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ABSTRACT

Air leakages pose a major problem in both residential and commer-

cial buildings. They increase the utility bill and result in excessive

usage of Heating Ventilation and Air Conditioning (HVAC) systems,

which impacts the environment and causes discomfort to residents.

Repairing air leakages in a building is an expensive and time in-

tensive task. Even detecting the leakages can require extensive

professional testing. In this paper, we propose a method to identify

the leaky homes from a set, provided their energy consumption

data is accessible from residential smart meters. In the first phase,

we employ a Non-Intrusive Load Monitoring (NILM) technique to

disaggregate the HVAC data from total power consumption for

several homes. We propose a recurrent neural network and a de-

noising autoencoder based approach to identify the ‘ON’ and ‘OFF’

cycles of the HVACs and their overall usages. We categorize the

typical HVAC consumption of about 200 homes and any probable

insulation and leakage problems using the Air Changes per Hour

at 50 Pa (ACH50) metric in the Dataport datasets. We perform our

proposed NILM analysis on different granularities of smart meter

data such as 1 min, 15 mins, and 1 hour to observe its effect on

classifying the leaky homes. Our results show that disaggregation

can be used to identify the residential air-conditioning, at 1 min

granularity which in turn helps us to identify the leaky potential

homes, with an accuracy of 86%.
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1 INTRODUCTION

Residential and commercial sectors consume the second highest

amount of total energy usage in USA, and in residential sector

about 40% of it goes to Heating Ventilation and Air Condition-

ing (HVAC) [1]. HVAC efficiency depends to a large degree on

air-tightness, but also on several other factors such as building

insulation, thermostat setpoint, etc. Air leakage in homes can result

in temperature differentials, causing hot or cold regions, and can

increase HVAC consumption. Air leaks in homes can occur through

windows, doors, attics, and basements. Such leaks can cause HVAC

to heat or cool a house for longer durations, increasing the utility

bill. Uneven heating or cooling can be another effect of leakage

which can cause discomfort to residents. A proper energy audit to

check leakages, construction quality and other factors influencing

the heat dynamics of the building, is expensive and labor intensive.

The blower door test is used to detect the amount of air leakage,

and is measured as ACH50 or CFM50. The former metric, ACH50,

is the more common unit used by blower door operators, which

stands for Air Changes per Hour at 50 Pascals. Alternatively,CFM50

per square foot of building envelope is used as a metric where one

CFM50 is a cubic foot per minute with a pressure difference of 50

Pascals between inside and outside. A required ACH50 value for

a new home in the United States is between 3.0 and 5.0, with the

exact value depending on the climate zone. There are multiple Cli-

mate zones in the United States as shown in Figure 1, and different

climate zones have different requirements for building construction

materials, infiltration rate, and insulation. For new buildings to

be constructed the maximum requisite infiltration rate needs to

satisfied. But for existing homes with ACH50 greater than 3 there is

potential to repair the leakages and make them more air-tight. The

blower door test typically costs around $450 and a more intensive

audit may cost more.

Motivated by these problems, we look into quantitative means

for non-intrusively determining potential homes where air leakage

can be present in a large scale. We hypothesize that given certain

building parameters and the HVAC usage, we can classify homes as

łleaky" or łnot-leaky". However, getting access to air-conditioning

usage of homes is difficult. In general, utility providers have ac-

cess to the smart meter data which is captured about 15 minute

granularity. We propose to perform non-intrusive load monitoring

(NILM) or energy disaggregation to gather the air-conditioning

data, which can be used to generate features for the łleaky" home

detection. Two important features which help the classification are

the average ‘ON’ power consumption for AC and the duration for

which it is in the ‘ON’ state. Our objective for disaggregation is to

obtain these two factors.





Non-Intrusive Air Leakage Detection in Residential Homes ICDCN ’18, January 4–7, 2018, Varanasi, India

(a) House 26 per minute (b) House 26 per 15 min (c) House 26 Hourly

(d) House 94 per minute (e) House 94 per 15 min (f) House 94 Hourly

Figure 2: Pecan Street House Total vs A/C Usage

(a) Ranked Features (b) Ranked Feature without Cond and Year
(c) Cross Validation Results for Different

Features

(d) Volume vs Condition (e) ACH50 Classes (f) Distribution of A/C kW

Figure 3: Pecan Street Data Overview

finding the leakages is time consuming and expensive as it requires

trained professionals to perform the inspections. In recent practice,

Infrared (IR) Cameras are used to detect air-leakages, damp, leakage

in ducts and insulation [4]. A review of the main areas of usage of

IR cameras in buildings was provided in [27]. In [28, 29], spatial

and temporal variations of thermographic data are quantitatively

analyzed to provide reports on insulation deficiencies, air leakage

detection and moisture content mapping.

2.2 Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) or Energy disaggregation

is the process of estimating the usage of individual appliances in a

home from the aggregated energy consumption [3]. Two of themost

common approaches are Combinatorial Optimization (CO) [3] and

variants of Hidden Markov models (HMMs). A particular variant of

HMM popularly used in disaggregation is Factorial Hidden Markov

Model (FHMM) [6]. A benchmark result for CO and FHMMhas been

provided in [5] for a number of different datasets. FHMM is also suit-

able to perform disaggregation in scenarios with ambient sensors

fusion [11] and Additive FHMM was part of an approach to reduce
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the number of needed energy sensors in renewable-powered homes

by [30]. Although CO and FHMM are good approaches to disaggre-

gation, yet they suffer from different drawbacks. In disaggregation

nomenclature, supervised disaggregation assume that sub-metered

appliance training data are available from the household in which

disaggregation is to be performed. However, such an assumption

does not quite hold when it comes to scale the model. [3, 22, 23].

One of the most challenging tasks is unsupervised disaggregation.

In that approach, no prior knowledge of the appliances is assumed

and the task is to identify the usage pattern of the appliances, and

then profile and label them. The previous works on unsupervised

disaggregation [10, 13] suffer from the drawback of the requirement

for manually labeling the appliance data. Amethod formodeling the

appliances were stated in [17], which can help label the appliances.

More recent approaches try to address the labeling problems, how-

ever the scope of the problem is limited to small scale appliances.

For large scale appliances, a third approach has been suggested

in [18], where an exhaustive list of appliances are are profiled for

disaggregation. The transferability of disaggregation is a particular

challenge where the disaggregation method trained from one home

is used to disaggregate the power consumption of other homes. Ma-

trix factorization based approaches such as Non-Negative Matrix

Factorization or Sparse Coding techniques have been proposed to

perform transferable disaggregation in large scale [12, 23ś25]. A

deep network based approach to disaggregation has been suggested

in [2], where three variants of deep neural network techniques were

used to perform disaggregation - a recurrent neural network using

a Long-Short Term Memory [7], a denoising auto-encoder [8] and

a Regress Start Time, End Time and Power model. The Regress

model helps estimate real-valued outputs, for example, the start

time, the end time and mean power demand of the activation cycle

of an appliance in the aggregate power signal. LSTM has also been

used in other works like [19, 20], but most of the deep learning

methods are applied to datasets which have granularity in seconds.

Our choice for dataset is the Dataport dataset [16], which is a large

repository of energy data and most granular data present therein

is at 1 min level. We choose the homes where aggregated consump-

tion and air-condition usage data are available along with some

other metadata like building size, year of construction, thermostat

settings etc. Since we have to determine the homes with leakages,

we only choose to disaggregate air-conditioning data as that only

is necessary for determining homes with potential leakages. Pre-

vious work for disaggregating residential air-conditioning from

sub-hourly loads were performed in [21], where disaggregation has

been performed across different granularities. The approach to dis-

aggregation uses a heuristic algorithm where the authors consider

A/C units which consume about 2.5kW of power. The proposed

method is incapable of disaggregation in presence of other high

loads and A/C units with lower power, such as 1kW, which easily

get mixed up with other similarly sized loads. To circumvent the

challenges we utilize a deep learning based approach to perform

disaggregation and obtain the A/C unit power consumption and

the ‘ON’ period. Another approach has been stated in [15], where

a K-NN classification has been performed prior to energy disaggre-

gation to form a neighborhood of homes for which there exist a

candidate sub-metered house, whose data can be used to perform

disaggregation. The methods described in [2] and [15] propose two

different arguments for solving the NILM as a big data challenge.

While the former hypothesizes that given enough data, deep neural

networks can learn features for an arbitrarily complex appliance

and perform disaggregation effectively, the later approach leverages

the łhigher order" relationship that exists between homes to disag-

gregate home’s total energy. For our problem, we choose variants

of deep neural network and disaggregate data from larger datasets

to help classify the leaky homes.

3 LEAKY HOME CLASSIFICATION

Air leakage in a house is determined byACH50. As per the metadata

available, a house is considered to be tight if the ACH50 is less

than or equal to 7. To determine the classes we applied a sigmoid

normalization where the transformed ACH50 is given by

Norm_ACH50 =
1

1 + e−(ACH50−ACH50 )
(2)

The relation between the normalized and original value ofACH50

has been shown in Figure 3e.It represents a distinct group of possible

values ranging from 0 to 7.6 and 7.6 and above. We thus form two

classes ś łleaky" if ACH50 is more than 7.6 and łNot leaky" is less

than that.

To build our classification module, we first identify the set of

necessary features . Our hypothesis is that air-leakage will have

some effect on the A/C usage, for which we validate by constructing

features from available usage data. In Figure 2, the A/C usage for

a house is shown for two different durations and considering a

one minute data granularity. First we applied a continuous Hidden

Markov Model for each home’s A/C data to obtain the mean ‘ON’

power as a feature. We then assigned the entire A/C data to 1

when ‘ON’ cycle is observed and 0 when ‘OFF’ cycle is noted. This

allowed us to obtain the duration of usage. Our assumption is that

homes which require more cooling either have a low thermostat

setting or have more leakage. Hence we calculate the monthly

consumption and use it as a feature. Since the number of minutes

is constant for a particular month, the total duration for which the

A/C is ‘ON’ has an upper bound for every month. We selected the

months April - October for our analytics as the A/C usage is more

dominant during those months. We performed feature ranking

by importance whose results are provided in Figure 3a. The most

import features are Volume, Conditioned Square Foot, and the Year

of construction. In Figure 3d, it can be seen that the volume and

conditioned square foot are proportional and linearly related, hence

we select conditioned square footage as a feature only as it is more

readily available than the volume of the house. In addition, volume

is often not documented for some houses in the dataset, which

is an important factor to compute the missing ACH50 values. We

applied a robust linear regression to estimate the missing volume

values from the available conditioned square foot data and then

used Equation 1 to compute ACH50 with the available Blower door

test at 50 Pa values. We also computed the importance of the other

features as shown in in Figure 3b. Figure 3c presents the result of

our feature selection using Recursive Feature Elimination (RFE).
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3.1 Dataset

We perform our experiments on approximately 202 homes from

the publicly available Dataport data set [16] that have direct sub-

metering infrastructure installed for one year and more, with avail-

able A/C data. Dataport dataset contains aggregate and appliance-

level power consumption information for more than 700 homes

in Texas, USA for up to 5 years and beyond. The sub-metered and

household aggregate power data were collected at 1-minute res-

olution. We only selected the single-family homes in the city of

Austin, Texas and found 159 homes contain data for 1 year or more

with HVAC consumption. We also search for homes with some key

metadata like size of house, number of floors, thermostat settings,

and available ground truth for leakage i.e.,ACH50. Of the 159 homes

available some have two air-conditioning compressor units, which

we chose to ignore. In total there are around 70 unique homes with

few having data for more than a year. We considered each home

to be a datapoint that have data for a year, for example, House 94

has data in both 2013 and 2014 and we deem them as two separate

homes, so that we can have a larger dataset for classification. Table 1

depicts this.

Table 1: Building Characteristics

No. of Homes Construction

Year

Avg Sq. ft. ACH50

average

73 1800-1975 1529 10.9

26 1975-2000 1904 7.38

103 2000-2017 2141 4.42

3.2 Leakage Classification Results

We performed the classification on 202 homes, with a 70-30% split

in training and test sets. The results for different features are given

in Table 2. It can be observed that the ‘ON’ consumption mean

has a significant effect and certain months are crucial to finding

the usage patterns, which help directly to infer the homes with

leakages. We chose multiple combinations of features and found

that monthly usage information is important, which justifies the

use of air conditioner usage data. Better analysis can be done with

availability of a larger dataset, but this helps narrow down the

homes which otherwise will require expensive energy audits. We

applied Random Forest classification and observed that only power

consumption and conditioned square footage is enough to classify

with a F-measure of 0.73. The results of classification for different

feature sets is given in Table 3.

Table 2: List of Features

Features Suffixes

Monthly A/C Consumption in the ith

month

Month_i (i = 4 ..10)

Mean A/C ON Power ON

House conditioned square footage Cond

House Volume Vol

Thermostat Setpoints T_i

4 NON INTRUSIVE LOAD MONITORING

In the previous section we found that the ‘ON’ consumption value

and the duration of usage of air-conditioning are important for the

classification. However it is unlikely that the utility providers will

have access to individual air- conditioning data, which obviates

the necessity for energy disaggregation. Typical disaggregation

approaches attempt to figure out the individual appliance working

patterns and average power consumption for all appliances. How-

ever, for air leakage detection we require only the air-conditioning

data and hence partial disaggregation will suffice in our case. We

employ two deep learning based approaches to perform this par-

tial energy disaggregation where one network is well suited to

disaggregate a distinct load. We also evaluate their performance

across power consumption data with varying granularities. The

Pecan Street Dataport dataset provides data with 1 min, 15 mins

and 60 mins granularity. Our objective is to test for the robustness

of disaggregation methods across different granularities and their

effect on leaky home classification, primarily because typical smart

meter data has 15 minute granularity. We implement two deep

learning methods: i) a recurrent neural network based on Convolu-

tional LSTM and ii) a denoising auto-encoder. Next we describe the

architectures of the above two approaches.

4.1 Recurrent Network based approach

The concept behind the use of a recurrent neural network is to train

in a regression like manner. At every time step, the network sees

a single sample of aggregated power and outputs a single sample

power data for the target appliance. In our case, since only air-

conditioner needs to be estimated, we train one single recurrent

neural network model. LSTM [7], has been used in earlier attempts

to perform disaggregation [2, 19, 20] and proved to be successful

when applied for data with second level granularity. We added a

L1- regularizer for each of the hidden dense layers and performed

disaggregation by providing one input at a time. We chose a convo-

lutional LSTM with the following architecture for our experiments

for the 15 minutes and 60 minutes data granularity. The structure

of the chosen LSTM model is as follows.

• Input layer (1D input with different sequence length)

• 1D conv (filter size = 5, stride =1, number of filters = 16,

activation function = relu, border mode = same)

• LSTM (N = 128, with return sequence, inner activation =

relu)

• LSTM (N = 256, inner activation = relu)

• Dense (N = 256, with return sequence, inner activation =

relu)

• Dense (N = 1, with return sequence, inner activation =

linear)

4.2 Denoising autoencoder based approach

ADenoising autoencoder (DA) [8] was applied in [2] to perform dis-

aggregation, considering the corruption as being the power demand

from the other appliance swhile setting the appliance of interest

without any corruption. In our early work in [23], we applied a vari-

ant of auto-encoder called sparse coding for disaggregation where

we considered the appliance to be noise and attempted to remove

that from the signal. The denoising autoencoder in [2] required the
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Table 3: Classification Results of Leaky Homes

Features F1 Score (Train, Test)

All 0.97 , 0.84

All - Year 0.94 , 0.69

All - Year,Cond =Months_i, ON 0.91, 0.71

Ranked Order 1: year, Cond, temp summer weekday workday, ON 0.96, 0.65

Ranked Order 2: year, Cond, temp summer weekday workday, ON, Month_7, Month_8 0.98 , 0.75

Ranked Order 3: year, Cond, temp summer weekday workday, temp summer sleeping hours, ON,

Month_7, Month_8

0.95 , 0.75

Ranked Order 3: temp summer weekday workday, temp summer sleeping hours, ON, Month_7, Month_8

, Month_5

0.95 , 0.78

Ranked Order 4: temp summer weekday workday, temp summer sleeping hours, ON, Month_7, Month_8

, Month_5

0.92 , 0.72

A/C and Cond: ON, Month_4, Month_5 , Month_6, Month_7 , Month_8, Month_9 , Month_10, Cond 0.93 ,0.86

appliance duration length to be pre-determined and varied on an

appliance to appliance basis. In our case we require disaggregation

at 1 min granularity rather than 1 sec which complicates the task.

Generally, A/C cycles are ‘ON’ for 5-20 minutes, for which 1 min

granular data looks like noise rather than the actual signal. Our

objective is to estimate when the A/C is ‘ON’ correctly, which then

can be fed to estimate the magnitude of the ‘ON’ power. The target

data is an ‘ON’ and ‘OFF’ data (ON:1, OFF:0), and by choosing the

last layer to be sigmoid we ensure that the range is within [0,1] and

finally use a K-means clustering for binarization. The architecture

of denoising autoencoder that we applied is as follows.

• Input (length 720 min)

• Conv1D(filters = 8, strides = 3, activation = relu, padding =

same)

• MaxPooling1D(pool_size = 2, padding = same)

• Conv1D(filters = 32, strides = 3, activation = relu, padding

= same)

• MaxPooling1D(pool_size = 2, padding = same)

• Conv1D(filters = 32, strides = 3, activation = relu, padding

= same)

• UpSampling1D(size = 2)

• Conv1D(filters = 32, strides = 3, activation = relu, padding

= same)

• UpSampling1D(size = 2)

• Conv1D(filters = 1, strides = 3, activation = sigmoid, padding

= same)

Post-Processing to obtain ON Power Consumption. The denoising

auto-encoder provides an ‘ON’ and ‘OFF’ signal from the aggregated

data but not the ‘ON’ power measure. In the post processing step

we binarize the output to 1 and 0, and obtain the mean ‘ON’ power

consumption. We do not estimate the mean ‘OFF’ power as it is

negligible. To binarize the data we performed K-means clustering

and assigned the points which have the greater centroid as ‘ON’

and the rest as ‘OFF’. We selected the data from the months of July-

September as the A/C is used more in those months, to compute

the ‘ON’ power. The algorithm for computing the mean power

consumption is given in Algorithm 1. Given the aggregated data

and the ‘ON’-‘OFF’ predicted data, we estimate the ‘ON’ power

consumption. We only consider the instances when the A/C goes

‘OFF’ to ‘ON’ and collect the differences between the state change.

When the A/C turns ‘ON’ it takes a minute to stabilize to the ‘ON’

power, so we take the difference of total use between the time 1

minute before and after the change. We store all the power changes

and take the mean as the estimated ‘ON’ power consumption.

Algorithm 1 Mean ON Power Estimation

1: procedureMean ON Power Estimation (InputUsei , Predi
for ith appliance)

2: new_use←Usei for months 7,8,9

3: new_pred← Predi for months 7,8,9

4: start_state← new_pred[1]

5: for i = 2 : length(new_use) do

6: if new_pred[i] = new_pred[i-1] then

7: Continue

8: else

9: if (new_pred[i]!=new_pred[i-1]) && (new_pred[i-

1]==1) then

10: if new_pred[i+1]==new_pred[i] &&

(i<length(new_pred)) then

11: ON←ON∪(new_use[i+1]-new_use[i-1])

12: end if

13: end if

14: end if

15: end for

16: ON_Power_Mean← mean(ON[ON > 1])

17: end procedure

4.3 Transferability across homes

Transferability of disaggregation algorithms is a big issue when

disaggregation model from one house is applied to another. This

is due to the variation in appliances among the homes. So for scal-

ability purpose and for practicality, the training and testing data

should be from different homes. However, a model would not be

able to learn when the test data is completely unknown. In Fig-

ure 4, a list of A/C usage across 4 homes are shown which have

42000 BTU (The British thermal unit (Btu or BTU) is a traditional

unit of heat; it is defined as the amount of heat required to raise
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(a) House 370 A/C Usage (b) House 545 A/C Usage (c) House 1185 A/C Usage (d) House 9771 A/C Usage

Figure 4: Differences in Consumption Patterns of the Same A/C

the temperature of one pound of water by one degree Fahrenheit.

typically air-conditioners’ capacity is measured in BTU). The A/C

from homes 370 and 9771 are manufactured by Rheem and for

545 and 1185 by Carrier and they have the same model numbers.

We note that although homes 370 and 9771 have same manufac-

turing company and the BTU of the A/C are the same, yet their

kilo-wattage consumption is different. We inspected the UK-Dale

dataset [26] used in [2] and observed that the Fridge and Kettle

across the homes have more or less same wattage consumption.

Due to large variation in the A/C consumption across the different

homes we face the following challenges.

(1) Variation in consumption patterns: Same appliances can have

different ‘ON’ power consumption, so if the training data does

not have them then it becomes difficult to detect.

(2) A/C usage duration: The duration of A/C usage and its duty

cycles can also vary even if they are of the same wattage and

model. This depends on the temperature setpoint of the ther-

mostat and can cause different duration of cycles in different

homes. To address these challenges we take the following steps:

(a) We merged two homes’ data as a training data and tested

on the other for LSTM. We segmented the homes in three

parts depending on their square foot area and chose the home

whose A/C power is closer to the mean of the subgroup for

denoising autoencoder.

(b) The duration of A/C is not pivotal for our LSTM energy

disaggregation model since it requires an input dimension of

size one, as the aggregated input is fed to it one instance at a

time. For denoising autoencoder however the A/C duration

is important and we chose windows of 720 mins with a 60

mins shift. Next we describe standardization of data.

4.4 Data Processing for disaggregation

The aggregated data is fed as input to the denoising autoencoder

and the output is an equivalent ‘ON’ and ‘OFF’ pattern for the A/C.

We first subtracted the mean of the aggregated use and divided

by the standard deviation. For the LSTM, where we merged two

homes’ data for training, we standardized the data prior to merging.

Targets are divided by a hand-coded maximum power demand for

each appliance to put the target power demand into the range [0,1].

For the denoising auto-encoder we binarized the A/C consumption

to 1 or 0 depending on when it is ‘ON’ or when it is ‘OFF’. This is

obtained by a simple k-means where the ‘ON’ and ‘OFF’ consump-

tion centroids were obtained from the output of a Hidden Markov

Model for the denoising auto-encoder. We applied a running batch

normalization for each of the power signals. For the LSTM we di-

vide the target data by a hand-coded maximum power demand for

A/C to put them in a range of [0,1].

5 RESULTS OF DISAGGREGATION

We present the results of disaggregation in this section. First, we

provide the different metrics used for the different disaggregation

tasks. Then we provide the results of disaggregation for each gran-

ularity and its performance on leaky home classification using the

disaggregated data and features.

5.1 Metrics for Disaggregation

We are actually interested to know two aspects of disaggregation,

the mean power and to detect when the A/C is ‘ON’ and when it is

‘OFF’. We use the following metrics:

F 1 = 2 ×
Precision × Recall

Precision + Recall
(3)

Absolute percentaдe error (APE ) =
|Ē − E |

(E ) × 100
(4)

R − squared measure =

∑
n

i=1
(ŷi − ȳ )

2

∑
n

i=1
(yi − ȳ )2

(5)

We estimated the mean ‘ON’ power consumption of the AC and its

usage pattern. For the 1 hour and 15minutes granular data, we chose

the the R-squared measure to be the only metric as we attempt to

predict the exact disaggregated consumption for these granularities.

For the 1 min dataset we evaluated the disaggregation performance

of the estimated ‘ON’ and ‘OFF’ pattern using F1 score as metric.

We further estimated the mean ‘ON’ power consumption for which

we used the absolute percentage error showed the variation in

predicted mean power consumption from the original, as the mean

‘ON’ power is essential for classifying a home as łLeaky" or łNot-

Leaky".

5.2 Hourly Data Disaggregation

The results for hourly data disaggregation are shown in Table 4.

We employed the Convolutional LSTM for hourly data and the

performance results are presented in terms of R-squaredmeasure on

the test data. Although hourly data is too coarse, such a granularity

can be useful for energy analysis and leakage detection, particularly

for providing feedback and finding patterns in energy peaks. The

hourly disaggregation works well for heavy load appliances such

as A/C in our case as shown in Table 4, and we can achieve a R-

squared value of 0.78 for the best case. We used 12 homes as test

cases and for each test home we selected two other homes’ whose
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Table 4: Disaggregation Results for LSTM

Granularity House R
2 Training House R

2 Training House R
2 Training

Hourly 2818 0.78 5275, 6990 1697 0.62 661,7731 1718 0.47 3039, 7731

Hourly 2575 0.40 661, 3009 545 0.66 1185, 2769 1642 0.52 624, 9654

Hourly 2094 0.76 1953, 2818 739 0.76 410,5275 1800 0.75 624, 2814

Hourly 1953 0.47 2818, 9926 1185 0.43 3039, 7731 1953 0.45 2829,4447

15 Minutes 2818 0.78 5275, 7731 1697 0.55 661,7731 1718 0.57 3039, 7731

15 Minutes 2575 0.43 661, 3009 545 0.64 1185, 2769 1642 0.52 624, 9654

15 Minutes 2094 0.75 1953, 2818 739 0.68 410, 5275 1800 0.59 624, 2814

15 Minutes 1953 0.55 2818, 9926 1185 0.55 3039, 7731 1953 0.59 2829,4447

AC consumption power is similar to the test home to create the

training set.

5.3 Data Disaggregation for 15 minutes data

The results for 15 minutes data disaggregation is shown in Table 4.

We also applied a convolutional LSTM with the same structure as

that of hourly data, for 15 minute data granularity. We evaluated

the performance results in terms of R-squared measure and the best

result obtained is a R2 measure of 0.78. The LSTM does not perform

well on either of 1 hour or 15 minutes samples.

5.4 Data Disaggregation for 1 minute data

We only apply the denoising auto-encoder for the minute-wise data.

The data with a one minute granularity is available across 5 years of

which we chose 2013 - 2016 and split the data on a yearly basis. We

have both the training and testing data from 2013 only, whereas for

2014 - 2016 we use datasets from 2014 for training and test them on

2014-2016. For each year we further segmented the data into small,

medium and large sized homes where the the conditioned square

footage are in the ranges of 0 - 1500, 1500 - 2500 and 2500-6000 sq.

ft., respectively. We select a house whose overall consumption is

high in the summer months. We use one home to train the auto-

encoder and test on rest of the homes in the subgroup to obtain

the ‘ON’ consumption pattern. We then use the aggregated power

consumption and the disaggregated data to estimate the magnitude

of mean ‘ON’ power. The results of disaggregation for 1 min is

provided in Figure 5. We provide the Precision, Recall, F-measure

and percentage error for the disaggregation results for 2013 - 2016

and overall data.

5.5 Leaky Home Classification using the
Estimated AC Consumption

We perform the air-leakage classification using the disaggregated

results. We apply the Random Forest classifier as before with the

same features and check the applicability of disaggregated data for

classification. We provided results where the features are derived

from the original data and disaggregated data. We experimented

with three cases, where the training and test sets are generated

come from the original and disaggregated data, and showed that the

disaggregated data can be properly used to classify the leaky homes,

as shown in Table 5. We note that the features derived from the

disaggregated result perform similar to that of the original data and

Table 5: Comparison of Results for Air Leakage Classifica-

tion with Disaggregated Results

Training Testing F1 (Train) F1 (Test)

Original Disaggregated 0.93 0.86

Disaggregated Disaggregated 0.92 0.85

Original Original 0.93 0.86

hence we conclude that we can classify leaky homes with features

derived from disaggregated A/C results. We presented some sample

snippets of ‘ON’-‘OFF’ prediction for A/C usage in Figure 6 from

aggregated data of 4 homes from instances over 4 years.

6 DISCUSSION

LSTM performs poorly on both the hourly data and 15 minutes data,

however more experimentation can help us build a proper model

for better disaggregation. In a coarse granularity the A/C use has

some direct relationship with time of day and temperature, which

can be utilized to get better disaggregation in a coarse level. The

A/C usage patterns in 1 minute are picked up well by the denoising

autoencoder, however it is difficult to predict the target power

consumption with high accuracy. We believe blending different

homes’ data can mitigate this problem. We noticed that in the

original data, the change in power consumption is not the same

as of the change in power consumption in the aggregated data.

The change in power for A/C sometimes is more than that in the

aggregate. Various explanations can be postulated here such as

the presence of phantom loads etc. We suspect some fault in the

instrumentation can give rise to such errors. We observed that

training the dataset on one year and testing disaggregation on

another year is possible and does not cause much change as there

is not much change in the power consumption patterns over the

years.

Limitations:Amajor limitation is that, as of the time of writing,

we could not gain access to adequate computational capacity to per-

form larger-scale disaggregation. This limits our use of extremely

large scale data and testing LSTM for 1 minute granularity. Also

we could not estimate the power consumption amplitude using the

LSTM approach with precision. The result in that case is dependent

on the training homes used in the data and probably a larger and

diverse dataset can help improve disaggregation accuracy from

coarse data.
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Figure 5: Disaggregation Performances across different homes. In this Figure the first column is the boxplots for Precision,

Recall and F-measure for the disaggregation of the individual homes. The second column is the values of the disaggregation.

The third column are the Absolute power prediction error and the final column gives the histogram of Absolute power error.

The first row provides the result of all data. From second to fifth row we provide the results of disaggregation for the years

2013 - 2016.

Future Work: Our future goal is to devise a better neural net-

work which can perform disaggregation for the higher granularity

and can also help predict the power consumption. The main chal-

lenge is to obtain disaggregation at 15 minutes granularity which

is available more ubiquitously from existing smart meters. We also

would like to investigate the transferability of disaggregation when

similar appliances with different power consumption characteris-

tics are considered, and how large and diverse the dataset needs to

be for coarse disaggregation.

7 CONCLUSION

In this paper we proposed a non intrusive data analytic approach

for detecting potential homes with air leakages. We generated fea-

tures from energy usage and some available metadata regarding

the homes and showed the importance of non-intrusive load mon-

itoring to obtain the A/C usage for detecting łleaky" homes. We

investigated transferable approaches for energy disaggregation us-

ing a large scale publicly available dataset and applied two deep

neural network algorithms for residential A/C disaggregation and

found that disaggregation at 1 minute is possible using a denoising

autoencoder. We investigated the performance of the different dis-

aggregation methods across three granularities and noted that the

de-noising auto-encoder can be used to estimate homes with differ-

ent A/C usage characteristics. We further generated features for air

leakage classification using the disaggregated data and obtained an

F-measure of 0.85, which is not a significant change in performance

from the original data. We thus conclude that the disaggregation

at 1 minute level can be useful for air leakage detection and leaky

home classification.
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Figure 6: Disaggregation Performances Snippets from Different Homes in Different Years. The rows are the different homes with dataid 94, 545, 624 and 9654. The columns are the years

2013, 2014, 2015 and 2016 respectively.
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