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Abstract: Understanding environmental factors driving spatiotemporal patterns of disease can improve risk
mitigation strategies. Hendra virus (HeV), discovered in Australia in 1994, spills over from bats (Pteropus sp.)
to horses and thence to humans. Below latitude — 22°, almost all spillover events to horses occur during
winter, and above this latitude spillover is aseasonal. We generated a statistical model of environmental drivers
of HeV spillover per month. The model reproduced the spatiotemporal pattern of spillover risk between 1994
and 2015. The model was generated with an ensemble of methods for presence—absence data (boosted
regression trees, random forests and logistic regression). Presences were the locations of horse cases, and
absences per spatial unit (2.7 x 2.7 km pixels without spillover) were sampled with the horse census of
Queensland and New South Wales. The most influential factors indicate that spillover is associated with both
cold-dry and wet conditions. Bimodal responses to several variables suggest spillover involves two systems: one
above and one below a latitudinal area close to — 22°. Northern spillovers are associated with cold-dry and wet
conditions, and southern with cold-dry conditions. Biologically, these patterns could be driven by immune or
behavioural changes in response to food shortage in bats and horse husbandry. Future research should look for
differences in these traits between seasons in the two latitudinal regions. Based on the predicted risk patterns by
latitude, we recommend enhanced preventive management for horses from March to November below latitude
22° south.
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to authorized users. some of which might present as seasonal cycles (Fisman
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resulting in spatiotemporal patterns (Ostfeld et al. 2005).
These patterns have mostly been studied in single-host—
single-pathogen systems and vector-borne diseases (Ostfeld
et al. 2005; Bacaér and Guernaoui 2006; Altizer et al. 2006;
Cuong et al. 2013). The biological mechanisms regulating
spatiotemporal patterns of incidence can result from
interactions between the host, pathogen and climate
(Dowell 2001; Sultan et al. 2005; Fisman 2007). A typical
consequence is the climatic regulation of incidence cycles
that can result in longer and larger outbreaks when envi-
ronmental conditions are more suitable for disease (e.g.
cholera, dengue and influenza) (Pascual and Dobson 2005;
Sultan et al. 2005; Grassly and Fraser 2006; Cuong et al.
2013).

Pathogen transmission between species, known as
spillover (Plowright et al. 2017), requires the integration of
spatiotemporal patterns of biotic and abiotic conditions
across more than one host species (Lo Iacono et al. 2016;
Plowright et al. 2017). For spillover to occur and result in a
diseased individual, several ecological processes at different
scales of organisation need to converge (e.g. pathogen
survival in the environment, presence of infectious reser-
voirs and presence and susceptibility of spillover hosts)
(Estrada-Pefia et al. 2014; Plowright et al. 2015, 2017).
Climate could influence all of these drivers of spillover risk.
Therefore, the climatic factors associated with spatiotem-
poral patterns of spillover might be used for risk prediction,
mitigation and guidance of further research. One of such
diseases is the bat-borne Hendra virus (HeV) in Australia
(Plowright et al. 2015).

Hendra virus is a Paramyxovirus, genus Henipavirus,
first detected to infect and cause disease in horses and
humans in 1994 (Murray et al. 1995a, b). In these spillover
hosts, HeV causes severe respiratory and nervous system
illness with mortality rates of 50% in horses and 75% in
humans. The latter estimate is uncertain as there have only
been seven cases in humans. The four Australian flying fox
bat species (Pteropus alecto, P. conspicillatus, P. polio-
cephalus and P. scapulatus) are the only wild animals that
have been found with antibodies (Halpin and Field 1996).
Of the four bat species, evidence suggests P. alecto (black
flying foxes) and P. conspicillatus (spectacled flying foxes)
are the natural reservoir host and more likely to transmit
HeV to horses (Edson et al.): firstly, because these species
are statistically associated with the spatial pattern of spil-
lover (Smith et al. 2014); secondly they are the only bat
species from which the virus has been isolated (Edson et al.
2015); and thirdly, spillover events consistently occur in the

geographical areas that are climatically more suitable for
these two bat species (Martin et al. 2016). These areas are
the northern wet tropics inhabited primarily by P. con-
spicillatus and to a lesser degree by P. alecto, and from the
dry tropics to the temperate wet forests of central New
South Wales inhabited by P. alecto (Martin et al. 2016).
None of the bat species develop or show signs of disease as
a result of HeV infection (Williamson et al. 1998, 2000;
Halpin et al. 2011).

During the time frame since emergence of HeV, and
particularly after a large cluster of spillover events in 2011, a
spatiotemporal pattern of spillover has become evident.
HeV is transmitted to horses in eastern Australia, during
the southern hemisphere winter between May and
September below latitude 22° south (34 spillover events)
with one exception in November 2016 (ProMED archive
number 20170107.4747872). Above this line, transmission
has been recorded in all seasons (the remaining 21 of a total
of 55 events) (McFarlane et al. 2011; Plowright et al. 2015).

Several environmental factors could be related to the
spatiotemporal patterns of spillover. Bats feed exclusively
on nectar and fruit of native and introduced plants (Ri-
chards 1990; Palmer et al. 2000). Nectar production by
native Eucalyptus spp. trees depends on present and recent
climatic conditions (Hudson et al. 2010). Pulses of nectar
production regulate the number of bats present in certain
geographical areas (Giles et al. 2016). Moreover, nutritional
stress, driven by low plant production that is common
during winter in subtropical areas (McFarlane et al. 2011),
could result in increased susceptibility to diseases in general
(Eby 1991) and to HeV infection in particular (Plowright
et al. 2008, 2016). The temporal dynamics of food for bats
in horse paddocks might also align with these climatically
driven pulses of nectar production that occur at larger
spatial scales. Climate also influences the longer-term
geographical distribution and density of bats (Martin et al.
2016). All of the ecological interactions between bats, cli-
mate, and plants could have direct consequences for the
dynamics of HeV in bats (Plowright et al. 2011, 2015,
2016). However, it is still unclear which climatic factors and
biological mechanisms could regulate the observed seasonal
pulses of HeV excretion and spillover risk (Field et al. 2015;
Plowright et al. 2015)

Transmission from bats to horses is thought to occur
through contact with infectious bat excreta or possibly
ingestion of urine contaminated feed in the environment
(Edson et al. 2015; Plowright et al. 2015; Martin et al.
2015). Because the cumulative number of spillover events
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matched the seasonal survival pattern of HeV in the envi-
ronment, increased environmental survival of HeV was
thought to contribute to spillover seasonality (Scanlan et al.
2014). However, an analysis of the spillover events in space
and time found that HeV spillover did not occur when and
where survival was higher (Martin et al. 2015, 2017). These
results suggest that longer virus survival is not necessary for
transmission and that increased environmental survival
does not contribute to spillover seasonality.

A common approach to investigate disease seasonality
consists of regression procedures to identify statistically
significant correlations between disease incidence and an
environmental or climatic factor. These associations be-
tween disease incidence and climate are often weak and
provide little insight into underlying mechanisms driving
seasonality (Dowell 2001; Pascual and Dobson 2005).
Therefore, to gain more biological insights we used meth-
ods capable of finding nonlinear relationships, statistical
associations and geographical patterns between a series of
factors and HeV spillover risk. We investigated the spa-
tiotemporal pattern of HeV incidence in horses in a niche
identified
requirements for spillover occurrence in space and time

modelling framework: we environmental
using an ensemble of presence—absence methods (Marmion
et al. 2009). The aim of this study was to develop a con-
sensus statistical model that identified climatic require-
ments or correlates that reproduce the observed
spatiotemporal pattern of HeV spillover. We included the
presence and abundance of bats and horses in the model,

which are key determinants of HeV spillover dynamics.

METHODS

We generated a model that predicts the monthly distribu-
tion of HeV spillover risk using presence—absence data
(case—non-case) per 2.7 x 2.7 km raster pixels. Presence
pixels (cases or HeV events as they are generally called)
were defined as laboratory confirmed cases of clinically ill
horses with HeV, and absences (non-cases) were defined as
pixels where no HeV cases had been reported during the
month of interest, but were at risk of spillover given the
potential presence of bats. Environmental data of the
month and year of each spillover event were extracted from
raster layers using the longitude and latitude coordinates of
the events using the database maintained by Biosecurity
Queensland. Absence pixels were sampled within a series of
buffers with variable minimum and maximum distances

from the presence pixels, as described in more detail below.
Distances were measured from the coordinates of the
centroid of the horse paddocks associated with each spil-
lover event, as recorded in the 2007 horse census of
Queensland and New South Wales (Moloney 2011). Hence,
if the longitude and latitude of a HeV case or non-case lied
within the upper and lower boundaries of a pixel, such
pixel was classified as case or non-case. The extracted data
were used to fit three models with different regression
methods that were combined to generate a consensus
model.

ExXTRACTING DATA

Prior to extracting the environmental data, we thinned the
data set with the coordinates of the spillover events to re-
duce spatial autocorrelation from 55 spillover events to 42
(Hijmans 2012). We used a recursive filtering algorithm
based on a physical distance threshold of 0.05° between
points. This was necessary because point data and envi-
ronmental rasters have strong spatial dependence even
more so in the presence of sampling bias which might be
true for HeV spillover events. [Prevalence has remained
stable, while samples for HeV testing have increased in
numbers since discovery in 1994 (Smith et al. 2016)]. Be-
sides, autocorrelated data sets compromise the assessment
of a model’s performance (Veloz 2009), as they violate the
assumption of independence between observations. In
addition to this adjustment, we assumed a 2-week delay
between the registered date of the report and actual spil-
lover, to account for an incubation period and therefore to
capture the climatic conditions that were more likely to
have occurred during or before the actual transmission
from a bat to a horse. The values for monthly climatic
variables for the estimated month of spillover of the filtered
database were extracted from the pixels of the raster files
using the geographical coordinates of each HeV case.

We selected explanatory variables according to our
current knowledge of the HeV spillover system; bat species
(distance to bat camps or roosting site, and environmental
distance to the niche centroid as surrogate of abundance,
see supplementary materials), density of horses (number of
horses per grid cell) and variables representing climatic
variability (corresponding to the average conditions of the
recorded month of spillover compared with seasonal ex-
tremes). For instance, the variables, minimum temperature
difference from minimum temperature of coldest month
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Table 1. Variables Used for Hendra Virus Spillover Distribution Models.

Variable Short name Source

Distance to closest flying fox camp Distbats Model-generated

Distance to the niche centroid of flying foxes DNC Model-generated

Horse density Horsedens Generated from Queensland and New South Wales

Normalised Difference Vegetation Index average (month) NDVI

departments of primary industries horse census database
Bureau of meteorology (BOM)

Average minimum temperature (month) Mintemp BOM

Temperature range (month) Temprange Generated from BOM data

Rainfall BOM

Difference between observed minimum and minimum mindif Generated from BOM data
temperature of coldest month

Difference between observed maximum and maximum  Maxdif Generated from BOM data

temperature of hottest month

Difference between observed rainfall and average rainfall of Raindifwet

the wettest month

Difference between observed rainfall and average rainfall of Raindifdry

the dryest month

Solar exposure Solex

Generated from BOM data

Generated from BOM data

BOM

(mindif, Table 1), maximum temperature difference from
maximum temperature of warmest month (maxdif), rain-
fall difference from wettest month (raindifwet) and rainfall
difference from driest month (raindifdry), represent the
amplitude of seasonal variability.

The variables “distance to closest bat camp” and
“environmental distance to the niche centroid of bats”
were generated with similarity index methods (described in
detail in the supplementary materials) (Farber and Kadmon
2003; Martinez-Meyer et al. 2013). Distance to the closest
bat camp represents the physical distance (in a straight line)
to a pixel with similar climatic characteristics to those
occupied by bats. Climatic distance to the niche centroid
represents a measure of similarity with an optimum defined
by the multivariate centroid of the climatic conditions
occupied by bat roosts.

To generate the horse density model, we repeated the
coordinates of the property centroid by the number of
horses reported. Then we added statistical uniformly dis-
tributed noise equivalent to half of the pixel size of the
environmental data on each of the repeated property
coordinates. After noising the coordinates, we counted the
number of points per pixel and repeated the process 100
times. When iterations were completed, we averaged the
100 raster layers to obtain the final horse density model. A
more detailed description is given in the supplementary

materials.

While these types of analyses are correlational, the
variables related to bat and horse presence and abundance
could represent mechanistic relationships. The variables of
climatic variability were used to represent other biological
phenomena that might influence spillover risk but for
which we have no data, such as plant phenology, bat and
horse behaviour and HeV levels in bats (Plowright et al.
2015).

SAMPLING ABSENCE DATA

The process to obtain absence data comprised model val-
idation simultaneously, although validation is described in
detail below. To sample absence data, we randomly selected
15-16 non-case properties (756 in total) from the horse
census database per spillover event. From this database we
randomly selected the three to four properties per spillover
event for the testing/validating data set. The data set used to
fit the models comprised 42 presences and 600 absences
(15-16 per spillover event). This ratio of absences/presence
is the minimum of the recommended range of ratios for
generalised linear models, boosted regression trees and
random forests for use in species distribution models
(Barbet-Massin et al. 2012). All sampled absence pixels lay
within two buffers of different radius size around each
spillover event. One radius was used to limit the minimum
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Fig. 1. Workflow followed to generate data and fit the model that reproduced the spatiotemporal pattern of spillover. The variables that were

model-generated can represent causal associations because they are conditional for spillover (presence of reservoir and spillover hosts).

Additional climatic data influence variability of spillover risk.

distance allowed around the spillover event (10-20 km),
and the other buffer was used to limit the maximum dis-
tance (50-250 km). Then we implemented an iterative
process that consisted of (1) increasing or decreasing the
size of both buffers, (2) randomly sampling environmental
data lying between the two buffers, (3) fitting the models
with the sampled data and (4) testing the fitted model’s
performance on independent data (Fig. 1).

To test the model’s performance (validation) in each
iteration, we (1) partitioned the data set into 8 subsets for
testing and training such that every event was used in either
training or testing; (2) assessed its discriminative ability
between presences and absences with the area under curve
(AUC) of the receiver operator characteristic (ROC,
specific details on model testing are given below), using the
150 absences that were sampled previously; and (3) assessed
whether the model had reproduced the observed spa-

tiotemporal pattern of spillover risk. To do the latter,
models fitted in each iteration were projected to the average
conditions of the months between discovery in 1994 and
2015 where spillover has been recorded (e.g. average con-
ditions for each January from 1995 to 2015). Then the
predicted suitability for each month was averaged by rows
of pixels by using only the pixels that were 75 km or closer
from the coast. This was necessary to allow better visuali-
sation of the spatiotemporal pattern. The resulting averages
by rows of the projected maps were stacked together and
compared with a kernel density estimation of spillover
event densities by month and latitude (Plowright et al.
2015). Finally, we kept the absences sampled within the
buffer sizes that maximised the AUC and allowed repro-
duction of the spatiotemporal pattern.
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FitTING THE MODELS

Consensus or ensemble methods are algorithms that
combine the predictions of a series of models fitted with
different methods. The resulting distribution models after
combining the different methods can exceed the perfor-
mance of models generated with a single method depend-
ing on the combining algorithm (Marmion et al. 2009).
Here we modelled the spatiotemporal pattern of HeV
spillover risk with three regression methods, boosted
regression trees, random forests and logistic regression, to
create a consensus model with the AUC-weighted average
of each model’s predictions. All regression methods were
implemented in R 3.1.1 (R-Development-Team 2014),
using packages “gbm” and “RandomForest”.

Boosted regression trees and random forests are
extensions of classification and regression trees, which
consist of the combination of multiple simple trees fitted to
subsets of the data (bagging). The main difference between
them is a process called gradient boosting, performed by
boosted regression trees. Gradient boosting consists of

Dec contrast, likelihood of spillover is more
constant in higher latitudes across the

year.

sequentially adding simple regression tree models that are
fitted to the residuals of previous models. When the
sequential models are combined, the different splits give
rise to smooth surfaces similar to those from traditional
regression methods (Elith et al. 2008). We used these three
methods because boosted regression trees and random
forests have very high predictive accuracy (Breiman 2001;
Elith et al. 2008); logistic regression is a transparent, well-
understood and robust methodology, and because we could
analyse presence—absence data with a logistic response with
each of the methods.

The response variable for regression was presence or
absence of spillover (logistic response). Each observation
(presence or absence) was explained by additive terms of
the variables listed in Table 1. We only used additive terms
because boosted regression trees and random forests
automatically determine the most relevant variable inter-
actions (Breiman 2001; Elith et al. 2008), and because
including interactions in the formulas of generalised linear
models to generate species distributions does not usually
improve their predictive performance (Thuiller et al. 2003).



Hendra Virus Spillover is a Bimodal System Driven by Climatic Factors

January

Probability

Low

I High

Enlarged
areas

AUSTRALIA

== 1 1
151 152 153 154
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South Wales during January represents the seasonal fluctuations.
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Fig. 4. Predictions of suitability according to the Mahalanobis distance model with climatic data only. Colours represent the month where
areas at risk occur. In the left side July (white) and August (light grey), in the right side December (white) and January (light grey) and the
overlap in risk that occurs between months (dark grey). Spillover localities correspond to those reported in July, August, December and January,

respectively.

Validating the Models

) o ) ability to discriminate presences from absences (cases from
We validated models fitted with individual methods with

: ) non-cases), such that an AUC =1 indicates perfect dis-
an AUC analysis at the same time that absences (non-cases)

crimination between presences and absences. Model’s AUC

were being sampled. This method measured the model’s . . .
& P scores on independent data were obtained by cross vali-
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Table 2. Individual Variable’s Contribution by Method and Consensus Model.
Variable Method

Logistic regression Random forest Boosted regression trees Consensus
NDVI 0.0265218138 0.0822897993 0.0581631333 0.055242626
Mintemp 0.1842491899 0.0824090844 0.0646522574 0.1109858062
Maxdif 0.1308561101 0.0535145893 0.026019653 0.0704994228
Mindif 0.3464459305 0.0763090204 0.0436831223 0.1569846931
Temprange 0.0332760371 0.0881916668 0.0954456208 0.0720005364
Solex 0.050221069 0.0652289297 0.043720652 0.052894018
rainfall 0.0018350817 0.0774999831 0.0304539593 0.0359838083
Distbats 0.0232535535 0.0843974006 0.0887695118 0.0651225297
DNC 0.0141872594 0.0704642356 0.0721045288 0.0519208851
Horsedens 0.1828075893 0.090664857 0.1947156795 0.156967504
Raindifwet 0.0022513437 0.1655746951 0.2545987897 0.1401336059
Raindifdry 0.004095022 0.0634557387 0.0276730919 0.0312645646

Variable influence has been de-scaled so that values represent proportions of the contribution metric for each method (explained deviance in logistic regression

and incremental node purity in random forest, for instance).
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Fig. 5. Bold lines represent the partial dependence plots of the consensus model for two variables, raindifwet and mindif, which are the climatic

factors that explained the majority of variability. The grey-shaded areas represent the average 1 weighted standard error of model predictions.

The dashed lines are the density of the variables among presences and absences. The maps on the right side of each graph show the values of

both variables in the two contrasting months, July and January.

dation; each of the eight partitioned data sets (described
above) comprised of subsets of 70% of the presence data
used to fit the model and then obtained the AUC with the
remaining 30% of the data left behind. For each of the
partitions of presences, we used the same 150 randomly
sampled absences (3—4 absences per presence) to generate
the AUC. The statistical significance of these performance
tests was assessed by comparing the model’s highest AUC

with a distribution of AUC scores of 1000 null models
fitted with 1000 sets of randomly fabricated presences and
absences that were partitioned to generate the AUC (Raes
and Ter Steege 2007). After obtaining the distribution of
AUC values of the null models, we calculated the proba-
bility that the AUC of the tested model was significantly
better than random by finding the proportion of null
models that had a lower AUC.
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The final model testing stage consisted of assessing the
performance of the spatial projections of the model, for
which we used the partial ROC test (Peterson et al. 2008).
This modification of the traditional AUC analysis consists of
calculating the area of a polygon formed by the proportion of
the predicted geographical area (within a threshold of model
predicted values) versus the proportion of predicted pres-
ence points. The calculated area under the polygon formed
by the different fractions of predicted area and predicted
points is then divided by the area under a random predictor
based on the proportion of the geographical area predicted
by the model. For this reason, the maximum value of this
performance metric is 2. AUC ratios of 1 occur when the area
under the polygon of proportion of area predicted vs pro-
portion of predicted presences equals the area under the
random prediction threshold (model predictions are not
better than random) (Peterson et al. 2008). These model tests
were accompanied by an extrapolation analysis that allowed
us to identify geographical areas and points in time where the
model predictions were affected by the projection data.

Extrapolation Analysis

To make sure that model predictions were as artefact free as
possible, we sought for differences between fitting and
projection data with an extrapolation detection analysis
using ExDet (http://www.climond.org) (Mesgaran et al.
2014). When statistical models are used for prediction, they
can face projection data that is different from the data used
to fit the models. The differences between fitting and
projection data can be values out of the range in the fitting
data or different correlation structures between variables
(Owens et al. 2013; Mesgaran et al. 2014). These differences
can result in prediction artefacts of the model. Hence, we
identified geographical areas in the raster maps generated
with the models that could be spurious predictions based
on the differences between fitting and projection data.

Interpreting the Model

We used two approaches to interpret the consensus model,
variable partial effects curves derived from the consensus
model and a similarity index model using only climatic
variables (Table 1) from the Bureau of Meteorology (http://
www.bom.gov.au) generated with the Mahalanobis dis-
tance algorithm (Farber and Kadmon 2003).

Variable partial effects curves show how predicted
suitability responds to increases of an explanatory variable,

while the remaining variables are kept constant at their
mean value. More detailed information about the methods
used can be found in the supplementary materials.

RESULTS

The final consensus model successfully reproduced the
spatiotemporal pattern of spillover seen from 1994 until
2012 (Figs. 2, 3). This occurred when absences were sam-
pled within a buffer of 20-250 km around spillover events.
The spatiotemporal pattern consisted of a relatively con-
stant risk of spillover in northern latitudes throughout the
year, whereas below the tropics higher risk was during
winter and early spring. At the time of these analyses, 32
events had occurred below 22° south latitude and all oc-
curred in winter and early spring (May—November). Above
this latitude, 23 events had been evenly distributed across
seasons. Given the spatial autocorrelation of some events,
the final data set for analysis contained only 42 events.
The largest seasonal differences occurred above and
below latitude 22° south (Fig. 2) and between January and
July (Figs. 3, 4). Suitability for spillover occurrence in-
creased at lower latitudes from March and peaked in June
at 28° south. By contrast, likelihood of spillover was more
constant (white-blue tones in Fig. 2) in higher latitudes
across the year. The apparent lower overall risk below 22°
south in Fig. 2 was caused by the averaging across longi-
tude necessary to produce the plot and the negative effect
of horse density on spillover risk (see below and Figure S2).
The Mahalanobis distance model (fitted with climate
data only, without horses and bats) also reproduced the
spatiotemporal pattern of spillover risk. Its spatial projec-
tions show the change of size of areas to be at risk of spil-
lover in relation to climate (Fig. 4). This model also allows
better visualisation of the overlap in risk between months
(areas that remain at risk in successive months, Fig. 4).
Minimum temperature difference from minimum
temperature of coldest month (mindif, Table 2) and horse
density were the most influential variables in the consensus
model (32% of explained variability) with negative effects.
Mindif is consistently lower during winter across latitudes.
However, in summer it is much higher at southern lati-
tudes. These levels of mindif result in the model estimating
lower risk during summer in the south and more constant
risk between months in the north. The negative effect of
horse density indicated a lower risk of HeV spillover
associated with higher density of horses. This effect reached
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a minimum at 200 horses per pixel and then increased until
it remained stable at 220 horses and above (at about 50% of
the maximum risk reached at 1 horse per pixel, Figure S2).
Rainfall difference from the wettest month (raindifwet,
Table 2) had a negative effect. Risk reached a minimum at -
400 mm (drier conditions) and then increased to a
stable point at 250, which was the maximum for positive
values of raindifwet. Average minimum temperature had a
positive effect and together with raindifwet accounted 26%
of explained variability. The remaining variables had little
explanatory power. A common feature among variables was
the occurrence of bimodal responses (Figure S2).

From the four most influential variables mentioned
above, mindif and raindifwet were the two climatic factors
that had the most importance in the consensus model. The
average value of mindif and raindifwet is lower among
presences (events) than controls (absence of events), hence
the negative relationships (density curves, Fig. 5). Distance
to the niche centroid of bats was positively correlated with
risk of spillover in the consensus model (Figure S2).

INDIVIDUAL MODELS

All individual models that were combined in the consensus
model had a high discriminative ability, AUC = 0.936
(£ 0.01) and performed significantly better than random
when compared with the AUC of 1000 null models
(P < 0.05). The logistic regression model had the highest
AUC and explained 23% of the deviance. Of all variables,
mindif (minimum temperature difference from the mini-
mum temperature of coldest month) explained most of the
deviance with a negative relationship. mindif was followed by
horse density (negative relationship) and minimum tem-
perature (positive). The boosted regression trees model had
the second highest AUC (= 0.935). Raindifwet (rainfall dif-
ference from wettest month), distance to the niche centroid
of bats and horse density explained most of the variability.
The random forest model had an AUC = 0.92. It also found
raindifwet was the most important variable in describing
spillover events, followed by minimum average temperature,
and distance to bat colonies. In contrast, the Mahalanobis
distance model with climate-only data had the lowest per-
formance with an AUC = 0.73 (P = 0.01) and was not in-
cluded in the consensus model because it only included the
climatic variables. The AUC scores of the models in relation
to the distribution of the AUC scores of the null models are in
the supplementary materials (Figure S3).

The algorithm or combination of algorithms that had
the best performance in space of all according to the AUC
ratio of the partial ROC test was the average of random
forest and boosted regression trees (1.72, P < 0.05, P value
indicates the probability that the calculated ratio is < 1). As
for individual models, random forest (1.64, P < 0.05) had
a AUC ratio slightly higher than logistic regression (1.64,
P < 0.05) and boosted regression trees (1.62, P < 0.05).
The weighted average model that resulted from these three
algorithms also performed better than a random prediction
(1.58, P < 0.05) and clearly shows the lower suitability for
spillover in southern regions during summer. The algo-
rithms were slightly different in terms of how variability was
explained by environmental factors, but their explanatory
performance was very similar. For these reasons, the con-
sensus model consisted of all three regression methods.

EXTRAPOLATION ANALYSIS

We identified areas where the consensus model faced
extrapolation. This was located in the southernmost limit
of the model projection. The type of extrapolation changed
between months (extended variable range or inverted
variable correlations) and in all cases increased the pre-
dicted spillover suitability. The only month in which the
model did not face novel conditions in this area was
February when it predicted low risk (Fig. 2). A comparison
of these projections with the Mahalanobis distance model
shows that the environmental conditions of this southern
area are not similar to any of the conditions of the spillover
events. By contrast, the small areas close to the border
between Queensland and New South Wales that remained
with higher probabilities of spillover during summer have
other events

similar environmental conditions to

(Figs. 3, 4).

DistaANCE TO BAT CAMPS AND HORSE
DENSITY

All the projections of the distance to bat camp models to
spillover months after 2007 were predictions of the trained
model. All of those models for which we had data for
validation performed better than random with AUC ratios
greater than 1.5 (maximum possible of 2). An example of
the validated models is shown in Figure SI.
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DiscussioN

Our model reproduced the observed spatiotemporal pattern
of HeV spillover between 1994 and 2015 (Plowright et al.
2015) with a number of differences. First, risk was lower in
areas with a high density of spillover events; second, the model
predicted areas at risk during summer below latitude 22°
south. The pattern captured by the model suggests that the
higher-risk period below latitude 22° south is from April to
October. While no events have been reported to occur in April
below this latitude, the longer predicted high-risk season may
be explained by delays between HeV spillover, development of
disease in horses and reporting of clinical cases in horses.
Above 22° south, higher spillover suitability is more constant
among months (Figs. 2, 4), which coincides with the density
of spillover events by month and latitude (Plowright et al.
2015). Two climatic factors explained the majority of vari-
ability in the data with negative effects: the difference in
minimum temperature from the minimum temperature of
the coldest month (mindif) and difference of rainfall from
rainfall of the wettest month (raindifwet). Minimum tem-
peratures change more dramatically between seasons below
latitude 22° south, close to the Tropic of Capricorn (Fig. 5),
than above this area. This means that temperatures closer to
the local minimum increase spillover risk when they are
combined with low precipitation during a month.

Bimodal responses to rainfall levels (rainfall and rain-
difwet) indicate that either wet or dry conditions can in-
crease spillover risk. Spillover in wet months occurs in
northern areas; hence, wet conditions might only increase
spillover risk in the north. These relationships also suggest
that a single set of optimal conditions for spillover does not
exist, coinciding with analyses of HeV shedding patterns in
response to rainfall levels and temperature along the lati-
tudinal range of spillover events. HeV shedding pulses are
mainly explained by climatic conditions at small spatial
scales (Paez et al. 2017). Therefore, we suggest that in the
context of our study spillover risk is better represented by
two systems, one in the north and another in the south.
Spillover in the north seems to be correlated with both wet
and dry conditions, and in the south it is related mostly to
dry and cold climate. These two systems might well exist as
a result of two different bat species involved in spillover, P.
conspicillatus and P. alecto (Smith et al. 2014; Edson et al.
2015; Goldspink et al. 2015; Martin et al. 2016). The
southern system could be driven by P. alecto and the
northern by both P. alecto and P. conspicillatus.

We suggest that a basis to identify the two spillover
systems in space be the estimated distributions of P. alecto
and P conspicillatus (Martin et al. 2016). The climatic niche
occupied by P. conspicillatus spans further south than its
usual distribution in north-eastern Australia (Parsons et al.
2010), and its limits coincide with the area where there
seem to be greater visual differences in our results and
previous representations of the spillover pattern (Plowright
et al. 2015). Given that disease systems could be subject to
very high stochasticity, the threshold might be better de-
scribed as a range around latitude 22° south, around the
Tropic of Capricorn.

The suggested separate spatial locations of spillover
systems implicate interactions with different plant com-
munities (Eby and Law 2008) that potentially respond
differently to climatic conditions and result in different
HeV prevalence and shedding dynamics (Paez et al. 2017).
In the northern system P. alecto and P. conspicillatus
interact more frequently with a mixture of tropical rain-
forest and sclerophyll vegetation communities (Webb 1959;
Eby and Law 2008). In the southern system, P. alecto
interacts mostly with an ensemble of sclerophyll native
plants dominated by Eucalyptus sp. and Corymbia sp. (Eby
and Law 2008). The interactions with the different vege-
tation communities might regulate nutritional stress, body
condition and susceptibility to HeV (Plowright et al. 2008,
2015; Paez et al. 2017; Peel et al. 2017), further providing
plausible explanations for the different spillover patterns.

Migration of reservoir hosts could be one of the bio-
logical mechanisms driving spatiotemporal patterns. In
some other bat virus spillover systems, migration con-
tributes to spillover seasonality. For example, rabies spil-
lover occurs when greater numbers of Lasiurus cinereus
migrate to greener areas during winter (Escobar et al.
2013). However, the data we used to calibrate the distance
to bat camp models indicate that there are bats still present
in areas and seasons without recorded spillover events. In
fact, recent analyses indicate that spillover has occurred
when bat densities are low due to low food availability
(Giles et al. 2016). Although the effects of food shortage in
bats are not fully understood, nutritional stress has been
associated with increased HeV seroprevalence (Plowright
et al. 2008). Nutritional stress in that case was caused by
flowering cessation of native plants after a cyclone. How-
ever, the relationship between seropositivity and HeV
infectious status is unknown (Plowright et al. 2008; Field
et al. 2011; Plowright et al. 2016). In general, HeV spillover
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has been related to low plant and crop productivity
(McFarlane et al. 2011). Consequently, some of the
potential scenarios by which bat—plant interactions could
influence seasonal spillover risk below latitude 22° are: (1)
poor nutrition leading to higher susceptibility which could
lead to higher HeV infection levels and transmission among
individual bats; (2) higher densities of bats feeding in more
urbanised or agricultural landscapes when native plants are
not in bloom (Plowright et al. 2015); or (3) a mixture of
infection susceptibility in bats and switching of foraging
habitat. Of these processes, there is stronger evidence for
infection susceptibility because throughout the distribution
of P. alecto there is a seasonal gradient of HeV excretion
peaking in winter (Field et al. 2015; Paez et al. 2017).
However, there are multiple alternative mechanisms that
could be influencing seasonal excretion patterns (Plowright
et al. 2016).

The negative response of spillover risk to horse density
that we found contrasts with previous analyses that failed to
demonstrate an effect of horse density (McFarlane et al.
2011; Smith et al. 2014). This effect might occur as a con-
sequence of several different processes, ranging from bat
foraging habitat availability, to husbandry practices in
professionally managed properties associated with higher
horse densities. Although not considered here, there could
be a relationship between the number of horses per pixel
and availability of bat food trees and the type and quality of
management practices. This deserves further research to
show how paddock management and structure might
influence susceptibility to or likelihood of contact with
HeV, because it could be one of the mechanisms influencing
the spatiotemporal pattern of spillover. In other pathogen
spillover systems, the same effect of apparent competition
between host species arises when the spillover host is neg-
atively affected by the pathogen (Holt and Pickering 1985;
Power and Mitchell 2004). Horses are affected by HeV, but
HeV spillover is too rare to reduce horse density. However,
the same effect would arise from ecological competition
between bats and horses (Power and Mitchell 2004). It is
possible that domestic horses compete for habitat with bats
because horses are linked to land clearing for grazing,
whereas bats rely on flowering trees for food. Consequently,
two factors could potentially create the relationship seen
here; a negative effect of horses on bats’ foraging habitat and
a correlation between higher horse density and professional
husbandry practises that reduce the risk of spillover.
Regardless of the underlying cause, the resulting effect is
lower spillover risk per horse as horse density increases.

The consensus model fitted a positive response to
distance to the niche centroid of bats, our surrogate mea-
sure of bat abundance. The relationship between bat
abundance and distance to the niche centroid is generally
negative (Martin et al. 2016); hence, greater environmental
distances from the niche centroid result in potentially
smaller numbers of bats per pixel (Martinez-Meyer et al.
2013). This seemingly accurate prediction given Giles et al.
(2016)’s recent findings of spillover occurring during low
abundance of bats is, nevertheless, spatially confounded, by
the behaviour of bats. This is because spillover occurs when
bats are widely dispersed foraging at night time. These
foraging areas are generally physically and environmentally
distant from camp sites where bats are most abundant
during the day (Vardon et al. 2001)

The differences between the climate-only Mahalanobis
distance and the consensus model could be explained by the
absence of the factors that are conditional for spillover like
the presence of bats and horses. In addition the distribu-
tional estimates of environmental envelope methods, like
those of Mahalanobis distance, are closer to the potential
distribution than presence—absence methods that estimate
the realised distribution (Soberén and Peterson 2005; Ji-
ménez-Valverde et al. 2008). Alternative explanations for
the wider areas predicted in the climate-only model could
be related to the spatial resolution of the environmental
data. It is possible that the spatial scale at which climate
influences the biological mechanism driving the spa-
than the
2.7 x 2.7 km pixels used here. This is a common issue in

tiotemporal spillover pattern is greater
species distribution and ecological niche modelling studies;
ideally the grain size should match the scale at which species
select their habitat (Peterson 2006). For instance, it has been
suggested that the minimum area for a bat population to
persist is 5000 km” (Vardon et al. 2001) and the foraging
habitat of a bat camp is up to 40 km wide (Field et al. 2015).
Therefore, the spatial scale at which climate influences risk
of HeV spillover could be different than the one used here.
The predictions of the climate-only model also represent a
warning that adequate conditions for spillover occurrence
are not completely absent during late spring and summer
south of the 22° south area. For example, the late spring
spillover event in November in Casino NSW (~ 29° south,
ProMED archive number 20170107.4747872) was predicted
by the full and climate-only models (Figs. 2, 4).

Our analyses have obvious limitations: (1) the absence
of a strong link between climatic factors and a specific

biological mechanism precludes the identification of the
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factors driving seasonality; (2) a poor understanding of bat
foraging patterns and HeV transmission pathways to horses
may result in misclassification of non-case properties; (3)
the potential errors in the model-generated variables (dis-
tance to bat camps and DNC), regardless of their high
performance, could accumulate uncertainty in the final
spillover model; and (4) there could be alternative analyt-
ical methods more adequate and transparent than the
consensus type of spatiotemporal analyses performed here.
The higher-risk season of HeV spillover below latitude
22° south has been from April to October. Whether this
seasonal pattern is caused by immigration or emigration of
bats is unclear. The number of bats in such areas depends
mainly on food abundance, which has been previously
suggested as a cause of increased susceptibility to HeV
(Plowright et al. 2008). Consequently, our models could
well be detecting these signals and the underlying mecha-
nisms of seasonal spillover below latitude 22° south may be
a mixture of seasonal movement and feeding of the reser-
voir host in horse paddocks (Pascual and Dobson 2005;
Grassly and Fraser 2006). Impairment of the immune
function of both reservoir and spillover hosts is also pos-
sible and could act in synergy with behavioural changes.
One example of how these factors might increase risk is the
spillover event in Casino NSW in November 2016
(ProMED archive number 20170107.4747872). This event
occurred during a food shortage in late spring resulting in
bats with poor body condition in the southern spillover
system (Paez et al. 2017; Peel et al. 2017). An additional
factor that could contribute to result in the observed spa-
tiotemporal pattern is management of horses. For example,
feed supplementation or stabling will reduce dependence
on natural grass and exposure to HeV. These factors have
been poorly studied and deserve future research.
Determining how the components of the HeV spillover
system are affected by climate is beyond the scope of this
analysis. Thus, further research is needed to understand the
effects of climate on food availability and the consequent
effects on bats and horse interactions and their immune
function and management. However, good husbandry
practices, like restriction of access of horses to trees (where
flying foxes feed and excrete HeV) and vaccination against
Hendra virus, can override the effect of many environ-
mental factors (Haining 2003). We suggest that these
practices should be more rigorously considered and fol-
lowed in the areas and seasons that are at greater risk of
Hendra virus spillover, while considering that areas and

seasons that have not had spillover events might still pose
low risk levels.

CONCLUSIONS

The mechanisms driving seasonality of Hendra virus spil-
lover are likely influenced by the effects of the seasonal
amplitude of minimum temperature and rainfall on food
resources of bats and horses. Food resources might then
regulate infection levels through changes in immune
function (nutritional stress and body condition), behaviour
and spatial population dynamics of bats. In horses, grass
abundance might also influence immune function, beha-
viour and husbandry practices. Therefore, we suggest that
future research focuses on determining how behaviour,
immune function and management of both horses and bats
change in response to food shortage driven by climate.
Behavioural and immunological changes might be more
evident when comparing areas north and south around
latitude 22° south or the Tropic of Capricorn, which is
where the major differences in seasonality seem to occur.
However, we suggest that while the high-risk season below
latitude 22° south occurred from April to October between
1994 and 2015, considering a longer-risk season such as
from March to November could result in improved risk
mitigation. Properties within and around the areas should
be encouraged to improve mitigation by following the
prevention guidelines of the Australian Veterinary Associ-
ation  (http://www.ava.com.au/hendra-virus), including
vaccination, removing feed and water troughs from under
trees, restricting access to trees during the night and
removing grass or tall vegetation under trees that might
provide better conditions for HeV survival and transmis-

sion in the environment.
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