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Abstract—TIn this paper we present a memristive neuromorphic
system for higher power and area efficiency. The system is
based on a mixed signal approach considering the digital nature
of the peripheral and control logics and the integration being
analog. So, the system is connected digitally outside but the
core is purely analog. This mixed signal approach provides
the advantage of implementing neural networks with spiking
events in a synchronous way. Moreover, the use of nano-sclae
memristive device saves the area and power of the system and
some considerations about the the device have also been proposed
in the paper to make the system more energy efficient.

I. INTRODUCTION

The human brain is comprised of a complex interconnection
of neurons that process and transmit data via electro-chemical
signals. These neurons are interconnected at junctures known
as synapses. The “strength” of the signal transmitted from
one neuron to another is proportional to the strength of their
interconnection, known as the synaptic weight. Each neuron
performs the weighted summation of the signals it receives
from its preceding neurons. When this summation exceeds a
threshold, it transmits a fire signal to the succeeding neurons.
When this condition occurs, the neuron is said to have fired.

The striking feature of biological neural networks is their
ability to adapt their architecture to produce the expected
outputs when performing tasks such as image and speech
recognition. This adaptation is performed by a process known
as learning wherein the synaptic weights are updated, thereby
affecting the information flow in the neural network.

Artificial Neural Networks (ANNs) are a network paradigm
that mimic biological neural networks. They consist of a math-
ematical model that defines how neurons are interconnected,
the strengths of their connections (synaptic weights), how
weights are updated, and the behavior of neuron firing events.
While ANNs have been shown to be effective in representative
applications such as pattern, image and text recognition, they
are still reliant on conventional von Neumann machines for
implementation, which yield the expected results, but the
throughput is incomparable to their biological counterparts.
This is because the machines that run these ANN algorithms
process information in a sequential manner unlike biological
neural networks that are truly parallel.

This need for parallel processing motivated the research
on dedicated hardware for ANNs. Such hardware for neu-
ral networks is known as neuromorphic circuit. Numerous
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approaches to neuromorphic computing have been proposed,
many of which use digital [1] or analog CMOS approaches
[2]-[4]. While the digital implementations have precision,
robustness, noise resilience and scalability, they are area
intensive [2]. Their analog counterparts are quite efficient in
terms of silicon area and processing speed. However, they
rely on representing synaptic weights as volatile voltages on
capacitors [4] or in resistors [5], which do not lend themselves
to energy and area efficient learning. A review of several
existing implementations of neural networks can be found in
[6].

Lately, the semiconductor industry has begun to experience
a significant slowdown in performance improvements gained
from technology scaling. While this is due in part to the
impending end of Moore’s Law scaling, power consumption
and architectural limitations have also become critical limiting
factors for the level of performance achievable. The research
proposed here aims to overcome this roadblock by (1) leverag-
ing an emerging nano-scale device (i.e. the memristor [7]) and
(2) the Spiking Neural Network (SNN) architecture to realize
neuromorphic computing [8]. A memristor-based Dynamic
Adaptive Neural Network array (mrDANNA) is described here
that addresses contemporary application challenges while also
enabling continued performance scaling.

The mrDANNA architecture is based on the Neuroscience-
Inspired Dynamic Architecture (NIDA) presented earlier in
[9], [10]as an approach to applying neuromorphic computing
principles to a wide variety of applications. Key features of
the NIDA architecture include: 1) a spiky representation of
data, 2) adaptability of the system during run-time, and 3)
a synaptic representation including delay distance as well as
weight information. The inclusion of delay distance (i.e. a
programmable delay between pre- and post-synaptic neurons)
is expected to be of particular benefit in the processing of
spatio-temporal data. The structure and simplicity of the NIDA
architectural model have been leveraged in the development
of a Dynamic Adaptive Neural Network Array (DANNA)
[11], an efficient digital system constructed from a basic
element that can be configured to represent either a neuron
or a synapse. Unique characteristics of the NIDA/DANNA
approach over other neuroscience-inspired systems include: a
simplified neuron model, a higher functionality synapse model,
real-time dynamic adaptability, configurability of the overall
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neuromorphic structure (e.g. number of neurons, number of
synapses and connections), and scalability for element perfor-
mance and system capacity.

Our mrDANNA network utilizes a pair of memristors to
realize a synapse. This synapse acts as an electrical interlink
between a pair of neurons that are analog CMOS circuits
consisting of capacitors and operational amplifiers. However,
a digital control circuit drives the memristors in the synapse.
Spiking events of the neuron are sampled (using a clock),
digitized and then used to drive the synapse. Henceforth, our
synchronous mixed-signal approach to implement the mem-
ristive synapse-neuron system blends together the advantages
associated with both digital and analog CMOS design in
addition to the merits of using a nano-device. Additionally,
we utilize the mrDANNA fabric for pattern recognition as a
proof of concept of the proposed system. Results presented
show high accuracy of the proposed fabric in recognizing basic
shapes.

The remainder of the paper is as follows. Section 2 details
the background for memristive devices (fabrication, character-
ization and modeling) and the DANNA system. The circuit
specifications and design for the hardware implementation of
the synapses and neurons with the algorithm of using it in
a particular neuromorphic design are described in section 3.
Results illustrated in section 4 show the operation and benefits
of the proposed system, with Section 5 detailing future work
and eventual fabrication plans for the mrDANNA system.

II. BACKGROUND

Memristors are two terminal nanoscale non-volatile devices
first theorized by Leon O. Chua [7] in 1971. Memristors are
resistors whose resistance can be modulated by the amount of
voltage flux or charge injected into the device. A memristor
can attain multiple resistance levels between the two bounds
known as their low resistance state (LRS) and high resistance
state (HRS). The LRS and HRS of any memristor is depen-
dent on the switching material, process conditions, noise and
environmental conditions. Materials used to build memristors
include TaO, [12], TiO, [13], and HfO, [14]. All of these
memristors are differentiated by their LRS values, LRS to HRS
ratios, threshold voltage, and switching time. For this design a
suitable ranges of LRS and HRS have been considered based
on the values in literature.

Owing to their programmability and non-volatility, artificial
synapses can be implemented using memristors to represent
weight values and transmit analog weighted results to post-
synaptic neurons. The neuron uses the analog output of the
synapse to produce a firing event (or spike) that is synchro-
nized with the system. Further, the system considered here
leverages the unsupervised Long Term Plasticity for on-chip
learning. Based on the temporal relation of the pre- and the
post-neuron’s fires, the synaptic weight is modified by the
synaptic control block and the feedback from the post-neuron.

III. MEMRISTIVE DANNA SYSTEM

The memristive DANNA system Fig. 1 consists of several
mrDANNA cores. Each core contains n number of synapses
and an analog Integrate and Fire (IAF) neuron. The construc-
tion and function of synapse and neuron are described in the
below subsections with elaboration.
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Fig. 1: Connection of mrDANNA system.
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Fig. 2: Twin memristor synapse along with its control block
providing the interlink between the pre- and post-neuron.

The synapse design considered here (shown in Fig. 2) uses
a twin memristor configuration to store the weight value.
The synaptic weights are represented using memristors, where
the current flowing out of it (into the post-synaptic node) is
dependent on its weight, which is in turn dependent on the
memristances of the two memristors. This approach follows
that of several other memristor-based neural network designs
where voltage inputs across memristive weights yields a
weighted sum in the form of a current [15]-[18].

The use of two memristors enables the realization of
negative weights. A similar approach has been presented in
[17], wherein a pair of memristive crossbar arrays are used
to represent the negative and positive components of the
weights. However, we do not presume the implementation here
to be a crossbar though that is an alternative design option
for potentially increased density. In the memristor pair for
each synapse, one memristor is used to drive positive current
while the other drives negative current (pulls current from the
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integrator). The effective current flowing into the post-neuron
thus depends on the relative values of the two memristances.
The weight of this synapse is proportional to the effective
conductivity of the pair of memristors, given by:

1 1

— - )

Gepr =
1=, T M,

If the memristance of both memristors in the pair are equal,
their currents will cancel each other for any given input spike
and the effective weight is zero. On similar lines, if M, is
lesser (greater) than M,,, the weight is positive (negative).

The synapse uses a digital logic block to provide driving
voltages to each memristor in the pair. The synapse here op-
erates in two phases, namely accumulation and learning. The
accumulation phase occurs when the pre-neuron fires. This fire
triggers the synaptic control block to drive a positive current
through M, and a negative current through M,,. The effective
current flowing into the post-neuron either accumulates charge
on it or discharges from it during this phase. Learning phase
occurs when the post-neuron fire. If the pre-neuron fires before
the post-neuron, the synapse weight is increased (potentiation).
On the contrary, if the pre-neuron fires after the post-neuron,
the synapse’s weight is decreased (depression). This is in
accordance with the STDP rule, which is believed to be the
cause for learning in biological neural networks.

B. Analog Neuron

For the neuron, we implement an integrate-and-fire circuit
(Fig. 3) similar to that described by Wu et al. [19]. Here the
neurons are designed to produce spikes based on the incoming
synaptic signals. The design allows the neurons to operate in
two different phases, integration phase and the firing phase.
When the neuron operates in its integration phase, the op amp
acts as an integrator such that the capacitor, C's; accumulates
charge (from the current coming from the synapse) resulting in
the change in membrane potential V,,.,,. A comparator circuit
compares the membrane potential V.., with the threshold
voltage V;;, and generates firing spikes.

Fig. 3: Analog integrate and fire neuron.

IV. RESULTS

To showcase the usefulness of this type of network with
memristive synapses and integrate and fire neurons, a circuit
for recognizing some basic shapes such as triangle, square,
diamond and plus has been constructed. The proposed circuit

has been simulated in Cadence Spectre by implementing the
Verilog-A code of the memristor model. Besides recognizing
the perfect triangle, some imperfect noisy image of triangles,
squares, diamonds and also plus signs have been considered
to determine the accuracy level of recognition of this network.
A python script was used to generate the noisy signals. The
script was written in such a way to generate random noise bits
and any number of bits within twenty five can be used in the
script and then those images were used in Cadence Spectre
simulation. Fig. 4 illustrates the perfect and examples of the
noisy patterns input to the circuit.

L]
L]
q

Fig. 4: Example 5 x 5 test images for noiseless shapes (top), 1
error pixel (middle) and 2 error pixels (bottom). The four basic
shapes considered for the classification network presented are
illustrated: triangle, square, diamond and plus.
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Fig. 5: Accuracy of triangle recognition versus other shapes.

Zero, one, two and three noise bits were considered for
simulation and results for percentage of accuracy are shown
in Fig.5. The results show that the network recognizes most of
the cases with noisy bits up-to 3bits among the 25 bits of the
image. The accuracy of recognizing only triangles are a bit
higher than recognizing all shapes. The network recognizes
images with one noisy bit with a hundred percent accuracy
for all cases but with the increase in number of noise bits,
the accuracy level slightly goes down but the percentage of
accuracy is higher than 80 percent at 3 noise bits, which makes
the circuit worthy enough in recognizing a particular shape.

The efficiency of the network is reflected by it’s design
metrics such as the average power. Initially the circuit was
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Fig. 6: Average application power.

simulated for LRS and HRS values of 30K2 and 150K(2
respectively. Average power was calculated for those values
and the result was observed to be too high. This high power
consumption is an artifact of using the analog neurons and
the relatively low resistance levels that drive higher currents
resulting in high power dissipation. The power consumed by
each analog neuron during the total simulation is 196.5uW
and the power of per digital block is 1.31uW. To ensure
lower power consumption, the LRS and HRS levels have
been altered to different values such as 60K2-300K¢2, 90K(2-
450KS2, 120K2-600KS2 etc. The results show that increasing
the resistance levels causes the power to decrease.

V. CONCLUSION

In this paper, memristive device is used for the development
of a memristive dynamic adaptive neural network array (mr-
DANNA) fabric. We have described a basic pattern recognition
network as an application example for the re-configurable
mrDANNA system. This work demonstrates the efficiency
of recognizing different patterns and also presents the power
consumption for different LRS and HRS levels. In future work,
more complex networks for spatio-temporal data applications
and large pattern recognition will be solved with this efficient
computing architecture.

ACKNOWLEDGMENT

The authors thank Dr. Mark Dean, Md. Musabbir Adnan,
and Sherif Amer from the University of Tennessee, Knoxville
for interesting and useful discussions on this topic.

This material is based in part upon research sponsored
by Air Force Research Laboratory under agreement number
FA8750-16-0065 and the National Science Foundation under
Grant No. NCS-FO-1631472. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

[1

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

550

REFERENCES

J.-s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye,
B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha et al., “A 45nm cmos
neuromorphic chip with a scalable architecture for learning in networks
of spiking neurons,” in Custom Integrated Circuits Conference (CICC),
2011 IEEE. 1EEE, 2011, pp. 14.

B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and
J. L. Huertas, “A cmos analog adaptive bam with on-chip learning and
weight refreshing,” IEEE Transactions on Neural networks, vol. 4, no. 3,
pp. 445455, 1993.

C. Schneider and H. Card, “Analog cmos synaptic learning circuits
adapted from invertebrate biology,” IEEE transactions on circuits and
systems, vol. 38, no. 12, pp. 1430-1438, 1991.

, “Cmos implementation of analog hebbian synaptic learning cir-
cuits,” in IJCNN-91-Seattle International Joint Conference on Neural
Networks, vol. i, Jul 1991, pp. 437-442 vol.1.

H. Graf, L. Jackel, R. Howard, B. Straughn, J. Denker, W. Hubbard,
D. Tennant, D. Schwartz, and J. S. Denker, “Vlsi implementation of
a neural network memory with several hundreds of neurons,” in AIP
conference proceedings, vol. 151, no. 1. AIP, 1986, pp. 182-187.

J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of
two decades of progress,” Neurocomputing, vol. 74, no. 1, pp. 239-255,
2010.

L. O. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, no. 5, pp. 507-519, September 1971.

'W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659-1671, 1997.
C. D. Schuman and J. D. Birdwell, “Dynamic artificial neural networks
with affective systems,” PLoS ONE, vol. 8, no. 11, p. e80455,
November 2013. [Online]. Available: http://dx.doi.org/10.1371

C. Schuman, J. Birdwell, and M. Dean, “Neuroscience-inspired inspired
dynamic architectures,” in Biomedical Science and Engineering Center
Conference (BSEC), 2014 Annual Oak Ridge National Laboratory, May
2014, pp. 1-4.

M. E. Dean, C. D. Schuman, and J. D. Birdwell, “Dynamic adaptive
neural network array,” in International Conference on Unconventional
Computation and Natural Computation. Springer, 2014, pp. 129-141.
J.J. Yang, M. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley,
G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance
in taox memristive devices,” Applied Physics Letters, vol. 97, no. 23, p.
232102, 2010.

G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett, and
R. S. Williams, “Lognormal switching times for titanium dioxide bipolar
memristors: origin and resolution,” Nanotechnology, vol. 22, no. 9, p.
095702, 2011.

H. Lee, Y. Chen, P. Chen, T. Wu, F. Chen, C. Wang, P. Tzeng, M.-J. Tsai,
and C. Lien, “Low-power and nanosecond switching in robust hafnium
oxide resistive memory with a thin ti cap,” IEEE Electron Device Letters,
vol. 31, no. 1, pp. 44-46, 2010.

G. S. Rose, H. Manem, J. Rajendran, R. Karri, and R. Pino, “Lever-
aging memristive systems in the construction of digital logic circuits,”
Proceedings of the IEEE, vol. 100, no. 6, pp. 2033-2049, June 2012.
C. E. Merkel and D. Kudithipudi, “A current-mode cmos/memristor
hybrid implementation of an extreme learning machine,” in Great
Lakes Symposium on VLSI 2014, GLSVLSI ’14, Houston, TX, USA
- May 21 - 23, 2014, 2014, pp. 241-242. [Online]. Available:
http://doi.acm.org/10.1145/2591513.2591572

M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W.
Linderman, “Memristor crossbar-based neuromorphic computing
system: A case study,” IEEE Trans. Neural Netw. Learning Syst.,
vol. 25, no. 10, pp. 1864-1878, October 2014. [Online]. Available:
http://dx.doi.org/10.1109/TNNLS.2013.2296777

I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, and D. Strukov,
“Efficient training algorithms for neural networks based on memristive
crossbar circuits,” in 2015 International Joint Conference on
Neural Networks, IJCNN, July 2015, pp. 1-8. [Online]. Available:
http://dx.doi.org/10.1109/IICNN.2015.7280785

X. Wu, V. Saxena, and K. A. Campbell, “Energy-efficient STDP-
based learning circuits with memristor synapses,” in Proceedings of
SPIE, vol. 9119, 2014, pp. 911906-1-911906-7. [Online]. Available:
http://dx.doi.org/10.1117/12.2053359




