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a b s t r a c t

In this paper, we study a data-driven risk-averse stochastic optimization approach with Wasserstein
Metric for the general distribution case. By using theWassersteinMetric, we can successfully reformulate
the risk-averse two-stage stochastic optimization problem with distributional ambiguity to a traditional
two-stage robust optimization problem. In addition, we derive the worst-case distribution and perform
convergence analysis to show that the risk aversion of the proposed formulation vanishes as the size of
historical data grows to infinity.
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1. Introduction

The traditional two-stage stochastic optimization problem can
be described as follows (cf. [3] and [15]):

(SP) min
x∈X

c⊤x + EP[Q(x, ξ )],

where the first-stage decision variable x is in a compact set X and
the second-stage problem is

Q(x, ξ ) = min
y∈Y

{d(ξ )⊤y : (ξ )x + By ≥ b(ξ )}, (1)

where Q(x, ξ ) is assumed continuous on ξ (e.g., when A(ξ ) and
b(ξ ) are continuous on ξ ) and the uncertain random variable ξ is
defined on a probability space (Ω,F,P), in whichΩ is a compact
convex sample space for ξ , F is a σ -algebra of Ω , and P is the
associated given true probability distribution. SP has broad appli-
cations. However, there are challenges. For instance, in practice,
the true distribution of the randomparameters is usually unknown
and hard to predict accurately and the inaccurate estimation of
the true distribution may lead to biased solutions and make the
solutions sub-optimal. Meanwhile, there are usually a series of
historical data available for the unknown true distribution. To
incorporate distribution ambiguity and utilize the historical data,
we consider a data-driven risk-averse stochastic optimization for-
mulation:

(DD-SP) min
x∈X

c⊤x + max
P̂∈D

E
P̂
[Q(x, ξ )],
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where P̂ represents an unknown distribution in the given confi-
dence set D. This formulation allows distribution ambiguity and
introduces a confidence set D to ensure that the true distribution
P is within this set with a certain confidence level based on non-
parametric statistics. In general, if we let dM(P0, P̂) be any distance
measure between a reference distribution P0 and an unknown
distribution P̂ and use θ , as a function of the size of historical data,
to represent the corresponding distance, then the confidence setD
can be represented as follows:

D = {P̂ : dM(P0, P̂) ≤ θ}.

This approach is related to the distributional robustness study
(see, e.g., [5]) in the literature. To construct the confidence set, in
our approach, the empirical distribution based on the historical
data is utilized as the reference distribution. Then, the confidence
set D is constructed by utilizing Wasserstein metric to define the
distance between the reference distribution and the unknown true
distribution. The utilization of Wasserstein metric for stochastic
optimization was previously studied in [13,11,12], among others.
The advantage for this approach is that the convergence properties
hold. That is, as the size of historical data increases, we can show
that the confidence set D shrinks with the same confidence level
guarantee, and accordingly the true distribution will be ‘‘closer’’ to
the reference distribution. Although research progress onWasser-
stein metric has been made for this ‘‘distribution-based’’ approach
for the discrete distribution case (see, e.g., [13]), the study for
the continuous distribution case is more challenging and is very
limited. The recent related study on distance measure for the
general φ-divergence [1,9,10] can be utilized for the continuous
distribution case by defining the distance between the true density
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and the reference density, which however could not guarantee
the convergence properties to the empirical distribution. In this
paper, by studying the Wasserstein metric, which ensures con-
vergence, and deriving the corresponding convergence rate, our
proposed approach can fit well in a data-driven risk-averse two-
stage stochastic optimization framework.

The main results of this paper are available in [17] and [18].
An independent work is described in [6]. Our contributions can be
summarized as follows:

1. We apply the Wasserstein metric to construct the confi-
dence set in a data-driven risk-averse two-stage stochastic
optimization framework for general distributions (including
both discrete and continuous distribution cases) to solve op-
timization under uncertainty problems. In particular,we can
successfully reformulate the two-stage risk-averse stochas-
tic optimization problem to an explicit two-stage robust
optimization problem.

2. Our proposed approach provides the closed-form expres-
sion of the worst-case distribution whose parameters can
be obtained by solving a traditional two-stage robust opti-
mization model.

3. We show the convergence property of the proposed data-
driven approach by proving that as the size of historical data
increases, the risk-averse stochastic optimization problem
converges to the risk-neutral one, i.e., the traditional two-
stage stochastic optimization problem.

2. Wasserstein metric and confidence set construction

In this section, we introduce the data-driven risk-averse two-
stage stochastic optimization framework, for which instead of
knowing the exact distribution of the random parameters, a series
of historical data are observed. We first describe the Wasserstein
metric. By using this metric, based on the observed historical data,
we then build the reference distribution and the confidence set for
the true probability distribution.

2.1. Wasserstein metric

The Wasserstein metric is defined as a distance function be-
tween two probability distributions on a given supporting space
Ω . More specifically, given two probability distributions P1 and P2

on the supporting spaceΩ , the Wasserstein metric is defined as

dw(P1,P2) := inf
π

{Eπ [ρ(X, Y )] : X ∼ P1, Y ∼ P2}, (2)

where ρ(X, Y ) is defined as the distance (continuous) between
random variables X and Y , where X follows distribution P1 and Y
follows distribution P2, and the infimum is taken over all joint dis-
tributions π with marginals P1 and P2. The Wasserstein metric is
commonly used inmany applications in transportation theory [14].

2.2. Confidence set construction

We use the empirical distribution as the reference distribution
to estimate the true probability distribution. The empirical distri-
bution function is a step function that jumps up by 1/N at each of
the N independent and identically-distributed (i.i.d.) data points.
That is, given N i.i.d. historical data samples ξ 1, ξ 2, . . . , ξN , the
empirical distribution is defined as

Pe =
1

N

N
∑

i=1

δξ i ,

where δξ i is a Diracmeasure (i.e., δξ i (A) = 1 if ξ i ∈ A and δξ i (A) = 0
otherwise for any set A ∈ σ (Ω)). Based on the strong law of

large numbers, it can be proved that the reference distribution Pe

pointwise converges to the true probability distribution P almost
surely [16]. With the previously defined probability metric and
reference probability distribution, we can now construct the con-
fidence set for the true probability distribution P. Intuitively, the
more historical data observed, the ‘‘closer’’ the reference distribu-
tion is to the true distribution. If we use θ to represent the distance
between the reference distribution and the true distribution, then
themore historical data observed, the smaller the value of θ is, and
the tighter the confidence set becomes. Therefore, the confidence
set based on Wasserstein metric can be represented as follows:

Dw = {P̂ ∈ M+ : dw(P̂,Pe) ≤ θ},

whereM+ represents the set of all probabilitymeasures on (Ω,F)
and the value of θ depends on the size of historical data. More
specifically, according to the definition of Wasserstein metric in
(2), the confidence set can be written as

Dw =
{

P̂ ∈ M+ : inf
π

{Eπ [ρ(Z,W )] : Z ∼ Pe,W ∼ P̂} ≤ θ

}

. (3)

We can further show that under theWassersteinmetric, the empir-
ical distribution Pe converges to the true distribution P exponen-
tially fast. Several research works have discussed the convergence
rates of the empirical distribution to the true distribution under
Wasserstein metric [4,7]. For instance, as described in [7], if there
exist an α > 1 and a γ > 0 such that

∫

Ω
eγ |x|α

P(dx) < ∞,
the following conclusion holds (We only list one setting here. The
details on other settings are referred to Theorem 2 in [7]).

Proposition 1 ([7]). For a general m-dimension (e.g., m > 2) sup-
porting spaceΩ ,

P(dw(Pe,P) ≤ θ ) ≥ 1 − C(exp(−cNθm)1{θ≤1}

+ exp(−cNθα)1{θ>1}),

where N is the size of historical data, and C and c are positive constant

numbers.

Based on Proposition 1, we can observe that if we set the
confidence level of the confidence set Dw as β , the corresponding
θ can be approximated as follows:

θ = m
√

log((1 − β)/C)/(−cN) if m
√

log((1 − β)/C)/(−cN)

≤ 1 or θ = max{ α
√

log((1 − β)/C)/(−cN), 1}. (4)

3. Reformulation to a two-stage robust optimization problem

In this section, we first derive the reformulation of the worst-
case expectation max

P̂∈Dw
E
P̂
[Q(x, ξ )], and then obtain the re-

formulation of problem DD-SP correspondingly. In addition, we
derive the worst-case distribution corresponding to the Wasser-
stein metric. Before describing our main result, we make the fol-
lowing assumption:

Assumption 1. DD-SP has relatively complete recourse and is
bounded, i.e., supξ∈Ω |Q (x, ξ )| < ∞ for each x ∈ X .

Proposition 2. Assuming that there are N historical data samples

ξ 1, ξ 2, . . . , ξN which are i.i.d. drawn from the true distribution P, for

any fixed first-stage decision x, we have

max
P̂∈Dw

E
P̂
[Q(x, ξ )]

= min
β≥0

{

1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, ξ i)} + θβ

}

. (5)
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Proof. As indicated in Section 2.2, if we haveN historical data sam-
ples ξ 1, ξ 2, . . . , ξN , the reference distribution Pe can be defined as

the empirical distribution, i.e., Pe = 1
N

∑N

i=1δξ i . In addition, the
confidence setDw is defined the sameway as indicated in (3). Then,
we can claim that, if P̂ ∈ Dw, then∀ϵ > 0, there exists a joint distri-
butionπ such that Z follows distributionPe,W follows distribution
P̂, andEπ [ρ(Z,W )] ≤ θ+ϵ. Based on thedefinition ofEπ [ρ(Z,W )],
we can obtain the following reformulation of Eπ [ρ(Z,W )]:

Eπ [ρ(Z,W )] =

∫

z∈Ω

∫

ξ∈Ω

ρ(ξ, z)π (dξ, dz)

=

N
∑

i=1

∫

ξ∈Ω

p0i ρ(ξ, ξ
i)Pi(dξ )

=
1

N

N
∑

i=1

∫

ξ∈Ω

ρ(ξ, ξ i)Pi(dξ ), (6)

where p0i represents the probability for the event Z = ξ i and Pi is

the conditional distribution of W when Z = ξ i. Eq. (6) holds since
according to the definition of Pe, p

0
i = 1/N for each i = 1, . . . ,N .

For notation brevity, we let ρ i(ξ ) = ρ(ξ, ξ i). Then the second-
stage problem max

P̂∈Dw
E
P̂
[Q(x, ξ )] of DD-SP can be reformulated

as follows:

max
P̂,Pi∈M−

∫

ξ∈Ω

Q(x, ξ )P̂(dξ )

s.t. P̂ =
1

N

N
∑

i=1

Pi, (7)

∫

ξ∈Ω

Pi(dξ ) = 1, ∀i, (8)

1

N

N
∑

i=1

∫

ξ∈Ω

ρ i(ξ )Pi(dξ ) ≤ θ + ϵ, (9)

where M− represents the set of all (non-negative) measures on
(Ω,F). Constraints (7) and (8) are based on the properties of
conditional distribution and constraint (9) follows the definition
of Dw and Eq. (6). Note here that this reformulation holds for any
ϵ > 0. By substituting constraint (7) into the objective function,
we can obtain its equivalent formulation as follows:

max
Pi∈M−

1

N

N
∑

i=1

∫

ξ∈Ω

Q(x, ξ )Pi(dξ )

(PEQ) s.t.

∫

ξ∈Ω

Pi(dξ ) = 1, ∀i, (10)

1

N

N
∑

i=1

∫

ξ∈Ω

ρ i(ξ )Pi(dξ ) ≤ θ + ϵ. (11)

Note here that N is a finite number and we can switch the in-
tegration and summation in the objective function. In addition,
the above formulation PEQ has at least one feasible solution with
Pi = δξ i , i = 1, . . . ,N , which is a relative interior point because
θ, ϵ > 0 and constraint (11) is not binding. Thus, the Slater’s
condition holds. Meanwhile, since Q(x, ξ ) is assumed bounded
above following Assumption 1, PEQ is bounded above. Therefore,
strong duality holds. Thus, we can consider its Lagrangian dual
problem that can be written as follows:

L(λi, β) = max
Pi∈M−

1

N

N
∑

i=1

∫

ξ∈Ω

(Q(x, ξ ) − Nλi − βρ i(ξ ))Pi(dξ )

+

N
∑

i=1

λi + (θ + ϵ)β,

where λi and β ≥ 0 are dual variables of constraints (10) and (11),
respectively. The dual problem then is

min
β≥0,λi

L(λi, β).

Next, we argue that ∀ξ ∈ Ω , Q(x, ξ ) − Nλi − βρ i(ξ ) ≤ 0. If this
argument does not hold, then there exists a ξ0 such thatQ(x, ξ0)−
Nλi − βρ i(ξ0) > 0. It means that there exists a strict positive
constant σ , such that Q(x, ξ0) − Nλi − βρ i(ξ0) > σ . Based on the
assumption that Q(x, ξ ) is continuous on ξ and the fact that the
distance function ρ i(ξ ) is continuous on ξ ,Q(x, ξ )−Nλi−βρ

i(ξ ) is
continuous on ξ . Thus, ifQ(x, ξ0)−Nλi −βρ

i(ξ0) > σ , there exists
a small ball B(ξ0, ϵ

′) ⊆ Ω with a strictly positive measure, such
thatQ(x, ξ )−Nλi −βρ

i(ξ ) > σ for ∀ξ ∈ B(ξ0, ϵ
′). Accordingly, we

can let Pi be continuous with its density function arbitrary large
when ξ ∈ B(ξ0, ϵ

′), then L(λi, β) is unbounded, which leads to a
contradiction to the strong duality corresponding to PEQ, which is
bounded above. Hence, the argument

Q(x, ξ ) − Nλi − βρ i(ξ ) ≤ 0 for all ξ ∈ Ω (12)

holds. In this case,

max
Pi∈M−

1

N

N
∑

i=1

∫

ξ∈Ω

(Q(x, ξ ) − Nλi − βρ i(ξ ))Pi(dξ )

+

N
∑

i=1

λi + (θ + ϵ)β =

N
∑

i=1

λi + (θ + ϵ)β (13)

with optimal solutions satisfying
∫

ξ∈Ω

(Q(x, ξ ) − Nλi − βρ i(ξ ))Pi(dξ ) = 0, i = 1, . . . ,N. (14)

Note here thatwe can letPi(dξ ) = 0whenQ(x, ξ )−Nλi−βρ
i(ξ ) <

0 to make (14) hold since constraint (10) is relaxed. Then, the dual
formulation can be reformulated as follows:

min
β≥0,λi

N
∑

i=1

λi + (θ + ϵ)β

s.t. Q(x, ξ ) − Nλi − βρ i(ξ ) ≤ 0, ∀ξ ∈ Ω,

∀i = 1, . . . ,N. (15)

From the above formulation, it is easy to observe that the optimal
solution λi should satisfy

λi =
1

N
max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )}, (16)

and therefore the worst-case expectation max
P̂∈Dw

E
P̂
[Q(x, ξ )] is

equivalent to

min
β≥0

{

1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )} + (θ + ϵ)β

}

. (17)

Note here that reformulation (17) holds for ∀ϵ > 0 and is continu-
ous on ϵ. Thus, reformulation (17) holds for ϵ = 0, which immedi-
ately leads to the following reformulation ofmax

P̂∈Dw
E
P̂
[Q(x, ξ )]:

max
P̂∈Dw

E
P̂
[Q(x, ξ )]

= min
β≥0

{

1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )} + θβ

}

. □

Note here that the reformulation of max
P̂∈Dw

E
P̂
[Q(x, ξ )] de-

pends on θ . By defining

g(x, θ ) = min
β≥0

{

1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )} + θβ

}

,
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we have the following proposition holds.

Proposition 3. For a given first-stage decision x, the function g(x, θ )

is monotonically increasing in θ . In addition, g(x, 0) = EPe [Q(x, ξ )]
and limθ→∞g(x, θ ) = maxξ∈ΩQ(x, ξ ).

Proof. The monotone property is obvious, since it can be easily

observed that as θ decreases, the confidence setDw tends to shrink

and the worst-case expected value max
P̂∈Dw

E
P̂
[Q(x, ξ )] does not

increase. Therefore, the reformulation g(x, θ ) = max
P̂∈Dw

E
P̂

[Q(x, ξ )] is monotonically increasing in θ .

When θ = 0, we have dw(Pe, P̂) = 0. According to the prop-

erties of metrics, we have P̂ = Pe. That means the confidence set

Dw is a singleton, only containing Pe. Therefore, we have g(x, 0) =
EPe [Q(x, ξ )].

When θ → ∞, it is clear to observe that in the optimal solution

we have β = 0 since ρ i(ξ ) < ∞ following the assumption thatΩ

is compact. Then we have

min
β≥0

{

1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )} + θβ

}

=
1

N

N
∑

i=1

max
ξ∈Ω

Q(x, ξ ) = max
ξ∈Ω

Q(x, ξ ), (18)

which indicates that limθ→∞g(x, θ ) = maxξ∈ΩQ(x, ξ ). Thus, the

claim holds. □

From Proposition 3 we can observe that, the data-driven risk-

averse stochastic optimization is less conservative than the tra-

ditional robust optimization and more conservative than the

traditional stochastic optimization. In addition, by letting

θ̄ = argmin
θ≥0

{

min
β≥0

{

1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )} + θβ

}

= max
ξ∈Ω

Q(x, ξ )

}

, (19)

following the monotone property described in Proposition 3, we

have

β∗ > 0 when θ < θ̄. (20)

Otherwise, if β∗ = 0, then g(x, θ ) = 1
N

∑N

i=1maxξ∈Ω{Q(x, ξ ) −

βρ i(ξ )} + θβ = 1
N

∑N

i=1maxξ∈ΩQ(x, ξ ) = maxξ∈ΩQ(x, ξ ) based

on (18), which contradicts with g(x, θ ) < g(x, θ̄ ) based on (19) and

the monotone property described in Proposition 3. Meanwhile, it

can be observed that β∗ = 0 is a candidate solution when θ ≥ θ̄ .

Considering the fact that the data-driven risk-averse stochastic

optimization is equivalent to (not less conservative than) the tradi-

tional robust optimization when θ ≥ θ̄ , we analyze the worst-case

distribution for the case θ < θ̄ as follows.

Proposition 4. When Q (x, ξ ) is concave with respect to ξ (e.g., d(ξ )

is affinely dependent on ξ and A(ξ ), b(ξ ) are deterministic), ρ i(ξ ) is a

strictly convex function of ξ (e.g., in the form of L2-norm), and β∗ is

the unique solution for (5) as described in Proposition 2, there exists

a worst-case distribution for max
P̂∈Dw

E
P̂
[Q(x, ξ )] in the following

form:

P̂
∗ =

1

N

N
∑

i=1

δξ i∗
, (21)

where ξ i∗ is the optimal solution of maxξ∈Ω{Q(x, ξ ) − β∗ρ i(ξ )}.

Proof. Based on (13), if P̂ is aworst-case distribution, thenwemust
have

1

N

N
∑

i=1

∫

ξ∈Ω

(Q(x, ξ ) − Nλ∗
i − β∗ρ i(ξ ))P̂i(dξ ) = 0, (22)

where P̂ = 1
N

∑N

i=1Pi and (λ∗
i , β

∗) is the optimal solution to the
dual problem. Therefore, formulation (22) provides a necessary
condition for any worst-case distribution.

As indicated in (12), we have Q(x, ξ ) − Nλi
∗ − β∗ρ i(ξ ) ≤ 0,

∀ξ ∈ Ω, ∀i. Therefore,

(Q(x, ξ ) − Nλi
∗ − β∗ρ i(ξ ))Pi(dξ ) = 0, ∀ξ ∈ Ω,∀i.

Thus, for each i, since Pi(dξ ) ≥ 0, Pi(dξ ) can be non-zero onlywhen
Q(x, ξ ) − Nλi

∗ − β∗ρ i(ξ ) = 0. Since λ∗
i = 1

N
maxξ∈Ω{Q(x, ξ ) −

β∗ρ i(ξ )}, Q(x, ξ ) − Nλi
∗ − β∗ρ i(ξ ) = 0 only when ξ is an optimal

solution of maxξ∈Ω{Q(x, ξ ) − β∗ρ i(ξ )}. Since β∗ > 0 when θ < θ̄

following (20), Q(x, ξ ) − β∗ρ i(ξ ) is strictly concave with respect
to ξ , the optimal solution to maxξ∈Ω{Q(x, ξ ) − β∗ρ i(ξ )} is unique.

Therefore, the following distribution (indicated as P̂
i) is the only

distribution satisfying (22):

P̂
i = δξ i∗

, (23)

where ξ i∗ is the optimal solution of maxξ∈Ω{Q(x, ξ ) − β∗ρ i(ξ )}.
Since the ambiguity set Dw is compact andΩ is bounded, conver-
gence under the Wasserstein metric implies weak convergence of
the distributions in Dw as described in [8]. In addition, Q (x, ξ ) is
assumed continuous on ξ and bounded following Assumption 1,
based on the Helly–Bray Theorem [2], we can observe that the
worst-case distribution always exists. Thus, (23) is the unique dis-
tribution that satisfies the necessary condition for any worst-case
distribution. Accordingly, following (7), the following distribution
serves as the worst-case distribution:

P̂
∗ =

1

N

N
∑

i=1

P̂
i =

1

N

N
∑

i=1

δξ i∗
. □

Based on Propositions 2 and 4, we can easily derive the follow-
ing theorem.

Theorem 1. The problem DD-SP under Dw is equivalent to the fol-

lowing two-stage robust optimization problem:

(RDD-SP) min
x∈X,β≥0

c⊤x + θβ

+
1

N

N
∑

i=1

max
ξ∈Ω

{

Q(x, ξ ) − βρ i(ξ )
}

. (24)

Meanwhile, under the conditions described in Proposition 4, there
exists a worst-case distribution in the following form:

P̂
∗ =

1

N

N
∑

i=1

δξ i∗
,

where ξ i∗ is the optimal solution of maxξ∈Ω{Q(x, ξ ) − β∗ρ i(ξ )} and
β∗ is the unique optimal solution for (5) as described in Proposition 2.

Remark 1. Note here that computational approaches can be
derived to detect if β∗ is the unique optimal solution for (5) as
described in Proposition 2. For the existence and closed-formof the
worst-case distribution for the general cases, one can refer to [6],
which provides the detailed description.

Remark 2. In general, RDD-SP is a two-stage robust optimization
problem. The solution approaches can be different based on the
definition of the sample space Ω and the distance function ρ.
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For instance, if Ω is convex and ρ is defined as L1- or L∞-norm,
then RDD-SP can be further reformulated as a semi-infinite linear
program and accordingly the Benders decomposition algorithm
as described in [17] can be applied. If Ω is convex and ρ is de-
fined as L2-norm, which can be derived from inner products, then
RDD-SP can be further reformulated as a finite convex program as
described in [6].

4. Convergence analysis

In this section, we examine the convergence properties of
DD-SP to SP as the size of historical data increases.Wedemonstrate
that as the confidence set Dw shrinks with more historical data
observed, the risk-averse problem DD-SP converges to the risk-
neutral SP. We first assume that for each x ∈ X , there exists a
constant number L > 0 such that |Q(x, ξ1) − Q(x, ξ2)|/ρ(ξ1, ξ2) <
L < ∞,∀ξ1, ξ2 ∈ Ω and ξ1 ̸= ξ2. We now analyze the convergence
property of the second-stage objective value, which can be shown
as follows:

Proposition 5. Corresponding to each predefined confidence level β

and a given first-stage decision x, as the size of historical dataN → ∞,

we have the distance value θ → 0 and the corresponding risk-

averse second-stage objective value limN→∞max
P̂∈Dw

E
P̂
[Q(x, ξ )] =

EP[Q(x, ξ )].

Proof. First, following (4), it is obvious that θ → 0 as N → ∞.
Meanwhile, following Proposition 2, we have

max
P̂∈Dw

E
P̂
[Q(x, ξ )]

= min
β≥0

{

θβ +
1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )}

}

. (25)

Therefore, in the following part, we only need to prove

lim
N→∞

min
β≥0

{

θβ +
1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )}

}

≤ EP[Q(x, ξ )], (26)

and

lim
N→∞

max
P̂∈Dw

E
P̂
[Q(x, ξ )] ≥ lim

N→∞
EPe [Q(x, ξ )] = EP[Q(x, ξ )]. (27)

Note here that (27) holds following theHelly–Bray Theorem [2] be-
cause Pe converges weakly to P as N → ∞ under the Wasserstein
Metric [8] and Q(x, ξ ) is bounded and continuous in ξ . We only
need to prove (26). Since

lim
N→∞

min
β≥0

{

θβ +
1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )}

}

≤ min
β≥0

lim sup
N→∞

{

θβ +
1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )}

}

, (28)

we only need to show

min
β≥0

lim sup
N→∞

{

θβ +
1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )}

}

≤ EP[Q(x, ξ )]. (29)

Following Assumption 1, there exists a constant number M > 0
such that for any given x,

− M ≤ Q(x, ξ ) ≤ M, ∀ξ ∈ Ω. (30)

In addition, we have

0 ≤ ρ(ξ, z) ≤ B, ∀ξ, z ∈ Ω, (31)

where B is the diameter of Ω . Therefore, for any β ≥ 0, based on
(30) and (31), we have

max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)} ≤ max
ξ∈Ω

{Q(x, ξ )} ≤ M,

and

max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)} ≥ max
ξ∈Ω

{Q(x, ξ ) − βB} ≥ −M − βB,

which means maxξ∈Ω{Q(x, ξ ) − βρ(ξ, z)} is bounded for ∀z ∈ Ω .
Therefore, we have

lim sup
N→∞

{

θβ +
1

N

N
∑

i=1

max
ξ∈Ω

{Q(x, ξ ) − βρ i(ξ )}

}

= lim sup
N→∞

{

θβ + EPe max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)}

}

= lim
N→∞

θβ + EP max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)}

= EP[max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)}], (32)

where the first equality holds following the definition of Pe, the
second equality holds following the Helly–Bray Theorem [2], and
the third equality holds because θ → 0 as N → ∞ following (4).

Now we only need to show that for a given first-stage decision
x and any true distribution P, we have

min
β≥0

EP[max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)}] ≤ EP[Q(x, z)]. (33)

Since minβ≥0EP[maxξ∈Ω{Q(x, ξ ) − βρ(ξ, z)}] ≤ lim supβ→+∞EP

[maxξ∈Ω{Q(x, ξ ) − βρ(ξ, z)}], we only need to prove

lim supβ→+∞EP[max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)}] ≤ EP[Q(x, z)]. (34)

First of all, we notice that ξ ∗(z) = z in (34) makes it tight. Now
we prove by contradiction that for β > L, the optimal solution
for the maximization problem in (34) is ξ ∗(z) = z. Otherwise, if
ξ ∗(z) = ẑ ̸= z, [Q(x, z)−βρ(z, z)]−[Q(x, ẑ)−βρ(ẑ, z)] = Q(x, z)−
Q(x, ẑ) + βρ(ẑ, z) > (β − L)ρ(ẑ, z) > 0, where the inequality
follows the assumption |Q(x, ξ1) − Q(x, ξ2)|/ρ(ξ1, ξ2) < L. This is
a contradiction. Thus,

lim sup
β→+∞

EP[max
ξ∈Ω

{Q(x, ξ ) − βρ(ξ, z)}]

= lim sup
β→+∞

EP[Q(x, z)] = EP[Q(x, z)].

The proof is completed. □

Now we prove that the objective value of DD-SP converges to
that of SP as the size of historical data samples increases to infinity.

Theorem 2. Corresponding to each predefined confidence level β , as

the size of historical data increases to infinity, the optimal objective

value of the data-driven risk-averse stochastic optimization problem

uniformly converges to that of the traditional two-stage risk-neutral

stochastic optimization problem.

Proof. First, notice that N → ∞ is equivalent to θ → 0 follow-
ing (4). We only need to prove limθ→0ψ(θ ) = ψ(0), where ψ(θ )
represents the optimal objective value of DD-SP with the distance
value θ and ψ(0) represents the optimal objective value of SP.
Meanwhile, for the convenience of analysis, corresponding to each
given first-stage decision x for DD-SP with the distance value θ , we
denote Vθ (x) as its corresponding objective value and V0(x) as the
objective value of SP.
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Now consider the DD-SP problem with the distance value θ .
Denote the first-stage decision of SP as x∗ and the first-stage
decision of DD-SP as x∗

θ . According to Proposition 5,Vθ (x) converges
pointwise to V0(x). In addition, we notice that X is compact, Vθ (x)
and V0(x) are continuous in x (this can be proved following the
fact that the worst-case probability distribution exists under our
setting and by applying Lebesgue dominated convergence theo-
rem based on the continuity of Q(x, ξ ) in x as indicated in (1),
|Q(x, ξ )| < ∞ as shown in Assumption 1, and the compact sample
space Ω), and Vθ (x) is monotonic in θ based on Proposition 3.
Then, following Dini’s theorem, we have Vθ (x) converges to V0(x)
uniformly. Therefore, for any arbitrary small positive number ϵ,
there exists a∆ϵ > 0 such that ∀θ ≤ ∆ϵ:

|Vθ (x
∗) − V0(x

∗)| ≤ ϵ, |Vθ (x
∗
θ ) − V0(x

∗
θ )| ≤ ϵ.

Then, for any θ ≤ ∆ϵ , we have

ψ(θ ) − ψ(0) = Vθ (x
∗
θ ) − V0(x

∗) ≤ Vθ (x
∗) − V0(x

∗)

≤ |Vθ (x
∗) − V0(x

∗)| ≤ ϵ,

where the first inequality follows from the fact that x∗
θ is the

optimal solution to DD-SP with the distance value θ and x∗ is a
feasible solution to this same problem. Similarly, we have

ψ(0) − ψ(θ ) = V0(x
∗) − Vθ (x

∗
θ ) ≤ V0(x

∗
θ ) − Vθ (x

∗
θ )

≤ |V0(x
∗
θ ) − Vθ (x

∗
θ )| ≤ ϵ.

Therefore, |ψ(θ ) − ψ(0)| ≤ ϵ, which proves the claim. □
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