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Distributionally Robust Contingency-Constrained
Unit Commitment

Chaoyue Zhao , Member, IEEE, and Ruiwei Jiang, Member, IEEE

Abstract—This paper proposes a distributionally robust
optimization approach for the contingency-constrained unit
commitment problem. In our approach, we consider a case where
the true probability distribution of contingencies is ambiguous,
i.e., difficult to accurately estimate. Instead of assigning a (fixed)
probability estimate for each contingency scenario, we consider a
set of contingency probability distributions (termed the ambiguity
set) based on theN −ksecurity criterion and moment infor-
mation. Our approach considers all possible distributions in the
ambiguity set, and is hence distributionally robust. Meanwhile,
as this approach utilizes moment information, it can benefit
from available data and become less conservative than the robust
optimization approaches. We derive an equivalent reformulation
and study a Benders’ decomposition algorithm for solving the
model. Furthermore, we extend the model to incorporate wind
power uncertainty. The case studies on a 6-Bus system and the
IEEE 118-Bus system demonstrate that the proposed approach
provides less conservative unit commitment decisions as compared
with the robust optimization approach.

Index Terms—Distributional robustness,N −ksecurity crite-
rion, unit commitment.

NOMENCLATURE

A. Sets
T Index set of time periods.
N Index set of all buses.
E Index set of all transmission lines.
E(n,·) Index set of transmission lines from busn.
E(·,n) Index set of transmission lines to busn.
G Index set of all generators.
Gn Index set of generators at busn.
H Index set of all system components,H=G∪E.

B. Parameters

NLi No-load cost for generatori.
SUi Start-up cost for generatori.
SDi Shut-down cost for generatori.
UTi Minimum up-time for generatori.
DTi Minimum down-time for generatori.
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LBi Minimal power output if generatoriis on.
UBi Maximal power output if generatoriis on.
RUi Ramp-up limit for generatori.
RUi Start-up ramp-up limit for generatori.
RDi Ramp-down limit for generatori.
RDi Shut-down ramp-down limit for generatori.
βi Unit cost of electricity generation from generatoriin

theth piece of its approximate fuel cost function.
γi Constant term in theth piece of the approximate fuel

cost function of generatori.
Kmn Capacity of transmission line(m, n).
θ̄n Maximal value of the phase angle at busn.
θn Minimal value of the phase angle at busn.
Xmn Reactance of transmission line(m, n).
Mmn Sufficiently large constant number to linearize the

power flow equation of transmission line(m, n).
Fi(·) Fuel cost function of generatori.
Dnt Load at busnin time periodt.
Wnt Wind power output at busnin periodt.
P+nt Unit penalty cost for load shedding at busnin

periodt.
P−nt Unit penalty for over-generation at busnin periodt.
pn Failure probability of busn.
pm,n Failure probability of transmission line(m, n).
nH Number of geographical zones.

C. First-Stage Variables

yit Binary decision variable to indicate the on/off status
of generatoriin periodt. “1” if it is on and “0”
otherwise.

uit Binary decision variable to indicate if generatori
starts up at the beginning of periodt. “1” if it starts
up and “0” otherwise.

vit Binary decision variable to indicate if generatori
shuts down at the beginning of periodt. “1” if it
shuts down and “0” otherwise.

τ, α Dual variables of the distributionally robust
formulation.

D. Second-Stage Variables

xit Amount of electricity generated by generatoriin
periodt.

ftmn Power flow on transmission line(m, n)in periodt.
θnt Phase angle at busnin periodt.
q+nt Amount of load shedding at busnin periodt.
q−nt Amount of over-generation at busnin periodt.
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λ,η,δ,κDual variables of the second-stage formulation.
ζ,π Auxiliary variables for linearizing the bilinear

terms.
E. Random Parameters

zi Binary variable indicating the contingency status of gen-
eratori. “0” if it is under contingency and “1” otherwise.

zmn Binary variable indicating the contingency status of trans-
mission line(m, n). “0” if it is under contingency and “1”
otherwise.

I. INTRODUCTION

SECURITY criterion is a critical component for maintain-ing power system reliability in daily operations. As extreme
weather (e.g., heat waves and snowstorms) increases in both fre-
quency and intensity, contingencies in power grids can become
more often and severe. Meanwhile, the growing penetration of
renewable energy (e.g., wind power) increases the instability
of power grids. One of the most well-known security criteria
in industrial practice is theN−1criterion ([1], [2]): a power
system withNcomponents (including transmission lines and
generators) needs to continue meeting the electricity loads when
any single component suffers a contingency. This criterion can
be generalized to theN−kcase (e.g., [3], [4]), which allows
the simultaneous failure of anykor fewer components. Based
onN−1and/orN−kcriteria, many research works have
considered reliability in power system planning and operational
models, e.g., transmission expansion planning [5], [6], transmis-
sion switching [2], [7], and electricity market clearing [8]–[10].
An important stream of research, to which this paper attempts
to contribute, incorporates security criteria in the unit commit-
ment problem and is called the contingency-constrained unit
commitment (CCUC). A CCUC model aims to optimally ad-
just pre-contingency generation schedules so that the power
grid remains reliable when contingencies take place (e.g., [9],
[11]–[16]).
A key component of the CCUC models is to identify con-

tingencies. The classical approach is to set up a set of credible
contingencies based on power engineering expertise and indus-
trial practices, and ensure the system reliability in all credible
contingencies. For example, [9] optimizes energy and reserve
scheduling by considering all contingency scenarios in a pre-
specified credible set. [17] identifies a small subset of credible
contingencies (called “umbrella contingencies”) that can lead to
a similar level of security as compared to considering all credible
contingencies. More recently, [18] proposes a co-optimization
framework for energy and ancillary services, and utilizes a
Benders’ decomposition approach to address the contingency
constraints.
Another important stream of research focus on stochastic

CCUC models that incorporate the probability of contingen-
cies. Different from the classical approach based on credible
sets, stochastic CCUC can optimize the expected value of social
welfare that covers all credible contingencies and their likeli-
hood of occurring. For example, [11], [12] consider a stochastic
security-constrained market clearing model and estimate the
probability of outages based on reliability theory and histori-
cal failure rates. [13] studies a stochastic CCUC model under

significant wind integration, and couples wind power, load, and
contingency in each scenario. [14] shows that incorporating
reserves in stochastic CCUC models can enhance both system
cost-effectiveness and reliability. [19] considers the possibility
of voluntary load reductions in better response to contingen-
cies. In addition to the consideration of expected social welfare,
[8] studies the probability of loss-of-loads and the expected
amount of loads not served in contingencies. More recently,
[20] formulates a chance constraint in the stochastic CCUC
model to ensure low probability of loss-of-loads. Although ef-
fective and extensively studied, the stochastic CCUC model still
faces challenges. For example, the model can become harder
to solve as the number of credible contingencies increases. In
particular, this computational challenge is significant when con-
sidering theN−ksecurity criterion with exponentially many
contingencies.
To overcome this challenge, robust optimization models, i.e.,
robust CCUC approaches are proposed to find the most critical
contingencies via solving an optimization problem. Under the
N−ksecurity criterion, [15], [21] propose first studies of find-
ing the worst-case generator outages, [16] applies a RO model
to compute the worst-case loss-of-load considering generator
outages, and [22] extends the RO approach in [15] to incor-
porate both generator and transmission line outages. On the
one hand, a unique feature of the robust CCUC approaches is
that they can automatically identify the contingencies that have
large impacts on the power system. On the other hand, they often
raise concerns of over-conservatism, i.e., sacrificing the average
cost-effectiveness in exchange of better cost-effectiveness in the
worst-case scenarios. Indeed, robust CCUC approaches focus on
the “worst-case” contingency while ignoring its probability of
occurring. This could lead to an unnecessarily high average cost
if the worst-case contingency is unlikely to occur in practice.
In this paper, we propose a distributionally robust optimiza-

tion (DRO) approach for solving the CCUC problem, termed the
DR-CCUC approach. This approach considers the probability
of contingency occurring and the corresponding expected total
costs and hence is less conservative than the robust CCUC ap-
proach. Meanwhile, DR-CCUC identifies critical contingencies
via solving optimization problems, and hence can handle expo-
nentially many contingencies as in theN−ksecurity criterion.
More precisely, we construct an ambiguity set of contingency
probability distributions that match theN−ksecurity criterion
and the available moment information (e.g., component fail-
ure probabilities, failure probability confidence intervals, etc).
By exploiting more information on the contingency probabil-
ity, the decision makers are able to discard certain probability
distributions and obtain a tighter ambiguity set. Accordingly,
the corresponding DR-CCUC approach becomes less conserva-
tive. Then, by optimizing the day-ahead UC, we minimize the
worst-case expected total costs with respect to all probability
distributions in the ambiguity set. In contrast, if we do not ex-
ploit any information on the contingency probability and only
incorporate theN−ksecurity criterion in the ambiguity set,
then DR-CCUC reduces to the robust CCUC approach. DRO ap-
proaches have been proposed and studied from the perspective
of optimization methodology (see, e.g., [23]–[26]), and recently
have also been used in addressing the power system problems
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under uncertainties, such as the UC problems (e.g., [27]–[29]),
optimal power flow (OPF) problems (e.g., [30], [31]), and con-
gestion management problems (e.g., [32], [33]). In our paper,
we propose a DRO approach for the UC problem with uncertain
component failures under the generalN−ksecurity criteria.
Our main contributions include:
1) The proposed DR-CCUC approach can handle exponen-
tially many contingencies as in theN−ksecurity crite-
rion.

2) We derive an equivalent reformulation of the DR-CCUC
model that facilitates decomposition algorithms and com-
putationally efficient commercial software (e.g., CPLEX).

3) Based on a 6-bus and the IEEE 118-bus test instances, we
demonstrate that the DR-CCUC approach performs less
conservative than the robust CCUC approach. That is, in
the out-of-sample simulations, the UC decision obtained
from the DR-CCUC approach leads to a lower average
total cost than the one obtained from the robust CCUC
approach.

We organize the remainder of this paper as follows. In
Section II, we formulate the DR-CCUC model and describe
the ambiguity set of the contingency probability distributions.
In Section III, we derive a Benders’ decomposition framework
to solve the DR-CCUC model. In Section IV, we demonstrate
this approach on the 6-bus and the IEEE 118-bus system to ver-
ify the effectiveness and conservatism of the proposed approach.
Finally, we conclude this paper in Section V.

II. MAT H E M AT I C A LFORMULATION

We present the two-stage DR-CCUC model as follows.

min
y,u,v

t∈T i∈G

(NLiyit+SUiuit+SDivit)

+sup
P∈D

EP[Q(y, u, v, z)] (1a)

s.t.−yi(t−1)+yit−yik≤0,

∀t∈T,∀i∈G,1≤k−(t−1)≤UTi,(1b)

yi(t−1)−yit+yik≤1,

∀t∈T,∀i∈G,1≤k−(t−1)≤DTi,(1c)

−yi(t−1)+yit−uit≤0, ∀t∈T,∀i∈G, (1d)

yi(t−1)−yit−vit≤0, ∀t∈T,∀i∈G, (1e)

yit,uit,vit∈{0,1}, ∀t∈T,∀i∈G, (1f)

whereQ(y, u, v, z)represents the worst-case expected operat-
ing cost for given on/off statusyit, start-upuit, shut-downvit,
and realized contingenciesziandzmn, and equals to the optimal
objective value of the following problem

min
x,q,θ,f

t∈T i∈G

Fi(xit)+
t∈Tn∈N

(P+nq
+
nt+P

−
nq
−
nt) (2a)

s.t. LBiyitzi≤xit≤UBiyitzi,∀t∈T,∀i∈G, (2b)

−zmnKmn ≤f
t
mn ≤zmnKmn,

∀(m, n)∈E,∀t∈T, (2c)

θn≤θnt≤θ̄n,∀t∈T,∀n∈N, (2e)

xit−xi(t−1)≤RUiuit+RUiyi(t−1),

∀t∈T,∀i∈G, (2f)

xi(t−1)−xit≤RDivit+RDiyit,

∀t∈T,∀i∈G, (2g)

(θmt−θnt)/Xmn−f
t
mn+(1−zmn)Mmn ≥0,

∀(m, n)∈E,∀t∈T, (2h)

(θmt−θnt)/Xmn−f
t
mn−(1−zmn)Mmn ≤0,

∀(m, n)∈E,∀t∈T, (2i)

i∈Gn

xit+
m∈E(·,n)

ftmn−
m∈E(n,·)

ftnm+q
+
nt−q

−
nt

=Dnt−Wnt,∀t∈T,∀n∈N. (2j)

In formulation (1)–(2) described above, the objective func-
tion (1a) seeks to minimize the worst-case expected total cost
including the scheduling cost (i.e., costs for start-up, shut-down,
and keeping generators on) and the operating costQ(y, u, v, z)
including the fuel cost and the penalty for load shedding and
over-generation. Note that the penalty termP−nq

−
ntis mainly

to facilitate the mathematical modeling, andq−ntequals to zero
at optimality in all instances we test in Section IV. As com-
pared to the robust CCUC models ([15], [22]) that hedge against
contingency realizations{zi,zmn}, formulation (1)–(2) hedges
against their probability distributionP. As a consequence, the
proposed approach is distributionally robust and can be less
conservative than the robust CCUC approaches. In formulation
(1), constraints (1b) (respectively, (1c)) describe the genera-
tor minimum up-time (respectively, minimum down-time) re-
striction, and constraints (1d) (respectively, (1e)) describe the
generator start-up (respectively, shut-down) operations. In for-
mulation (2),Fi(xit)represents the fuel cost of generatori
in periodtfor generatingxitamount of electricity. We use
piece-wise linear functions to approximate the fuel cost such
that

Fi(xit)≥γiyit+βixit,∀=1,...,L, (3)

whereLrepresents the number of pieces. Constraints (2b)–(2d)
describe the bounds for generation amounts, transmission flow
amounts, and phase angles, respectively. Constraints (2e) and
(2f) describe the ramping restrictions on the generation amounts,
including the start-up and shut-down ramping restrictions. Con-
straints (2g) and (2h) describe the power flow based on the dc ap-
proximation, i.e.,zmn(θmt−θnt)/Xmn =f

t
mn, and linearize

this equation based on a sufficiently large constantMmn.For
example, we can setMmn := max{(̄θn−θm)/Xmn,(̄θm−
θn)/Xmn}. Finally, constraints (2i) represent the balance be-
tween generation and load at each bus.

A. Abstract Formulation

For notation brevity, we present formulation (1)–(2) in a com-
pact form as follows:
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min
y
ay+sup

P∈D

EP[Q(y, z)] (4a)

s.t.Ay≤b, y∈{0,1}3|G||T |, (4b)

where

Q(y, z) = min
x
cx (5a)

s.t.Bx+Cy≥d, (5b)

Ex+Fz≥f, (5c)

Gx≥g, (5d)

x≥D(z)y, (5e)

where z=[zi,zmn] represents the (random) contingency
scenarios,yrepresents the first-stage decision variables
(y, u, v),xrepresents the second-stage decision variables
(x, q, θ, f), constraint (4b) represents constraints (1b)–(1f),
constraint (5b) represents constraints (2e)–(2f), constraint
(5c) represents constraints (2c) and (2g)–(2h), constraint
(5d) represents constraints (2d) and (2i), and constraint (5e)
represents constraints (2b). In constraint (5e),D(z)represents
a(2|T ||G|)×(3|T ||G|)matrix such that [D(z)]jj=LBizi
and[D(z)](j+|T ||G|),j=−UBizi ifi=jmod|G|for all
j=1,...,|T ||G|, while all the other components ofD(z)
equal to zero. Meanwhile, vectory∈R3|T ||G|is such that
y=[y11,...,y|G|,1,y12,...,y|G|,2,...,y|G|,|T |,u,v].

B. Ambiguity Set Construction

We consider an ambiguity set (denoted asD) consisting of
contingency probability distributions that match theN−kse-
curity criterion and the available moment information. More
precisely,

D:={P∈ M+(Ω) :EP[Sz]≤μ̄}, (6)

whereμ̄represents a vector of estimated mean values, matrix
Srepresents pre-specified coefficients, andM+(Ω)represents
the set of all probability distributions on a sigma-algebra ofΩ,
the support of random vectorz. We designateΩbased on the
N−kcontingency criterion, i.e.,

Ω:= z∈R|H|:
i∈H

zi≥N−k, zi∈{0,1},∀i∈H .(7)

Note that we adopt a support of contingencies where no more
thankcomponents can simultaneously fail. Conditioned onΩ,
the ambiguity setDcan be interpreted as containing all con-
ditional probability distributions that match the moment infor-
mation in (6). In practice, the value ofkcan be selected by
the power system operators or calibrated based on historical
data so that the probability of having more thanksimultaneous
failures is very low. Nonetheless, ifkis set to beN, thenΩ
contains all possible contingencies. In the above definition of
D, we incorporate moment information of contingencyzby ac-
cordingly designating matrixSand mean estimates̄μ. Although
presented in a simple form (6),Dcan cover moment informa-
tion that is often available in practice or can be inferred from

historical data. As the proposed model utilizes the moment in-
formation of contingencies, instead of only the supportΩas in
the robust CCUC approaches, our approach can lead to less con-
servative UC decisions. We illustrate (6) in the following three
examples.
1.(Marginal Contingency Probability)The component
failure probabilities (denoted asp) can often be obtained
from historical data (see, e.g., [11], [12]). We can incor-
porate the marginal contingency probabilities by designat-
ingS=[I,−I]∈R2|H|×|H|and̄μ=[e−p, p−e]∈
R2|H|, wheree∈R2|H|represents a vector of all ones. In
this case, the ambiguity setDcan be recast as

D={P∈ M+(Ω) :EP[1−zi]=pi,∀i∈G,

EP[1−zmn]=pmn,∀(m, n)∈E},

wherepiandpmn represent the failure probability es-
timates of generatoriand transmission line(m, n),
respectively.

2.(Contingency Probability Confidence Interval)When
the failure probabilities are close to zero, confidence
intervals (denoted as[pL,pU]) are often more reliable
than point estimates. We can incorporate the confidence
intervals by designatingS=[−I,I]∈R2|H|×|H|and
μ̄=[pU−e, e−pL]∈R2|H|. In this case, the ambigu-
ity setDcan be recast as

D={P∈ M+(Ω) :p
L
i≤EP[1−zi]≤p

U
i,∀i∈G,

pLmn ≤EP[1−zmn]≤p
U
mn,∀(m, n)∈E},

where[pLi,p
U
i]and[p

L
mn,p

U
mn]represent the confidence

intervals ofEP[1−zi]andEP[1−zmn], respectively.
3.(Zone Contingency Rate)With insufficient historical
failure data, the zone contingency rates, describing the
likelihood of contingencies taking place in geographi-
cal neighborhoods, can often be obtained based on sys-
tem operators’ domain knowledge. Suppose that the set
of componentsHis geographically partitioned intonH
zones, i.e.,H=H1∪H2∪···∪HnH, we can incor-
porate the zone contingency rates by designating ma-
trixS∈RnH×|H| such that for alli=1,...,nH,row
Si=[−11∈Hi,−12∈Hi,...,−1|H|∈Hi]indicates all com-
ponents within zoneHi, where1h∈Hi=1ifh∈Hiand
1h∈Hi=0otherwise for allh=1,...,|H|. In this case,
the ambiguity setDcan be recast as

D= P∈ M+(Ω) :EP
h∈Hi

(1−zh)

≤si,∀i=1,...,nH ,

wheresirepresents an upper bound of the expected num-
ber of contingencies in zoneHi.

III. SOLUTIONMETHODOLOGY

In this section, we derive a solution approach for solving the
DR-CCUC model (4)–(5). First, we note that the linear program
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(5) (i.e., formulation (2)) pertaining toQ(y, z)is always feasible
due to the load-sheddingq+and over-generation curtailmentq−.
Indeed, for any given UC(̂y,̂u,̂v)and contingencŷz, solution

(̂x,̂q,̂θ,f̂)is feasible to formulation (5) witĥxit=LBîyit̂zi,

f̂tmn =0,θ̂nt=0,q̂
+
nt= max{Dnt−Wnt− i∈Gn

x̂it,0},

and q̂−nt= max{ i∈Gn
x̂it−Dnt+Wnt,0}. Second, we

rewrite the worst-case expectationsupP∈DEP[Q(y, z)]as an
optimization problem

sup
P∈D

EP[Q(y, z)] = max
P Ω

Q(y, z)P(dz) (8a)

(S1)s.t.
Ω

SzP(dz)≤μ̄. (8b)

Ω

P(dz)=1, (8c)

where constraints (8b)–(8c) representP∈D. Note that if we
disregard moment constraint (8b), i.e., if the ambiguity set only
incorporates theN−ksecurity criterion, then formulation
(S1) assigns probability 1 to the worst-case scenario inΩ.
In that case, DR-CCUC reduces to the robust CCUC ap-
proach. Based on standard duality techniques (see, e.g., [34]),
supP∈DEP[Q(y, z)]equals to the optimal objective value of
the following dual formulation

min
τ≥0,α

μ̄τ+α,

(D1)s.t.τSz+α≥Q(y, z),∀z∈Ω,

where dual variablesτandαare associated with constraints
(8b) and (8c), respectively. We substitute this dual formu-
lation forEP[Q(y, z)]into formulation (4)–(5) to obtain a
reformulation as follows:

min
y,τ≥0,α

ay+̄μτ+α (9a)

s.t.(4b), (9b)

α≥Q(y, z)−τSz,∀z∈Ω. (9c)

Based on reformulation (9a)–(9c), we employ a Benders’ de-
composition (BD) framework for solving the DR-CCUC model.
For anyz∈Ω, we call inequality (9c) a Benders’ cut pertaining
toz. In our BD framework, we start with a relaxation of reformu-
lation (9a)–(9c) by incorporating only a subset of Benders cuts
(9c). The BD framework then iteratively adds in more Benders
cuts and obtains stronger relaxations till the stopping criterion
is satisfied. We summarize the BD framework as follows.
0. Input: lower bound LB:=−∞, upper bound UB:= +∞,
optimality gap tolerance, iteration number limitL, set of
Benders’ cutsCUT:=∅.

1. For =1,...,L, repeat the following steps:
(a) Solve the master problem

min
y,τ≥0,α

ay+̄μτ+α (10a)

s.t.(4b), (10b)

with the current set of Benders’ cuts inCUTas
additional constraints. Record optimal solutions

(y,τ,α), and set LB equal to the optimal ob-
jective function value.

(b) Solve the separation problem

max
z∈Ω

Q(y,z)− τ Sz . (11)

Record optimal solutionzand the optimal objective
function valueV, and set UB equal to LB−α+
V.

c) If|UB−LB|/LB< orα ≥V, then return and
outputyas an optimal solution; otherwise, go to
the next step.

d) Add a Benders’ cutα≥Q(y, z)−τSzinto set
CUT.

Second, we elaborate Steps 1.(b) and 1.(d) in the BD frame-
work. In the remainder of this section, we derive Benders’ cut
(9c) in both dual and primal forms.

A. Dual Benders’ Cuts

We first take the dual of linear program (5) to yield

Q(y, z) = max
λ,η,δ,κ

(d−Cy)λ+(f−Fz)η+gδ

+yD(z)κ (12a)

s.t.B λ+E η+G δ+κ≤c, (12b)

λ,η,δ,κ≥0, (12c)

where dual variablesλ,η,δ, andκare associated with primal
constraints (5b)–(5e), respectively. It follows that the separation
problem (11) can be recast as

max
z,λ,η,δ,κ

d−Cy λ+(f−Fz)η+gδ

+ y D(z)κ− τ Sz (13a)

s.t.(12b)−(12c) (13b)

i∈H

zi≥N−k, zi∈{0,1},∀i∈H. (13c)

For fixedy andτ, the objective function (13a) contains
bilinear termsηFzandD(z)κbetween binary variablez
and the dual variables. We can linearize these terms by using
the McCormick inequalities:

ζij≥ Fijηi−M(1−zj),ζij≥−Mzj,∀i, j (14a)

π+it≥ κ
+
itUBi−M(1−zi),π

+
ij≥−Mzi,∀i, t (14b)

π−it≤ κ
−
itLBi+M(1−zi),π

−
ij≤Mzi,∀i, t. (14c)

whereζijrepresentsηiFijzj,π
+
itrepresentsκ

+
itUBizi,π

−
itrep-

resentsκ−itLBizi, andM represents a sufficiently large con-
stant. Note that the linearization (14a)–(14c) are exact because
zi∈{0,1}for alli∈Hand so formulation (13a)–(13c) is
equivalent to a mixed-integer linear program (MILP) that fa-
cilitates the off-the-shelf software (e.g., CPLEX). For notation
brevity, we letζ:=ηFzandπ:=D(z)κ, and present the
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obtained MILP as follows:

max d−Cy λ+fη−ζ+gδ+ y π

− τ Sz (15a)

s.t.(12b)−(12c),(13c),(14a)−(14c). (15b)

In the dual Benders’ cuts, we presentQ(y, z)in its dual form
in constraint (9c). Accordingly, we present Steps 1.(b) and 1.(d)
in the BD framework as follows:
1.(b-Dual)Solve the separation problem (15a)–(15b). Record

optimal solution(z,λ,η,δ,κ)and the optimal objective
function valueV, and set UB equal to LB−α+V.
1.(d-Dual)Add a Benders’ cut

α≥ D(z)κ−C λ y+dλ+(f−Fz)η

+gδ−(Sz)τ

into setCUT.

B. Primal Benders’ Cuts

The primal Benders’ cuts presentQ(y, z)based on its primal
formulation (5). Accordingly, in theth iteration of the BD
framework, adding a primal Benders’ cut generates a new set of
second-stage decision variablesxpertaining toz, the optimal
solution to the separation problem (11). We present Steps 1.(b)
and 1.(d) in the BD framework as follows:
1.(b-Primal)Solve the separation problem (15a)–(15b).

Record optimal solution(z)and the optimal objective func-
tion valueV, and set UB equal to LB−α+V.
1.(d-Primal)Add a Benders’ cut

α≥ cx− Sz τ

Bx +Cy≥ d,

Ex +Fz ≥ f,

Gx ≥ g,

x ≥ D(z)y

into setCUT.
In the case studies reported in Section IV, we add both pri-

mal and dual Benders’ cuts in Step 1.(d) to accelerate the BD
framework.

IV. CASESTUDY

In this section, we perform case studies on a 6-bus system
and the IEEE 118-bus system to test the proposed DR-CCUC
approach. We compare the DR-CCUC with the classical ro-
bust CCUC approach on both systems. All the experiments are
implemented in the C++ language with CPLEX 12.1 on a com-
puter workstation with 4 Intel Cores and 8 GB RAM. The time
interval for all the experiments is 1 hour.

A. 6-Bus System

The 6-bus system is composed of three thermal genera-
tors, six loads, and eight transmission lines. The layout of
the system is shown in Fig. 1 and the characteristics of the

Fig. 1. A Modified 6-bus system.

TABLE I
BUSDATA

Bus Unit Hourly Load (MW)

B1 G1 20

B2 - 20

B3 G2 20

B4 - 20

B5 G3 20

B6 - 20

TABLE II
GENERATORDATA

Unit Lower Upper Min. down Min. up Ramp

(MW) (MW) (h) (h) (MW/h)

G1 50 100 2 3 50

G2 100 150 3 4 75

G3 20 50 2 1 25

TABLE III
FUELDATA,Fi(xit)=FUELPRICE× cx2it+bxit+a

Unit a b(MBtu/ c(MBtu/ Start-Up Fuel Fuel Price

(MBtu) MWh) MW2h) (MBtu) ($/MBtu)

G1 50 6.0 0.0004 100 1.2469

G2 40 5.5 0.0001 300 1.2461

G3 60 4.5 0.0050 50 1.2462

buses, the loads, and the transmission lines are displayed in
Tables I–IV. Note that we approximate the quadratic fuel cost
curves displayed in Table III by using piece-wise linear func-
tions as described in (3). For this system, we consider the
N−2security criterion (i.e., we setk=2in the definition
ofΩin (7)) and set the unit penalty costsP+n =P

−
n = $1500

per MWh [22]. First, we study the performance of DR-CCUC
under various system-wide contingency rates. To this end, we
setD1={P∈ M+(Ω) :EP[ h∈Hzh]≥N−m}, wherem
represents the system-wide mean number of contingencies and
varies from 0.1 to 2. Note that throughout this section,N−kse-
curity criterion applies to both DR-CCUC and the robust CCUC
approach and parametermis only used to obtain solutions with
DR-CCUC. Note that the likelihood of contingency grows as
the value ofmincreases, and the DR-CCUC model reduces
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TABLE IV
TRANSMISSIONLINEDATA

Line From To Reactance Flow Limit (MW)

L1 B1 B2 0.189 100

L2 B1 B4 0.163 100

L3 B2 B3 0.247 200

L4 B2 B4 0.190 100

L4 B2 B6 0.185 100

L5 B3 B6 0.137 150

L6 B4 B5 0.152 200

L7 B5 B6 0.155 100

TABLE V
COMPUTATIONALRESULTS FOR THE6-BUSSYSTEMWITHSYSTEM-WIDE

CONTINGENCYRATES

m OU CTG ETC ($) SIM ($)

0.1 G1,G2 Buses 1, 3 159445 176384

RO G1,G2,G3 Buses 1, 3 763457 575265

0.5 G1,G2 Buses 1, 3 353348 176384

RO G1,G2,G3 Buses 1, 3 763457 575265

1 G1,G2 Buses 1, 3 595728 176384

RO G1,G2,G3 Buses 1, 3 763457 575265

1.5 G1,G2,G3 Buses 1, 3 700789 503905

RO G1,G2,G3 Buses 1, 3 763457 575265

2 G1,G2,G3 Buses 1, 3 763457 575265

RO G1,G2,G3 Buses 1, 3 763457 575265

to the robust CCUC model whenm=2because of theN−2
security criterion. In Table V, we report the optimal online units
(OU), the failed components pertaining to the worst-case contin-
gency distributions (CTG), the worst-case expected total costs
(ETC), and the simulated costs (SIM). In particular, we conduct
an out-of-sample simulation to test the optimal solutions of the
DR-CCUC and the robust CCUC approaches, respectively. In
this simulation, we assume that each component failure follows
a Bernoulli distribution independently with identical component
failure rate 0.01 for each generator and 0.001 for each transmis-
sion line [35], and we randomly generate 5000 contingency
scenarios. Then, we obtain the simulated costs by averaging the
total costs in each scenario. From Table V, we observe that the
worst-case contingency distribution always involves buses 1 and
3 (see CTG). This indicates that buses 1 and 3 are most vulner-
able in the 6-bus system. Meanwhile, we observe that unitsG1
andG2are online during all time periods. Whenm≤1,G3
is offline during all time periods. Whenm>1,G3is online
during period 1, offline during periods 2–3, and online again
starting from period 4. This indicates that unitG3serves as a
reserve of the system, and can become online if the contingency
rate is sufficiently high. In addition, by comparing the results
of DR-CCUC and those of the robust CCUC, we observe that
DR-CCUC is less conservative than the robust CCUC according
to SIM (saving up to 70% whenmis low) and the online units
(one less online unit).
Second, we fixm=1and study the performance of DR-

CCUC under various individual contingency probability. To this
end, we considerD2=D1∩{P∈ M+(Ω) :EP[1−zh∗]≤
ph∗}, whereh

∗is a selected component andph∗represents its
failure probability. The out-of-sample simulation also follows

TABLE VI
COMPUTATIONALRESULTS FOR THE6-BUSSYSTEMWITHINDIVIDUAL

CONTINGENCYPROBABILITIES

Component (h∗) ph∗ OU CTG ETC ($) SIM ($)

Bus 1 0.1 G1,G2 Buses 1, 3 456981 168325

RO G1,G2,G3 Buses 1, 3 763457 549551

0.3 G1,G2 Buses 1, 3 526355 219631

RO G1,G2,G3 Buses 1, 3 763457 562885

0.5 G1,G2 Buses 1, 3 595728 341733

RO G1,G2,G3 Buses 1, 3 763457 562997

Bus 3 0.1 G1,G2 Buses 1, 3 466109 152060

RO G1,G2,G3 Buses 1, 3 763457 566186

0.3 G1,G2 Buses 1, 3 530919 236917

RO G1,G2,G3 Buses 1, 3 763457 593023

0.5 G1,G2 Buses 1, 3 595728 254534

RO G1,G2,G3 Buses 1, 3 763457 607037

Others 0.1 G1,G2 Buses 1, 3 595728 145918

RO G1,G2,G3 Buses 1, 3 763457 545553

0.3 G1,G2 Buses 1, 3 595728 139519

RO G1,G2,G3 Buses 1, 3 763457 483034

0.5 G1,G2 Buses 1, 3 595728 142453

RO G1,G2,G3 Buses 1, 3 763457 442517

this assumption. That is, we assume that the failure of the
selected componenth∗follows a Bernoulli distribution inde-
pendently with component failure rateph∗and the total expected
number of failures of other components ism−ph∗. We report
the performance of DR-CCUC in Table VI. From this table, we
observe that for all instances, the simulated costs of DR-CCUC
are significantly smaller than the ones of RO. It indicates that the
consideration of probability information of DR-CCUC can sig-
nificantly reduce the cost, as compared with RO, which totally
disregards such information. Also, the worst-case contingency
distribution only involves buses 1 and 3, and the simulated costs
increases asph∗increases for these two buses, which indicates
that for the critical components, e.g., buses 1 and 3, the infor-
mation of component failures is important to reduce the costs.
For other non-critical components, with the increment of their
failure rate, the total expected failures of critical components
is reduced, which yields to a reduced simulated cost of RO. In
addition, the worst-case expected total costs increase aspB1
andpB3grow and become stable whenpB1,pB3>0.5. This in-
dicates that, whenpB1,pB3>0.5, the worst-case contingency
distribution assignsP{zB1=1}=P{zB3=1}=0.5, which
tightly satisfies the system-wide contingency rate constraint
EP[ h∈Hzh]≥N−m (i.e., EP[ h∈Hzh]=N−m)
but strictly satisfies the individual contingency probability
constraintEP[1−zh∗]≤ph∗(i.e.,EP[1−zh∗]<ph∗). As this
worst-case distribution remains the same whenpB1,pB3>0.5,
it makes sense that the worst-case expected total costs do not
change.
Third, we fixm=1and study the performance of DR-CCUC

under various zone contingency rates. To this end, we consider
D3=D1∩{P∈ M+(Ω) :EP[ h∈H∗(1−zh)]≤s}, where
H∗represents a selected zone andsrepresents its contingency
rate. In this simulation, we follow the same assumption of
the system-wide contingency rate test, that is, we assume that
each component failure follows a Bernoulli distribution inde-
pendently with identical component failure rate 0.01 for each
generator and 0.001 for each transmission line. We report the
performance of DR-CCUC in Table VII. From this table, we
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TABLE VII
COMPUTATIONALRESULTS FOR THE6-BUSSYSTEMWITHZONE

CONTINGENCYRATES

Zone s OU CTG ETC ($) SIM ($)

(Bus 1, 3) 0 G1,G2 LinesL2,L5 324310 176384

0.5 G1,G2 Buses 1, 3 460019 176384

1 G1,G2 Buses 1, 3 595728 176384

(Bus 1, 5) 0 G1,G2 Bus 3 422294 176384

0.5 G1,G2 Buses 1, 3 595728 176384

1 G1,G2 Buses 1, 3 595728 176384

(LinesL2,L4) 0 G1,G2 Buses 1, 3 595728 176384

0.5 G1,G2 Buses 1, 3 595728 176384

1 G1,G2 Buses 1, 3 595728 176384

TABLE VIII
COMPUTATIONALRESULTS FOR THE6-BUSSYSTEMWITHDIFFERENT

SECURITYCRITERION

k s OU CTG ETC ($) SIM ($)

1 DR-CCUC G1,G2 Bus 3 142101 176384

Robust G1,G2 Bus 3 431081 176384

2 DR-CCUC G1,G2 Buses 1, 3 159445 176384

Robust G1,G2,G3 Buses 1, 3 763457 575365

3 DR-CCUC G1,G2 Buses 1, 3 159445 176384

Robust None Buses 1, 3, 5 1.08×106 1.08×106

observe that the simulated costs remain stable with various
H∗ands, which indicates that system-wide contingency rate
mainly decides the out-of-sample performance. Also, we ob-
serve that the worst-case expected total costs are the same when
(i)H∗={B1,B3}ands=1, (ii)H

∗={B1,B5}ands≥0.5,
and (iii)H∗={L2,L4}ands∈[0,1]. In contrast, the worst-
case expected total costs become different in all other settings
in Table VII. This confirms that the worst-case contingency dis-
tribution assignsP{zB1=1}=P{zB3=1}=0.5as long as
P∈D3, becauseP∈D3in settings (i)–(iii) andP/∈D3in all
other settings.
Now, we show the system performances of both DR-CCUC
and robust CCUC approaches under different security criteria,
i.e., different value ofk.Wesetm=0.1and report the online
units, the failed components, the worst expected costs, and the
simulated costs for both two approaches in Table VIII. When
k=1, although the worst-case cost obtained by DR-CCUC is
less than the one of the robust CCUC, the UC decisions ob-
tained by two approaches are the same. Whenk=2,theUC
decisions remain the same for DR-CCUC approach, however,
for the robust CCUC approach, one more bus is put online. This
indicates that with the consideration of moment information of
contingencies, the conservativeness level of DR-CCUC remains
unchanged even with more severe worst-case contingency sce-
narios (i.e., more components can fail simultaneously). In con-
trast, the conservativeness level of the robust CCUC increases as
kincreases. The case whenk=3further verifies this observa-
tion. The UC decisions for the DR-CCUC approach still remain
unchanged. In contrast, contingencies happen at all buses for
the robust CCUC approach, and so no buses are put online and
load shedding occurs at all buses.

TABLE IX
COMPUTATIONALRESULTS FOR THE118-BUSSYSTEMWITHTOTALEXPECTED

CONTINGENCIES

m ETC ($) SIM ($) CPU Time (s)

0.1 1.1372×107 1.2003×107 982

RO 1.1381×107 1.2876×107 1054

0.5 1.1376×107 1.2003×107 947

RO 1.1381×107 1.2876×107 1054

0.9 1.1380×107 1.2243×107 997

RO 1.1381×107 1.2876×107 1054

B. 118-Bus System

We extend our study to the IEEE 118-bus system that contains
118 buses, 33 generators, and 186 transmission lines. We first
consider theN−1security criterion and study the performance
of DR-CCUC under various system-wide contingency rates. The
unit penalty costsP+n andP

−
nare set to be $1500 per MWh. In

the out-of-sample simulation, we assume that each component
failure follows an independent Bernoulli distribution with iden-
tical component failure rate 0.01 for each generator and 0.001
for each transmission line [35], and we randomly generate 5000
contingency scenarios. We report the worst-case expected total
costs and the simulated costs, together with the CPU time spent
for solving each instance in Table IX. From this table, we ob-
serve that the CPU time of all instances are within 1800s. To
increase the scalability of the proposed BD algorithm and solve
large-sized instances, parallel computing techniques can be em-
ployed to solve the master problem and/or separation problem
on a high-performance computing platform (see, e.g., [36]).
Meanwhile, we observe that the solutions of DR-CCUC per-
forms less conservative in the out-of-sample simulation than
those of robust CCUC based on the simulated costs. This con-
firms our observations from the test instances based on the 6-bus
system.

V. CONCLUSION

In this paper, we proposed a DR-CCUC approach that simul-
taneously considers theN−ksecurity criterion and the con-
tingency probability distribution. Like the robust CCUC, the
proposed approach can handle exponentially many contingency
scenarios. Meanwhile, DR-CCUC could reduce the conserva-
tiveness by utilizing the moment information of contingencies
(e.g., component failure probability, failure probability confi-
dence intervals, etc). Furthermore, we derived a BD framework
for solving the proposed model based on primal and dual Ben-
ders’ cuts. Finally, the case studies based on the 6-bus system and
the IEEE 118-bus system verified the reduced conservativeness
of the proposed approach. By testing the proposed DR-CCUC
approach, we find that incorporating moment information of
contingencies can improve the out-of-sample performance of
the UC decisions. Promising future research directions include
(i) applying the BD algorithm on high-performance computing
platforms to solve large-sized instances, (ii) extending the for-
mulation to the ac power flow, (iii) incorporating the combined
cycle plant heat rate characteristics with forbidden power ar-
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eas, and (iv) exploring ambiguity sets based on the probability
of havingkcontingencies, i.e.,P{ h∈H(1−zh)=k}, for all
k=1,...,|H|.
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