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Abstract—In this paper we present circuit techniques to
optimize analog neurons specifically for operation in memristive
neuromorphic systems. Since the peripheral circuits and control
signals of the system are digital in nature, we take a mixed-signal
circuit design approach to leverage analog computation in multi-
plying and accumulating digital input spikes and generate binary
spikes as outputs to be consistent with surrounding synchronous
digital logic circuits. A novel approach for synchronization is
leveraged based on domino logic. The principal advantage of
utilizing analog neurons within an overall digital system design
is to ensure efficiency in size and power consumption. Energy
per spike was determined to be 20 fJ, based on Cadence Spectre
simulations of the proposed domino-based neural circuit.

I. INTRODUCTION

The human brain represents a very complex architecture

for computing and processing data. A deep understanding

for how biological neural systems provide both accuracy and

energy efficiency remains a goal for many researchers. During

this continuing process, researchers have developed neural

network models which emulate brain functionality, including

deep learning techniques used to train such systems. However,

offline training approaches are still inefficient compared to

the low energy consumption exhibited by the human brain.

Further, for many brain-inspired approaches, researchers often

leverage von Neumann machines to implement neural net-

works. The training and execution of many machine learning

systems require a large amount of energy and area resources

which is not efficient for embedded systems applications.

Thus, many researchers try to overcome such limitations

by adapting unconventional computing architectures, such as

neuromorphic computing [1]. Memristive neuromorphic com-

puting leverages metal-oxide memristors [2], [3] to minimize

the area and energy consumption.

In this research, the proposed memristive neuromorphic

architecture is constructed from both analog and digital com-

ponents. Further, communication between neurons is syn-

chronous, enabling a simplified approach for controlling the

timing of spiky information. Artificial synapses are imple-

mented using metal-oxide memristors to store weight values

and transmit analog weighted results to post-synaptic neurons.

The neuron uses the analog output of the synapse to produce

a firing event (or spike) that is synchronized with the system.

Further, the system considered leverages the relative timing of

synchronous digital spikes to perform spike time dependent

plasticity (STDP) based online learning. The synchronous

nature of the system helps simplify the necessary control logic

for STDP, thus reducing area utilization. Here we describe

an analog axon hillock neuron design approach leveraging

domino logic to synchronize output spikes. We further show

that the proposed provides desired energy and area efficiency

for emerging CMOS-memristive neuromorphic implementa-

tions.

II. MEMRISTIVE SYNAPSE

The synapse of a neural network stores a weight value that

relates the strength of a firing spike of a pre-synaptic neuron to

the following post-synaptic neuron. The weights characterize

the required activation of the preceding neuron to activate the

following neuron. This relationship is created by the output

current of the synapse.

The synapse design considered here uses a twin memristor

configuration (shown in Fig. 1) to store the weight value.

Memristors are two terminal nanoscale and non-volatile de-

vices first theorized by Chua [2] in 1971. The non-volatile

nature of these devices provide opportunities for high effi-

ciency in area and energy consumption. A memristor provides

multiple resistance levels between the low resistance state

(LRS) and high resistance state (HRS). The LRS and HRS

of any memristor are dependent on the switching material,

process conditions, noise and environmental conditions. Sev-

eral materials used to build memristors for their switching

behavior, including TaOx [3], TiO2 [4], and HfOx [5]. All of

these memristors are differentiated according to LRS values,

LRS to HRS ratios, threshold voltage, and switching time.

For this design a suitable range of LRS and HRS has been

considered based on the literature.

A. Synapse Design and Timing

The synapse uses a digital logic block to drive each memris-

tor in the pair to a high voltage. The two phases of operation

examined here are the accumulation phase and learning phase.

Other phases important in practice but beyond the scope of this

work are the forming phase and programming phase, which

enable memristor behavior and set the pair to an initial weight.

During the accumulation phase, the synapse produces an

output current, Iin, that is fed into the neuron. The difference

in the resistance values of the memristors in each pair creates
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Fig. 1: Synaptic input illustrating the “twin memristor” ap-

proach to providing both positive and negative weights. Also

shown are the FETs used in the learning phase and integrator

representing the input of a neuron.

a positive or negative weight. Positive weights are created

when the output current is adding charge into the neuron. This

happens when Rp in Fig. 1 is less than Rn. Negative weights

are created when the output current is pulling charge from the

neuron. This is accomplished when Rn is less than Rp.

During the learning phase, the synapse updates the weights

by changing the resistance of the memristors.
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Fig. 2: Timing diagram of LTP
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Fig. 3: Timing diagram of LTD

The waveforms in Fig. 2 and 3 show the signals used by

the synapse. To update the weight of the synapse, the voltage

across the memristor pair needs to be larger than the threshold

voltage for the memristor [6]. To accomplish this the neuron

drives the summing node while the synapse drives a voltage

of opposite polarity from the left. Long term potentiation is

initiated when the synapse causes the neuron to fire. This

occurs when the synapse fires (Fpre) the clock cycle before the

neuron fires (Fpost), illustrated in Fig. 2. Long term depression

(Fig. 3) is performed on the synapse when it fires the clock

cycle after the output neuron fires. During the neuron’s output

fire, the neuron drives the summing node high for one clock

cycle and then low for the next.

III. NEURON

Fig. 4: Implementation of Axon-Hillock neuron with a com-

parator for variable threshold.

Fig. 5: Proposed Implementation of synchronous neuron with

a comparator for variable threshold.

The axon hillock neuron first proposed by Carver Mead

[1] takes an input current, integrates the input current on

a capacitor and outputs a voltage spike upon crossing a

threshold. The axon hillock circuit considered has a variable

threshold that triggers a fire when the stored voltage on the

capacitor Cmem reaches the voltage Vref . The output spike

width, refractory period and reset time is dependent on the

sizing of the capacitors and transistors Cmem, Cfb, M9, and

M10. For this project the output spike must be synchronized

with the system clock.

Neuron operation is determined by the pre-neuron synapses.

If there are pre-neuron synapse fires, the neuron sums and

integrates the weight dependent output currents of the synapses

and holds the charge on the capacitor until there is another

input into the neuron. When the charge on the capacitor goes

above the threshold voltage, the neuron fires and resets the

capacitor. The neuron has a refractory period of two clock

cycles that it will not accumulate inputs from the pre-neuron
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synapses. The output fire of the neuron drives the post-neuron

synapses to fire into the next neuron layer in the network. The

output of the neuron also controls the weight updates of its

pre-neuron synapses.

The proposed neuron design leverages the synchronous

system and control signals used to operate the system with

the ideas presented for the axon hillock neuron. The design

follows the same basic functionality of integrating the input

current and triggering a firing event upon crossing the thresh-

old. In the proposed design, the control signals synchronize

the timing of neuron output spikes.

A. Neuron Input Circuit Design

The current input of the neuron flows from the memristors

of the synapse through a series of PFETs into the input

capacitor. The proposed design uses two PFETs that block

the capacitor Cmem from the voltage drive of the summing

node during learning but pass current into the capacitor

during accumulation. Design specifications for the PFETs and

capacitor are based on the available resistance levels of the

memristors, as well as clock speed. Analogous to the standard

axon hillock neuron, the proposed domino based design uses

the PFETs at the input to define the refractory period. For the

domino based neuron, the refractory period is defined by clock

cycles needed in the learning phase and is not determined

by sizing the capacitor Cfb or NFETs M9 and M10. Results

presented for this implementation assumes a defined refractory

period of two clock cycle.

For this design, the sizing of the PFETs and Cmem are

intended to be small to allow for integrating many neurons per

chip. A high speed clock is used to keep the size of Cmem

small . The sizes of the PFETs are also small because as the

rds resistance of the PFETs increases the input current, Iin,

decreases. Keeping the size of the PFETs small also keeps the

capacitance the neuron output needs to drive small.

B. Neuron Output Circuit Design

The neural network structure in this research uses a syn-

chronous digital logic system to implement the weight update

of the synapses. Because of this synchronous approach the

neuron must output a synchronous signal to the synapse to

update its weight upon a post-synapse neuron fire. To syn-

chronize the asynchronous analog integration and comparison

computations performed by the neuron, it outputs a clocked

digital pulse. To align the output signal with the pre-neuron

synapse a D-flip flop is be used to capture the output pulse.

The proposed design uses a domino logic inverter to control

pulse timing in a way that reduces transistor count and energy.

For comparison purposes, a flip flop synchronized axon

hillock is considered. This neuron uses two inverters to drive

the output to the positive rail when the voltage stored on Cmem

crosses the threshold Vref . The inverter drives the voltage

Vmem higher than the threshold by positive feedback though

Cfb. The output turns on NFET M9 and stores the output on

the first D flip flop. The D flip flop outputs the signal Fpost.

The voltage Vpw is set to equalize the output pulse width of

the neuron with the clock period. This allows the D flip flop

to capture the output of the neuron only on the next clock

cycle. If the pulse width of the neuron is not equal to the

clock period, the D flip flop will either miss spikes or drive

a high output for more than one clock cycle. The output fire

signal Fpost can also be delayed by a clock cycle. This occurs

when the integrated capacitance crosses the threshold and the

delay to Vout going high causes the D flip flop to capture it

on the next clock cycle. The neuron needs a built in refractory

period for reseting Cmem, which is overshadowed by the two

clock cycle refractory period for learning.

C. Pulse Control Inverter

The proposed domino based design incorporates the control

signals needed for the learning phase in the computing phase.

The design feeds the delayed fire signal of the preceding

neuron into the subsequent neuron. This signal drives a domino

logic inverter that evaluates the neuron’s output signal Fpost at

the appropriate time. Since the evaluation of the comparison is

performed using domino logic, the output signal will not fall to

negative rail until the end of the clock period when Fpre,t goes

low. This means the functionality of the output is restricted

to driving the necessary gates for learning and computing.

The output of the neuron is not internally connected to the

input to set the refractory period. The reset of the capacitor is

immediately driven, while the refractory period is still defined

by Fpost and Fpost,t signals on the input PFETs.

IV. SIMULATION RESULTS
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Fig. 6: Simulation result for the analog neuron with domino

logic.

In the examples provided in Fig. 6 and Fig. 7 the neurons

both take three spikes through the synapse to cause an output

fire. Both designs function as intended, taking inputs from the

synapses and integrating them on Vmem and generating an

output fire pulse Fpost. For the standard axon hillock, Vout

is captured on a D flip-flop to produce Fpost. As described

above, Vout is designed to be high for the one clock period.

The concern for the differential amplifier in the standard axon

hillock is the rise time, while for the proposed domino based

design it is the fall time. Both designs require that the voltage

Vcmpr is quickly driven high so as not to miss a fire. The

proposed domino design does not require the same high speed,

and is limited by the reset time of Vcmpr.
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Fig. 7: Simulation result for the analog axon-hillock neuron.

TABLE I: Performance Metrics for Synchronous AH Neurons

Metric Axon Hillock Axon Hillock

(Flop) (Domino)

Transistor Count 41 28

Energy per Spike (fJ) 140 20

Idle Power (µW) 0.417 2.55

Accumulation Power (µW) 4.76 6.10

Frequency (MHz) 167 167

Table I shows simulation results for the neurons presented

in the 65nm process. The simulation setup between neurons

is intended to be equivalent. The idle power is an average of

power used between accumulations and fires. The idle power

is much lower for the domino logic because there is almost no

current flow through M5, M6, and M7. In the standard axon

hillock, as the differential amplifier output voltage increases,

the current through M5 and M6 increases. This causes a linear

increase in power with accumulated voltage for both idle and

accumulation power. The accumulation power is close to the

same since the same differential amplifier is used. However,

because the differential amplifier needs to reliably control

an inverter in the axon hillock, the bias current is greater.

The accumulation power averages all time where the voltage

Vmem is accumulating current from the synapse output. For the

domino, this constitutes the entire clock cycle for every Fpre.

For the flop based approach, the accumulation power includes

the accumulation of Vmem from the synapse fire, and truncates

the power consumed when Vmem is driven high by the positive

feedback loop Cfb. This is not included in the accumulation

power because it is considered part of the energy per spike.

Energy per spike for the domino includes the energy used in

the clock cycles that produce Fpost and Fpost,t, while for the

flop approach it is measured from when Vout goes high.

V. DISCUSSION

The importance of synchronizing is the ability to reliably

use the output to perform learning for memristive synapses.

The synchronous nature of our system allows for advantages

in terms of power and reliability. However, since the system

requires a high speed clock to keep the feature size small,

issues can arise from the clock. The affects of clock skew

could require control of delay of clock signals used for

capturing the outputs. Also not rigorously defined is the fan out

and fan in limits of the circuit. The fan in into a neuron should

be able to handle a multitude of synapses since the input is

summed currents. The fan out capability is determined by the

strength of the domino logic inverter. If the load capacitance

is excessively high, the drive strength of the inverter will need

to be increased and require larger devices and more energy.

VI. CONCLUSION

In this paper, we have presented the design of a synchronous

analog neuron for robust low power activity. The neuron was

designed to work for memristive synapses that perform online

learning. Given the synchronous nature of our system, we take

advantage of the signals necessary for the learning and utilize

them in reducing power and guaranteeing timing. From our

simulation results we see that the proposed circuit reduces

energy and power along with transistor count.
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