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Abstract—In this paper we present a memristive neuromorphic
system for higher power and area efficiency. The system is
based on a mixed signal approach considering the digital nature
of the peripheral and control logics and the integration being
analog. So, the system is connected digitally outside but the
core is purely analog. This mixed signal approach provides
the advantage of implementing neural networks with spiking
events in a synchronous way. Moreover, the use of nano-sclae
memristive device saves the area and power of the system and
some considerations about the the device have also been proposed
in the paper to make the system more energy efficient.

I. INTRODUCTION

The human brain is comprised of a complex interconnection

of neurons that process and transmit data via electro-chemical

signals. These neurons are interconnected at junctures known

as synapses. The “strength” of the signal transmitted from

one neuron to another is proportional to the strength of their

interconnection, known as the synaptic weight. Each neuron

performs the weighted summation of the signals it receives

from its preceding neurons. When this summation exceeds a

threshold, it transmits a fire signal to the succeeding neurons.

When this condition occurs, the neuron is said to have fired.

The striking feature of biological neural networks is their

ability to adapt their architecture to produce the expected

outputs when performing tasks such as image and speech

recognition. This adaptation is performed by a process known

as learning wherein the synaptic weights are updated, thereby

affecting the information flow in the neural network.

Artificial Neural Networks (ANNs) are a network paradigm

that mimic biological neural networks. They consist of a math-

ematical model that defines how neurons are interconnected,

the strengths of their connections (synaptic weights), how

weights are updated, and the behavior of neuron firing events.

While ANNs have been shown to be effective in representative

applications such as pattern, image and text recognition, they

are still reliant on conventional von Neumann machines for

implementation, which yield the expected results, but the

throughput is incomparable to their biological counterparts.

This is because the machines that run these ANN algorithms

process information in a sequential manner unlike biological

neural networks that are truly parallel.

This need for parallel processing motivated the research

on dedicated hardware for ANNs. Such hardware for neu-

ral networks is known as neuromorphic circuit. Numerous

approaches to neuromorphic computing have been proposed,

many of which use digital [1] or analog CMOS approaches

[2]–[4]. While the digital implementations have precision,

robustness, noise resilience and scalability, they are area

intensive [2]. Their analog counterparts are quite efficient in

terms of silicon area and processing speed. However, they

rely on representing synaptic weights as volatile voltages on

capacitors [4] or in resistors [5], which do not lend themselves

to energy and area efficient learning. A review of several

existing implementations of neural networks can be found in

[6].

Lately, the semiconductor industry has begun to experience

a significant slowdown in performance improvements gained

from technology scaling. While this is due in part to the

impending end of Moore’s Law scaling, power consumption

and architectural limitations have also become critical limiting

factors for the level of performance achievable. The research

proposed here aims to overcome this roadblock by (1) leverag-

ing an emerging nano-scale device (i.e. the memristor [7]) and

(2) the Spiking Neural Network (SNN) architecture to realize

neuromorphic computing [8]. A memristor-based Dynamic

Adaptive Neural Network array (mrDANNA) is described here

that addresses contemporary application challenges while also

enabling continued performance scaling.

The mrDANNA architecture is based on the Neuroscience-

Inspired Dynamic Architecture (NIDA) presented earlier in

[9], [10]as an approach to applying neuromorphic computing

principles to a wide variety of applications. Key features of

the NIDA architecture include: 1) a spiky representation of

data, 2) adaptability of the system during run-time, and 3)

a synaptic representation including delay distance as well as

weight information. The inclusion of delay distance (i.e. a

programmable delay between pre- and post-synaptic neurons)

is expected to be of particular benefit in the processing of

spatio-temporal data. The structure and simplicity of the NIDA

architectural model have been leveraged in the development

of a Dynamic Adaptive Neural Network Array (DANNA)

[11], an efficient digital system constructed from a basic

element that can be configured to represent either a neuron

or a synapse. Unique characteristics of the NIDA/DANNA

approach over other neuroscience-inspired systems include: a

simplified neuron model, a higher functionality synapse model,

real-time dynamic adaptability, configurability of the overall
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neuromorphic structure (e.g. number of neurons, number of

synapses and connections), and scalability for element perfor-

mance and system capacity.

Our mrDANNA network utilizes a pair of memristors to

realize a synapse. This synapse acts as an electrical interlink

between a pair of neurons that are analog CMOS circuits

consisting of capacitors and operational amplifiers. However,

a digital control circuit drives the memristors in the synapse.

Spiking events of the neuron are sampled (using a clock),

digitized and then used to drive the synapse. Henceforth, our

synchronous mixed-signal approach to implement the mem-

ristive synapse-neuron system blends together the advantages

associated with both digital and analog CMOS design in

addition to the merits of using a nano-device. Additionally,

we utilize the mrDANNA fabric for pattern recognition as a

proof of concept of the proposed system. Results presented

show high accuracy of the proposed fabric in recognizing basic

shapes.

The remainder of the paper is as follows. Section 2 details

the background for memristive devices (fabrication, character-

ization and modeling) and the DANNA system. The circuit

specifications and design for the hardware implementation of

the synapses and neurons with the algorithm of using it in

a particular neuromorphic design are described in section 3.

Results illustrated in section 4 show the operation and benefits

of the proposed system, with Section 5 detailing future work

and eventual fabrication plans for the mrDANNA system.

II. BACKGROUND

Memristors are two terminal nanoscale non-volatile devices

first theorized by Leon O. Chua [7] in 1971. Memristors are

resistors whose resistance can be modulated by the amount of

voltage flux or charge injected into the device. A memristor

can attain multiple resistance levels between the two bounds

known as their low resistance state (LRS) and high resistance

state (HRS). The LRS and HRS of any memristor is depen-

dent on the switching material, process conditions, noise and

environmental conditions. Materials used to build memristors

include TaOx [12], TiO2 [13], and HfOx [14]. All of these

memristors are differentiated by their LRS values, LRS to HRS

ratios, threshold voltage, and switching time. For this design a

suitable ranges of LRS and HRS have been considered based

on the values in literature.

Owing to their programmability and non-volatility, artificial

synapses can be implemented using memristors to represent

weight values and transmit analog weighted results to post-

synaptic neurons. The neuron uses the analog output of the

synapse to produce a firing event (or spike) that is synchro-

nized with the system. Further, the system considered here

leverages the unsupervised Long Term Plasticity for on-chip

learning. Based on the temporal relation of the pre- and the

post-neuron’s fires, the synaptic weight is modified by the

synaptic control block and the feedback from the post-neuron.

III. MEMRISTIVE DANNA SYSTEM

The memristive DANNA system Fig. 1 consists of several

mrDANNA cores. Each core contains n number of synapses

and an analog Integrate and Fire (IAF) neuron. The construc-

tion and function of synapse and neuron are described in the

below subsections with elaboration.

Fig. 1: Connection of mrDANNA system.

A. Synapse

Fig. 2: Twin memristor synapse along with its control block

providing the interlink between the pre- and post-neuron.

The synapse design considered here (shown in Fig. 2) uses

a twin memristor configuration to store the weight value.

The synaptic weights are represented using memristors, where

the current flowing out of it (into the post-synaptic node) is

dependent on its weight, which is in turn dependent on the

memristances of the two memristors. This approach follows

that of several other memristor-based neural network designs

where voltage inputs across memristive weights yields a

weighted sum in the form of a current [15]–[18].

The use of two memristors enables the realization of

negative weights. A similar approach has been presented in

[17], wherein a pair of memristive crossbar arrays are used

to represent the negative and positive components of the

weights. However, we do not presume the implementation here

to be a crossbar though that is an alternative design option

for potentially increased density. In the memristor pair for

each synapse, one memristor is used to drive positive current

while the other drives negative current (pulls current from the
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integrator). The effective current flowing into the post-neuron

thus depends on the relative values of the two memristances.

The weight of this synapse is proportional to the effective

conductivity of the pair of memristors, given by:

Geff =
1

Mp

−
1

Mn

(1)

If the memristance of both memristors in the pair are equal,

their currents will cancel each other for any given input spike

and the effective weight is zero. On similar lines, if Mp is

lesser (greater) than Mn, the weight is positive (negative).

The synapse uses a digital logic block to provide driving

voltages to each memristor in the pair. The synapse here op-

erates in two phases, namely accumulation and learning. The

accumulation phase occurs when the pre-neuron fires. This fire

triggers the synaptic control block to drive a positive current

through Mp and a negative current through Mn. The effective

current flowing into the post-neuron either accumulates charge

on it or discharges from it during this phase. Learning phase

occurs when the post-neuron fire. If the pre-neuron fires before

the post-neuron, the synapse weight is increased (potentiation).

On the contrary, if the pre-neuron fires after the post-neuron,

the synapse’s weight is decreased (depression). This is in

accordance with the STDP rule, which is believed to be the

cause for learning in biological neural networks.

B. Analog Neuron

For the neuron, we implement an integrate-and-fire circuit

(Fig. 3) similar to that described by Wu et al. [19]. Here the

neurons are designed to produce spikes based on the incoming

synaptic signals. The design allows the neurons to operate in

two different phases, integration phase and the firing phase.

When the neuron operates in its integration phase, the op amp

acts as an integrator such that the capacitor, Cfb accumulates

charge (from the current coming from the synapse) resulting in

the change in membrane potential Vmem. A comparator circuit

compares the membrane potential Vmem with the threshold

voltage Vth and generates firing spikes.

Fig. 3: Analog integrate and fire neuron.

IV. RESULTS

To showcase the usefulness of this type of network with

memristive synapses and integrate and fire neurons, a circuit

for recognizing some basic shapes such as triangle, square,

diamond and plus has been constructed. The proposed circuit

has been simulated in Cadence Spectre by implementing the

Verilog-A code of the memristor model. Besides recognizing

the perfect triangle, some imperfect noisy image of triangles,

squares, diamonds and also plus signs have been considered

to determine the accuracy level of recognition of this network.

A python script was used to generate the noisy signals. The

script was written in such a way to generate random noise bits

and any number of bits within twenty five can be used in the

script and then those images were used in Cadence Spectre

simulation. Fig. 4 illustrates the perfect and examples of the

noisy patterns input to the circuit.

Fig. 4: Example 5×5 test images for noiseless shapes (top), 1

error pixel (middle) and 2 error pixels (bottom). The four basic

shapes considered for the classification network presented are

illustrated: triangle, square, diamond and plus.
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Fig. 5: Accuracy of triangle recognition versus other shapes.

Zero, one, two and three noise bits were considered for

simulation and results for percentage of accuracy are shown

in Fig.5. The results show that the network recognizes most of

the cases with noisy bits up-to 3bits among the 25 bits of the

image. The accuracy of recognizing only triangles are a bit

higher than recognizing all shapes. The network recognizes

images with one noisy bit with a hundred percent accuracy

for all cases but with the increase in number of noise bits,

the accuracy level slightly goes down but the percentage of

accuracy is higher than 80 percent at 3 noise bits, which makes

the circuit worthy enough in recognizing a particular shape.

The efficiency of the network is reflected by it’s design

metrics such as the average power. Initially the circuit was
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Fig. 6: Average application power.

simulated for LRS and HRS values of 30KΩ and 150KΩ

respectively. Average power was calculated for those values

and the result was observed to be too high. This high power

consumption is an artifact of using the analog neurons and

the relatively low resistance levels that drive higher currents

resulting in high power dissipation. The power consumed by

each analog neuron during the total simulation is 196.5µW

and the power of per digital block is 1.31µW . To ensure

lower power consumption, the LRS and HRS levels have

been altered to different values such as 60KΩ-300KΩ, 90KΩ-

450KΩ, 120KΩ-600KΩ etc. The results show that increasing

the resistance levels causes the power to decrease.

V. CONCLUSION

In this paper, memristive device is used for the development

of a memristive dynamic adaptive neural network array (mr-

DANNA) fabric. We have described a basic pattern recognition

network as an application example for the re-configurable

mrDANNA system. This work demonstrates the efficiency

of recognizing different patterns and also presents the power

consumption for different LRS and HRS levels. In future work,

more complex networks for spatio-temporal data applications

and large pattern recognition will be solved with this efficient

computing architecture.
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