
Hendra Virus Spillover is a Bimodal System Driven by Climatic
Factors

Gerardo Martin,1 Carlos Yanez-Arenas,2 Raina K. Plowright,3 Carla Chen,4

Billie Roberts,5 and Lee F. Skerratt1

1One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
2Laboratorio de Conservación de la Biodiversidad, Parque Cientı́fico y Tecnológico de Yucatán, Universidad, Universidad Nacional Autónoma de
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Abstract: Understanding environmental factors driving spatiotemporal patterns of disease can improve risk

mitigation strategies. Hendra virus (HeV), discovered in Australia in 1994, spills over from bats (Pteropus sp.)

to horses and thence to humans. Below latitude - 22�, almost all spillover events to horses occur during

winter, and above this latitude spillover is aseasonal. We generated a statistical model of environmental drivers

of HeV spillover per month. The model reproduced the spatiotemporal pattern of spillover risk between 1994

and 2015. The model was generated with an ensemble of methods for presence–absence data (boosted

regression trees, random forests and logistic regression). Presences were the locations of horse cases, and

absences per spatial unit (2.7 9 2.7 km pixels without spillover) were sampled with the horse census of

Queensland and New South Wales. The most influential factors indicate that spillover is associated with both

cold-dry and wet conditions. Bimodal responses to several variables suggest spillover involves two systems: one

above and one below a latitudinal area close to - 22�. Northern spillovers are associated with cold-dry and wet

conditions, and southern with cold-dry conditions. Biologically, these patterns could be driven by immune or

behavioural changes in response to food shortage in bats and horse husbandry. Future research should look for

differences in these traits between seasons in the two latitudinal regions. Based on the predicted risk patterns by

latitude, we recommend enhanced preventive management for horses from March to November below latitude

22� south.
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INTRODUCTION

Infectious diseases have temporal patterns of incidence,

some of which might present as seasonal cycles (Fisman

2007). However, incidence can also vary over space,
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resulting in spatiotemporal patterns (Ostfeld et al. 2005).

These patterns have mostly been studied in single-host–

single-pathogen systems and vector-borne diseases (Ostfeld

et al. 2005; Bacaër and Guernaoui 2006; Altizer et al. 2006;

Cuong et al. 2013). The biological mechanisms regulating

spatiotemporal patterns of incidence can result from

interactions between the host, pathogen and climate

(Dowell 2001; Sultan et al. 2005; Fisman 2007). A typical

consequence is the climatic regulation of incidence cycles

that can result in longer and larger outbreaks when envi-

ronmental conditions are more suitable for disease (e.g.

cholera, dengue and influenza) (Pascual and Dobson 2005;

Sultan et al. 2005; Grassly and Fraser 2006; Cuong et al.

2013).

Pathogen transmission between species, known as

spillover (Plowright et al. 2017), requires the integration of

spatiotemporal patterns of biotic and abiotic conditions

across more than one host species (Lo Iacono et al. 2016;

Plowright et al. 2017). For spillover to occur and result in a

diseased individual, several ecological processes at different

scales of organisation need to converge (e.g. pathogen

survival in the environment, presence of infectious reser-

voirs and presence and susceptibility of spillover hosts)

(Estrada-Peña et al. 2014; Plowright et al. 2015, 2017).

Climate could influence all of these drivers of spillover risk.

Therefore, the climatic factors associated with spatiotem-

poral patterns of spillover might be used for risk prediction,

mitigation and guidance of further research. One of such

diseases is the bat-borne Hendra virus (HeV) in Australia

(Plowright et al. 2015).

Hendra virus is a Paramyxovirus, genus Henipavirus,

first detected to infect and cause disease in horses and

humans in 1994 (Murray et al. 1995a, b). In these spillover

hosts, HeV causes severe respiratory and nervous system

illness with mortality rates of 50% in horses and 75% in

humans. The latter estimate is uncertain as there have only

been seven cases in humans. The four Australian flying fox

bat species (Pteropus alecto, P. conspicillatus, P. polio-

cephalus and P. scapulatus) are the only wild animals that

have been found with antibodies (Halpin and Field 1996).

Of the four bat species, evidence suggests P. alecto (black

flying foxes) and P. conspicillatus (spectacled flying foxes)

are the natural reservoir host and more likely to transmit

HeV to horses (Edson et al.): firstly, because these species

are statistically associated with the spatial pattern of spil-

lover (Smith et al. 2014); secondly they are the only bat

species from which the virus has been isolated (Edson et al.

2015); and thirdly, spillover events consistently occur in the

geographical areas that are climatically more suitable for

these two bat species (Martin et al. 2016). These areas are

the northern wet tropics inhabited primarily by P. con-

spicillatus and to a lesser degree by P. alecto, and from the

dry tropics to the temperate wet forests of central New

South Wales inhabited by P. alecto (Martin et al. 2016).

None of the bat species develop or show signs of disease as

a result of HeV infection (Williamson et al. 1998, 2000;

Halpin et al. 2011).

During the time frame since emergence of HeV, and

particularly after a large cluster of spillover events in 2011, a

spatiotemporal pattern of spillover has become evident.

HeV is transmitted to horses in eastern Australia, during

the southern hemisphere winter between May and

September below latitude 22� south (34 spillover events)

with one exception in November 2016 (ProMED archive

number 20170107.4747872). Above this line, transmission

has been recorded in all seasons (the remaining 21 of a total

of 55 events) (McFarlane et al. 2011; Plowright et al. 2015).

Several environmental factors could be related to the

spatiotemporal patterns of spillover. Bats feed exclusively

on nectar and fruit of native and introduced plants (Ri-

chards 1990; Palmer et al. 2000). Nectar production by

native Eucalyptus spp. trees depends on present and recent

climatic conditions (Hudson et al. 2010). Pulses of nectar

production regulate the number of bats present in certain

geographical areas (Giles et al. 2016). Moreover, nutritional

stress, driven by low plant production that is common

during winter in subtropical areas (McFarlane et al. 2011),

could result in increased susceptibility to diseases in general

(Eby 1991) and to HeV infection in particular (Plowright

et al. 2008, 2016). The temporal dynamics of food for bats

in horse paddocks might also align with these climatically

driven pulses of nectar production that occur at larger

spatial scales. Climate also influences the longer-term

geographical distribution and density of bats (Martin et al.

2016). All of the ecological interactions between bats, cli-

mate, and plants could have direct consequences for the

dynamics of HeV in bats (Plowright et al. 2011, 2015,

2016). However, it is still unclear which climatic factors and

biological mechanisms could regulate the observed seasonal

pulses of HeV excretion and spillover risk (Field et al. 2015;

Plowright et al. 2015)

Transmission from bats to horses is thought to occur

through contact with infectious bat excreta or possibly

ingestion of urine contaminated feed in the environment

(Edson et al. 2015; Plowright et al. 2015; Martin et al.

2015). Because the cumulative number of spillover events
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matched the seasonal survival pattern of HeV in the envi-

ronment, increased environmental survival of HeV was

thought to contribute to spillover seasonality (Scanlan et al.

2014). However, an analysis of the spillover events in space

and time found that HeV spillover did not occur when and

where survival was higher (Martin et al. 2015, 2017). These

results suggest that longer virus survival is not necessary for

transmission and that increased environmental survival

does not contribute to spillover seasonality.

A common approach to investigate disease seasonality

consists of regression procedures to identify statistically

significant correlations between disease incidence and an

environmental or climatic factor. These associations be-

tween disease incidence and climate are often weak and

provide little insight into underlying mechanisms driving

seasonality (Dowell 2001; Pascual and Dobson 2005).

Therefore, to gain more biological insights we used meth-

ods capable of finding nonlinear relationships, statistical

associations and geographical patterns between a series of

factors and HeV spillover risk. We investigated the spa-

tiotemporal pattern of HeV incidence in horses in a niche

modelling framework: we identified environmental

requirements for spillover occurrence in space and time

using an ensemble of presence–absence methods (Marmion

et al. 2009). The aim of this study was to develop a con-

sensus statistical model that identified climatic require-

ments or correlates that reproduce the observed

spatiotemporal pattern of HeV spillover. We included the

presence and abundance of bats and horses in the model,

which are key determinants of HeV spillover dynamics.

METHODS

We generated a model that predicts the monthly distribu-

tion of HeV spillover risk using presence–absence data

(case–non-case) per 2.7 9 2.7 km raster pixels. Presence

pixels (cases or HeV events as they are generally called)

were defined as laboratory confirmed cases of clinically ill

horses with HeV, and absences (non-cases) were defined as

pixels where no HeV cases had been reported during the

month of interest, but were at risk of spillover given the

potential presence of bats. Environmental data of the

month and year of each spillover event were extracted from

raster layers using the longitude and latitude coordinates of

the events using the database maintained by Biosecurity

Queensland. Absence pixels were sampled within a series of

buffers with variable minimum and maximum distances

from the presence pixels, as described in more detail below.

Distances were measured from the coordinates of the

centroid of the horse paddocks associated with each spil-

lover event, as recorded in the 2007 horse census of

Queensland and New South Wales (Moloney 2011). Hence,

if the longitude and latitude of a HeV case or non-case lied

within the upper and lower boundaries of a pixel, such

pixel was classified as case or non-case. The extracted data

were used to fit three models with different regression

methods that were combined to generate a consensus

model.

EXTRACTING DATA

Prior to extracting the environmental data, we thinned the

data set with the coordinates of the spillover events to re-

duce spatial autocorrelation from 55 spillover events to 42

(Hijmans 2012). We used a recursive filtering algorithm

based on a physical distance threshold of 0.05� between

points. This was necessary because point data and envi-

ronmental rasters have strong spatial dependence even

more so in the presence of sampling bias which might be

true for HeV spillover events. [Prevalence has remained

stable, while samples for HeV testing have increased in

numbers since discovery in 1994 (Smith et al. 2016)]. Be-

sides, autocorrelated data sets compromise the assessment

of a model’s performance (Veloz 2009), as they violate the

assumption of independence between observations. In

addition to this adjustment, we assumed a 2-week delay

between the registered date of the report and actual spil-

lover, to account for an incubation period and therefore to

capture the climatic conditions that were more likely to

have occurred during or before the actual transmission

from a bat to a horse. The values for monthly climatic

variables for the estimated month of spillover of the filtered

database were extracted from the pixels of the raster files

using the geographical coordinates of each HeV case.

We selected explanatory variables according to our

current knowledge of the HeV spillover system; bat species

(distance to bat camps or roosting site, and environmental

distance to the niche centroid as surrogate of abundance,

see supplementary materials), density of horses (number of

horses per grid cell) and variables representing climatic

variability (corresponding to the average conditions of the

recorded month of spillover compared with seasonal ex-

tremes). For instance, the variables, minimum temperature

difference from minimum temperature of coldest month

Hendra Virus Spillover is a Bimodal System Driven by Climatic Factors



(mindif, Table 1), maximum temperature difference from

maximum temperature of warmest month (maxdif), rain-

fall difference from wettest month (raindifwet) and rainfall

difference from driest month (raindifdry), represent the

amplitude of seasonal variability.

The variables ‘‘distance to closest bat camp’’ and

‘‘environmental distance to the niche centroid of bats’’

were generated with similarity index methods (described in

detail in the supplementary materials) (Farber and Kadmon

2003; Martı́nez-Meyer et al. 2013). Distance to the closest

bat camp represents the physical distance (in a straight line)

to a pixel with similar climatic characteristics to those

occupied by bats. Climatic distance to the niche centroid

represents a measure of similarity with an optimum defined

by the multivariate centroid of the climatic conditions

occupied by bat roosts.

To generate the horse density model, we repeated the

coordinates of the property centroid by the number of

horses reported. Then we added statistical uniformly dis-

tributed noise equivalent to half of the pixel size of the

environmental data on each of the repeated property

coordinates. After noising the coordinates, we counted the

number of points per pixel and repeated the process 100

times. When iterations were completed, we averaged the

100 raster layers to obtain the final horse density model. A

more detailed description is given in the supplementary

materials.

While these types of analyses are correlational, the

variables related to bat and horse presence and abundance

could represent mechanistic relationships. The variables of

climatic variability were used to represent other biological

phenomena that might influence spillover risk but for

which we have no data, such as plant phenology, bat and

horse behaviour and HeV levels in bats (Plowright et al.

2015).

SAMPLING ABSENCE DATA

The process to obtain absence data comprised model val-

idation simultaneously, although validation is described in

detail below. To sample absence data, we randomly selected

15–16 non-case properties (756 in total) from the horse

census database per spillover event. From this database we

randomly selected the three to four properties per spillover

event for the testing/validating data set. The data set used to

fit the models comprised 42 presences and 600 absences

(15–16 per spillover event). This ratio of absences/presence

is the minimum of the recommended range of ratios for

generalised linear models, boosted regression trees and

random forests for use in species distribution models

(Barbet-Massin et al. 2012). All sampled absence pixels lay

within two buffers of different radius size around each

spillover event. One radius was used to limit the minimum

Table 1. Variables Used for Hendra Virus Spillover Distribution Models.

Variable Short name Source

Distance to closest flying fox camp Distbats Model-generated

Distance to the niche centroid of flying foxes DNC Model-generated

Horse density Horsedens Generated from Queensland and New South Wales

departments of primary industries horse census database

Normalised Difference Vegetation Index average (month) NDVI Bureau of meteorology (BOM)

Average minimum temperature (month) Mintemp BOM

Temperature range (month) Temprange Generated from BOM data

Rainfall BOM

Difference between observed minimum and minimum

temperature of coldest month

mindif Generated from BOM data

Difference between observed maximum and maximum

temperature of hottest month

Maxdif Generated from BOM data

Difference between observed rainfall and average rainfall of

the wettest month

Raindifwet Generated from BOM data

Difference between observed rainfall and average rainfall of

the dryest month

Raindifdry Generated from BOM data

Solar exposure Solex BOM

G. Martin et al.



distance allowed around the spillover event (10–20 km),

and the other buffer was used to limit the maximum dis-

tance (50–250 km). Then we implemented an iterative

process that consisted of (1) increasing or decreasing the

size of both buffers, (2) randomly sampling environmental

data lying between the two buffers, (3) fitting the models

with the sampled data and (4) testing the fitted model’s

performance on independent data (Fig. 1).

To test the model’s performance (validation) in each

iteration, we (1) partitioned the data set into 8 subsets for

testing and training such that every event was used in either

training or testing; (2) assessed its discriminative ability

between presences and absences with the area under curve

(AUC) of the receiver operator characteristic (ROC,

specific details on model testing are given below), using the

150 absences that were sampled previously; and (3) assessed

whether the model had reproduced the observed spa-

tiotemporal pattern of spillover risk. To do the latter,

models fitted in each iteration were projected to the average

conditions of the months between discovery in 1994 and

2015 where spillover has been recorded (e.g. average con-

ditions for each January from 1995 to 2015). Then the

predicted suitability for each month was averaged by rows

of pixels by using only the pixels that were 75 km or closer

from the coast. This was necessary to allow better visuali-

sation of the spatiotemporal pattern. The resulting averages

by rows of the projected maps were stacked together and

compared with a kernel density estimation of spillover

event densities by month and latitude (Plowright et al.

2015). Finally, we kept the absences sampled within the

buffer sizes that maximised the AUC and allowed repro-

duction of the spatiotemporal pattern.

Fig. 1. Workflow followed to generate data and fit the model that reproduced the spatiotemporal pattern of spillover. The variables that were

model-generated can represent causal associations because they are conditional for spillover (presence of reservoir and spillover hosts).

Additional climatic data influence variability of spillover risk.

Hendra Virus Spillover is a Bimodal System Driven by Climatic Factors



FITTING THE MODELS

Consensus or ensemble methods are algorithms that

combine the predictions of a series of models fitted with

different methods. The resulting distribution models after

combining the different methods can exceed the perfor-

mance of models generated with a single method depend-

ing on the combining algorithm (Marmion et al. 2009).

Here we modelled the spatiotemporal pattern of HeV

spillover risk with three regression methods, boosted

regression trees, random forests and logistic regression, to

create a consensus model with the AUC-weighted average

of each model’s predictions. All regression methods were

implemented in R 3.1.1 (R-Development-Team 2014),

using packages ‘‘gbm’’ and ‘‘RandomForest’’.

Boosted regression trees and random forests are

extensions of classification and regression trees, which

consist of the combination of multiple simple trees fitted to

subsets of the data (bagging). The main difference between

them is a process called gradient boosting, performed by

boosted regression trees. Gradient boosting consists of

sequentially adding simple regression tree models that are

fitted to the residuals of previous models. When the

sequential models are combined, the different splits give

rise to smooth surfaces similar to those from traditional

regression methods (Elith et al. 2008). We used these three

methods because boosted regression trees and random

forests have very high predictive accuracy (Breiman 2001;

Elith et al. 2008); logistic regression is a transparent, well-

understood and robust methodology, and because we could

analyse presence–absence data with a logistic response with

each of the methods.

The response variable for regression was presence or

absence of spillover (logistic response). Each observation

(presence or absence) was explained by additive terms of

the variables listed in Table 1. We only used additive terms

because boosted regression trees and random forests

automatically determine the most relevant variable inter-

actions (Breiman 2001; Elith et al. 2008), and because

including interactions in the formulas of generalised linear

models to generate species distributions does not usually

improve their predictive performance (Thuiller et al. 2003).

Fig. 2. Risk of spillover occurrence by

month (x axis) and latitude (y axis)

averaged across longitude. Darker shades

indicate higher risk. In the southern

spillover system risk increases in March

and peaks in June at 28� south. In

contrast, likelihood of spillover is more

constant in higher latitudes across the

year.

G. Martin et al.



Fig. 3. Projections of the consensus model to the average conditions of the climatic variables of July and January between 1994 and 2014.

Darker pixels indicate higher predicted suitability for spillover. The lower suitability in areas close to the border between Queensland and New

South Wales during January represents the seasonal fluctuations.
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Validating the Models

We validated models fitted with individual methods with

an AUC analysis at the same time that absences (non-cases)

were being sampled. This method measured the model’s

ability to discriminate presences from absences (cases from

non-cases), such that an AUC = 1 indicates perfect dis-

crimination between presences and absences. Model’s AUC

scores on independent data were obtained by cross vali-

Fig. 4. Predictions of suitability according to the Mahalanobis distance model with climatic data only. Colours represent the month where

areas at risk occur. In the left side July (white) and August (light grey), in the right side December (white) and January (light grey) and the

overlap in risk that occurs between months (dark grey). Spillover localities correspond to those reported in July, August, December and January,

respectively.

G. Martin et al.



dation; each of the eight partitioned data sets (described

above) comprised of subsets of 70% of the presence data

used to fit the model and then obtained the AUC with the

remaining 30% of the data left behind. For each of the

partitions of presences, we used the same 150 randomly

sampled absences (3–4 absences per presence) to generate

the AUC. The statistical significance of these performance

tests was assessed by comparing the model’s highest AUC

with a distribution of AUC scores of 1000 null models

fitted with 1000 sets of randomly fabricated presences and

absences that were partitioned to generate the AUC (Raes

and Ter Steege 2007). After obtaining the distribution of

AUC values of the null models, we calculated the proba-

bility that the AUC of the tested model was significantly

better than random by finding the proportion of null

models that had a lower AUC.

Table 2. Individual Variable’s Contribution by Method and Consensus Model.

Variable Method

Logistic regression Random forest Boosted regression trees Consensus

NDVI 0.0265218138 0.0822897993 0.0581631333 0.055242626

Mintemp 0.1842491899 0.0824090844 0.0646522574 0.1109858062

Maxdif 0.1308561101 0.0535145893 0.026019653 0.0704994228

Mindif 0.3464459305 0.0763090204 0.0436831223 0.1569846931

Temprange 0.0332760371 0.0881916668 0.0954456208 0.0720005364

Solex 0.050221069 0.0652289297 0.043720652 0.052894018

rainfall 0.0018350817 0.0774999831 0.0304539593 0.0359838083

Distbats 0.0232535535 0.0843974006 0.0887695118 0.0651225297

DNC 0.0141872594 0.0704642356 0.0721045288 0.0519208851

Horsedens 0.1828075893 0.090664857 0.1947156795 0.156967504

Raindifwet 0.0022513437 0.1655746951 0.2545987897 0.1401336059

Raindifdry 0.004095022 0.0634557387 0.0276730919 0.0312645646

Variable influence has been de-scaled so that values represent proportions of the contribution metric for each method (explained deviance in logistic regression

and incremental node purity in random forest, for instance).

Fig. 5. Bold lines represent the partial dependence plots of the consensus model for two variables, raindifwet and mindif, which are the climatic

factors that explained the majority of variability. The grey-shaded areas represent the average 1 weighted standard error of model predictions.

The dashed lines are the density of the variables among presences and absences. The maps on the right side of each graph show the values of

both variables in the two contrasting months, July and January.
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The final model testing stage consisted of assessing the

performance of the spatial projections of the model, for

which we used the partial ROC test (Peterson et al. 2008).

This modification of the traditional AUC analysis consists of

calculating the area of a polygon formed by the proportion of

the predicted geographical area (within a threshold of model

predicted values) versus the proportion of predicted pres-

ence points. The calculated area under the polygon formed

by the different fractions of predicted area and predicted

points is then divided by the area under a random predictor

based on the proportion of the geographical area predicted

by the model. For this reason, the maximum value of this

performance metric is 2. AUC ratios of 1 occur when the area

under the polygon of proportion of area predicted vs pro-

portion of predicted presences equals the area under the

random prediction threshold (model predictions are not

better than random) (Peterson et al. 2008). These model tests

were accompanied by an extrapolation analysis that allowed

us to identify geographical areas and points in time where the

model predictions were affected by the projection data.

Extrapolation Analysis

To make sure that model predictions were as artefact free as

possible, we sought for differences between fitting and

projection data with an extrapolation detection analysis

using ExDet (http://www.climond.org) (Mesgaran et al.

2014). When statistical models are used for prediction, they

can face projection data that is different from the data used

to fit the models. The differences between fitting and

projection data can be values out of the range in the fitting

data or different correlation structures between variables

(Owens et al. 2013; Mesgaran et al. 2014). These differences

can result in prediction artefacts of the model. Hence, we

identified geographical areas in the raster maps generated

with the models that could be spurious predictions based

on the differences between fitting and projection data.

Interpreting the Model

We used two approaches to interpret the consensus model,

variable partial effects curves derived from the consensus

model and a similarity index model using only climatic

variables (Table 1) from the Bureau of Meteorology (http://

www.bom.gov.au) generated with the Mahalanobis dis-

tance algorithm (Farber and Kadmon 2003).

Variable partial effects curves show how predicted

suitability responds to increases of an explanatory variable,

while the remaining variables are kept constant at their

mean value. More detailed information about the methods

used can be found in the supplementary materials.

RESULTS

The final consensus model successfully reproduced the

spatiotemporal pattern of spillover seen from 1994 until

2012 (Figs. 2, 3). This occurred when absences were sam-

pled within a buffer of 20–250 km around spillover events.

The spatiotemporal pattern consisted of a relatively con-

stant risk of spillover in northern latitudes throughout the

year, whereas below the tropics higher risk was during

winter and early spring. At the time of these analyses, 32

events had occurred below 22� south latitude and all oc-

curred in winter and early spring (May–November). Above

this latitude, 23 events had been evenly distributed across

seasons. Given the spatial autocorrelation of some events,

the final data set for analysis contained only 42 events.

The largest seasonal differences occurred above and

below latitude 22� south (Fig. 2) and between January and

July (Figs. 3, 4). Suitability for spillover occurrence in-

creased at lower latitudes from March and peaked in June

at 28� south. By contrast, likelihood of spillover was more

constant (white–blue tones in Fig. 2) in higher latitudes

across the year. The apparent lower overall risk below 22�
south in Fig. 2 was caused by the averaging across longi-

tude necessary to produce the plot and the negative effect

of horse density on spillover risk (see below and Figure S2).

The Mahalanobis distance model (fitted with climate

data only, without horses and bats) also reproduced the

spatiotemporal pattern of spillover risk. Its spatial projec-

tions show the change of size of areas to be at risk of spil-

lover in relation to climate (Fig. 4). This model also allows

better visualisation of the overlap in risk between months

(areas that remain at risk in successive months, Fig. 4).

Minimum temperature difference from minimum

temperature of coldest month (mindif, Table 2) and horse

density were the most influential variables in the consensus

model (32% of explained variability) with negative effects.

Mindif is consistently lower during winter across latitudes.

However, in summer it is much higher at southern lati-

tudes. These levels of mindif result in the model estimating

lower risk during summer in the south and more constant

risk between months in the north. The negative effect of

horse density indicated a lower risk of HeV spillover

associated with higher density of horses. This effect reached

G. Martin et al.
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a minimum at 200 horses per pixel and then increased until

it remained stable at 220 horses and above (at about 50% of

the maximum risk reached at 1 horse per pixel, Figure S2).

Rainfall difference from the wettest month (raindifwet,

Table 2) had a negative effect. Risk reached a minimum at -

400 mm (drier conditions) and then increased to a

stable point at 250, which was the maximum for positive

values of raindifwet. Average minimum temperature had a

positive effect and together with raindifwet accounted 26%

of explained variability. The remaining variables had little

explanatory power. A common feature among variables was

the occurrence of bimodal responses (Figure S2).

From the four most influential variables mentioned

above, mindif and raindifwet were the two climatic factors

that had the most importance in the consensus model. The

average value of mindif and raindifwet is lower among

presences (events) than controls (absence of events), hence

the negative relationships (density curves, Fig. 5). Distance

to the niche centroid of bats was positively correlated with

risk of spillover in the consensus model (Figure S2).

INDIVIDUAL MODELS

All individual models that were combined in the consensus

model had a high discriminative ability, AUC = 0.936

(± 0.01) and performed significantly better than random

when compared with the AUC of 1000 null models

(P < 0.05). The logistic regression model had the highest

AUC and explained 23% of the deviance. Of all variables,

mindif (minimum temperature difference from the mini-

mum temperature of coldest month) explained most of the

deviance with a negative relationship. mindif was followed by

horse density (negative relationship) and minimum tem-

perature (positive). The boosted regression trees model had

the second highest AUC (= 0.935). Raindifwet (rainfall dif-

ference from wettest month), distance to the niche centroid

of bats and horse density explained most of the variability.

The random forest model had an AUC = 0.92. It also found

raindifwet was the most important variable in describing

spillover events, followed by minimum average temperature,

and distance to bat colonies. In contrast, the Mahalanobis

distance model with climate-only data had the lowest per-

formance with an AUC = 0.73 (P = 0.01) and was not in-

cluded in the consensus model because it only included the

climatic variables. The AUC scores of the models in relation

to the distribution of the AUC scores of the null models are in

the supplementary materials (Figure S3).

The algorithm or combination of algorithms that had

the best performance in space of all according to the AUC

ratio of the partial ROC test was the average of random

forest and boosted regression trees (1.72, P < 0.05, P value

indicates the probability that the calculated ratio is � 1). As

for individual models, random forest (1.64, P < 0.05) had

a AUC ratio slightly higher than logistic regression (1.64,

P < 0.05) and boosted regression trees (1.62, P < 0.05).

The weighted average model that resulted from these three

algorithms also performed better than a random prediction

(1.58, P < 0.05) and clearly shows the lower suitability for

spillover in southern regions during summer. The algo-

rithms were slightly different in terms of how variability was

explained by environmental factors, but their explanatory

performance was very similar. For these reasons, the con-

sensus model consisted of all three regression methods.

EXTRAPOLATION ANALYSIS

We identified areas where the consensus model faced

extrapolation. This was located in the southernmost limit

of the model projection. The type of extrapolation changed

between months (extended variable range or inverted

variable correlations) and in all cases increased the pre-

dicted spillover suitability. The only month in which the

model did not face novel conditions in this area was

February when it predicted low risk (Fig. 2). A comparison

of these projections with the Mahalanobis distance model

shows that the environmental conditions of this southern

area are not similar to any of the conditions of the spillover

events. By contrast, the small areas close to the border

between Queensland and New South Wales that remained

with higher probabilities of spillover during summer have

similar environmental conditions to other events

(Figs. 3, 4).

DISTANCE TO BAT CAMPS AND HORSE

DENSITY

All the projections of the distance to bat camp models to

spillover months after 2007 were predictions of the trained

model. All of those models for which we had data for

validation performed better than random with AUC ratios

greater than 1.5 (maximum possible of 2). An example of

the validated models is shown in Figure S1.
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DISCUSSION

Our model reproduced the observed spatiotemporal pattern

of HeV spillover between 1994 and 2015 (Plowright et al.

2015) with a number of differences. First, risk was lower in

areas with a high density of spillover events; second, the model

predicted areas at risk during summer below latitude 22�
south. The pattern captured by the model suggests that the

higher-risk period below latitude 22� south is from April to

October. While no events have been reported to occur in April

below this latitude, the longer predicted high-risk season may

be explained by delays between HeV spillover, development of

disease in horses and reporting of clinical cases in horses.

Above 22� south, higher spillover suitability is more constant

among months (Figs. 2, 4), which coincides with the density

of spillover events by month and latitude (Plowright et al.

2015). Two climatic factors explained the majority of vari-

ability in the data with negative effects: the difference in

minimum temperature from the minimum temperature of

the coldest month (mindif) and difference of rainfall from

rainfall of the wettest month (raindifwet). Minimum tem-

peratures change more dramatically between seasons below

latitude 22� south, close to the Tropic of Capricorn (Fig. 5),

than above this area. This means that temperatures closer to

the local minimum increase spillover risk when they are

combined with low precipitation during a month.

Bimodal responses to rainfall levels (rainfall and rain-

difwet) indicate that either wet or dry conditions can in-

crease spillover risk. Spillover in wet months occurs in

northern areas; hence, wet conditions might only increase

spillover risk in the north. These relationships also suggest

that a single set of optimal conditions for spillover does not

exist, coinciding with analyses of HeV shedding patterns in

response to rainfall levels and temperature along the lati-

tudinal range of spillover events. HeV shedding pulses are

mainly explained by climatic conditions at small spatial

scales (Páez et al. 2017). Therefore, we suggest that in the

context of our study spillover risk is better represented by

two systems, one in the north and another in the south.

Spillover in the north seems to be correlated with both wet

and dry conditions, and in the south it is related mostly to

dry and cold climate. These two systems might well exist as

a result of two different bat species involved in spillover, P.

conspicillatus and P. alecto (Smith et al. 2014; Edson et al.

2015; Goldspink et al. 2015; Martin et al. 2016). The

southern system could be driven by P. alecto and the

northern by both P. alecto and P. conspicillatus.

We suggest that a basis to identify the two spillover

systems in space be the estimated distributions of P. alecto

and P conspicillatus (Martin et al. 2016). The climatic niche

occupied by P. conspicillatus spans further south than its

usual distribution in north-eastern Australia (Parsons et al.

2010), and its limits coincide with the area where there

seem to be greater visual differences in our results and

previous representations of the spillover pattern (Plowright

et al. 2015). Given that disease systems could be subject to

very high stochasticity, the threshold might be better de-

scribed as a range around latitude 22� south, around the

Tropic of Capricorn.

The suggested separate spatial locations of spillover

systems implicate interactions with different plant com-

munities (Eby and Law 2008) that potentially respond

differently to climatic conditions and result in different

HeV prevalence and shedding dynamics (Páez et al. 2017).

In the northern system P. alecto and P. conspicillatus

interact more frequently with a mixture of tropical rain-

forest and sclerophyll vegetation communities (Webb 1959;

Eby and Law 2008). In the southern system, P. alecto

interacts mostly with an ensemble of sclerophyll native

plants dominated by Eucalyptus sp. and Corymbia sp. (Eby

and Law 2008). The interactions with the different vege-

tation communities might regulate nutritional stress, body

condition and susceptibility to HeV (Plowright et al. 2008,

2015; Páez et al. 2017; Peel et al. 2017), further providing

plausible explanations for the different spillover patterns.

Migration of reservoir hosts could be one of the bio-

logical mechanisms driving spatiotemporal patterns. In

some other bat virus spillover systems, migration con-

tributes to spillover seasonality. For example, rabies spil-

lover occurs when greater numbers of Lasiurus cinereus

migrate to greener areas during winter (Escobar et al.

2013). However, the data we used to calibrate the distance

to bat camp models indicate that there are bats still present

in areas and seasons without recorded spillover events. In

fact, recent analyses indicate that spillover has occurred

when bat densities are low due to low food availability

(Giles et al. 2016). Although the effects of food shortage in

bats are not fully understood, nutritional stress has been

associated with increased HeV seroprevalence (Plowright

et al. 2008). Nutritional stress in that case was caused by

flowering cessation of native plants after a cyclone. How-

ever, the relationship between seropositivity and HeV

infectious status is unknown (Plowright et al. 2008; Field

et al. 2011; Plowright et al. 2016). In general, HeV spillover

G. Martin et al.



has been related to low plant and crop productivity

(McFarlane et al. 2011). Consequently, some of the

potential scenarios by which bat–plant interactions could

influence seasonal spillover risk below latitude 22� are: (1)

poor nutrition leading to higher susceptibility which could

lead to higher HeV infection levels and transmission among

individual bats; (2) higher densities of bats feeding in more

urbanised or agricultural landscapes when native plants are

not in bloom (Plowright et al. 2015); or (3) a mixture of

infection susceptibility in bats and switching of foraging

habitat. Of these processes, there is stronger evidence for

infection susceptibility because throughout the distribution

of P. alecto there is a seasonal gradient of HeV excretion

peaking in winter (Field et al. 2015; Páez et al. 2017).

However, there are multiple alternative mechanisms that

could be influencing seasonal excretion patterns (Plowright

et al. 2016).

The negative response of spillover risk to horse density

that we found contrasts with previous analyses that failed to

demonstrate an effect of horse density (McFarlane et al.

2011; Smith et al. 2014). This effect might occur as a con-

sequence of several different processes, ranging from bat

foraging habitat availability, to husbandry practices in

professionally managed properties associated with higher

horse densities. Although not considered here, there could

be a relationship between the number of horses per pixel

and availability of bat food trees and the type and quality of

management practices. This deserves further research to

show how paddock management and structure might

influence susceptibility to or likelihood of contact with

HeV, because it could be one of the mechanisms influencing

the spatiotemporal pattern of spillover. In other pathogen

spillover systems, the same effect of apparent competition

between host species arises when the spillover host is neg-

atively affected by the pathogen (Holt and Pickering 1985;

Power and Mitchell 2004). Horses are affected by HeV, but

HeV spillover is too rare to reduce horse density. However,

the same effect would arise from ecological competition

between bats and horses (Power and Mitchell 2004). It is

possible that domestic horses compete for habitat with bats

because horses are linked to land clearing for grazing,

whereas bats rely on flowering trees for food. Consequently,

two factors could potentially create the relationship seen

here; a negative effect of horses on bats’ foraging habitat and

a correlation between higher horse density and professional

husbandry practises that reduce the risk of spillover.

Regardless of the underlying cause, the resulting effect is

lower spillover risk per horse as horse density increases.

The consensus model fitted a positive response to

distance to the niche centroid of bats, our surrogate mea-

sure of bat abundance. The relationship between bat

abundance and distance to the niche centroid is generally

negative (Martin et al. 2016); hence, greater environmental

distances from the niche centroid result in potentially

smaller numbers of bats per pixel (Martı́nez-Meyer et al.

2013). This seemingly accurate prediction given Giles et al.

(2016)’s recent findings of spillover occurring during low

abundance of bats is, nevertheless, spatially confounded, by

the behaviour of bats. This is because spillover occurs when

bats are widely dispersed foraging at night time. These

foraging areas are generally physically and environmentally

distant from camp sites where bats are most abundant

during the day (Vardon et al. 2001)

The differences between the climate-only Mahalanobis

distance and the consensus model could be explained by the

absence of the factors that are conditional for spillover like

the presence of bats and horses. In addition the distribu-

tional estimates of environmental envelope methods, like

those of Mahalanobis distance, are closer to the potential

distribution than presence–absence methods that estimate

the realised distribution (Soberón and Peterson 2005; Ji-

ménez-Valverde et al. 2008). Alternative explanations for

the wider areas predicted in the climate-only model could

be related to the spatial resolution of the environmental

data. It is possible that the spatial scale at which climate

influences the biological mechanism driving the spa-

tiotemporal spillover pattern is greater than the

2.7 9 2.7 km pixels used here. This is a common issue in

species distribution and ecological niche modelling studies;

ideally the grain size should match the scale at which species

select their habitat (Peterson 2006). For instance, it has been

suggested that the minimum area for a bat population to

persist is 5000 km2 (Vardon et al. 2001) and the foraging

habitat of a bat camp is up to 40 km wide (Field et al. 2015).

Therefore, the spatial scale at which climate influences risk

of HeV spillover could be different than the one used here.

The predictions of the climate-only model also represent a

warning that adequate conditions for spillover occurrence

are not completely absent during late spring and summer

south of the 22� south area. For example, the late spring

spillover event in November in Casino NSW (* 29� south,

ProMED archive number 20170107.4747872) was predicted

by the full and climate-only models (Figs. 2, 4).

Our analyses have obvious limitations: (1) the absence

of a strong link between climatic factors and a specific

biological mechanism precludes the identification of the
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factors driving seasonality; (2) a poor understanding of bat

foraging patterns and HeV transmission pathways to horses

may result in misclassification of non-case properties; (3)

the potential errors in the model-generated variables (dis-

tance to bat camps and DNC), regardless of their high

performance, could accumulate uncertainty in the final

spillover model; and (4) there could be alternative analyt-

ical methods more adequate and transparent than the

consensus type of spatiotemporal analyses performed here.

The higher-risk season of HeV spillover below latitude

22� south has been from April to October. Whether this

seasonal pattern is caused by immigration or emigration of

bats is unclear. The number of bats in such areas depends

mainly on food abundance, which has been previously

suggested as a cause of increased susceptibility to HeV

(Plowright et al. 2008). Consequently, our models could

well be detecting these signals and the underlying mecha-

nisms of seasonal spillover below latitude 22� south may be

a mixture of seasonal movement and feeding of the reser-

voir host in horse paddocks (Pascual and Dobson 2005;

Grassly and Fraser 2006). Impairment of the immune

function of both reservoir and spillover hosts is also pos-

sible and could act in synergy with behavioural changes.

One example of how these factors might increase risk is the

spillover event in Casino NSW in November 2016

(ProMED archive number 20170107.4747872). This event

occurred during a food shortage in late spring resulting in

bats with poor body condition in the southern spillover

system (Páez et al. 2017; Peel et al. 2017). An additional

factor that could contribute to result in the observed spa-

tiotemporal pattern is management of horses. For example,

feed supplementation or stabling will reduce dependence

on natural grass and exposure to HeV. These factors have

been poorly studied and deserve future research.

Determining how the components of the HeV spillover

system are affected by climate is beyond the scope of this

analysis. Thus, further research is needed to understand the

effects of climate on food availability and the consequent

effects on bats and horse interactions and their immune

function and management. However, good husbandry

practices, like restriction of access of horses to trees (where

flying foxes feed and excrete HeV) and vaccination against

Hendra virus, can override the effect of many environ-

mental factors (Haining 2003). We suggest that these

practices should be more rigorously considered and fol-

lowed in the areas and seasons that are at greater risk of

Hendra virus spillover, while considering that areas and

seasons that have not had spillover events might still pose

low risk levels.

CONCLUSIONS

The mechanisms driving seasonality of Hendra virus spil-

lover are likely influenced by the effects of the seasonal

amplitude of minimum temperature and rainfall on food

resources of bats and horses. Food resources might then

regulate infection levels through changes in immune

function (nutritional stress and body condition), behaviour

and spatial population dynamics of bats. In horses, grass

abundance might also influence immune function, beha-

viour and husbandry practices. Therefore, we suggest that

future research focuses on determining how behaviour,

immune function and management of both horses and bats

change in response to food shortage driven by climate.

Behavioural and immunological changes might be more

evident when comparing areas north and south around

latitude 22� south or the Tropic of Capricorn, which is

where the major differences in seasonality seem to occur.

However, we suggest that while the high-risk season below

latitude 22� south occurred from April to October between

1994 and 2015, considering a longer-risk season such as

from March to November could result in improved risk

mitigation. Properties within and around the areas should

be encouraged to improve mitigation by following the

prevention guidelines of the Australian Veterinary Associ-

ation (http://www.ava.com.au/hendra-virus), including

vaccination, removing feed and water troughs from under

trees, restricting access to trees during the night and

removing grass or tall vegetation under trees that might

provide better conditions for HeV survival and transmis-

sion in the environment.
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Páez DJ, Giles J, McCallum H, Field H, Jordan D, Peel AJ, Plo-
wright RK (2017) Conditions affecting the timing and magni-
tude of Hendra virus shedding across pteropodid bat
populations in Australia. Epidemiol Infect. https://doi.org/
10.1017/S0950268817002138

Palmer C, Price O, Bach C (2000) Foraging ecology of the black
flying fox (Pteropus alecto) in the seasonal tropics of the
Northern Territory, Australia. Wildl Res 27:169–178

Parsons JG, VanDerWal J, Robson SKA, Shilton LA (2010) The
Implications of Sympatry in the Spectacled and Grey Headed
Flying-Fox, Pteropus conspicillatus and P. poliocephalus (Chi-
roptera: Pteropodidae). Acta Chiropterologica 12:301–309.
https://doi.org/10.3161/150811010X537882

Pascual M, Dobson A (2005) Seasonal patterns of infectious dis-
eases. PLoS Med 2:e5. https://doi.org/10.1371/journal.pmed.00
20005

Peel AJ, Eby P, Kessler M, Lunn T, Breed AC, Plowright RK
(2017) Letter to the editor: Hendra virus spillover risk in horses:
heightened vigilance and precautions being urged this winter.

Peterson AT (2006) Uses and requirements of ecological niche models
and related distributional models. Biodivers Informatics 3:59–72

Peterson AT, Papes M, Soberon J (2008) Rethinking receiver
operating characteristic analysis applications in ecological niche
modeling. Ecol Modell 213:63–72. https://doi.org/10.1016/
j.ecolmodel.2007.11.008

Plowright RK, Eby P, Hudson PJ, Smith I, Westcott D, Bryden W,
Middleton DJ, Reid P, McFarlane R, Martin G, Tabor G,
Skerratt LF, Anderson D, Cramery G, Quammen D, Jordan D,
Freeman P, Lin-Fa W, Epstein JH, Marsh G, Kung N, McCallum
H (2015) Ecological dynamics of emerging bat virus spillover.

Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G,
Daszak P, Foley JE (2008) Reproduction and nutritional stress
are risk factors for Hendra virus infection in little red flying
foxes (Pteropus scapulatus). Proc Biol Sci 275:861–869. https://
doi.org/10.1098/rspb.2007.1260

Plowright RK, Foley P, Field HE, Dobson AP, Foley JE, Eby P,
Daszak P (2011) Urban habituation, ecological connectivity and
epidemic dampening: the emergence of Hendra virus from
flying foxes (Pteropus spp.). Proc Biol Sci. https://doi.org/10.
1098/rspb.2011.0522

Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Gra-
ham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spillover.
Nat Rev Microbiol 15:502–510. https://doi.org/10.1038/
nrmicro.2017.45

Plowright RK, Peel AJ, Streicker DG, Gilbert A, McCallum H,
Wood J, Baker ML, Restif O (2016) Transmission or within-
host dynamics driving pulses of zoonotic viruses in reservoir-
host populations. PLoS Negl Trop Dis. https://doi.org/10.1371/
journal.pntd.0004796

Power AG, Mitchell CE (2004) Pathogen spillover in disease
epidemics. Am Nat 164(Suppl):S79–S89. https://doi.org/
10.1086/424610

R-Development-Team (2014) R: A language and environment for
statistical computing.

Raes N, Ter Steege H (2007) A null-model for significance testing
of presence-only species distribution models. Ecography (Cop)
30:727–736. https://doi.org/10.1111/j.2007.0906-7590.05041.x

Richards GC (1990) The spectacled flying-fox, Pteropus conspicil-
latus (Chiroptera: Pteropodidae), in north Queensland. 2. Diet,
seed dispersal and feeding ecology. J Aust Mammal 13:25–31

Scanlan JC, Kung N, Selleck P, Field H (2014) Survival of Hendra
Virus in the Environment: Modelling the Effect of Temperature.
Ecohealth. https://doi.org/10.1007/s10393-014-0920-4

Smith C, Skelly C, Kung N, Roberts B, Field H (2014) Flying-fox
species density - a spatial risk factor for hendra virus infection in
horses in eastern australia. PLoS One 9:e99965. https://doi.org/
10.1371/journal.pone.0099965

Smith CS, McLaughlin A, Field HE, Edson D, Mayer D, Osse-
dryver S, Barrett J, Waltisbuhl D (2016) Twenty years of Hendra
virus: laboratory submission trends and risk factors for infection
in horses. Epidemiol Infect. https://doi.org/10.1017/S095026881
6001400

Soberón J, Peterson AT (2005) Interpretation of Models of Fun-
damental Ecological Niches and Species Distributional Areas.
Biodivers Informatics 2:1–10. https://doi.org/10.1093/wber/
lhm022
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