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ABSTRACT

A brain-computer interface that measures the mental workload level of operators has applications
in human-computer interactions (HCI) for reducing human error and improving work efficiency.
In this study, concurrently recorded electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) were combined at the decision fusion stage for the classification of three mental
workload levels induced by an n-back working-memory task. An average three-class classification
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accuracy of 42, 43, and 49% has been achieved across 13 participants for the fNIR-alone, EEG-alone,
and EEG-fNIRS combined approach, respectively. The current study demonstrated a multimodality-
based approach to decode human mental workload levels that may potentially be used for adaptive

HCl applications.

1. Introduction

The human brain has a limited capacity to maintain
and process imminent information in working memory
[1]. Persistently high workload experienced by human
operators such as aircraft pilots and automobile drivers
can be the basis of life-threatening accidents resulting
from decreased human performance [2,3]. Conversely,
extremely low workload levels may cause boredom and
low vigilance which can, in turn, decrease human perfor-
mance and lead to fatal errors [4]. A reliable assessment
technique to monitor human mental workload in real
time is needed for improving performance and reducing
human error [3,5-7].

There are four indicator types for mental workload
assessment: (1) task performance indicators such as time
spent, accuracy, and error rate; (2) subjective rating scales
such as NASA-TLX [8] for self-assessment; (3) physiolog-
ical signals such as functional near-infrared spectroscopy
(fNIRS), electroencephalography (EEG), electrooculogra-
phy (EOG), and electrocardiogram (ECG); and (4) hybrid
approaches using two or more of the aforementioned indi-
cators together [9,10]. With respect to real-time appli-
cation, neurophysiological indicators are the preferred

choice because of their non-intrusive nature to the task
and the continuous availability of the signals. Above all, as
neurophysiological indicators are measurements of brain
activity, they are also more objective and can potentially
reveal direct and finer details of a user’s mental state
compared to the systemic physiological measures, per-
formance indicators, and subjective rating scales [11].
There is a substantial body of evidence on the real-time
evaluation of a user’s mental states using neurophysiolog-
ical signals [12-14]. The phenomenon has recently been
referred to as passive brain-computer interfaces [15,16].
Although there are many neuroimaging techniques avail-
able for acquiring signals from the human brain, EEG
and NIRS are the most suitable for real-life application
because of the lower cost and portability of these devices.

1.1. EEG-based workload assessment

EEG, despite the issues regarding artifacts, is the most
studied and a very popular physiological measurement
for mental workload assessment [17]. As early as 1998,
Gevins, Smith and colleagues investigated EEG-based
n-back classification using spectral features with high (up
to 95%) accuracy reported for classifying two workload
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levels across eight subjects [12]. Furthermore, the classi-
fications were found to be stable across days, participants,
and two different tasks (verbal/spatial n-back). However,
the data were recorded in three sessions of 6-8 hours
time span with two-thirds of the data randomly chosen
for training the classifier. In addition, the EEG data were
visually inspected for artifact rejection before classifica-
tion. All of these methodological assessments could be
prohibitive for practical use. Grimes, Tan, and colleagues
investigated the effect of several factors that might affect
the classification accuracy for the n-back task [14]. These
factors include the time window size of a trial, the amount
of available training data, and the number of EEG chan-
nels. Although all of these factors were found to affect clas-
sification accuracy, the time window size was particularly
sensitive. Using a combination of spectral and phase-co-
herence features, they achieved classification accuracy
comparable to Gevins et al. using as few as 20 min worth
of training data and a 30 s time window size. Brouwer
and colleagues investigated n-back classification across
35 subjects using event-related potential (ERP) features
in addition to the traditionally adopted spectral features
which resulted in improved classification accuracy [18].
Mubhl et al. found that EEG-based n-back classification can
be performed across two affective contexts — relaxed and
stressed — without much performance loss [19].

1.2. fNIRS-based workload assessment

Recently, {NIRS-based mental workload assessment has
gained attention among researchers. fNIRS is an optical
brain imaging technology for monitoring the concen-
tration changes of oxygenated hemoglobin (AHbO) and
deoxygenated hemoglobin (AHbR) in the cortex. It is easy
to set up and particularly suitable for monitoring pre-
frontal activation due to its resistance to eye-movement
artifacts and it is a cost-effective device for measuring cor-
tical activation from the hairless forehead areas. fNIRS
has been used to investigate cognitive activation patterns
under different task load conditions. For example, Ayaz et
al. compared the average fNIRS activation under different
workload levels for n-back tasks [10,20], air traffic control
tasks [21], and UAV piloting tasks [11]. Significant fNIRS
activation was found across the different workload levels.
The potential of {NIRS for workload level classification is
important and the results could establish a framework to
enable future real-time applications. Herff et al. (2014)
investigated single-trial n-back classification using only
prefrontal NIRS [13] and ~78% accuracy was achieved
for discriminating between 1-back and 3-back conditions.
Hong et al. in 2015 investigated fNIRS-based classifica-
tion of three tasks: mental arithmetic, left-hand motor
imagery, and right-hand motor imagery [22]. An average

classification accuracy of 75.6% was achieved across 10
subjects. Naseer and Hong (2015) further investigated
fNIRS-based classification of four tasks: right-hand motor
imagery, left-hand motor imagery, mental arithmetic, and
mental counting [23], which resulted in an average clas-
sification accuracy of 73.3%.

1.3. The concurrent EEG-fNIRS approach

In this study, we investigated workload classification with
concurrent EEG and fNIRS. Our motivation is that EEG
and {NIRS are highly complementary technologies each
having its own advantages and disadvantages. EEG, for
example, is precise in the time domain but lacks spatial
specificity due to the volume conductive effect. {NIRS,
on the other hand, is spatially specific yet lacks the time
precision due to the delay in the hemodynamic response.
EOG contamination is still a concern for EEG especially
in the prefrontal areas despite substantial efforts to either
detect or reduce the effect [24-26]. In contrast, INIRS is
not affected by eye activities and is particularly suitable
for recording in the usually hair-free prefrontal sites.
These qualities further highlight the compatibility for
integration.

Concurrent EEG and fNIRS has been previously inves-
tigated and shows potential for brain-computer interfac-
ing (BCI) [27-35]. Pfurtscheller et al. (2010) described
a hybrid BCI that used fNIRS as a brain switch to turn
on/off a steady-state visual evoked potentials (SSVEP)
BCI [24], while Leamy found that using simultaneous
EEG-fNIRS was able to better differentiate two mental
states of the subjects: motor imagery and rest [28]. Fazli
and colleagues investigated enhancing the performance
of EEG-based real-time motor imagery BCI with fNIRS
using two approaches. In the first approach, they directly
used the fNIRS features in classification [30], while the
second approach, fNIRS was used to predict the per-
formance of an EEG-based BCI that informs a meta-
classifier [29]. Both approaches improved the BCI accuracy
by around 3-5% from a baseline of about 78% achieved by
an EEG-only approach. Morioka and colleagues reported
the enhancement of an EEG-based decoder in a spatial
attention task using fNIRS prior to solving the cortical
current estimation problem [31]. They found that using
EEG cortical sources estimated with prior fNIRS sources
significantly improved decoding accuracy (~79%) com-
pared to the traditional EEG-only approach (~71%). Khan
et al. in 2014 proposed a four-command BCI that used
fNIRS to decode mental-counting/arithmetic and used
EEG to decode left/right hand tapping [34], while Tomita
et al. in 2014 showed that an improved classification can
be achieved by adding fNIRS to detect the on and off state
for an SSVEP-based BCI [33]. Blokland et al. investigated
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Figure 1. Time line of an n-back block.

differentiating motor execution, attempted execution, and
motor imagery from rest for healthy subjects and tetraple-
gia patients [32]. They demonstrated that adding fNIRS
improved classification accuracy approximately 6% for
attempted movement and 7% for imagined movement.
Yin et al. in 2015 extracted EEG time-phase-frequency
features and combined them with fNIRS for the classifi-
cation of a motor imagery task. Adopting a joint mutual
information criterion for feature selection and an extreme
learning machine for classification, a 1-5% improvement
in decoding accuracy was found with the inclusion of
fNIRS [35].

In the area of mental workload classification, the
potency of EEG-fNIRS is yet to be shown. To our knowl-
edge, there are three preliminary studies thus far address-
ing EEG-fNIRS mental workload classification. Hirshfield
et al. investigated the classification of mental workload
levels induced by a plane counting task and reported a
binary classification accuracy of 53-55% (EEG) and
70-72% (fNIRS) [36]. Cofley et al. investigated the clas-
sification of n-back induced workload levels and reported
a 2- vs. 0-back accuracy of 73% (EEG), 61% (fNIRS), and
61% (EEG+fNIRS) [37]. The authors of the two studies
suggested a number of factors that might have affected
accuracies, including but not limited to sensor layout/
placement, signal processing, and the task adopted to elicit
workload changes. Herft and colleagues recently reported
the preliminary results of memory load level classification
with concurrent EEG-fNIRS and showed that feature-level
fusion of the two modalities increased the robustness of
classification using the data recorded from 3 EEG chan-
nels, 4 EOG channels, 28 fNIRS sources, and 15 fNIRS
detectors [38].

The main objective of this study is to investigate the
fusion of EEG and fNIRS to discriminate mental work-
load levels. We adopted the n-back working memory
task, which has been used by numerous working memory
classification studies [12-14,18,19,36,37] to induce three
controlled workload levels: 0-back, 1-back, and 2-back. A
novel approach was employed to combine EEG and {NIRS
at the decision fusion stage by taking into consideration
the different temporal resolutions of the two modalities.

Fixation Blank
15s

The classification performance of the proposed approach
was compared to those achieved by each single modality
alone.

2. Materials and methods
2.1. Participants

Sixteen volunteers (six female) aged between 18 and 30
(mean = 22, standard deviation [SD] = 3) from Drexel
University participated in the study. The Edinburgh
Handedness Inventory showed that participants were
all right-handed and the average Laterality Quotient
(L.Q.) and Decile were 80 (SD = 18) and 6.4 (SD = 3.1),
respectively. Participants self-reported that they had
their vision corrected to 20/20, did not have any his-
tory of neurological or psychiatric disorders, and did
not take any medication known to affect brain activ-
ity. Participants further self-reported to be naive to the
n-back paradigm. One participant was rejected from the
study due to missing fNIRS data. Two more participants
were excluded from the study due to excessive motion
artifact in the fNIRS and EEG measures. As a result,
the data from a total of 13 participants were used in
the analyses. Prior to the experiment, participants gave
written informed consent for their participation in the
study. The protocol was approved by the Institutional
Review Board of Drexel University (IRB protocol:
1409003112).

2.2. Experiment paradigm

A visual verbal n-back task was adopted to manipulate
mental workload level. Subjects sat comfortably in front
of an LED screen. Sequences of capitalized letter stimuli
(~1.7°° visual angle) were shown at the center of the screen.
We employed the BCI2000 software for stimulus delivery
and for the recording of EEG and behavioral data [39].
Each letter was displayed for a duration of 480 ms and the
inter-stimulus interval (ISI) was 2000 ms. Subjects were
instructed to identify target letters and press the ‘enter’
key on a number keypad with their right index finger as
fast as possible. There were three workload conditions. In
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Session 1 Session 2 Session 3 Session 4
[ (Rep. 1-4) ] break [ (Rep. 5-8) } break [(R .o 12)Jbreak [(R ep. 13- 16)]

Repetition 5 Repetition 6 Repetition 7 Repetition 8
1-back | 0-back | 2-back 0-back | 2-back | 1-back 2-back | 1-back | 0-back 1-back | 2-back | 0-back

Figure 2. Experiment outline.

fNIR sensor

Figure 3. Recording setup.

Front view

e P EE @D |
O ] @ @ O

@ Light source @ Light detector Doptode

Figure 4. fNIRS sensor layout.

the 0-back condition, the letter X" was the target. In the
1-back condition, the current letter was the target if it was
shown on the previous screen as well. In the 2-back con-
dition, a letter was the target if it was shown two screens
back. To successfully complete the 2-back task, the per-
former needed to keep updating a memory load of two
letters, the letter on the previous screen and the letter two
screens back.

The letter stimuli were grouped into n-back blocks. Each
block included 7 s of instructions, 40 s of task execution,
and 17 s of fixation. The instruction period informed the
subject which task (0-, 1-, or 2-back) to perform. During
the task period, 16 letters were shown to the participants
on the screen in a pseudo-random order. Five of the let-
ters were targets. No letters appeared more than twice in
succession within a block. In the fixation period, subjects

were instructed to focus their eye gaze on a white plus sign
located at the center of the screen: this fixation allowed
the fNIRS signals to return to the baseline. Figure 1
shows the time line of an n-back block.

There were four recording sessions. Each session
included 12 n-back blocks, 4 from each condition. Hence,
there were 48 n-back blocks for the entire experiment, 16
from each condition. To reduce the relationship between
adjacent samples and to balance time induced experi-
mental factors such as fatigue across the three workload
conditions, the 48 n-back blocks were grouped into 16
repetitions. Each repetition included one block from each
workload condition. The order of the blocks was further
randomly shuffled so that no workload condition was
repeated twice in succession within a session. Before the
start of the first session, subjects practiced one block from
each condition for familiarization with the procedure.
Subjects took a break between the recording sessions for
as long as requested. The entire recording time was about
one hour. Figure 2 shows the outline of the experiment.

2.3. Data acquisition

EEG and {NIRS were simultaneously recorded from the
subjects. Figure 3 illustrates the recording setup.

EEG was recorded using a Neuroscan Nuamp amplifier
from 28 locations according to the International 10-20
system. Two additional electrodes, one placed below the
left eye and the other placed at the right outer canthus,
were used to record electrooculography (EOG) activities.
All channels were grounded at the left mastoid, referenced
to the right mastoid, digitally sampled at 500 Hz and low-
pass filtered at 100 Hz for analysis.

Prefrontal fNIRS was recorded using a 16-channel
continuous-wave fNIRS system developed at Drexel
University [40,41] and manufactured by {NIRS Device
LLC. The sensor included four light sources (LED) that
can emit 730 nm and 850 nm wavelengths light and 10
photo detectors (see Figure 4). The distance between
light sources and detectors is 2.5 cm, which allowed
for a ~1.2 cm penetration depth. Data were sampled
at 2 Hz and recorded using the Cognitive Optical
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Figure 5. EEG-fNIRS workload classification. An LDA was trained
to classify EEG band power features at single-stimulus level (2.5
s epoch). The output scores from the 16 stimuli (of a block) were
averaged to produce the EEG score. Another LDA was trained to
classify fNIRS features extracted from each block (40 s epoch)
to produce the fNIRS score. A meta-LDA was then trained to
optimally combine the EEG score and the fNIRS score for EEG-
fNIRS classification. All of the above procedures were conducted
on training data. All three LDA classifiers were then applied on
testing data to evaluate the classification performance.

Brain Imaging (COBI) studio software [42]. To ensure
repeatable sensor placement, the center of the sensor
was aligned to the midline of the superior forehead and
the bottom of the sensor was touching the participant’s
eye brow.

The EEG and {NIRS signals were synchronized using
stimulus triggers that were sent from the stimulus pres-
entation software BCI2000 [39] to the EEG and fNIRS
data-acquisition devices during recording.

2.4. Signal processing and feature extraction

EEG. The raw EEG were high-pass filtered at 1 Hz to
remove drift and notch-filtered at 58-62 Hz to suppress
line noise using a finite impulse response (FIR) filter
before subsequent analyses. The following 17 channels
were used (according to the 10-20 system): Cz, Fz, Pz,
F3,F4,P3,P4,01,02,F7,F8,T7, T8, C3, C4, P7,and P8.
The EEG epochs were extracted from —500 ms to 2000 ms
with respect to the onset of each single stimulus. Power
spectral density (PSD) has been widely adopted for men-
tal workload characterization [12,14,18,43,44]. The PSD
of each epoch was estimated by adopting a periodogram
with a Hann window. The log band power of § (1-4 Hz), 6
(4-8 Hz), a (8-13 Hz), B, (13-20 Hz), and 3, (20-30 Hz)
bands were used as features. EEG data included 17 [chan-
nels] x 5 [bands] = 85 features and 3 [workload levels] x
15 [blocks] x 16 [stimuli] = 720 samples.

fNIRS. Raw light intensities were first visually
inspected to reject those optodes with inadequate con-
tact or those positioned over the hairline. The Sliding-
window Motion Artifact Rejection (SMAR) algorithm
was adopted to reject motion-artifact-contaminated signal
segments [45]. Raw light intensities were low-pass filtered
at 0.08 Hz using the FIR filter for removing artifacts from

BRAIN-COMPUTER INTERFACES (&) 179

physiological signals such as heartbeat and respiration and
converted into concentration changes in oxy-hemoglobin
(Aoxy-Hb) and deoxy-hemoglobin (Adeoxy-Hb) using
the modified Beer-Lambert law [46]. The Aoxy-Hb and
Adeoxy-Hb epochs of each n-back block were extracted
from the onset of the first stimulus to 2.5 s after the onset
of the last (the 16th) stimulus — a 40 s time window. The
average activation difference between the first 5 s and the
last 35 s of a block was calculated as a feature. The average
activation amplitude with respect to a baseline has been
adopted as the feature for characterizing the mental activ-
ities in many studies [20,40,47-49]. To further decrease
feature size to reduce overfitting, {NIRS features in the fol-
lowing three areas were averaged (see Figure 4 for sensor
layout): left lateral (optode 1-4), medial (optode 5-12),
and right lateral (optode 13-16). fNIRS data included 3
[areas] x 2 (Adeoxy-Hb / Aoxy-Hb) = 6 features and 3
[workload levels] x 15 [blocks] = 45 samples. Alternative
feature options such as slope, peak, and range were
explored but preliminary results suggested they are prone
to outliers and do not outperform the most commonly
adopted average amplitude.

2.5. Classification

We considered the binary classification problem of 2- vs.
0-back, 2- vs. 1-back, and 1- vs. 0-back and the three-class
classification problem of 2- vs. 1- vs. 0-back. The following
three approaches were compared:

o EEG-alone. A linear discriminant analysis (LDA)
was trained to classify EEG features at a single trial
level (2.5 s time windows with respect to a single
stimulus). The LDA outputs from the 16 stimuli of
a block were averaged to produce the EEG score,
which determines the predicted workload levels.

« fNIRS-alone. An LDA was trained to classify fNIRS
features at block level (40 s time windows, included
16 stimuli). The LDA output is termed the fNIRS
score.

o EEG-fNIRS. A meta-LDA was trained to optimally
combine the EEG score and the fNIRS score for
EEG-{NIRS classification (see Figure 5).

For the EEG-based classification, an alternative
method is averaging the band-powers within each block
before LDA classification. However, there are only 15
sample blocks per condition with 85 features. Although
alternative classifiers such as regularized-LDA and sup-
port vector machines can handle this situation, overfit-
ting may become an issue. By training the LDA at the
single stimulus level, the high temporal resolution of
EEG is utilized and the sample size is increased to 240
per condition.
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Figure 6. The number of participants (indicated by gray level) with better than chance-level (i.e. >55.4%) LDA accuracy.

2.6. Performance evaluation

Leave-one-out cross-validation (LOOCV) was adopted
to evaluate classification performance. In LOOCYV, all but
samples from one block were used to train the three LDAs
aforementioned. The LDAs were then applied on the block
that was left out to evaluate classification performance.
This procedure was repeated until all n-back blocks were
left out exactly once.

A one-sided Wilcoxon signed-rank test was adopted
to evaluate whether the median accuracies from the 13
participants were significantly better than 55.4% and
37.8%, the chance level, for the binary and three-class
classification problems, respectively. The chance level is
determined by the upper bound of the 95% confidence
interval assuming the random-guess classification results
follow a binomial/multinomial distribution [50].

2.7. Multiple comparisons

To correct for multiple testing, we adopted false discovery
rate (FDR) control with the Benjamini-Hochberg proce-
dure [51]. Without specification, we rejected null hypoth-
eses for FDR ¢ < .05.

3. Results
3.1. Key-press behavior

We evaluated the effect of mental workload on the key-
press response time (RT) and target identification accu-
racy (TIC) with a repeated-measures one-way analysis of
variance (ANOVA). The RT and TIC measures were nor-
malized across the three workload conditions subject-wise
before statistical tests.

For RT, the mean and SD were 450 + 54 ms, 450 + 88 ms,
and 549 + 145 ms for 0-back, 1-back, and 2-back condi-
tions, respectively. A significant effect of mental workload
level was found (F, ,, = 24.7, p < .001). Post-hoc tests

(2,24)
revealed a significant difference in RT between 0-back

100 T T T
90
80
70
60
50
40
30

Classification accuracy (%)

20 -
10

0

1-4 4-8 8-13 13-20 20-30
EEG frequency band (Hz)

Figure 7. Average and standard deviation of LDA accuracy across
13 participants.

and 2-back (FDR g < .01) and between 1-back and 2-back
conditions (FDR ¢q < .001).

For TIC, the mean and SD were 98.0 + 2.5%, 97.2 + 2.9%,
and 94.0 + 5.8% for 0-back, 1-back, and 2-back conditions,
respectively. ANOVA revealed a significant effect of men-
tal workload (F(z’2 n=39%p< .05). Post-hoc tests found
only a significant difference between 0-back and 2-back
conditions (FDR g < .05).

3.2. Reliability of EEG features

To show the spatial and spectral reliability of EEG features,
LDA accuracies for discriminating 0-back and 2-back
blocks were estimated by adopting subsets of EEG features
and the results are shown in Figures 6 and 7. As expected,
EEG power spectral density (PSD) features were most reli-
able in the alpha band over parietal areas (P3, Pz, and P4).

3.3. Reliability of fNIRS features

To show the reliability of NIRS features, LDA accuracies
for discriminating 0-back and 2-back blocks were esti-
mated by adopting subsets of fNIRS features as shown
in Figure 8. Overall, Aoxy-Hb provided better results
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Figure 8. Average and standard deviation of LDA accuracy across

13 participants. L, left lateral PFC area; M,— medial PFC area; R,
right lateral PFC area; All, all areas included.
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Figure 9. LDA accuracy using fNIRS adopting a moving time
window of 5 s length. Solid line and the shaded area show
average and standard deviation across 13 participants. Horizontal
axis shows mid-point of time window from block start.

Table 1. Comparison of classification results. The results shown
are mean = standard deviation accuracy across 13 participants.

n-back comparison

Accuracy (%) 1vs.0 2vs.0 2vs. 1 2vs.1vs.0
EEG-alone 32.8+11.5  79.2+15.2%  71.0+£18.6%  42.7+12.8
fNIRS-alone 46.7+9.7 65.6+6.1" 59.5+15.4 41.7+£7.9
EEG-fNIRS 38.2+8.8 83.1+£12.6"  72.6+18.1%F  48.7+12.7*

#Significantly better than chance level (FDR g < .05).

compared to Adeoxy-Hb though no significant differences
were found (Wilcoxon signed-rank test, FDR-adjusted).
We evaluated the temporal reliability of NIRS features
by estimating LDA accuracies using the averaged fNIRS
activation within a 5 s moving time window as a feature,
depicted in Figure 9. It can be seen that average accuracy
increases with elapsed time from the block start to its sta-
bilization at approximately 22 s. This can be explained by
the time needed for the participants to start experiencing
workload and the delay of the hemodynamic response.
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3.4. Mental workload classification

Table 1 summarizes the average classification results
achieved by the three approaches (EEG-alone; fNIRS-
alone; EEG-INIRS). For 1- vs. 0-back, none of the
approaches achieved meaningful classification. Together
with the behavioral performance, we found no obvious
workload difference between 0-back and 1-back condi-
tions. For 2- vs. 0-back, all three approaches achieved
accuracies significantly better than 55.4% (the binary
chance level). For 2- vs. 1-back, EEG-alone and the EEG-
fNIRS performed significantly better than chance. Only
EEG-{NIRS achieved accuracies significantly better than
37.8% (three-class chance level) for the 2 vs. 1 vs. 0 case.

The performances achieved by individual subjects using
the three approaches are compared in Figure 10. EEG-
fNIRS outperformed EEG-alone for the 1- vs. 0-back, 2- vs.
0-back, and 2- vs. 1 vs. 0-back (FDR ¢q <.05). By including
fNIRS, an equal or better accuracy was achieved for 12 out
of 13 participants for 2- vs. 1-back and 2- vs. 1- vs. 0-back,
whereas all 13 participants achieved better 2- vs. 0-back
accuracy. EEG-fNIRS outperformed fNIRS-alone only for
the 2- vs. 0-back case (FDR g < .05). Finally, compared
to the fNIRS-alone approach, EEG-alone achieved better
2- vs. 0-back performance (FDR g < .05).

4. Discussion

Hemodynamic response signals may provide additional
information to the commonly adopted electroencepha-
lograph for the discrimination of cognitive tasks. In the
current study, simultaneously recorded EEG-fNIRS was
adopted for the classification of mental workload levels.
The behavioral results suggested a higher mental workload
level was experienced by subjects in the 2-back compared
to 0-back and 1-back conditions. For fNIRS-alone classifi-
cation, we achieved 65.6, 59.5, and 41.7% average accuracy
for 2- vs. 0-back, 2- vs. 1-back, and 2- vs. 1- vs. 0-back,
respectively. For EEG-alone classification, 79.2, 71.0, and
42.7% average accuracies were achieved respectively for
the 2- vs. 0-back, 2- vs. 1-back, and 2- vs. 1- vs. 0-back
tasks.

We next showed that classification performance can be
improved by combining fNIRS and EEG. The 2- vs. 1- vs.
0-back three-class classification accuracy was increased by
an average of 6% and 7% respectively compared to using
only EEG or only fNIRS. By integrating EEG and {NIRS,
the workload classification was significantly higher than
37.8%, the upper bound of the 95% confidence interval
of chance-level accuracy. Previously, EEG-fNIRS has
improved classification over the EEG-alone approach for
motor imagery tasks [29,30,32], spatial attention tasks
[31], and the on/off state of SSVEP-based BCIs. Our study
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Figure 10. Scatter plot comparing classification accuracies. Top row: fNIRS-alone (x-axis) and EEG-alone (y-axis); middle row: fNIRS-
alone (x-axis) and EEG-fNIRS (y-axis); bottom row: EEG-alone (x-axis) and EEG-fNIRS (y-axis). Each circle represents the results from
one participant. The percentage at top left indicates the percent of subjects with equal or improved accuracy by adopting the better
approach. The results from the Wilcoxon signed-rank test with H:x = y and FDR correction are shown at the bottom of each sub-figure.

suggested an improvement may also be obtained for a
working-memory task.

EEG data are often contaminated by EOG artifacts,
particularly at the frontal sites. To investigate whether
reducing EOG contamination may help improve classifi-
cation, we employed an independent component analysis
(ICA) based EOG reduction technique to spatially filter
EEG data and repeated the classification analysis. EOG
reduction resulted in a deterioration of classification per-
formance, which may be caused by a removal of some
useful information along with the EOG components.
This analysis, however, is preliminary. Future work may
be conducted investigating alternative EOG-reduction
techniques [25,52-54].

In this study, a three-class classification accuracy
of 48.7% was achieved by integrating EEG and fNIRS.
Various approaches may be adopted to further improve
the workload classification accuracy. First of all, tech-
niques other than linear discriminant analysis may be

investigated for classification. Naseer et al. in 2016 com-
pared the {NIRS-based binary classification of mental
arithmetic vs. rest using linear discriminant analysis,
quadratic discriminant analysis, k-nearest neighbor,
naive Bayes, support vector machine, and artificial
neural networks (ANN). They found that the ANN
approach provided the best classification. Second, alter-
native features may be adopted to characterize men-
tal workload. In our study, we extracted the average
activation changes and the band powers from fNIRS
and EEG, respectively. Herff et al. adopted the slopes of
straight lines fitted into a moving window as features for
fNIRS characterization [13]. Grimes et al. adopted the
phase-locking values between EEG channels as features
[14]. The size of these features, however, is large. Hence
more sample blocks per subject are needed in order to
prevent overfitting.

The present study demonstrated the potential of the
EEG-fNIRS multimodality approach for measuring
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mental workload level. Despite the promising results,
our study was limited primarily in three aspects. First,
the current experiment was conducted in a controlled
experimental environment and we assumed a synchro-
nized BCI scenario in which the start and end of a task
block are known before signal processing and feature
extraction. In real-life applications, the measuring of
mental workload needs to be able to operate in an asyn-
chronous manner. This could be particularly challenging
for continuous-wave fNIRS considering the feature-ex-
traction procedure involved in baseline correction. A
potential method to solve this problem is to remove
low-frequency trends via high-pass digital filtering or
to apply wavelet-based de-trending [55]. Second, due
to the non-stationary nature of fNIRS and EEG signals,
the test-retest reliability of the proposed approach across
different sessions and days needs careful investigation. In
a real-world application of BCI, a change in the joint dis-
tribution of input features with time - formally known as
the covariate shift - is usually unavoidable. This covari-
ate shift effect may be alleviated by adaptive algorithms,
recently proposed in the literature, that weight training
samples according to their deviation from the distri-
bution of testing data [56,57] or by on-line updating
an estimation of the covariance matrix when new data
are acquired [58,59]. Third, we recruited participants
aged between 18 and 30 years from universities. Since
hemodynamic responses may be different for young
and elderly subjects [60], how age may affect workload
classification requires further investigation. Finally, due
to limitations in simultaneous EEG-fNIRS acquisition
hardware, we recorded fNIRS only from prefrontal sites
and the two prefrontal EEG channels Fp1 and Fp2 were
not recorded. We expect including the Fpl and Fp2 is
unlikely to have an important impact on EEG classifica-
tion results since the prefrontal activities are distributed
to other sites because of the volume conductive effect.
Evidence regarding the Fpl and Fp2 influence on EEG
classification could be found in [14], where using only
16 channels and in some cases 8 channels (both with the
two prefrontal sites excluded) resulted in nearly the same
n-back classification accuracy compared to the accuracy
level using all 32 channels. The impact of including cen-
tral-parietal {NIRS sites, however, is difficult to predict
due to alack of full-scalp fNIRS-based working-memory
classification studies in the literature. Most of the current
work only recorded fNIRS from the hairless prefrontal
sites due to the portability and cost-effectiveness of the
sensor. We expect fNIRS-based classification may be
improved by including the central-parietal sites. Future
work, addressing the aforementioned issues, is needed
to improve our understanding of multimodal workload
classification methods.
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5. Conclusion

In summary, we sought to improve mental workload
classification with simultaneously recorded EEG and
fNIRS. By including fNIRS in addition to EEG, a signif-
icant improvement in classification accuracy was found
despite the relatively low classification accuracy achieved
using only fNIRS. The current study presents a promising
application of the simultaneous EEG-fNIRS approach in
enhancing the performance of a passive BCL
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