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ABSTRACT

Air leakages pose a major problem in both residential and commer-
cial buildings. They increase the utility bill and result in excessive
usage of Heating Ventilation and Air Conditioning (HVAC) systems,
which impacts the environment and causes discomfort to residents.
Repairing air leakages in a building is an expensive and time in-
tensive task. Even detecting the leakages can require extensive
professional testing. In this paper, we propose a method to identify
the leaky homes from a set, provided their energy consumption
data is accessible from residential smart meters. In the first phase,
we employ a Non-Intrusive Load Monitoring (NILM) technique to
disaggregate the HVAC data from total power consumption for
several homes. We propose a recurrent neural network and a de-
noising autoencoder based approach to identify the ‘ON’ and ‘OFF’
cycles of the HVACs and their overall usages. We categorize the
typical HVAC consumption of about 200 homes and any probable
insulation and leakage problems using the Air Changes per Hour
at 50 Pa (ACHsp) metric in the Dataport datasets. We perform our
proposed NILM analysis on different granularities of smart meter
data such as 1 min, 15 mins, and 1 hour to observe its effect on
classifying the leaky homes. Our results show that disaggregation
can be used to identify the residential air-conditioning, at 1 min
granularity which in turn helps us to identify the leaky potential
homes, with an accuracy of 86%.

CCS CONCEPTS

« Computing methodologies — Neural networks;

KEYWORDS

Air Leakage Detection, Non-Intrusive Load Monitoring , Deep
Learning

ACM Reference Format:

Nilavra Pathaki, David Lachutf, Nirmalya Royi, Nilanjan BanerjeeT, Ryan
Robucci*. 2018. Non-Intrusive Air Leakage Detection in Residential Homes.
In ICDCN °18: 19th International Conference on Distributed Computing and
Networking, January 4-7, 2018, Varanasi, India. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3154273.3154345

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICDCN ’18, January 4-7, 2018, Varanasi, India

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6372-3/18/01...$15.00
https://doi.org/10.1145/3154273.3154345

1 INTRODUCTION

Residential and commercial sectors consume the second highest
amount of total energy usage in USA, and in residential sector
about 40% of it goes to Heating Ventilation and Air Condition-
ing (HVAC) [1]. HVAC efficiency depends to a large degree on
air-tightness, but also on several other factors such as building
insulation, thermostat setpoint, etc. Air leakage in homes can result
in temperature differentials, causing hot or cold regions, and can
increase HVAC consumption. Air leaks in homes can occur through
windows, doors, attics, and basements. Such leaks can cause HVAC
to heat or cool a house for longer durations, increasing the utility
bill. Uneven heating or cooling can be another effect of leakage
which can cause discomfort to residents. A proper energy audit to
check leakages, construction quality and other factors influencing
the heat dynamics of the building, is expensive and labor intensive.

The blower door test is used to detect the amount of air leakage,
and is measured as ACHsy or CFMsg. The former metric, ACHs,
is the more common unit used by blower door operators, which
stands for Air Changes per Hour at 50 Pascals. Alternatively, CFMsq
per square foot of building envelope is used as a metric where one
CFMsy is a cubic foot per minute with a pressure difference of 50
Pascals between inside and outside. A required ACHs value for
a new home in the United States is between 3.0 and 5.0, with the
exact value depending on the climate zone. There are multiple Cli-
mate zones in the United States as shown in Figure 1, and different
climate zones have different requirements for building construction
materials, infiltration rate, and insulation. For new buildings to
be constructed the maximum requisite infiltration rate needs to
satisfied. But for existing homes with ACHs( greater than 3 there is
potential to repair the leakages and make them more air-tight. The
blower door test typically costs around $450 and a more intensive
audit may cost more.

Motivated by these problems, we look into quantitative means
for non-intrusively determining potential homes where air leakage
can be present in a large scale. We hypothesize that given certain
building parameters and the HVAC usage, we can classify homes as
“leaky" or “not-leaky". However, getting access to air-conditioning
usage of homes is difficult. In general, utility providers have ac-
cess to the smart meter data which is captured about 15 minute
granularity. We propose to perform non-intrusive load monitoring
(NILM) or energy disaggregation to gather the air-conditioning
data, which can be used to generate features for the “leaky” home
detection. Two important features which help the classification are
the average ‘ON’ power consumption for AC and the duration for
which it is in the ‘ON’ state. Our objective for disaggregation is to
obtain these two factors.
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The variance in air-conditioning power and usage from house
to house makes it more challenging to detect these factors. Air
conditioners come in different sizes and the usage patterns depends
on the thermostat setting and house type. Therefore, finding a gen-
eralized approach to disaggregating energy data is a challenging
task. We use the Dataport Dataset [16] which has a large collection
of homes with aggregated and sub-metered data, and metadata re-
garding the home’s ACHs value , house size, thermostat setpoints
which give us access to a rich dataset for out analytics. Previous
work in [21] has shown a heuristic approach to finding residential
air conditioning from the dataport dataset. However it works well
for homes which has A/C ‘ON’ power wattage of 2.5 kW and more.
In [15] building energy usage and metadata has been used to group
homes and use a representative home’s circuit level information to
perform disaggregation in a neighborhood. A deep learning based
approach has been proposed in [2] where three deep learning archi-
tectures were used to perform disaggregation with individualized
appliance specific disaggregation model.

In our work we choose to perform disaggregation at 1 min, 15
mins and 60 mins granularity. Since we require only the air con-
ditioning usage we take the deep learning approach of modeling
one network to disaggregate A/C, and test the validity of the deep
learning based disaggregation on a large number of similar homes.
We construct two deep neural network architectures - LSTM and
De-noising autoencoder. We apply the LSTM for 15 mins and 1
hour granular data and the denoising autoencoder on the 1 min
granular data. Finally, using the disaggregated air-conditioning
data, we check the classification results from the features obtained
from disaggregated data. We make the following key contributions
in this paper.

e We describe a leaky home classification approach by gen-
erating features from air-conditioning usage and building
metadata information. We validate whether meaningful A/C
usage features can be obtained from the A/C consumption
and show that the usage and the power is necessary for the
classification.

e We perform disaggregation on a large scale data to disag-
gregate air-conditioning usage from the aggregate energy
consumption of about 70 homes with varying sizes over a
period of 4 years.

e We propose two deep neural network architectures for disag-
gregating energy data of three different resolutions - 1mins,
15mins and 60mins, and compare their performance on dis-
aggregation and leaky home classification.

This paper is structured as follows: In Section 2 we provide a
related work explaining air leakage and the methods to identify
air leakage in home, and also we provide a brief overview of the
previous works in NILM domain. In Section 3 we show the data
analytics on leaky home classification. In Section 4 we describe
our approach to energy disaggregation designed based on two
neural net architectures. In Section 5 we present the results of
disaggregation and leaky home classification. Finally, we conclude
in Section 6.
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Figure 1: Climate Zone of USA

2 RELATED WORK

In this section, we first provide an overview of the traditional ap-
proaches to quantifying the air leakage in a house. We also discuss
different structural and energy efficiency properties of a building
which can be presumed as ground truths for categorizing a house
as leaky or not. We present the methods used for air leakage detec-
tion and assessment through different tests. We briefly describe the
different energy disaggregation methods in our context.

2.1 Air Leakage and Measurements

In this section, we explain some of the technical terms and method-
ology related with building air leakages. Air leakage occurs when
outside air enters and conditioned air leaves the house through
cracks and openings. During cold or windy weather, too much air
may enter the house and, during warm or calm weather, too little.
Also, a leaky house that allows moldy, dusty crawlspace or attic
air to enter is not healthy, that can cause structural damages to the
building. To find the air-leakages expensive tests are required. The
blower door test provides an overall measure for leakage present in
the house, and is measured by the metrics ACHsg or CFMsg. The
blower door test comprises of a fan unit set into an exterior door-
way, sealing the face of the fan, that measures baseline indoor and
outdoor pressure differential. The idea behind creating the pressure
differential is to force air out through the leaks. The amount of
leakage is quantified by several metrics of which Air changes per
hour at 50Pa (ACHsp) is the most common. It is represented as:

60

ACHsp = CEMso » Volume_of _Building W

where CFMs is the airflow at 50 pascal (ft3/minute) and Vol-
ume_of_Building is the volume of the building in cubic feet. The
value of ACHs is proportional to the leakage. The ideal value of
ACHgs is less than equal to 3 in climate zones 3 and above, and less
than equal to 5 for climate zones 1-2. A map of US climate zones is
shown in Figure 1. The data that we use for our analysis is from a
city in climate zone 2 and hence the acceptable ACHs is 5 and a
maximum allowed value for the house to be infiltration proof is 7.
Once the ACHsy measurements are obtained for the house, and

if the house has detected to have a poor ACHsg or CFMs( value,
the house needs to be closely inspected for leakages. The task of
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Figure 2: Pecan Street House Total vs A/C Usage
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Figure 3: Pecan Street Data Overview

finding the leakages is time consuming and expensive as it requires
trained professionals to perform the inspections. In recent practice,
Infrared (IR) Cameras are used to detect air-leakages, damp, leakage
in ducts and insulation [4]. A review of the main areas of usage of
IR cameras in buildings was provided in [27]. In [28, 29], spatial
and temporal variations of thermographic data are quantitatively
analyzed to provide reports on insulation deficiencies, air leakage
detection and moisture content mapping.

2.2 Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) or Energy disaggregation
is the process of estimating the usage of individual appliances in a
home from the aggregated energy consumption [3]. Two of the most
common approaches are Combinatorial Optimization (CO) [3] and
variants of Hidden Markov models (HMMs). A particular variant of
HMM popularly used in disaggregation is Factorial Hidden Markov
Model (FHMM) [6]. A benchmark result for CO and FHMM has been
provided in [5] for a number of different datasets. FHMM is also suit-
able to perform disaggregation in scenarios with ambient sensors
fusion [11] and Additive FHMM was part of an approach to reduce
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the number of needed energy sensors in renewable-powered homes
by [30]. Although CO and FHMM are good approaches to disaggre-
gation, yet they suffer from different drawbacks. In disaggregation
nomenclature, supervised disaggregation assume that sub-metered
appliance training data are available from the household in which
disaggregation is to be performed. However, such an assumption
does not quite hold when it comes to scale the model. [3, 22, 23].
One of the most challenging tasks is unsupervised disaggregation.
In that approach, no prior knowledge of the appliances is assumed
and the task is to identify the usage pattern of the appliances, and
then profile and label them. The previous works on unsupervised
disaggregation [10, 13] suffer from the drawback of the requirement
for manually labeling the appliance data. A method for modeling the
appliances were stated in [17], which can help label the appliances.
More recent approaches try to address the labeling problems, how-
ever the scope of the problem is limited to small scale appliances.
For large scale appliances, a third approach has been suggested
in [18], where an exhaustive list of appliances are are profiled for
disaggregation. The transferability of disaggregation is a particular
challenge where the disaggregation method trained from one home
is used to disaggregate the power consumption of other homes. Ma-
trix factorization based approaches such as Non-Negative Matrix
Factorization or Sparse Coding techniques have been proposed to
perform transferable disaggregation in large scale [12, 23-25]. A
deep network based approach to disaggregation has been suggested
in [2], where three variants of deep neural network techniques were
used to perform disaggregation - a recurrent neural network using
a Long-Short Term Memory [7], a denoising auto-encoder [8] and
a Regress Start Time, End Time and Power model. The Regress
model helps estimate real-valued outputs, for example, the start
time, the end time and mean power demand of the activation cycle
of an appliance in the aggregate power signal. LSTM has also been
used in other works like [19, 20], but most of the deep learning
methods are applied to datasets which have granularity in seconds.
Our choice for dataset is the Dataport dataset [16], which is a large
repository of energy data and most granular data present therein
is at 1 min level. We choose the homes where aggregated consump-
tion and air-condition usage data are available along with some
other metadata like building size, year of construction, thermostat
settings etc. Since we have to determine the homes with leakages,
we only choose to disaggregate air-conditioning data as that only
is necessary for determining homes with potential leakages. Pre-
vious work for disaggregating residential air-conditioning from
sub-hourly loads were performed in [21], where disaggregation has
been performed across different granularities. The approach to dis-
aggregation uses a heuristic algorithm where the authors consider
A/C units which consume about 2.5kW of power. The proposed
method is incapable of disaggregation in presence of other high
loads and A/C units with lower power, such as 1kW, which easily
get mixed up with other similarly sized loads. To circumvent the
challenges we utilize a deep learning based approach to perform
disaggregation and obtain the A/C unit power consumption and
the ‘ON’ period. Another approach has been stated in [15], where
a K-NN classification has been performed prior to energy disaggre-
gation to form a neighborhood of homes for which there exist a
candidate sub-metered house, whose data can be used to perform
disaggregation. The methods described in [2] and [15] propose two
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different arguments for solving the NILM as a big data challenge.
While the former hypothesizes that given enough data, deep neural
networks can learn features for an arbitrarily complex appliance
and perform disaggregation effectively, the later approach leverages
the “higher order" relationship that exists between homes to disag-
gregate home’s total energy. For our problem, we choose variants
of deep neural network and disaggregate data from larger datasets
to help classify the leaky homes.

3 LEAKY HOME CLASSIFICATION

Air leakage in a house is determined by ACHs. As per the metadata
available, a house is considered to be tight if the ACHs is less
than or equal to 7. To determine the classes we applied a sigmoid
normalization where the transformed ACHs is given by

1
Norm_ACHs5y = (2)
1 + e—(ACHs5~ACHs)

The relation between the normalized and original value of ACHs
has been shown in Figure 3e.It represents a distinct group of possible
values ranging from 0 to 7.6 and 7.6 and above. We thus form two
classes — “leaky" if ACHs is more than 7.6 and “Not leaky" is less
than that.

To build our classification module, we first identify the set of
necessary features . Our hypothesis is that air-leakage will have
some effect on the A/C usage, for which we validate by constructing
features from available usage data. In Figure 2, the A/C usage for
a house is shown for two different durations and considering a
one minute data granularity. First we applied a continuous Hidden
Markov Model for each home’s A/C data to obtain the mean ‘ON’
power as a feature. We then assigned the entire A/C data to 1
when ‘ON’ cycle is observed and 0 when ‘OFF’ cycle is noted. This
allowed us to obtain the duration of usage. Our assumption is that
homes which require more cooling either have a low thermostat
setting or have more leakage. Hence we calculate the monthly
consumption and use it as a feature. Since the number of minutes
is constant for a particular month, the total duration for which the
A/C is ‘ON’ has an upper bound for every month. We selected the
months April - October for our analytics as the A/C usage is more
dominant during those months. We performed feature ranking
by importance whose results are provided in Figure 3a. The most
import features are Volume, Conditioned Square Foot, and the Year
of construction. In Figure 3d, it can be seen that the volume and
conditioned square foot are proportional and linearly related, hence
we select conditioned square footage as a feature only as it is more
readily available than the volume of the house. In addition, volume
is often not documented for some houses in the dataset, which
is an important factor to compute the missing ACHs( values. We
applied a robust linear regression to estimate the missing volume
values from the available conditioned square foot data and then
used Equation 1 to compute ACHs( with the available Blower door
test at 50 Pa values. We also computed the importance of the other
features as shown in in Figure 3b. Figure 3c presents the result of
our feature selection using Recursive Feature Elimination (RFE).
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3.1 Dataset

We perform our experiments on approximately 202 homes from
the publicly available Dataport data set [16] that have direct sub-
metering infrastructure installed for one year and more, with avail-
able A/C data. Dataport dataset contains aggregate and appliance-
level power consumption information for more than 700 homes
in Texas, USA for up to 5 years and beyond. The sub-metered and
household aggregate power data were collected at 1-minute res-
olution. We only selected the single-family homes in the city of
Austin, Texas and found 159 homes contain data for 1 year or more
with HVAC consumption. We also search for homes with some key
metadata like size of house, number of floors, thermostat settings,
and available ground truth for leakage i.e., ACHsg. Of the 159 homes
available some have two air-conditioning compressor units, which
we chose to ignore. In total there are around 70 unique homes with
few having data for more than a year. We considered each home
to be a datapoint that have data for a year, for example, House 94
has data in both 2013 and 2014 and we deem them as two separate
homes, so that we can have a larger dataset for classification. Table 1
depicts this.

Table 1: Building Characteristics

No. of Homes | Construction Avg Sq. ft. | ACHsg
Year average

73 1800-1975 1529 10.9

26 1975-2000 1904 7.38

103 2000-2017 2141 4.42

3.2 Leakage Classification Results

We performed the classification on 202 homes, with a 70-30% split
in training and test sets. The results for different features are given
in Table 2. It can be observed that the ‘ON’ consumption mean
has a significant effect and certain months are crucial to finding
the usage patterns, which help directly to infer the homes with
leakages. We chose multiple combinations of features and found
that monthly usage information is important, which justifies the
use of air conditioner usage data. Better analysis can be done with
availability of a larger dataset, but this helps narrow down the
homes which otherwise will require expensive energy audits. We
applied Random Forest classification and observed that only power
consumption and conditioned square footage is enough to classify
with a F-measure of 0.73. The results of classification for different
feature sets is given in Table 3.

Table 2: List of Features

H Features ‘ Suffixes H

Monthly A/C Consumption in the ith | Month_i (i = 4 ..10)
month

Mean A/C ON Power ON
House conditioned square footage Cond
House Volume Vol
Thermostat Setpoints T i
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4 NON INTRUSIVE LOAD MONITORING

In the previous section we found that the ‘ON’ consumption value
and the duration of usage of air-conditioning are important for the
classification. However it is unlikely that the utility providers will
have access to individual air- conditioning data, which obviates
the necessity for energy disaggregation. Typical disaggregation
approaches attempt to figure out the individual appliance working
patterns and average power consumption for all appliances. How-
ever, for air leakage detection we require only the air-conditioning
data and hence partial disaggregation will suffice in our case. We
employ two deep learning based approaches to perform this par-
tial energy disaggregation where one network is well suited to
disaggregate a distinct load. We also evaluate their performance
across power consumption data with varying granularities. The
Pecan Street Dataport dataset provides data with 1 min, 15 mins
and 60 mins granularity. Our objective is to test for the robustness
of disaggregation methods across different granularities and their
effect on leaky home classification, primarily because typical smart
meter data has 15 minute granularity. We implement two deep
learning methods: i) a recurrent neural network based on Convolu-
tional LSTM and ii) a denoising auto-encoder. Next we describe the
architectures of the above two approaches.

4.1 Recurrent Network based approach

The concept behind the use of a recurrent neural network is to train
in a regression like manner. At every time step, the network sees
a single sample of aggregated power and outputs a single sample
power data for the target appliance. In our case, since only air-
conditioner needs to be estimated, we train one single recurrent
neural network model. LSTM [7], has been used in earlier attempts
to perform disaggregation [2, 19, 20] and proved to be successful
when applied for data with second level granularity. We added a
L1- regularizer for each of the hidden dense layers and performed
disaggregation by providing one input at a time. We chose a convo-
lutional LSTM with the following architecture for our experiments
for the 15 minutes and 60 minutes data granularity. The structure
of the chosen LSTM model is as follows.
e Input layer (1D input with different sequence length)
e 1D conv (filter size = 5, stride =1, number of filters = 16,
activation function = relu, border mode = same)
e LSTM (N = 128, with return sequence, inner activation =
relu)
e LSTM (N = 256, inner activation = relu)
e Dense (N = 256, with return sequence, inner activation =
relu)
e Dense (N = 1, with return sequence, inner activation =
linear)

4.2 Denoising autoencoder based approach

A Denoising autoencoder (DA) [8] was applied in [2] to perform dis-
aggregation, considering the corruption as being the power demand
from the other appliance swhile setting the appliance of interest
without any corruption. In our early work in [23], we applied a vari-
ant of auto-encoder called sparse coding for disaggregation where
we considered the appliance to be noise and attempted to remove
that from the signal. The denoising autoencoder in [2] required the
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Table 3: Classification Results of Leaky Homes

H Features ‘ F1 Score (Train, Test) H
All 0.97,0.84
All - Year 0.94,0.69
All - Year,Cond =Months_i, ON 0.91, 0.71
Ranked Order 1: year, Cond, temp summer weekday workday, ON 0.96, 0.65
Ranked Order 2: year, Cond, temp summer weekday workday, ON, Month_7, Month_8 0.98,0.75
Ranked Order 3: year, Cond, temp summer weekday workday, temp summer sleeping hours, ON, 0.95,0.75
Month_7, Month_8
Ranked Order 3: temp summer weekday workday, temp summer sleeping hours, ON, Month_7, Month_8 0.95,0.78
, Month_5
Ranked Order 4: temp summer weekday workday, temp summer sleeping hours, ON, Month_7, Month_8 0.92,0.72
, Month_5
A/C and Cond: ON, Month_4, Month_5 , Month_6, Month_7 , Month_8, Month_9 , Month_10, Cond 0.93,0.86

appliance duration length to be pre-determined and varied on an
appliance to appliance basis. In our case we require disaggregation
at 1 min granularity rather than 1 sec which complicates the task.
Generally, A/C cycles are ‘ON’ for 5-20 minutes, for which 1 min
granular data looks like noise rather than the actual signal. Our
objective is to estimate when the A/C is ‘ON’ correctly, which then
can be fed to estimate the magnitude of the ‘ON’ power. The target
data is an ‘ON’ and ‘OFF’ data (ON:1, OFF:0), and by choosing the
last layer to be sigmoid we ensure that the range is within [0,1] and
finally use a K-means clustering for binarization. The architecture
of denoising autoencoder that we applied is as follows.
o Input (length 720 min)
e Conv1D(filters = 8, strides = 3, activation = relu, padding =
same)
e MaxPooling1D(pool_size = 2, padding = same)
e Convi1D(filters = 32, strides = 3, activation = relu, padding
= same)
e MaxPooling1D(pool_size = 2, padding = same)
e Convi1D(filters = 32, strides = 3, activation = relu, padding
= same)
o UpSampling1D(size = 2)
e Convi1D(filters = 32, strides = 3, activation = relu, padding
= same)
o UpSampling1D(size = 2)
e Conv1D(filters = 1, strides = 3, activation = sigmoid, padding
= same)

Post-Processing to obtain ON Power Consumption. The denoising
auto-encoder provides an ‘ON’ and ‘OFF’ signal from the aggregated
data but not the ‘ON’ power measure. In the post processing step
we binarize the output to 1 and 0, and obtain the mean ‘ON’ power
consumption. We do not estimate the mean ‘OFF’ power as it is
negligible. To binarize the data we performed K-means clustering
and assigned the points which have the greater centroid as ‘ON’
and the rest as ‘OFF’. We selected the data from the months of July-
September as the A/C is used more in those months, to compute
the ‘ON’ power. The algorithm for computing the mean power
consumption is given in Algorithm 1. Given the aggregated data
and the ‘ON’-‘OFF’ predicted data, we estimate the ‘ON’ power
consumption. We only consider the instances when the A/C goes

‘OFF’ to ‘ON’ and collect the differences between the state change.
When the A/C turns ‘ON’ it takes a minute to stabilize to the ‘ON’
power, so we take the difference of total use between the time 1
minute before and after the change. We store all the power changes
and take the mean as the estimated ‘ON’ power consumption.

Algorithm 1 Mean ON Power Estimation

1: procedure MEAN ON PowER EsTIMATION (Input Use; , Pred;
for ith appliance)

2: new_use « Use; for months 7,8,9
3: new_pred « Pred; for months 7,8,9
4 start_state « new_pred[1]
5 for i = 2 : length(new_use) do
6: if new_pred[i] = new_pred[i-1] then
7: Continue
8: else
9: if (new_pred[i]!=new_pred[i-1]) && (new_pred[i-
1]==1) then
10: if new_pred[i+1]==new_pred][i] &&
(i<length(new_pred)) then
11: ON«—ONU(new_use[i+1]-new_use[i-1])
12: end if
13: end if
14: end if
15: end for

16: ON_Power_Mean <« mean(ON[ON > 1])
17: end procedure

4.3 Transferability across homes

Transferability of disaggregation algorithms is a big issue when
disaggregation model from one house is applied to another. This
is due to the variation in appliances among the homes. So for scal-
ability purpose and for practicality, the training and testing data
should be from different homes. However, a model would not be
able to learn when the test data is completely unknown. In Fig-
ure 4, a list of A/C usage across 4 homes are shown which have
42000 BTU (The British thermal unit (Btu or BTU) is a traditional
unit of heat; it is defined as the amount of heat required to raise
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Figure 4: Differences in Consumption Patterns of the Same A/C

the temperature of one pound of water by one degree Fahrenheit.
typically air-conditioners’ capacity is measured in BTU). The A/C
from homes 370 and 9771 are manufactured by Rheem and for
545 and 1185 by Carrier and they have the same model numbers.
We note that although homes 370 and 9771 have same manufac-
turing company and the BTU of the A/C are the same, yet their
kilo-wattage consumption is different. We inspected the UK-Dale
dataset [26] used in [2] and observed that the Fridge and Kettle
across the homes have more or less same wattage consumption.
Due to large variation in the A/C consumption across the different
homes we face the following challenges.

(1) Variation in consumption patterns: Same appliances can have
different ‘ON’ power consumption, so if the training data does
not have them then it becomes difficult to detect.

(2) A/C usage duration: The duration of A/C usage and its duty
cycles can also vary even if they are of the same wattage and
model. This depends on the temperature setpoint of the ther-
mostat and can cause different duration of cycles in different
homes. To address these challenges we take the following steps:

(a) We merged two homes’ data as a training data and tested
on the other for LSTM. We segmented the homes in three
parts depending on their square foot area and chose the home
whose A/C power is closer to the mean of the subgroup for
denoising autoencoder.

(b) The duration of A/C is not pivotal for our LSTM energy
disaggregation model since it requires an input dimension of
size one, as the aggregated input is fed to it one instance at a
time. For denoising autoencoder however the A/C duration
is important and we chose windows of 720 mins with a 60
mins shift. Next we describe standardization of data.

4.4 Data Processing for disaggregation

The aggregated data is fed as input to the denoising autoencoder
and the output is an equivalent ‘ON’ and ‘OFF’ pattern for the A/C.
We first subtracted the mean of the aggregated use and divided
by the standard deviation. For the LSTM, where we merged two
homes’ data for training, we standardized the data prior to merging.
Targets are divided by a hand-coded maximum power demand for
each appliance to put the target power demand into the range [0,1].
For the denoising auto-encoder we binarized the A/C consumption
to 1 or 0 depending on when it is ‘ON’ or when it is ‘OFF’. This is
obtained by a simple k-means where the ‘ON” and ‘OFF’ consump-
tion centroids were obtained from the output of a Hidden Markov
Model for the denoising auto-encoder. We applied a running batch

normalization for each of the power signals. For the LSTM we di-
vide the target data by a hand-coded maximum power demand for
A/C to put them in a range of [0,1].

5 RESULTS OF DISAGGREGATION

We present the results of disaggregation in this section. First, we
provide the different metrics used for the different disaggregation
tasks. Then we provide the results of disaggregation for each gran-
ularity and its performance on leaky home classification using the
disaggregated data and features.

5.1 Metrics for Disaggregation

We are actually interested to know two aspects of disaggregation,
the mean power and to detect when the A/C is ‘ON’ and when it is
‘OFF’. We use the following metrics:

Fl=2x Precision X Recall 3
- Precision + Recall

Absolute percentage error(APE) = (‘Ebi;lEo‘O @
non._ 2

R - squared measure = Zln:Lll{)z )
> (yi-9)

We estimated the mean ‘ON’ power consumption of the AC and its
usage pattern. For the 1 hour and 15 minutes granular data, we chose
the the R-squared measure to be the only metric as we attempt to
predict the exact disaggregated consumption for these granularities.
For the 1 min dataset we evaluated the disaggregation performance
of the estimated ‘ON’ and ‘OFF’ pattern using F1 score as metric.
We further estimated the mean ‘ON’ power consumption for which
we used the absolute percentage error showed the variation in
predicted mean power consumption from the original, as the mean
‘ON’ power is essential for classifying a home as “Leaky" or “Not-
Leaky".

5.2 Hourly Data Disaggregation

The results for hourly data disaggregation are shown in Table 4.
We employed the Convolutional LSTM for hourly data and the
performance results are presented in terms of R-squared measure on
the test data. Although hourly data is too coarse, such a granularity
can be useful for energy analysis and leakage detection, particularly
for providing feedback and finding patterns in energy peaks. The
hourly disaggregation works well for heavy load appliances such
as A/C in our case as shown in Table 4, and we can achieve a R-
squared value of 0.78 for the best case. We used 12 homes as test
cases and for each test home we selected two other homes’ whose
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Table 4: Disaggregation Results for LSTM

H Granularity ‘ House ‘ R? ‘ Training ‘ House ‘ R? ‘ Training ‘ House ‘ R? ‘ Training H
Hourly 2818 | 0.78 | 5275,6990 | 1697 | 0.62 | 661,7731 1718 | 0.47 | 3039, 7731
Hourly 2575 | 0.40 | 661, 3009 545 | 0.66 | 1185,2769 | 1642 | 0.52 | 624, 9654
Hourly 2094 | 0.76 | 1953,2818 | 739 | 0.76 | 410,5275 1800 | 0.75 | 624, 2814
Hourly 1953 | 0.47 | 2818,9926 | 1185 | 0.43 | 3039,7731 | 1953 | 0.45 | 2829,4447

15 Minutes | 2818 | 0.78 | 5275,7731 | 1697 | 0.55 | 661,7731 1718 | 0.57 | 3039, 7731
15 Minutes | 2575 | 0.43 | 661, 3009 545 | 0.64 | 1185,2769 | 1642 | 0.52 | 624, 9654
15 Minutes | 2094 | 0.75 | 1953,2818 | 739 | 0.68 | 410, 5275 1800 | 0.59 | 624, 2814
15 Minutes | 1953 | 0.55 | 2818,9926 | 1185 | 0.55 | 3039, 7731 | 1953 | 0.59 | 2829,4447

AC consumption power is similar to the test home to create the
training set.

5.3 Data Disaggregation for 15 minutes data

The results for 15 minutes data disaggregation is shown in Table 4.
We also applied a convolutional LSTM with the same structure as
that of hourly data, for 15 minute data granularity. We evaluated
the performance results in terms of R-squared measure and the best
result obtained is a R? measure of 0.78. The LSTM does not perform
well on either of 1 hour or 15 minutes samples.

5.4 Data Disaggregation for 1 minute data

We only apply the denoising auto-encoder for the minute-wise data.
The data with a one minute granularity is available across 5 years of
which we chose 2013 - 2016 and split the data on a yearly basis. We
have both the training and testing data from 2013 only, whereas for
2014 - 2016 we use datasets from 2014 for training and test them on
2014-2016. For each year we further segmented the data into small,
medium and large sized homes where the the conditioned square
footage are in the ranges of 0 - 1500, 1500 - 2500 and 2500-6000 sq.
ft., respectively. We select a house whose overall consumption is
high in the summer months. We use one home to train the auto-
encoder and test on rest of the homes in the subgroup to obtain
the ‘ON’ consumption pattern. We then use the aggregated power
consumption and the disaggregated data to estimate the magnitude
of mean ‘ON’ power. The results of disaggregation for 1 min is
provided in Figure 5. We provide the Precision, Recall, F-measure
and percentage error for the disaggregation results for 2013 - 2016
and overall data.

5.5 Leaky Home Classification using the
Estimated AC Consumption

We perform the air-leakage classification using the disaggregated
results. We apply the Random Forest classifier as before with the
same features and check the applicability of disaggregated data for
classification. We provided results where the features are derived
from the original data and disaggregated data. We experimented
with three cases, where the training and test sets are generated
come from the original and disaggregated data, and showed that the
disaggregated data can be properly used to classify the leaky homes,
as shown in Table 5. We note that the features derived from the
disaggregated result perform similar to that of the original data and

Table 5: Comparison of Results for Air Leakage Classifica-
tion with Disaggregated Results

H Training Testing ‘ F1 (Train) ‘ F1 (Test) H
Original Disaggregated | 0.93 0.86
Disaggregated | Disaggregated | 0.92 0.85
Original Original 0.93 0.86

hence we conclude that we can classify leaky homes with features
derived from disaggregated A/C results. We presented some sample
snippets of ‘ON’-‘OFF’ prediction for A/C usage in Figure 6 from
aggregated data of 4 homes from instances over 4 years.

6 DISCUSSION

LSTM performs poorly on both the hourly data and 15 minutes data,
however more experimentation can help us build a proper model
for better disaggregation. In a coarse granularity the A/C use has
some direct relationship with time of day and temperature, which
can be utilized to get better disaggregation in a coarse level. The
A/C usage patterns in 1 minute are picked up well by the denoising
autoencoder, however it is difficult to predict the target power
consumption with high accuracy. We believe blending different
homes’ data can mitigate this problem. We noticed that in the
original data, the change in power consumption is not the same
as of the change in power consumption in the aggregated data.
The change in power for A/C sometimes is more than that in the
aggregate. Various explanations can be postulated here such as
the presence of phantom loads etc. We suspect some fault in the
instrumentation can give rise to such errors. We observed that
training the dataset on one year and testing disaggregation on
another year is possible and does not cause much change as there
is not much change in the power consumption patterns over the
years.

Limitations: A major limitation is that, as of the time of writing,
we could not gain access to adequate computational capacity to per-
form larger-scale disaggregation. This limits our use of extremely
large scale data and testing LSTM for 1 minute granularity. Also
we could not estimate the power consumption amplitude using the
LSTM approach with precision. The result in that case is dependent
on the training homes used in the data and probably a larger and
diverse dataset can help improve disaggregation accuracy from
coarse data.
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Figure 5: Disaggregation Performances across different homes. In this Figure the first column is the boxplots for Precision,
Recall and F-measure for the disaggregation of the individual homes. The second column is the values of the disaggregation.
The third column are the Absolute power prediction error and the final column gives the histogram of Absolute power error.
The first row provides the result of all data. From second to fifth row we provide the results of disaggregation for the years

2013 - 2016.

Future Work: Our future goal is to devise a better neural net-
work which can perform disaggregation for the higher granularity
and can also help predict the power consumption. The main chal-
lenge is to obtain disaggregation at 15 minutes granularity which
is available more ubiquitously from existing smart meters. We also
would like to investigate the transferability of disaggregation when
similar appliances with different power consumption characteris-
tics are considered, and how large and diverse the dataset needs to
be for coarse disaggregation.

7 CONCLUSION

In this paper we proposed a non intrusive data analytic approach
for detecting potential homes with air leakages. We generated fea-
tures from energy usage and some available metadata regarding

the homes and showed the importance of non-intrusive load mon-
itoring to obtain the A/C usage for detecting “leaky” homes. We
investigated transferable approaches for energy disaggregation us-
ing a large scale publicly available dataset and applied two deep
neural network algorithms for residential A/C disaggregation and
found that disaggregation at 1 minute is possible using a denoising
autoencoder. We investigated the performance of the different dis-
aggregation methods across three granularities and noted that the
de-noising auto-encoder can be used to estimate homes with differ-
ent A/C usage characteristics. We further generated features for air
leakage classification using the disaggregated data and obtained an
F-measure of 0.85, which is not a significant change in performance
from the original data. We thus conclude that the disaggregation
at 1 minute level can be useful for air leakage detection and leaky
home classification.
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Figure 6: Disaggregation Performances Snippets from Different Homes in Different Years. The rows are the different homes with dataid 94, 545, 624 and 9654. The columns are the years

2013, 2014, 2015 and 2016 respectively.
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