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Abstract We present an efficient method for solving optimal stopping prob-
lems with a probabilistic constraint. The goal is to optimize the expected
cumulative cost, but constrained by an upper bound on the probability that
the cost exceeds a specified threshold. This probabilistic constraint causes op-
timal policies to be time-dependent and randomized, however, we show that
an optimal policy can always be selected with “piecewise-monotonic” time-
dependence and “nearly-deterministic” randomization. We prove these prop-
erties using the Bellman optimality equations for a Lagrangian relaxation of
the original problem. We present an algorithm that exploits these properties
for computational efficiency. Its performance and the structure of optimal poli-
cies are illustrated on two numerical examples.
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1 Introduction

Controlled stochastic processes arise in a wide variety of practical applica-
tions. It is frequently useful to consider different objective/utility functions
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and optimize them with respect to the control policies. Many well established
techniques exist to optimize either the expected total cost/reward [1], the prob-
ability of the desired outcome [2,3], the value-at-risk [4], or the expectation
of a nonlinear utility function (e.g., leading to “risk-sensitive” controls) [1]. In
many applications practitioners desire to optimize the expected performance
among the control policies satisfying some hard constraint on the worst-case-
scenario of the accrued cost; e.g., see [5] for examples in optimal routing on
stochastic networks. However, such approaches are not suitable for applica-
tions where “the worst case scenario” is undefined. E.g., there is no way to
guarantee that a particle undergoing (controlled) Brownian motion will reach
the target before any specific deadline.

Our goal is to develop methods for optimizing the expected cost of feedback
policies but under a probabilistic constraint on a specific undesirable outcome.
When minimizing expected cost, the dynamic programming principle states
that an optimal policy also minimizes the remaining expected cost from any
node reached under that policy. Unfortunately, a probabilistic constraint de-
stroys this property since we are constraining the probability of an event over
an aggregate of trials. However, allowing for randomized policies leads to the
existence of a Lagrange multiplier such that the dynamic programming equa-
tions hold for a Lagrangian relaxation of the original problem [6]. Specifically,
the optimal policies minimize the expected cost penalized by the probabilis-
tically constrained value with a Lagrange multiplier. The Bellman equations
for the penalized problem lead to techniques to both analyze and compute
optimal policies.

To illustrate this general approach, we focus on a particularly simple ex-
ample in discrete time and space: an optimal stopping problem for a random
walk on a graph (formulated in §2). Its simplicity allows us to emphasize the
analytic properties of optimal policies (see §3) circumventing many technical
difficulties present in more realistic applications in financial engineering or
robotic path planning. We exploit the structure of the problem to introduce
efficient algorithms with rigorous algorithmic analysis in §4, which are then
tested on discretizations of 1D continuous optimal stopping problems in §5.
We conclude by listing several directions for future work in §6.
Relation to prior work. The study of probabilistic constraints in optimal
control goes back to at least the work of White [7], where he considers er-
godic problems with constraints on the frequency of visiting parts of the state
space. His work is based on the probability distributions over the set of de-
terministic policies (where the choice among them is made at the beginning).
He demonstrates how deterministic policies can be used to determine the La-
grange multiplier – the approach similar to our Proposition 3.1 and Algorithm
4.1 of §4. Using linear programming, White shows that an optimal policy can
be selected as a randomized choice between two deterministic policies.

More recently, two approaches to probabilistically constrained stochastic
optimal control problems were considered by Pfeiffer [8]. One approach uses
a dynamic programming principle and deterministic policies on a state space
that is extended to include the constrained value. The second is a Lagrangian
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relaxation approach similar to ours, which Pfeiffer realizes as a Legendre trans-
form of the value function from the first approach. Pfeiffer finds that the La-
grangian relaxation provides the more efficient computational method; see [8]
for detailed algorithmic/numeric analysis. The state space extension increases
the dimension of the problem and introduces a new approximation of the set
of possible constrained values, both of which are computationally undesirable.

In contrast with these prior papers, we focus on the randomized feedback
(Markov) stopping-policies and the probabilistic constraint on the total cumu-
lative cost. We define a subclass of “piecewise-monotonic nearly-deterministic”
stopping-policies, and we show that it contains the optimal solution to the orig-
inal problem. However, the presence of ‘degenerate points’ introduces compu-
tational challenges in computing that solution directly. Instead, we start by
producing a pair of piecewise-monotonic deterministic policies, one feasible
and the other super-optimal (see Algorithm 4.1), which are then efficiently
mixed by Algorithms 4.2 and 4.3 to produce a nearly-deterministic output.
Both of these deterministic policies could also be computed by the more gen-
eral approaches in [7] and [8], but the mixing procedure is significantly different
since White’s and Pfeiffer’s resulting policies are non-Markovian and the de-
cision may be randomized at multiple points. In Theorem 4.1 we prove the
convergence of our algorithm to the optimal stopping-policy in finitely many
steps.

2 Stochastic Optimal Stopping Problem Formulation

The domain is a finite undirected graph with vertices X. Elements of X0 ⊂ X
are designated as target nodes, and the optimal stopping problem is posed on
X1 = X\X0. We use N(x) ⊂ X\{x} to denote the set of vertices adjacent to
x ∈ X1. For simplicity, we will assume that N(x) is non-empty and each x ∈
X1 is path-connected to X0. Supposing that a transition probability function
p : X → [0, 1] is known, we consider a stopped random walk Ξt on X with
(random) stopping-time τ ∈ N, time parameter t ∈ {0, . . . , τ}, and individual
transition probabilities:

P
(
Ξt+1 = y | Ξt = x

)
=


p(x)/|N(x)|, if y ∈ N(x),

1− p(x), if y = x,

0, otherwise.

We assume that p(x) = 0 for x ∈ X0 and p(x) > 0 for x ∈ X1. An initial
distribution is prescribed on X1 such that P (Ξ0 = x) = Φ0(x), for Φ0 a non-
negative function on X1 that sums to 1. Each step prior to termination costs
k > 0, and the decision to terminate at x ∈ X costs ψ(x). We assume that
ψ(x) > 0 for x ∈ X1 and ψ(x) = 0 for x ∈ X0. If the process terminates at
time τ , the total incurred cost is

Υ = kτ + ψ(Ξτ ). (1)
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We encode the termination decision as a randomized feedback stopping-
policy, of the class AR = {A : X1×N→ [0, 1]}, where A(x, t) is the probability
the process terminates given Ξt = x. Throughout the paper, the term policy,
used without additional qualifiers, will refer to elements of AR. We assume the
process always terminates prior to or upon entering X0 for the first time as
any other decision always increases the cost. We sometimes refer to A(x, t) for
x ∈ X0, which is always 1. We now consider the expected cost and probabilistic
constraint to be functions of the policy, although we do not make this explicit
in the notation. The precise calculation of these quantities from A(x, t) is in
§3.2. Based on our assumptions that x is path-connected to X0 and p(x) > 0
for each x ∈ X1, the case τ = ∞ occurs with probability zero. Similarly, it is
not hard to show that E[τ ] <∞ and thus E[Υ ] <∞ for any policy.

We focus on a probabilistically constrained optimal stopping (PCOS) prob-
lem with constant non-negative parameters π and ε:

PCOS Given P (Ξ0 = x) = Φ0(x), find A∗ ∈ AR that minimizes the expected
cost, E[Υ ], subject to the probabilistic constraint, P (Υ > π) ≤ ε.
We will refer to the expected cost of an optimal policy A∗, as E∗ or the the
value of PCOS and to the corresponding constrained value as P ∗. The optimal
policy depends not only on π and ε, but also on Φ0. If the constraint is satisfied
for a given policy, we say that this policy is feasible.

We briefly remark on a couple important policy subclasses and the special
case of PCOS that does not include a constraint. The deterministic feedback
stopping-policies are AD = {A : X1×N→ {0, 1}}, and the process terminates
at time t if A(Ξt, t) = 1. The stationary deterministic feedback policies, AS ,
are the policies in AD that do not depend on time. The unconstrained problem
(ε ≥ 1) over the set AR has an optimal policy A

∗ ∈ AS , and A
∗

also does not

depend on Φ0. We demonstrate how to determine A
∗

in §3.1.

3 Optimality Criteria

3.1 Unconstrained Problem

As a preliminary step to solving PCOS, we consider the unconstrained problem
to minimize the expected cost. An optimal policy may be determined from the
optimal cost-to-go function, which is defined by U(x) = infA∈AR{E[Υ | Ξ0 =
x]} for x ∈ X1, and U(x) = 0 for x ∈ X0. The dynamic programming principle
implies that U solves the Bellman equations for x ∈ X1:

U(x) = min
{
ψ(x),M [U ](x) + k

}
; (2)

where the difference operator, M : R|X| → R|X1|, is defined for functions on
X and evaluated at a point x ∈ X1 as

M [U ](x) =
(
1− p(x)

)
U(x) +

∑
ξ∈N(x)

p(x)

|N(x)|
U(ξ). (3)
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The unconstrained problem can be reduced to a simple form of a stochastic
shortest path problem (Chapter 3.4 of [9]). The latter has a unique solution
that can be found by value iterations, which is covered in [10] and Chapters

2 and 3.4 of [9]. The optimal policy at x ∈ X1 is A
∗
(x) = 0 (diffuse) if

U(x) < ψ(x) and A
∗
(x) = 1 (terminate) if M [U ](x) + k > ψ(x). In the

degenerate case that M [U ](x) + k = ψ(x), either choice is optimal.

3.2 Constrained Optimality Equations

For PCOS with 0 < ε < 1, the optimal policies are generally neither stationary
(in AS) nor even deterministic (in AD). We let T1 = bπ/kc and T0(x) =
b(π − ψ(x))/kc. Terminating a process at (x, t) for t ≤ T0(x) satisfies Υ ≤ π,
whereas terminating at the same position and t > T0(x) does not.

Observation 3.1 To determine if there exists a feasible policy for PCOS, we
consider the policy, Am, that minimizes the constraint. It is given simply by
Am(x, t) = 1 if t ≤ T0(x) and Am(x, t) = 0 otherwise. We define the minimal
constrained value to be Pm = P (Υ > π) for this policy. If Pm > ε, then there
is no feasible policy for PCOS.

The calculation of A 7→ E[Υ ] and A 7→ P (Υ > π), in equations (4), (5)
and (6), shows that both maps are continuous. The existence of minimizers
over AR can be obtained by reducing PCOS to a finite time horizon version,
for which AR is compact. Indeed, Υ ≤ π definitely fails whenever the stopping-
time τ exceeds T1 = bπ/kc. Thus, any feasible A ∈ AR will remain feasible

and will not increase in expected cost if we set A(x, t) = A
∗
(x) for all t ≥ T1.

The observation above suggests a reformulation of the problem with finite
time horizon. We let the cost equal kτ + ψ(Ξτ ) as before if τ ≤ T1, and
otherwise we take the cost to be kT1 + U(ΞT1

). Recall that U(x) is the value
function of the unconstrained problem, or, equivalently, the expected cost of
the policy given by A(x, t) = A

∗
(x) for all t.

We introduce three new functions, Φ, R and Z, in order to capture the
dependence of E[Υ ] and P (Υ > π) on A(x, t). These functions depend on the
policy, although this is not made explicit by the notation. We define Φ(x, t) =
P (Ξt = x) to be the probability of finding the process at position x and time
t prior to termination. At the initial time, Φ(x, 0) = Φ0(x) is given, and for
x ∈ X and 0 < t ≤ T1

Φ(x, t) =
(
1−A(x, t− 1)

)(
1− p(x)

)
Φ(x, t− 1) (4)

+
∑

ξ∈N(x)

(
1−A(ξ, t− 1)

) p(ξ)

|N(ξ)|
Φ(ξ, t− 1).

Let Z(x, t) = E[Υ − kt | Ξt = x] be the expected cost-to-go, and R(x, t) =
P (Υ > π | Ξt = x) be the conditional constrained value. The expected cost
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and constrained value are recovered by the inner products:

E[Υ ] =
∑
ξ∈X1

Φ0(ξ)Z(ξ, 0), (5)

P (Υ > π) =
∑
ξ∈X1

Φ0(ξ)R(ξ, 0). (6)

The functions Z and R satisfy backward Kolmogorov equations that are ad-
joint to the evolution of Φ. At time T1, Υ > π with probability one so the
terminal conditions are R(x, T1) = 1 and Z(x, T1) = U(x) for all x ∈ X1. If
Ξt ∈ X0 for t ≤ T1 then Υ = kt ≤ π so R(x, t) = 0 and Z(x, t) = 0 for all
x ∈ X0. The backwards evolutions at x ∈ X1 and 0 ≤ t < T1 are given by

R(x, t) =
(
1−A(x, t)

)
M [R(·, t+ 1)](x) +A(x, t)χ(x, t), (7)

Z(x, t) =
(
1−A(x, t)

)(
M [Z(·, t+ 1)](x) + k

)
+A(x, t)ψ(x), (8)

where χ(x, t) encodes whether Υ ≤ π for termination with Ξt = x;

χ(x, t) =

{
1, kt+ ψ(x) > π,
0, kt+ ψ(x) ≤ π. (9)

From the definition of T0(x), χ(x, t) is also the indicator function of the set
where t > T0(x), when termination causes failure of the constraint.

With the definitions of Z and R, and the evolution equations (7) and (8),
the following relationships hold for 0 ≤ t < T1:

E[Υ ] =
t−1∑
s=0

∑
ξ∈X1

Φ(ξ, s)
((

1−A(ξ, s)
)
k +A(ξ, s)ψ(ξ)

)
(10)

+
∑
ξ∈X1

Φ(ξ, t)
((

1−A(ξ, t)
)(
M [Z(·, t+ 1)](ξ) + k

)
+A(ξ, t)ψ(ξ)

)
,

P (Υ > π) =

t−1∑
s=0

∑
ξ∈X1

Φ(ξ, s)A(ξ, s)χ(ξ, s) (11)

+
∑
ξ∈X1

Φ(ξ, t)
((

1−A(ξ, t)
)
M [R(·, t+ 1)](ξ) +A(ξ, t)χ(ξ, t)

)
.

In (10) and (11), we have isolated the dependence of E[Υ ] and P (Υ > π) on
A(x, t) for fixed (x, t).

We will apply the KKT conditions with the constraints A(x, t) ∈ [0, 1] and
P (Υ > π) ≤ ε. We first check the Mangasarian-Fromowitz constraint qualifica-
tion condition. If we assume that the minimal constrained value satisfies Pm <
ε, it is sufficient to show that for every feasible policy, A ∈ AR, there exists a
variation, B, such that for all sufficiently small δ > 0: A(x, t)+δB(x, t) ∈ ]0, 1[
for all (x, t) and, if P (Υ > π) = ε, d

dδP (Υ > π) < 0. The variation d
dδP (Υ > π)

can be computed directly from (11). If P (Υ > π) = ε then there is some (x′, t′)
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where A(x′, t′) 6= Am(x′, t′) and Φ0(x′, t′)(χ(x′, t′) −M [R(·, t′ + 1)](x′)) 6= 0.
We will define B(x′, t′) = Am(x′, t′) − A(x′, t′). At all other points we will
define B(x, t) = b where A(x, t) = 0, B(x, t) = −b where A(x, t) = 1, and
B(x, t) = 0 where A(x, t) ∈ (0, 1). This verifies the constraint qualification
condition because d

dδP (Υ > π) < 0 for sufficiently small b > 0.
For optimal A∗, the KKT optimality conditions provide the existence of

multipliers for individual constraints:
• the Lagrange multiplier λ∗ ≥ 0 corresponding the probabilistic constraint,
• γ+(x, t) ≥ 0 corresponding to the constraints A∗(x, t) ≤ 1, and
• γ−(x, t) ≤ 0 corresponding to A∗(x, t) ≥ 0.
With these multipliers the following equality holds (using linearity of M) for
each (x, t),

0 =γ+(x, t) + γ−(x, t) (12)

+ Φ(x, t)
(
−M [Z(·, t+ 1) + λ∗R(·, t+ 1)](x)− k + ψ(x) + λ∗χ(x, t)

)
.

Moreover, the complementary slackness principles are satisfied. If P (Υ > π) <
ε then λ∗ = 0. If A∗(x, t) < 1 then γ+(x, t) = 0, and if A∗(x, t) > 0 then
γ−(x, t) = 0. We will interpret these conditions as a dynamic programming
principle.

We define V ∗(x, t) = Z(x, t) +λ∗R(x, t) and define the Hamiltonian, given
v ∈ R|X| and a ∈ [0, 1], to be

H
(
v, x, t, λ, a

)
=
(
1− a

)(
M [v](x) + k

)
+ a
(
ψ(x) + λχ(x, t)

)
. (13)

We consider four cases:
1) If Φ(x, t) = 0, then the expected cost and constraint are independent of the
choice of policy. Otherwise:
2) If M [V ∗(·, t+ 1)] (x)+k > ψ(x)+λ∗χ(x, t) then using γ− ≤ 0, (12) implies
that γ+(x, t) > 0. Complementary slackness implies that A∗(x, t) = 1.
3) If M [V ∗(·, t+ 1)] (x)+k < ψ(x)+λ∗χ(x, t) then γ−(x, t)<0 and A∗(x, t)=
0.
4) If M [V ∗(·, t+ 1)] (x) +k = ψ(x) +λ∗χ(x, t) then the Hamiltonian does not
depend on a at (x, t). We denote the set of such degenerate points by

D∗ =
{

(x, t) : M [V ∗(·, t+ 1)] (x) + k = ψ(x) + λ∗χ(x, t)
}
. (14)

In all cases, the Hamiltonian achieves its minimum for a ∈ [0, 1] at A∗(x, t).
The function V ∗ satisfies V ∗(x, T1) = U(x) + λ∗ for x ∈ X1, V ∗(x, t) = 0

for x ∈ X0 and 0 ≤ t ≤ T1, and the backward evolution is given by

V ∗(x, t) = H(V ∗(·, t+ 1), x, t, λ∗, A∗(x, t))

= min
a∈[0,1]

H(V ∗(·, t+ 1), x, t, λ∗, a)

= min
{
ψ(x) + λ∗χ(x, t),M [V ∗(·, t+ 1)](x) + k

}
(15)

for x ∈ X1 and 0 ≤ t < T1; where the last equality follows from the three cases
analyzed above. Remarkably, the quantity V ∗(x, t) is the same for any optimal
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policy and can be reinterpreted as the optimal cost-to-go of the following λ-
penalized problem with λ = λ∗: Given λ ≥ 0, find A ∈ AR that minimizes
E[Υ ] + λP (Υ > π).

We have shown the following proposition:

Proposition 3.1 Suppose that Pm < ε. There exists an optimal Lagrange
multiplier, λ∗ ≥ 0, such that if A∗ ∈ AR is optimal, i.e. a minimizer of
PCOS, then

– for V ∗ determined by (15), A∗(x, t) is a minimizer of the Hamiltonian
defined in (13), with v = V ∗(·, t+ 1), for each (x, t) where Φ(x, t) > 0,

– and for the probabilistic constraint corresponding to A∗, the complementary
slackness holds that λ∗P ∗ = λ∗ε,

Equations (15) are the optimality equations for the λ∗-penalized problem,
which gives V ∗ the alternate interpretation of

V ∗(x, t) = inf
A∈AR

{
E[Υ − kt | Ξt = x] + λ∗P (Υ > π | Ξt = x)

}
.

Another useful equation relating V ∗, λ∗ and the optimal expected cost is∑
ξ∈X1

Φ0(ξ)V ∗(ξ, 0) =E∗ + λ∗ε. (16)

Equation (16) follows from Equations 5 and 6, and λ∗P ∗ = λ∗ε. This allows
us to determine E∗ from V ∗ and λ∗, avoiding the calculation of Z.

The difficulty remains that P ∗ depends on the policy through (7), and
λ∗ is determined implicitly from the constraint. By considering the family of
λ-penalized problems with different λ, we can solve the constrained problem
by determining the value of λ∗ such that either P ∗ = ε or λ∗ = 0. The
solution V ∗ to (15) determines the policy, except at the degenerate points,
D∗, where the Hamiltonian is minimized for all a ∈ [0, 1]. Due to the presence
of degenerate points, not every policy that is optimal for the λ∗-penalized
problem is feasible or optimal with the constraint. We find in Theorem 4.1 that
while such degenerate points occur generically, the optimal policy only needs to
be randomized, A∗(x, t) ∈ ]0, 1[, for at most one pair (x, t) ∈ X1×{0, . . . , T1}.

3.3 Linear Programming Approach

We remark on an alternative approach to formulate PCOS and prove Propo-
sition 3.1 that has complementing advantages. The optimality conditions of
the following linear program do not require a constraint qualification (thus
covering the case ε = 0) and are sufficient for the optimality of A (provided
it is feasible, and A, λ and V satisfy the conditions of Proposition 3.1).

We consider the variables Φ̂(x, t) = (1 − A(x, t))Φ(x, t) and Φ̃(x, t) =
A(x, t)Φ(x, t). Clearly, Φ̂(x, t) + Φ̃(x, t) = Φ(x, t), and if Φ(x, t) > 0 then
the correspondence between (Φ̂, Φ̃) ∈ R+ × R+ and (Φ,A) ∈ R+ × [0, 1] is
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one-to-one. (In the degenerate case Φ(x, t) = 0, the expected cost and the
probabilistic constraint are independent of A(x, t).)

Equation (4) becomes a linear equation of Φ̂ and Φ̃, without additional
occurrence of A, for t ∈ {1, . . . , T1} and x ∈ X,

Φ̂(x, t) + Φ̃(x, t) =
(
1− p(x)

)
Φ̂(x, t− 1) (17)

+
∑

ξ∈N(x)

p(ξ)

|N(ξ)|
Φ̂(ξ, t− 1),

where we consider Φ̂ defined only on X0×{0, . . . , T1− 1}, and the convention
that A(x, t) = 1 yielding Φ(x, t) = Φ̃(x, t) is used when x ∈ X0 or t = T1. The
initial condition is prescribed for x ∈ X1 by

Φ̂(x, 0) + Φ̃(x, 0) =Φ0(x). (18)

Similarly, E[Υ ] and P (Υ > π) can be expressed as linear functions of Φ̂ and Φ̃
from (10) and (11),

E
[
Υ
]

=
∑
ξ∈X1

T1−1∑
t=0

[
kΦ̂(ξ, t) + ψ(ξ)Φ̃(ξ, t)

]
+ U(ξ)

(
Φ̂(ξ, T1) + Φ̃(ξ, T1)

)
, (19)

−P
(
Υ > π

)
= −

∑
ξ∈X1

T1−1∑
t=1

χ(ξ, t)Φ̃(ξ, t) +
(
Φ̂(ξ, T1) + Φ̃(ξ, T1)

)
≥ −ε. (20)

We can now express PCOS as a linear program to minimize (19) for the vari-
ables Φ̂(x, t) ≥ 0, where x ∈ X1 and t ∈ {0, . . . , T1 − 1}, and Φ̃(x, t) ≥ 0 for
x ∈ X and t ∈ {0, . . . , T1}, with constraints (17), (18), and (20).

The dual variable σ ≥ 0 corresponds to (20), and the dual variables W (x, t)
correspond to (17) for t > 0 and correspond to (18) for t = 0. The dual linear
program is to maximize

−σε+
∑
ξ∈X1

Φ0(ξ)W (ξ, 0)

subject to

W (x, t) ≤ U(x) + σ, x ∈ X1, t = T1,

W (x, t) ≤ 0, x ∈ X0, t ∈ {0, . . . , T1},
W (x, t) ≤ M

[
W (·, t+ 1)

]
(x) + k, x ∈ X1, t ∈ {0, . . . , T1 − 1},

W (x, t) ≤ ψ(x) + σχ(x, t), x ∈ X1, t ∈ {0, . . . , T1 − 1}.

It is easy to see that (λ∗, V ∗) of Proposition 3.1 form the optimal (σ,W ) for
this dual linear program. This equivalence shows in particular that the value
of PCOS is convex with respect to ε. While our formulation in terms of A and
Φ loses convexity with respect to the policies A, we gain a causal dependency
that allows us to prove monotonicity properties in time as well as develop an
efficient numerical algorithm.
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3.4 Qualitative Analysis of Optimal Policies

Before presenting our algorithms that take advantage of the structure of op-
timal policies, we review the qualitative behavior of optimal policies. Any
(stationary feedback) policy in AS can be equivalently described by specifying
its “termination set” Σ; i.e., all nodes in X1 where that policy prescribes an
immediate termination. For policies in AD the description is similar except
that the set Σ(t) is now time-dependent. Even for the randomized policies in
AR that we consider, it is useful to study the set Σ(t) ⊂ X1 where a policy
prescribes termination with probability one.

Suppose Σ
∗ ⊂ X1 is an optimal “termination set” for the unconstrained

problem. For PCOS, we can assume that Σ∗(t) = Σ
∗

for t ≥ T1. Prior
to T1, the probabilistic constraint might create an incentive to change the
expectation-optimal behavior encoded in Σ

∗
. Figure 3.1 illustrates this for

two examples (described in detail in §5). We particularly highlight two regions

in X1 × N where Σ∗(t) and Σ
∗

are different:

– When T0(x) < t ≤ T1, we have Σ∗(t) ⊂ Σ
∗
. Region I in Figure 3.1A

represents the nodes, for which it is now optimal to diffuse, even though
the unconstrained optimal policy would terminate. Termination at this
stage would cause the cost to exceed π, while there is still a chance to
finish with cost less than π by diffusing.

– When t ≤ T0(x), we have Σ
∗ ⊂ Σ∗(t). Region II represents the nodes, for

which it is optimal to terminate even though the unconstrained optimal
policy would continue to diffuse. Up until T0(x) immediate termination
is guaranteed to make the total cost lower than π, making termination a
more attractive option for some nodes.

– Despite a “discontinuous” change in the termination set at t = T0(x),
Figure 3.1A shows a certain “piecewise-monotonicity.” If either 0 ≤ r ≤
s ≤ T0(x) or T0(x) < r ≤ s ≤ T1, then x ∈ Σ∗(r) implies that x ∈ Σ∗(s).

Before proving the last property rigorously in Lemma 3.1, we define the
subset AP ⊂ AR of “piecewise-monotonic” policies.

Definition 3.1 We say that a policy A ∈ AR is piecewise-monotonic, A ∈
AP , if there are switching-times S0 : X1 → {0, . . . , T0(x) + 1}, S1 : X1 →
{T0(x)+1, . . . , T1+1}, and A0, A1 : X1 → [0, 1] such that for t ∈ {0, . . . , T0(x)}
and x ∈ X1:

A(x, t) =

0, t < S0(0),
A0(x), t = S0(x),
1, t > S0(x),

and, for t ∈ {T0(x) + 1, . . . , T1} and x ∈ X1:

A(x, t) =

0, t < S1(0),
A1(x), t = S1(x),
1, t > S1(x).
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(A) (B)

Fig. 3.1: The optimal termination set Σ∗(t) = {(x, t) : A∗(x, t) = 1} for Example 5.2 on
the left and Example 5.1 on the right. The vertical dashed lines indicate the boundaries of
Σ
∗
. In subfigure (B), the parameters values are such that Σ

∗
= ∅.

If A(x, t) ∈ {0, 1} for each t ∈ {0, . . . , T0(x)}, then we choose S0(x) as large as
possible so that A0(x) = 1, and the same for S1(x) and A1(x). We note that
S0(x) = T0(x) + 1 or S1 = T1 + 1 correspond to the policy that diffuses for
t ∈ {0, . . . , T0(x)} or t ∈ {T0(x) + 1, . . . , T1} respectively.

We also say that a policy is nearly-deterministic,A ∈ AN ⊂ AR, ifA(x, t) ∈
{0, 1} for all but one point (x, t).

There are optimal policies for the λ-penalized problem that are piecewise-
monotonic and deterministic. This structure is used to compute an optimal
policy to PCOS of class AP ∩ AN in §4.

Lemma 3.1 There exists a mapping λ 7→ Aλ ∈ AP ∩AD for λ ≥ 0 such that:

– For all λ ≥ 0, Aλ ∈ AP ∩ AD and Aλ minimizes E[Υ ] + λP (Υ > π). We
define {Sλ0 , Sλ1 } to be the switching-times for Aλ as in Definition 3.1.

– For all 0 ≤ λ1 < λ2 and x ∈ X1, Sλ1
0 (x) ≥ Sλ2

0 (x) and Sλ1
1 (x) ≤ Sλ2

1 (x).

Proof Suppose that V is the solution to (15) for the given value of λ. First,
we show by induction that V (x, t) is non-decreasing in t for each x ∈ X, and

V (x, t) ≥ min
{
ψ(x) + λχ(x, t),M [V (·, t)](x) + k

}
. (21)

Since U(x) + λ = min
{
ψ(x) + λ,M [U(·) + λ](x) + k

}
, we may extend (15)

for later times by defining V (x, t) = λ+ U(x) for all x ∈ X and t > T1. This
makes (21) hold with equality for times later than T1. Now we suppose that
V (x, t+ 1) ≤ V (x, t+ 2) and (21) holds for V (x, t+ 1). Then

V (x, t) = min
{
ψ(x) + λχ(x, t),M [V (·, t+ 1)](x) + k

}
≤min

{
ψ(x) + λχ(x, t+ 1),M [V (·, t+ 1)](x) + k

}
≤ V (x, t+ 1).

The relation (21) holds at time t because M is monotone (the coefficients are
non-negative) so M [V (·, t+ 1)](x) ≥M [V (·, t)](x).
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We define Aλ ∈ AP ∩ AD as

Aλ(x, t) =

0, M [V (·, t+ 1)](x) + k < ψ(x) + λχ(x, t),
1− χ(t), M [V (·, t+ 1)](x) + k = ψ(x) + λχ(x, t),

1, M [V (·, t+ 1)](x) + k > ψ(x) + λχ(x, t).
(22)

This policy is piecewise-monotone because χ(x, t) is piecewise-constant in time
and M [V (·, t + 1)](x) is monotonically-nondecreasing. Aλ minimizes E[Υ ] +
λP (Υ > π) because it minimizes the Hamiltonian of (13) at each point. In the
case of a degenerate points, we have chosen to minimize the constrained value
– this will imply that Aλ is feasible for PCOS if λ is an optimal Lagrange
multiplier. We also note that Aλ(x, T1) equals A

∗
(x), an optimal policy for

the unconstrained problem, and is the same for all λ.
Now suppose that 0 ≤ λ1 < λ2 and V 1, V 2 are the corresponding solutions

to (15). We set W = V 2 − V 1. By considering the four possibilities of the
maximum in (15), we find that for all (x, t),

W (x, t) ≥min{M [W (·, t+ 1)](x), (λ2 − λ1)χ(x, t)}, (23)

W (x, t) ≤max{M [W (·, t+ 1)](x), (λ2 − λ1)χ(x, t)}. (24)

Suppose that W (y, s) ≥ 0 whenever y ∈ X1 and t < s ≤ T1. Then since the
coefficients within M are non-negative, M [W (·, t+1)](x) ≥ 0, and (23) implies
that W (x, t) ≥ 0. When t ≤ T0(x) and M [V 1(·, t + 1)](x) + k > ψ(x) (it is
optimal to terminate), then it must be the case that M [V 2(·, t+ 1)](x) + k >
ψ(x), hence Sλ1

0 (x) ≥ Sλ2
0 (x).

Equation (24) similarly implies that W (x, t) ≤ λ2 − λ1. For t > T0(x), if
M [V 2(·, t+ 1)](x) + k > ψ(x) + λ2 then

M [V 1(·, t+ 1)](x) + k ≥M [V 2(·, t+ 1)](x) + k + λ1 − λ2
>ψ(x) + λ1,

which implies Sλ1
1 (x) ≤ Sλ2

1 (x). ut

4 Solution Algorithms

Our computational approach is detailed in Algorithms 4.1, 4.2 and 4.3. We
start with a brief discussion of their respective goals and the relationship to
the theoretical results from §3. We let Π = {ψ, k, ε, π,X0, X1, p,N, Φ0} be the
collection of problem parameters, with an additional algorithmic parameter
∆, which effects the performance but is not a part of the problem statement.

Our goal in Algorithm 4.1 is to find a pair of Lagrange multipliers, {λf , λs},
and a corresponding pair of policies, {Af , As}, such that Af is feasible, As is
super-optimal, and |λf − λs| < ∆. The expected cost and constrained prob-
ability pairs associated with these policies will be denoted as (Ef , P f ) and
(Es, P s) respectively. Lemma 3.1 describes a constructive approach for imple-
menting the map λ 7→ Aλ ∈ AP ∩ AD. Here we rely on this map, choosing
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Af = Aλ
f

and As = Aλ
s

. Theorem 4.1 shows that Aλ is feasible whenever
λ ≥ λ∗, the optimal Lagrange multiplier, and Aλ is super-optimal whenever
λ < λ∗. We define λ = 1

2 (λf +λs) and compute the corresponding Aλ. The al-
gorithm then checks whether this policy is feasible, which determines whether
λ should replace the current λf or λs, producing a narrower interval strad-
dling the optimal λ∗. The bisection continues until the width falls below the
prescribed threshold ∆.

In order for Algorithm 4.1 to be successful, it must be initialized with
a value of λf for which the corresponding policy is feasible. Recall that the
policy which minimizes the constrained value is given in Observation 3.1 with
P (Υ > π) = Pm and E[Υ ] = Em, and we let E0 =

∑
ξ∈X1

Φ0(ξ)U(ξ) be

the expected cost of the unconstrained problem. Thus, if we initialize λf =
(Em−E0)/(ε−Pm) as in [8], the corresponding policy Af is feasible because
the constrained value satisfies

P f =
(Ef + λfP f )− Ef

λf
≤ (Em + λfPm)− E0

λf
= ε.

One simple approach for combining Af and As comes from the linear pro-
gramming interpretation in §3.3. The interpolation of (1 − γ)Φ̃f + γΦ̃s and
(1− γ)Φ̂f + γΦ̂s would result in a policy

Aγ =
(1− γ)AfΦf + γAsΦs(

(1− γ)Φf + γΦs
) . (25)

To ensure its feasibility we could then solve

(1− γ)P f + γP s = 0.02

for γ, however, this policy would be randomized at each point where Af and
As differ and generally would not inherit the piecewise-monotonic structure.

In contrast, the goal of Algorithms 4.2 and 4.3 is to carefully blend Af

and As to produce a feasible nearly-deterministic policy A], whose value will
be better than Ef . This improved policy is in fact optimal if ∆ is sufficiently
small, cf. Theorem 4.1. We focus on the set of “nearly-degenerate” points
D̃ ⊂ X × {0, . . . , T1} where Af and As differ, and change from Af to As as
long as the policy remains feasible. Due to the piecewise-monotonic structure
shown in Lemma 3.1 (i.e., Sf0 ≤ Ss0 , but Ss1 ≤ Sf1 ), we move forward in time
when changing points in D̃0 = {(x, t) ∈ D̃ : t ≤ T0(x)} (Algorithm 4.2) and
backward in time for points in D̃1 = {(x, t) ∈ D̃ : t > T0(x)} (Algorithm
4.3).
Additional implementation details:

1. All policies are stored in piecewise-monotonic form, and we refer to the
switching-times of Af as {Sf0 , S

f
1 } and to those of As as {Ss0 , Ss1}. The

earlier switching-times of the current policy, S0, are increased in Algorithm
4.2, and then the stopping-times of S1 are decreased in Algorithm 4.3.
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Algorithm 4.1: Solve PCOS
Input: ∆, Π
Output: A], P ], E]

1 Compute Pm and Em from Am as defined in Observation 3.1;
// If minx∈X1

T0(x) ≥ 0 then Pm = 0 and Em =
∑
ξ∈X1

Φ0(ξ)ψ(ξ)

2 Solve the unconstrained problem by value iterations [9] to obtain U ;

3 E0 =
∑
ξ∈X1

Φ0(ξ)U(ξ);

4 λ = 0; λs = 0; λf = (Em − E0)/(ε− Pm);
5 repeat
6 Solve (7) and (15) with λ to determine V and R;

7 A = Aλ, determined from (22) given V ;
8 P =

∑
ξ∈X1

Φ0(ξ)R(ξ, 0);

9 E = −λP +
∑
ξ∈X1

Φ0(ξ)V (ξ, 0);

10 if P ≤ ε
11 [λf , Af , P f , Ef ] = [λ,A, P,E];
12 else
13 [λs, As, P s, Es] = [λ,A, P,E];

14 λ = 1
2

(λs + λf );

15 until λf − λs < ∆;

16 if P f < ε and λf > 0

17 [A[, P [, E[] = Algorithm 4.2 (Af , As, P f , Ef , Π);

18 if P [ < ε

19 return [A], P ], E]] = Algorithm 4.3 (A[, As, P [, E[, Π);
20 else

21 return [A], P ], E]] = [A[, P [, E[];

22 else
23 return [A], P ], E]] = [Af , P f , Ef ];

2. The current policy, A, of Algorithms 4.2 and 4.3 is feasible and determin-
istic until it is possible to solve for P (Υ > π) = ε with a randomized
termination probability, in which case the resulting nearly-deterministic
policy is labelled A]. If all the points have been updated by Algorithm 2,
the resulting policy A[ equals As for t ≤ T0(x) and equals Af for t > T0(x).

3. The dependences of P (Υ > π) and E[Υ ] on A(x, t) are isolated in (11)
and (10), and require M [R(·, t + 1)](x), M [Z(·, t + 1)](x) and Φ(x, t). In
Algorithm 4.2, we compute Φ(x, t) from the values of Φ(x, t− 1), and since
we follow Af for the remaining time (see Figure 4.1), we use the values
of M [Rf (·, t + 1)](x) and M [Zf (·, t + 1)](x) on D̃0. In Algorithm 4.3, we
compute R(x, t) and Z(x, t) using R(·, t + 1) and Z(·, t + 1), and we use
the values of Φ(x, t) on D̃1 that were computed in Algorithm 4.2.

4. Suppose that P (Υ > π) = P and E[Υ ] = E with corresponding R and
Z values, and that we change the value of the policy from A(x, t) = A to
A(x, t) = An. Then the new constrained value is

Pn = P +
(
An −A)

)
Φ(x, t)

(
χ(x, t)−M [R(·, t+ 1)](x))

)
, (26)

and the new value of the expected cost is

En = E +
(
A−An

)
Φ(x, t)

(
M [Z(·, t+ 1)](x) + k − ψ(x)

)
. (27)
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We note that in Algorithm 4.2, when Af (x, t) 6= As(x, t), we will always
have that A = 1 and χ(x, t) = 0, yielding χ(x, t) −M [R(·, t + 1)] ≤ 0.
On the other hand, in Algorithm 4.3 we will have A = 0, χ(x, t) = 1 and
χ(x, t)−M [R(·, t+ 1)] ≥ 0. In either case, the choice of An that minimizes
the expected cost while maintaining feasibility is

An = min
{
χ(x, t),

ε− P
Φ(x, t)

(
χ(x, t)−M [R(·, t+ 1)](x)

) +A
}
. (28)

If Φ(x, t)(χ(x, t) −M [R(·, t + 1)](x)) = 0 then An = χ(x, t). However, we
only use (28) under the conditions that it maintains piecewise-monotonicity,
i.e. S0(x) = t if t ≤ T0(x) or S1(x) = t + 1 if t > T0(x), and it does not
increase the expected cost, i.e. M [Z(·, t + 1)](x) + k − ψ(x) ≤ (≥) 0 if
t ≤ T0(x) (t > T0(x)).

5. While we cannot tell a priori if the selected ∆ is small enough to guarantee
that A] is optimal, this is easy to check after the fact; see a brief discussion
after Theorem 4.1. Although our implementation does not rely on this idea,
it could be used to avoid specifying ∆ and iterate until the full convergence.

Algorithm 4.2: Resolve degeneracies forward

Input: Af , As, P f , Ef , Π
Output: A[, P [, E[

1 D̃0 =
{

(x, t) | Sf0 (x) ≤ t < Ss0(x)};
2 {S0, S1, A0, A1} = {Sf0 , S

f
1 , A

f
0 , A

f
1};

3 Compute Rf and Zf from t = T1 to t = 0;

4 Store M [Rf (·, t+ 1)](x) and M [Zf (·, t+ 1)](x) for all (x, t) ∈ D̃0;

5 P = P f ; E = Ef ; Φn = Φ0;
6 for t = 0 : 1 : T1 do
7 Φc = Φn;
8 for x ∈ X1 do
9 if t > 0

10 Update Φn(x) by (4) using Φc(·) and A(·, t− 1);
// Φn(x) = Φ(x, t) and Φc(x) = Φ(x, t− 1)

11 if (x, t) ∈ D̃0 and S0(x) = t
12 if Φn(x) > 0
13 if M [Zf (·, t+ 1)](x) + k ≤ ψ(x)
14 Update A0(x), P and E from (26-28);
15 if P = ε

16 return [A[, P [, E[] = [A,P,E];
17 else
18 S0(x) = t+ 1; A0(x) = 1;

19 else
20 S0(x) = t+ 1;A0(x) = 1;

21 return [A[, P [, E[] = [A,P,E];
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Algorithm 4.3: Resolve degeneracies backward

Input: A�, As, P �, E�, Π
Output: A�, P �, E�

1 D̃1 =
{
(x, t) | Ss

1(x) ≤ t < S�
1(x)};

2 {S0, S1, A0, A1} = {S�
0, S

�
1, A

�
0, A

�
1};

3 Compute Φ from t = 0 to t = T1; // Same Φ as Algorithm 4.2

4 Store Φ(x, t) for all (x, t) ∈ D̃1;

5 P = P �; E = E�; Rn = 1; Zn = U ;
6 for t = T1 : −1 : 0 do
7 Rc = Rn; Zc = Zn;
8 for x ∈ X1 do

9 if (x, t) ∈ D̃1 and S1(x) = t+ 1
10 if Φ(x, t) > 0
11 if M [Z(·, t+ 1)](x) + k ≥ ψ(x)
12 S1(x) = t; A1(x) = 0;
13 Update A1(x), P and E from (26-28);
14 if P = ε
15 return [A�, P �, E�] = [A,P,E];

16 else
17 S1(x) = t; A1(x) = 1;

18 if t < T1

19 Update Rn(x) by (7) using Rc(·) and A(·, t+ 1);
// Rn(x) = R(x, t) and Rc(x) = R(x, t+ 1)

20 Update Zn(x) by (8) using Rc(·) and A(·, t+ 1);
// Zn(x) = Z(x, t) and Zc(x) = Z(x, t+ 1)

21 return [A�, P �, E�] = [A,P,E];

Fig. 4.1: The current policy for fixed x ∈ X1 in Algorithm 4.2 is drawn schematically for
t ≤ T0(x) on the left and for Algorithm 4.3 and t > T0(x) on the right. The Algorithms
proceed in the direction indicated by the arrows.

4.1 Algorithm Analysis

The number of iterative steps of Algorithm 4.1 is �− log2Δ+ log2 λ
f� for the

initial value of λf . For each iterative step, the solution of equations (7) and
(15) occurs in one pass through space and time, i.e. of complexity O(|X1|T1).
More notably, the values are only stored for two time slices, so the memory
required is O(|X1|). Of course, we also require a solution to the unconstrained
problem. The value iterations will converge linearly to U , i.e. having complex-
ity O(|X1|| log κ|), where κ > 0 is an error threshold. Alternatively, policy
iterations can be used, which will often find the exact solution in a small
number of steps, but each of them requires solving a linear system of size |X1|.
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Algorithms 4.2 and 4.3 work in a single pass through the space-time points
so have complexity of O(|X1|T1) (with possibly an additional pass to compute
M [Rf (·, t+ 1)](x) and M [Zf (·, t+ 1)](x) or Φ(x, t)). We only store the value
of Φ, R and Z in two times slices and on D̃. The piecewise-monotonic pol-
icy only requires {S0(x), A0(x), S1(x), A1(x)} for each x. Thus, the memory
requirement is O(|X1|+ |D̃|).

The following Theorem summarizes the properties of Algorithms 4.1-4.3.

Theorem 4.1 Let λ∗ be an optimal Lagrange multiplier for PCOS.

1. If λ∗ = 0 then there is an optimal deterministic policy, A∗ ∈ AP ∩ AD,
which is also optimal for the unconstrained problem.

2. If λf ≥ λ∗ > λs ≥ 0 then the policy Af is feasible, and the policy As is
super-optimal.

3. There exists ∆ > 0 (dependent on λ∗) such that if λf − λs ≤ ∆ then
D̃ ⊂ D∗ and As = Af = A∗ outside of D∗.

4. For any ∆ > 0, Algorithm 4.1 outputs a feasible policy A] ∈ AP ∩ AN .
Algorithms 4.2 and 4.3 result in E] ≤ E[ ≤ Ef . If ∆ > 0 is sufficiently
small then A] is optimal.

Proof 1. Any minimizer of the unconstrained problem has by definition ex-
pected cost E0 ≤ E∗. So, if it is also feasible, it must be optimal for PCOS.
In Lemma 3.1 we choose to minimize P as a tie-breaker when the policy
is not uniquely determined (see (22)), which ensures Aλ ∈ AP ∩ AD with
λ = 0 is a feasible minimizer of the unconstrained problem.

2. We now show that if λf ≥ λ∗ then Af is feasible. By construction, Af is
a minimizer of E[Υ ] + λfP (Υ > π). If λf = λ∗ then Af is feasible by the
choice of tie-breaker. Assume now that λf > λ∗. Since Af and A∗ minimize
the respective λf and λ∗-penalized problems, it follows that

Ef + λfP f ≤E∗ + λfP ∗, (29)

Ef + λ∗P f ≥E∗ + λ∗P ∗.

Then subtracting the equations we have

(λf − λ∗)P f ≤ (λf − λ∗)ε.

Similarly, for the super-optimal policy, we consider the expected cost, Es,
and constraint, P s. Then using the same argument, but multiplying the
second line by λs/λ∗, we arrive at(

1− λs

λ∗

)
Es ≤

(
1− λs

λ∗

)
E∗.

3. Next we show that if λf − λs is small enough, the policies Af and As do
not differ from A∗ outside of D∗. We let V α be the solution of (15) with
λα. By finiteness of the domain X1 × {0, . . . , T1}, there exists δ > 0 such
that if (x, t) 6∈ D∗ then

|M [V ∗(·, t+ 1)](x) + k − ψ(x)− λ∗χ(x, t)| ≥ δ. (30)
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In Lemma 3.1 we found that |V α(x, t)−V β(x, t)| ≤ |λα−λβ |. Suppose
that M [V ∗(·, t+ 1)](x) + k < ψ(x) + λ∗χ(x, t) and it is optimal to diffuse
at (x, t). Then

M [V α(·, t+ 1)](x) + k ≤M [V ∗(·, t+ 1)](x) + k + |λα − λ∗|
≤ψ(x) + λ∗χ(x, t) + |λα − λ∗| − δ
≤ψ(x) + λαχ(x, t) + 2|λ∗ − λα| − δ. (31)

Thus if 2|λα − λ∗| < δ then

M [V α(·, t+ 1)](x) + k <ψ(x) + λαχ(x, t),

and Aα agrees with the optimal policy at (x, t). In the case that ψ(x) +
λ∗χ(x, t) < M [V ∗(·, t+ 1)](x) + k,

ψ(x) + λαχ(x, t) ≤ψ(x) + λ∗χ(x, t) + |λα − λ∗|
≤M [V ∗(·, t+ 1)](x) + k + |λα − λ∗| − δ
≤M [V α(·, t+ 1)](x) + k + 2|λα − λ∗| − δ. (32)

If we select ∆ > 0 such that 2∆ < δ, then Af and As both agree with A∗

for (x, t) 6∈ D∗, and in particular D̃ ⊂ D∗.
4. We use Af and As to construct an optimal policy A] ∈ AP ∩AN assuming
∆ is sufficiently small, as detailed in Algorithms 4.2 and 4.3. If λf = 0
then part 1 implies that A] = Af is optimal. If instead P f = ε, the same
follows from part 2.

We assume that P < ε is the value of P (Υ > π) for the current pol-
icy of Algorithm 4.2. We update the policy when t ≤ T0(x), (x, t) ∈ D̃,
M [Zf (·, t+1)](x)+k ≤ ψ(x) (so that the update does not increase the cost),
and S0(x) = t (so that the update does not break piecewise-monotonicity).
In this case we set A(x, t) from (28), which maximizes P (Υ > π) subject
to A(x, t) ∈ [0, 1] and P (Υ > π) ≤ ε. This update increases the switching-
time, S0(x), maintains the feasibility and the piecewise-monotonic struc-
ture of A, and does not increase E[Υ ]. The constraint P updates from (26),
leading to two possible outcomes: if P = ε then we have constructed our
desired A] = A[ = A ∈ AP ∩AN , otherwise P < ε and A is still piecewise-
monotonic and deterministic. We will need to show that in the case that
D̃ ⊂ D∗, the conditions M [Zf (·, t + 1)](x) + k ≤ ψ(x) and S0(x) = t are

always satisfied. The switching-time begins with S0(x) = Sf0 (x) so that if

(x, t) ∈ D̃ and t ≤ T0(x) then t ≥ Sf0 (x) and (x, Sf0 (x)) ∈ D̃. Since the up-
date either increases S0(x) or terminates the algorithm, we will only need
to check that M [Zf (·, t+ 1)](x) + k ≤ ψ(x) for (x, t) ∈ D̃ with t ≤ T0(x).

Supposing that P [ < ε still holds after Algorithm 4.2, we now work
backwards through the points (x, t) ∈ D̃ when t > T0(x) in Algorithm 4.3;
see Figure 4.1 for the structure of the policy. If M [Z(·, t + 1)](x) + k ≥
ψ(x) and S1(x) = t + 1, then we update A(x, t) and P at degenerate
points as described in (28) and (26). Again there are two cases: if P = ε
then we are finished with A] = A ∈ AP ∩ AN , otherwise P < ε and
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A remains deterministic and feasible. We will also need to check that if
D̃ ⊂ D∗ then M [Z(·, t + 1)](x) + k ≥ ψ(x) and S1(x) = t + 1 are always

satisfied. Since we begin with S1(x) = Sf1 (x) ≥ Ss1(x), if (x, t) ∈ D̃ and

t > T0(x) then t < Sf1 (x) and (x, Sf0 (x) − 1) ∈ D̃. The update either
decreases S1(x) or terminates the algorithm, so we only need to check that
M [Z(·, t+ 1)](x) + k ≥ ψ(x) for (x, t) ∈ D̃ with t > T0(x).

The process described above, and detailed in Algorithms 4.2 and 4.3,
constructs a policy A] ∈ AP ∩ AD with P ] ≤ ε and E] ≤ Ef . When
λf − λs ≤ ∆ is sufficiently small, A] only differs from an optimal policy
on the degenerate set D∗ by part 3. For any policy A that differs from an
optimal policy only on D∗, the corresponding Z and R satisfy Z(x, t) +
λ∗R(x, t) = V ∗(x, t) for all (x, t) and

M [Z(·, t+ 1)](x) + λ∗M [R(·, t+ 1)](x) + k =ψ(x) + λ∗χ(x, t) (33)

for (x, t) ∈ D∗. Then it follows that M [Zf (·, t + 1)](x) + k ≤ ψ(x) for
(x, t) ∈ D̃ with t ≤ T0(x), and that M [Z(·, t + 1)](x) + k ≥ ψ(x) for Z
corresponding to the current policy of Algorithm 4.3 and (x, t) ∈ D̃ with
t > T0(x). Thus for ∆ sufficiently small as in part 3, Algorithms 4.2 and
4.3 update the policy for each (x, t) ∈ D̃. They must terminate with P ] = ε
because otherwise, by the end of Algorithm 3, A] would agree with As and
would thus satisfy P ] > ε. From Proposition 3.1, E] + λ∗P ] = E∗ + λ∗ε,
so the termination with P ] = ε ensures that E] = E∗. ut

We briefly comment on how to check if A] is optimal, i.e. whether ∆ was suffi-
ciently small. By Proposition 3.1, if P ] < ε and λf > 0 then A] is not optimal.
Recall that any pair (λ, V ) that solves (15) is feasible for the dual linear pro-
gram of §3.3. The duality principle implies that E∗+λε ≥

∑
ξ∈X1

Φ0(ξ)V (ξ, 0),

which becomes an equality (16), for optimal (λ∗, V ∗). In the case that P ] = ε,
if we define

λ] =
Ef + λfP f − E]

ε

then part 3 of Theorem 4.1 implies λ] = λ∗ for sufficiently small ∆. For V ]

solving (15) with λ], if E] + λ]ε =
∑
ξ∈X1

Φ0(ξ)V ](ξ, 0) then A] is optimal.

5 Examples

We present two examples corresponding to a discretization of a continuous
one-dimensional problem. The continuous domain is [0, 1], and the process is
a Brownian motion scaled by

√
2d. The target set is the boundary {0, 1}. Cost

is accrued at a rate of k̂ and the early termination penalty is a constant ψ > 0.
Without the probabilistic constraint, the expected cost can be minimized by
computing the value function u : [0, 1]→ R, which is a viscosity solution of a
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quasi-variational inequality [11], [12]:

u(x) =0, x ∈ {0, 1},

max
{
u(x)− ψ,−d∆u(x) + k̂

}
=0, x ∈ ]0, 1[. (34)

Here, we discretize the spatial domain by X = {xi = i∆x}2ni=0 with the
separation ∆x = 1/(2n), and the target set X0 = {x0 = 0, x2n = 1}. Each
interior node (|X1| = 2n− 1) is adjacent to its two neighbors on the interval.
Given a time-step∆t > 0, the consistent discretized probability to transition to
a neighboring node is d∆t/∆x2 so p(x) = 2d∆t/∆x2. The CFL condition (i.e.

p(x) ≤ 1) yields ∆t ≤ ∆x2/(2d). Once we have chosen ∆t, we set k = k̂∆t.
With the constraint parameters π and ε, we now have a discrete problem
of the form introduced in §2. We consider two different initial conditions, a
point-mass in the center with Φ0(xn) = 1, or the discretization of a uniform
distribution with Φ0(x) = 1/(2n− 1) for each x ∈ X1. The C++ code used to
generate the numerical data is available on GitHub [13].

Remark 5.1 The function V , which solves (15), is always symmetric,

V (x, t) = V (1− x, t) ∀ (x, t) ∈ X × N, (35)

so V could be determined on X from the values on nodes {0, . . . , xn}. Despite
the computational gains from this reduction, we do not pursue it here, solving
equations on the entire X1 to highlight the generality of our approach.

Example 5.1 We use the parameters d = 0.25, k̂ = 1, π = 1, ψ = 0.9, ε = 0.02,
Φ0(xn) = 1, n = 200, and ∆t = 1/100,000. Thus T1 = bπ/kc = bπ/(k̂∆t)c =
100,000 and T0 = b(π−ψ)/kc = 10,000. The policy to always diffuse is optimal
without the constraint with expected cost E[Υ ] ≈ 0.5 but fails the constraint
with constrained value P (Υ > π) ≈ 0.1080. For PCOS, we use ∆ = 10−6 in
Algorithm 4.1 and it terminates with λf ≈ 4.2441. The corresponding con-
strained values satisfy P s > 0.02 > P f with P s − P f ≤ 10−7. The expected
cost is Ef ≈ 0.7842 and Ef−Es ≤ 10−7. The termination set of Af is shown in
Figure 3.1B. As explained in §3.4, in this example there is no incentive to trig-
ger an early termination for t > T0. The switching-times for Af and As agree
everywhere except for x ∈ {x183, x217} where Sf0 (x) = 7814 and Ss0(x) = 7815.
Algorithm 4.2 finds the nearly-deterministic optimal policy A] = A[ = A∗

with A](x183, 7814) ≈ 0.4572 and A](x217, 7814) = 1.
The conditional constrained value R(x, 0) using A] is shown in Figure 5.1B.

As required, P (Υ > π) =
∑
ξ∈X1

Φ0(ξ)R(ξ, 0) = R(xn, 0) = 0.02 holds up to
machine precision. However, R(x, 0) > 0.02 on a large part of the domain. This
counterintuitive property is a result of using the optimal A]. (R(x, 0) would
certainly be monotone increasing on {0, . . . , xn} if we used the unconstrained
optimal policy to always diffuse instead.)

In Figure 5.2 we plot the dependence of λf on ε for small values of n
(n = 5 and n = 25 with ∆t = 1/(50n2)). Since we use ∆ = 10−6, this can
can be also viewed as graphs of λ∗. The Lagrange multiplier, λ∗(ε), jumps
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(A) (B)

Fig. 5.1: The conditional constrained value, R(x, 0), for Examples 5.2 (A) and 5.1 (B).

discontinuously to 0 when the policy to always diffuse becomes feasible. The
discontinuity occurs because U(x) < ψ so penalizing the constrained value by
λ > 0 may not be enough incentive to terminate. We also plot the values of
Ef and Es showing how the benefit of randomization becomes smaller as n
increases. The optimal randomized policy will attain the expected cost that
linearly interpolates the points at which Ef and Es agree. These points can
be seen as corners of the rectangles traced by Ef and Es in Figure 5.2. The
difference Ef −E] is as high as 0.997 for n = 5 and ε = 0.0703, but decreases
with n, e.g. for n = 25 the difference Ef −E] never exceeds 0.0190 regardless
of ε.

Example 5.2 All the parameters are the same as in Example 5.1 except for
d = 0.05, ∆t = 1/20,000, and a uniform initial distribution, Φ0(x) = 1/(2n−1)
for all x ∈ X1. Due to the smaller diffusive constant, the CFL condition
requires only 1/5 as many time steps. In our case we have T1 = 20,000 and

T0 = 2,000. The unconstrained optimal policy A
∗

terminates for x ∈ [0.3, 0.7],
yielding P (Υ > π) ≈ 0.1421 and E[Υ ] ≈ 0.7218.Again using∆ = 10−6, we find
λf ≈ 0.7605, the expected cost is Ef ≈ 0.7434 and Ef −Es ≤ 10−7, and again
we have P s > 0.02 > P f and P s − P f ≤ 10−7. The termination set is non-
empty for all times; see Figure 3.1A. The policies Af and As agree for all t >
T0, and the switching-times, Sf0 and Ss0 , only differ for x ∈ {x96, x304} where

Sf0 (x) = 421 and Ss0(x) = 422. The nearly-deterministic optimal policy A[

from Algorithm 4.2 is actually optimal, i.e. A[ = A] = A∗, with A](x96, 421) =
0 and A](x304, 421) ≈ 0.8820. R(x, 0) is plotted in Figure 5.1A.

6 Conclusions

We have studied a prototypical stochastic optimal stopping problem with a
probabilistic constraint, and found that it can be solved using dynamic pro-
gramming with a Lagrange multiplier appearing as an additional parameter.
It is easy to determine the optimal value of the Lagrange multiplier due to
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Fig. 5.2: On the left λ∗(ε) is plotted with parameters and initial distribution from Example
5.1 and different discretizations of the continuous problem. On the right we show the feasible
and super-optimal values Ef and Es for the same problems.

a monotonic relationship with the constraint. The optimal policies are time-
dependent, depend on the initial distribution, and require randomization. How-
ever, we prove there are optimal policies that are nearly-deterministic with a
piecewise-monotonic structure, which allows for efficient computation.

A few generalizations of this problem present interesting questions. Depen-
dence of transition probabilities on additional control variables will result in a
more general stochastic shortest path problem (SSP) with more complicated
optimality equations; however, the arguments in Proposition 3.1 will still ap-
ply. We therefore expect to find “nearly-deterministic” optimal policies, but
not the structural property of “piecewise-monotonicity.” Whether there are
more general assumptions on the transition probabilities that lead to compu-
tationally useful properties of optimal policies is an interesting question for
further research. Another non-trivial extension is to allow for inhomogeneous
or random running costs k(x, t). The usual approach is to expand the state
space to keep track of the accumulated cost as an additional dimension. The
obvious computational drawbacks make it attractive to search for a subclass of
problems or alternate solution techniques, where the increase in dimensionality
can be avoided.

Multiple probabilistic constraints (e.g., P (Υ > π1) ≤ ε1 and P (Υ >
π2) ≤ ε2) can be handled similarly [7,8], although our notion of “piecewise-
monotonic” and “nearly-deterministic” policies would have to be generalized.
We have focused on the problem of minimizing the expected cost, but our
approach might also be applicable with other objective functions, e.g. “risk-
sensitive” controls [1].

Finally, a continuous version of this problem provides interesting exercises
in stochastic analysis and variational inequalities. A part of the difficulty is that
randomized stopping-policies in feedback form are not as natural in the contin-
uous setting. Instead, the analysis will have to focus on trajectory-dependent
randomized stopping-times [14] or a linear programming formulation analo-
gous to that of §3.3. For state-constraints in general controlled drift-diffusion
processes, a natural approach is the “stochastic maximum principle” [15]. But
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the probabilistic constraint violates its technical assumptions, so some modi-
fication of that theory would be required.
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