 was dependent on the time
difference of the first input spike and the second input spike.
Simulations using ideal device models show the resulting STDP
in Figure 5d. This implementation of our biomolecular
memristor requires simple spikes, either square or triangle
waves, low power timing memory, due to the low voltage and
currents of the memristor, and continuous-time asynchronous
analogue weight updates. None of these features are currently
implemented in state-of-the-art memristors, which require
sophisticated and energy-consuming solid-state learning
circuits.

CONCLUSION

We have presented a fundamentally different class of iono-
neuromorphic, soft, two-terminal biomolecular memristor that
mimics the physical structure, switching mechanism, and ion
transport of biosynapses. Voltage-dependent threshold switch-
ing and volatile memristive behavior were found through
experiments and simulations to be governed by two voltage-
dependent state variables, the areal density of alm channels and
the increase in membrane area due to electrowetting, which
dictate the total number of ion channels and, thus, the net
conductance of the device. As a result, our device exhibits
switching dynamics that are comparable to depolarizing pulses
in actual nerve cells49 and exhibits both short- and long-term
plasticity such as PPF, PPD, SRDP, and, when paired with a
nonvolatile memristor, STDP.
Compared to solid-state memristors, neuromorphic archi-

tectures based on stimuli-responsive biomolecules offer distinct
advantages. Our self-assembled biomolecular memristors
consume significantly less power (∼0.1−10 nW), and they
are relatively inexpensive and easily scalable via droplet-based
printing52 or microfluidic methods.45 Further, circuity based on
stimuli-responsive ion channels offers the possibility for
adaptive learning and memory, as well as sensing, of many
types of physical and chemical stimulations, possibly even at the
same time and in the same membrane. Thus, the results
presented here forecast an alternative paradigm for neuro-
morphic hardware using materials that could be integrated into
synthetic multifunctional structures and interfaced with bio-
logical tissues to provide adaptive sensing, signal processing,
smart edge computing, and memory.

MATERIALS AND METHODS

Preparation of Lipid and Peptide Solutions. The aqueous
droplets consist of a suspension of phospholipid vesicles, salt, and a
buffering agent in highly pure deionized water. Lipid vesicles are
prepared and stored as described in various previously published
articles (DPhPC34 and BTLE53). The solutions contain 2 mg/mL
DPhPC or BTLE liposomes in 500 mM potassium chloride (KCl,
Sigma) and 10 mM 3-(N-morpholino)propanesulfonic acid (MOPS,
Sigma) buffered with sodium hydroxide to a pH of 7. Agarose (Sigma)
hydrogel (2% (w/v)) is prepared in the same electrolyte. A stock
solution of 0.1% w/v alamethicin peptides (A.G. Scientific) in ethanol
(Sigma) is diluted in the lipid vesicle solutions to yield final
concentrations of 1 μM. The oil surrounding the droplets is
hexadecane (99%, Sigma).

Formation of the Lipid Membrane. Droplet-based membranes
are assembled between two aqueous droplets suspended from wire-
type electrodes in an oil-filled, transparent reservoir, as described
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elsewhere.46 Each 200 nL droplet is pipetted directly onto the tips of
agarose-coated electrodes submerged in oil. The electrodes are silver/
silver-chloride (Ag/AgCl) electrodes made from 150 μm of silver wire
(Goodfellow), which have ball-ends to facilitate droplet holding. The
oil reservoir is centered on an Olympus IX50 inverted microscope. A
lipid monolayer self-assembles at the surface of each within minutes of
their placement in oil. BTLE requires warming the oil to 50 °C to
achieve sufficient monolayer formation.53 A lipid bilayer forms
spontaneously after lipid-coated droplets are placed into contact.
While DPhPC membranes can be assembled and used at either room
temperature (RT ≈ 20 °C) or 50 °C, BTLE membranes were found to
exhibit greater stability and higher electrical resistance at RT.
Therefore, we excluded measurements of alm−BTLE memristors at
50 °C.
Electrical Measurements. Current measurements were made

using an Axopatch 200B patch clamp amplifier and Digidata 1440 data
acquisition system (Molecular Devices). To reduce electrical noise, the
experimental setup was placed within a grounded Faraday cage, where
RMS noise was around 0.55 pA. We used a custom LabVIEW VI and
NI four-channel analogue output module (NI 9263) as well as a
Hewlett-Packard 3314A function generator to generate the necessary
voltage waveforms. Outputs from these sources were routed to the
headstage (Axopatch 200B) via the external input on the amplifier.
To confirm membrane formation and measure bilayer capacitance,

we applied a 10 mV, 10 Hz triangular voltage waveform to the device
and recorded the induced capacitive current, as previously described.34

We performed cyclic voltammetry scans at various sweep rates to
generate the I−V relationships and to determine voltage thresholds.
The I−V loops presented in Figure 1 are obtained after subtracting
residual capacitive current resulting from the lipid membrane, as
described by Okazaki et al.51 Voltage pulses and pulse waves are used
to study the switching characteristics of the biomolecular memristors
as well as PPF and PPD responses.
Simulations of switching mechanisms and circuit imple-

mentations. We simulated the switching mechanisms of our
biomolecular memristor using the described model that includes
equations of state for both alm pore formation (eq 2) and
electrowetting of the membrane (eq 3). To do so, we first obtained
estimates of the parameters in these state equations. Since EW is
independent from alm insertion, we determined values of τew and α for
each membrane case by fitting numerical solutions of eq 3 to the
measured change in membrane area during voltage sweeps
(Supplementary Figure S10). Table S1 lists values of the EW
parameters obtained in this manner. We then used these values with
the measured relaxation time constants (τr ≈ τ0, Table 1) in a second
fitting routine in which we estimated the parameters for alm insertion
by fitting numerical solutions of eq 2 to the I−V responses given in
Figure 1. Tables S2−S4 list values of Vτ, N0, and Ve obtained for each
case, and simulated I−V responses using these values are plotted in
Supplementary Figure S6. Fitting routines to extract EW (Table S1)
and alm parameters (Table S2−S4) were obtained using nonlinear
minimization routines in MATLAB. Once these values were
determined, they were fixed in subsequent simulations of device
response to voltage sweeps and pulse waves.
Testing the device as a circuit component was performed via an

ideal simulation in SPICE. Circuit components were implemented in
Verilog-A. The model of the biomolecular memristor (M1) used the
equations describing channel formation and electrowetting to calculate
the changing resistance. The amplifier block takes the current through
the device and outputs voltages that are above the switching threshold
of the ideal memristor model used. The memristor (M2) model uses a
linear relationship between the percentage change in resistance and the
above-threshold voltage. The model is an ideal symmetric bipolar
memristor. Ideal voltage sources in the SPICE simulation are used to
stimulate the device.
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