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Abstract

This paper addresses the challenge of strategically maximizing the influence spread in a social net-
work, by exploiting cascade propagators termed “seeds”. It introduces the Seed Activation Scheduling
Problem (SASP) that chooses the timing of seed activation under a given budget, over a given time
horizon, in the presence/absence of competition. The SASP is framed as a blogger-centric marketing
problem on a two-level network, where the decisions are made to buy sponsored posts from promi-
nent bloggers at calculated points in time. A Bayesian evidence diffusion model – the Partial Parallel
Cascade (PPC) model – allows the network nodes to be partially activated, proportional to their
accumulated evidence levels. The SASP under the PPC model is proven NP-hard. A mixed-integer
program is presented for the SASP, along with an efficient column generation heuristic. The paper
sets up its problem instances in real-world settings, taking web-based marketing as an application ex-
ample. Favorable optimality gaps are achieved for SASP solutions on networks based on observed user
interactions in pro-health discussion forums. The presented analyses highlight a trade-off between
early and late seed activation in igniting and maintaining influence cascades over time. The results
reveal the importance of early seeds for campaigns that favor longevity, e.g., in service industry, and
the importance of late seeds for campaigns with deadline(s), e.g., in political competitions.
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1 Introduction and Motivation

Diffusion-driven information transfer is the key driver behind knowledge accumulation and opinion

formation resulting from the communication between individuals in social networks [30, 45]. The viral

spread of news, goods and judgments via such network-based information transfer is often referred

to as “spread of influence” [4, 21]. Influence cascades are typically ignited through injection of new

information, e.g., about new technologies or major social/political events, and grow through word-of-

mouth (WOM). Coordinating the emergence and penetration depth of influence cascades is of much

interest to practitioners, e.g., to the companies introducing new products or political parties running

campaigns [61]. The problem of strategically exploiting the WOM effect in a given connected population

motivates the Influence Maximization (IM) problem, where a set of early starters, termed seeds, is

1



selected to start a diffusion-based cascade to achieve maximum spread [33]. There are two widely known

ways of implementing the IM solutions in practice. The first one lies in offering the selected seeds

free/discounted products to increase the probability that these seeds “adopt” the products/opinions

(offered/supported by the decision-maker), in anticipation that their neighbors/peers would follow suit

[60]. Mailing discount coupons to a pre-selected group of customers is an example of such a seed

activation process [63]. The second one has a decision-maker paying the seeds for spreading a supporting

sentiment about the products/opinions over time [36]. Hiring influential bloggers to post sponsored

articles is an example of this practice. Platforms such as PayPerPost.com support it by providing

online services for buyers to find the sponsored bloggers matching the buyers’ needs.

Kempe et al., [33] proposed the first discrete optimization problem for IM; they developed two

time-independent stochastic diffusion models – the Independent Cascade (IC) model and the Linear

Threshold (LT) model. The original IC and LT diffusion models are time-independent in that (1)

influence is assumed to never diminish over time, and hence, (2) the final outcome of the diffusion

process is only affected by the selection of seeds, but not the timing of seed activation. Kempe et al.,

[33] pointed to the submodularity of the problem’s objective function under the IC and LT models, and

presented a greedy algorithm for IM seed selection: the algorithm features a theoretical bound on the

problem optima, however, its practical application proved to be computationally challenging [10, 26].

Much research has emerged following up on the seminal work on IC and LT models. However, one

question in the IM domain has remained unanswered thus far: “Is it always most beneficial to activate

the seeds all at once, and if not, then what modeling approach(es) can allow for optimizing the seed

activation timing?”. The IM efforts relying on the time-independent models, including the IC and LT

models, cannot explicitly account for the dynamics of the information diffusion. Thus, any conclusions

obtained using such models are valuable only if it can be assumed that the influence spread is instant

or that its effect lingers forever and it is only this final (eventual) effect that matters. However, in

many real-world situations, decision-makers plan for long campaigns that need not only be initiated

but controlled over time, and whose maximal impact should be achieved at specific time point(s), i.e.,

meeting pre-determined deadlines.

Chierichetti et al., [12] revised the Original IM Problem (OIMP) formulation to arrive at a cascade

scheduling problem where the adoption status of a node is a function of two quantities: (1) the fraction

of the current adopters in the node’s neighborhood, and (2) the fraction of the current adopters in the

whole network. This work has provided a basis for an emerging cascade scheduling literature [6, 27, 42].

Hajiaghayi et al., [28] considered competition in cascade scheduling, under the assumption that the

network nodes are market segments sharing certain similarities, and developed models for this problem’s

variations with and without recourse (when the state of the network may be observable or unobservable
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between sequential seeding actions). Still, all the above-mentioned works bypass the modeling of time,

instead focusing only on the order, in which the seeds are exposed to a new opinion/product. Hence, the

relaxation of the OIMP’s requirement to select and activate all the seeds prior to the ensuing cascade

formation opens a previously unexplored field of study. In addition to selecting the early starters

(“initial seeds”) for IM, the Seed Activation Scheduling Problem (SASP) presented in this paper allows

one to select “late seeds”, i.e., activate them in a calculated way during the diffusion process. An SASP

solution informs a strategy that can be implemented by a decision-maker who seeks to gradually spend

resources to maintain the activation of seeds over a given time window, e.g., to ensure the continued

support of a marketing campaign by sponsored bloggers. In such a setting, the duration of activation

and re-activation of seeds becomes important.

There are multiple practical considerations motivating the development of SASP. First, the resources

required to activate seeds (campaign budget, free products, man-power, etc.) may not all be available

to a decision-maker at once, early on. Second, any seed activation strategy becomes time-dependent

when the Net Present Value (NPV) of money is taken into account, with the late seed additions being

less costly. Third, the activation of late seeds may prevent the exposed population from forgetting the

information they receive [41, 53–55], requiring regular “reminders” to keep a campaign going.

This paper relies on the latest findings in the experimental marketing literature to solve a practical

two-level problem of initiating and controlling social cascades over blogger networks, such as Twitter, or

online forums. The sponsored bloggers available to be hired (as ad-hoc paid-per-post marketing agents),

are assumed to form the first level of a network under study, with the other users and lower-profile

bloggers forming its second level. A decision-maker is tasked with activating and de-activating the first

level nodes over time, with the goal to maximize the effect of the campaign on the second level nodes,

under a given resource/budget constraint. The adopted influence spread model tracks the information

exchanges between all the nodes, recording the levels of the evidence that the nodes accumulate in

support or against the claim of interest, e.g., that the marketed product is worth purchasing. In what

follows, the time-dependent Bayesian evidence diffusion model with partial activation (positive and

negative) of nodes is detailed and a mixed-integer program is presented for the resulting SASP that

maximizes the spread of positive evidence and minimizes the spread of negative evidence through the

second level network. The computational investigations with two case studies provide insights on how

the seed selection strategies depend on the time horizon and the problem’s objective function form.

The rest of this paper is organized as follows. Section 2 reviews the IM literature. Section 3

presents the seed activation scheduling idea and the partial parallel cascade model, and then, develops

a mixed-integer program for the SASP and investigates two case studies. An efficient heuristic solution

methodology for SASP using column generation is presented in Section 4. Section 5 provides the
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computational results for the SASP instances formulated for several real-world social networks. Section

6 concludes the paper and suggests the directions for future research.

2 Literature Review

Social influence, the phenomenon where the revealed/observed judgments of people make their peers

adjust their judgments, has received much attention in marketing [3, 61], health care [13, 56], and po-

litical science [2, 29]. Prescriptive social influence research works towards calculated campaign planning

in support of an opinion, behavior or product of interest. The earliest methods for finding influential

nodes in social networks were based on centrality calculations. One limitation of the centrality-based

heuristics is that they only exploit the information about the network positions of the nodes, while

ignoring the information about the individual differences in the node characteristics [52]. Recent devel-

opments in centrality-based heuristics look to incorporate the data of such differences and of overlapping

communities into the centrality scores [43, 47].

The idea of modeling the social influence mechanisms to formulate and solve IM problems was first

introduced by Domingos and Richardson [15, 50]. Kempe et al., [33] posed a discrete IM problem, intro-

ducing two time-independent diffusion models (IC and LT diffusion models) to describe how influence

may spread in a social network from a set of seeds. These models have long served as a basis for the al-

gorithmic developments [9, 10]. However, the basic IC and LT diffusion models do not incorporate time

in describing influence propagation. A stream of literature on algorithmic seed selection has focused on

addressing this issue over the last few years. Goyal et al., [23] were among the first who addressed the

need for time-aware diffusion models. Ever since, the IM problems where a certain objective is to be

achieved by some preset deadlines has received much attention [8, 17, 24, 39].

The aspect of seed selection timing in IM, and the notion of cascade scheduling where the seeds

fueling a cascade are added iteratively, have been considered most recently [6, 12, 28, 55]. It is important

to distinguish the idea of late seed activation planning, presented in this paper, from the work on

adaptive seed selection [22]. To be more specific, in the latter efforts, seed selection is viewed as a

multi-stage decision-making process where the decision-maker observes the results (reward) of earlier

actions prior to making decision of the subsequent actions. Seeman and Singer [57] presented a two-stage

IM problem: in the first stage, the decision-maker spends a portion of the budget in seed activation

to make nodes “accessible”, and in the second stage, spends the rest of budget for activating some

of those accessible nodes. The adaptive submodularity property of the multi-stage IM problem helps

designing efficient greedy algorithms to find the near optimal solutions with guaranteed bounds [11].

Note, however, that in a typical real-world setting, one can only observe the actions performed by an
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exposed population (e.g., purchases), as opposed to the spread of judgments in it [53, 54].

The original diffusion models for IM were designed for single campaign problems, with the activation

status of each node represented by a binary variable. Such models interpreted each node activation as

an event of a completed purchase or technology adoption: it was assumed that the once activated nodes

never lose their activation [33]. The later studies of competition – between multiple parties – in IM

relaxed this assumption and introduced the concept of activation loss/reversal [5]. The experimental

marketing literature, meanwhile, models the process of buying decision formation as a gradual transition

through multiple states, between the completely inactive one to the fully active one [1, 46, 62]. The

current paper introduces a new evidence-based diffusion model that permits such partial activation,

which is also particularly suitable for describing opinion adoption: the adoption/influence level of a

node ranges from zero (inactive state) to one (fully activated state). Additionally, from a marketing IM

perspective, the problem formulations and methods developed in this paper allow the decision-maker to

plan not only for increasing the immediately realized sales, but also, for increasing the overall awareness

about the product in the population, potentially leading to an indirect (delayed) profit.

In summary, compared to the presented literature, this paper introduces the concept of seed ac-

tivation scheduling and employs the exact solution methodology using mathematical programming to

explore and exploit the effects of seed activation timing on the IM strategies. Moreover, the idea of

modeling partial activations in a two-level blogger network serves as a generalization of the previously

existing diffusion models for marketing, healthcare and political applications to new settings.

3 Influence Propagation Models for Seed Activation Scheduling

The SASP is designed to schedule the seed selection/activation over the time window of a given IM prob-

lem. Section 3.1 describes an SASP formulation for campaign planning in the blogger-centric marketing

setting, and explains the practical appeal of seed activation scheduling from a theoretical perspective. A

two-level IM problem is developed, where the decision-maker pays sponsored bloggers (seeds), by time

period, to maintain the influence they deliver over time. Section 3.2 presents an evidence-based diffusion

model with partial activation of nodes, called Partial Parallel Cascade (PPC) model. In Section 3.3, the

NP-hardness of the IM problem under the PPC diffusion model is proved, and a mixed-integer program

is designed to solve the NP-hard SASP under the PPC diffusion model, optimally. Finally, two case

studies are presented to showcase the utility of the SASP and to computationally explore the impact of

the objective function variations on the optimal seed activation strategy.
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(re)sharing/(re)tweeting. No arcs are assumed to go from the second level to the first: the nodes in

the first level are assumed not to be influenced by their audiences – they spend their time writing, on a

paid basis. The model does not count on the voluntary activation of potential seeds, without being paid

by the decision-maker, as the first level nodes are assumed to represent marketing agents/accounts, not

personal blogs. The assumption that the first-level nodes are sponsored bloggers also reduces the chance

of the rejection of a seed nomination – such nodes are assumed to have already made themselves available

as potential seeds, albeit at a certain price. Finally, the source of negative influence in the SASP is

assumed to access and affect all the nodes uniformly, as mass media (e.g, television) advertisements do.

The objective of the SASP is to schedule seed activations (in the first level) over the time horizon of

the problem to maximize the spread of positive evidence and minimize the spread of negative evidence

among the second level nodes, under a budget constraint.

Each potential seed in the first level network has its own cost of service for one time period. Without

loss of generality, the service cost of the bloggers is assumed to be proportional to the number of their

followers [37]. While scheduling the activation of seeds at each time period, the decision-maker has to

meet the resource constraint for that time period, and also, the resource constraint over the whole time

horizon. The lack of flexibility in defining resource constraints has long posed a challenge in applied

IM [37, 60]. The resource constraints in the existing IM formulations (those which seek to activate all

the seeds at once, in the initial time period) were either about the limit on the number of seeds to be

selected [8, 25, 38] or the limit on the total budget to be spent on the seeds [37]. Prior to this work, no

IM problem with a time-based profile of the available resources has been formulated and solved, to the

authors’ awareness. This research gap, addressed by this paper with the introduction of SASP, is likely

due to the fact that all the original IM formulations were time independent.

SASP assumes that the activation of the same seed in multiple consecutive time periods leads to

the reduction of its influenceability. This is because if the users in the second level perceive the “same

message” in some consecutive posts by a blogger, they might suspect that the posts are paid and

gradually lose the trust in the provided information. Thus, when a seed (a hired sponsored blogger)

in the SASP maintains its activation over multiple time periods, its influenceability is multiplied by

the factor γ ≤ 1. To mitigate this effect, the decision-maker might want to deactivate seeds from time

to time, to help them regain their influenceability. Note, however, that while this makes frequent

deactivations and reactivations of the same seed appealing over the span of a campaign, this practice

might not be cheap if each new (re)activation (think a new contract) incurs a fixed cost. The PPC

diffusion model, presented in Section 3.2, models how the positive evidence (initiated in the first level

network), as well as the negative evidence, spread through the second level network over time.

Continuing with the introduction of the SASP, it assumes that the cost Cj is incurred for hav-
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ing/keeping node j in the first level network active at each time period. Further, a fixed cost f is

incurred with each new activation: if f is large, the preferred scheduling policies will keep the seeds

activated for longer time periods, and vice versa. Also, the SASP allows one to account for the Net

Present Value (NPV) of money. The corresponding multiplication factor πt is introduced for time period

t, where 0 ≤ πt ≤ 1 for 0 ≤ t ≤ T (T is the campaign horizon). It is natural to have πt decrease with

time to reflect a positive interest rate. Note that the seed activation spending is restricted at each time

period 0 ≤ t ≤ T by the allocated budget Rt, and over the whole time horizon of the problem by the

total campaign budget B.

In the objective function of the SASP, the positive activation of each node in the second level at

each time period results in the gain of G1, while the negative activation of each node similarly incurs

the loss of G2. Naturally, when G1 is much greater than G2, the SASP solutions will ignore the presence

of a competitor, i.e., the seeds will be selected in a way to spread the positive evidence most efficiently.

Meanwhile, With the large G2, the solutions will focus on blocking the spread of the negative evidence.

3.2 Partial Parallel Cascade (PPC) model

Samadi et al., [54] were first to model the spread of influence in a social network as a transfer of Bayesian

evidence: they assume that each node is testing the null hypothesis that the opinion/claim preferred by

the decision-maker is true, based on the evidence in support of or against this opinion/claim received

from/through their directly connected peers. This paper presents a more general evidence-based diffu-

sion model that allows for partial activation of nodes. This model can track not only opinion/product

“adoption” but also “awareness”, which is in line with the concepts in the experimental sociology and

marketing literature [31, 44, 51].

The PPC model is now described in detail, in application to the blogger-centric marketing setting

presented in Section 3.1. Consider a finite directed graph G(N2,A2), where N2 and A2 denote the set

of nodes and arcs in the second level network, respectively. Let N1 denote the set of potential seeds

in the first level network and A1 be defined as the set of arcs directed from the first level network to

the second level network. The diffusion process begins with the activation of seeds in the first level;

the binary variable S+jt indicates whether node j ∈ N1 is activated at time t. At each discrete time

period 0 ≤ t ≤ T , each node i ∈ N2 receives the positive evidence e′ from each of the activated seeds that

it is following in first level (note that this amount is subject to the discount based on the activation

history, and hence, the current influenceability of each seed), and a piece of negative evidence e′′ from

the competing evidence source. The nodes do not just count on their own observations in making

judgments about the hypotheses; they communicate and transfer their impressions/opinions to each

other: the opinion transferred to a node through a friend is viewed as a piece of evidence supporting
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Further, in line with the mathematical sociology literature, at the end of each time period, each

node is assumed to forget a part of the evidence it has aggregated. The presence of this forgetfulness

effect, the strength of which is quantified by parameters β1 and β2, for positive and negative evidence,

respectively, motivates the SASP as a further development of influence maximization problem ideas and

formulations.

3.3 A Mathematical Model for the SASP under the PPC Diffusion Model

A mixed-integer program is designed for the SASP under the PPC diffusion model, so as to find such

a schedule for activating the potential seeds in the first level network that maximizes (minimizes) the

spread of positive (negative) evidence in the second level network. A summary of notation used hereafter

is given in Table 1. The objective of the SASP is to maximize the cumulative gain resulting from the

partial positive and negative activations in the second level network within the problem time window,

(P ) maxZ = ∑
i∈N2

T∑
t=0

(G1(Xit) −G2(Yit)). (1)

The SASP is a maximization problem subject to the constraints presented in groups as follows.

(I) Setting the partial positive and negative evidence processing rules so that (1) the positive (negative)

activation level of a node linearly increases until its net evidence value reaches its positive (negative)

threshold, and (2) after the net evidence value of a node passes the positive (negative) threshold, the

node gets full positive (negative) activation. Also, these constrains ensure that no node can be both

positively and negatively activated at the same time,

Xit ≤ Lit −Kit

θ+i
+Mit(1 −Uit) i ∈ N2, t = 0,1, ..., T, (2)

Xit ≤ Uit i ∈ N2, t = 0,1, ..., T, (3)

Yit ≥ Kit −Lit

θ−i
−Mit(Zit) i ∈ N2, t = 0,1, ..., T, (4)

Yit ≥ Zit i ∈ N2, t = 0,1, ..., T, (5)

Uit ≤ 1 + Lit −Kit

M ′
it

i ∈ N2, t = 0,1, ..., T, (6)

Zit ≥ Kit −Lit − θ−i
M ′′

it

i ∈ N2, t = 0,1, ..., T. (7)

(II) Updating cumulative positive and negative evidence levels for the nodes in the second level network,

Lit = β1Lit−1 + ∑
k∈N2

(k,i)∈A2

E2+kt−1 + ∑
j∈N1

(j,i)∈A1

E1+jt−1 i ∈ N2, t = 1,2, ..., T, (8)

Kit = β2Kit−1 + ∑
(k,i)∈A2

E2−kt−1 + e′′ i ∈ N2, t = 1,2, ..., T, (9)
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Table 1: Definitions of the indices, input parameters and decision variables in mathematical problem

Indices

j Index used for the nodes in the first level network
i, k Indices used for the nodes in the second level network
t Time period index

Inputs

A1 Set of arcs connecting the nodes in the first level network to those in the second level network
A2 Set of arcs connecting the nodes within the second level network
N1 Set of nodes in the first level network
N2 Set of nodes in the second level network
T Total number of time periods in the time horizon
θ+i Positive threshold for node i in the second level network
θ−i Negative threshold for node i in the second level network
e+ Positive evidence delivered in one transfer among the second level network nodes
e− Negative evidence delivered in one transfer among the second level network nodes
e′ Positive evidence value delivered in one transfer by each positive seed (before any discount)
e′′ Negative evidence value delivered in one transfer by the external competitor
β1 Rate at which the second level network nodes forget the previously received positive evidence
β2 Rate at which the second level network nodes forget the previously received negative evidence
γ Efficiency reduction discount factor for the seeds being active in consecutive time periods
B Maximum budget available for seed activations over the time horizon of the problem
f Fixed cost of activating a new seed for any number of consecutive time periods
G1 Unit gain of a positive activation per time period
G2 Unit cost of a negative activation per time period
Cj Cost of node j ∈ N1 to serve as a seed at each time period
πt Discount factor applied to the cost of seed activation at time period t

Rt Budget allocation for seed activation at time period t

Decision Variables

Xit Partial positive activation level of node i ∈ N2 at time t

Yit Partial negative activation level of node i ∈ N2 at time t

Uit { 1, if node i ∈ N2 is fully positively activated at time t (Lit −Kit ≥ 0)
0, otherwise

Zit { 1, if node i ∈ N2 is fully negatively activated at time t (Kit −Lit ≥ θ−i )
0, otherwise

Lit Cumulative level of positive evidence for node i ∈ N2 at time t

Kit Cumulative level of negative evidence for node i ∈ N2 at time t

E2+it Value of positive evidence that node i ∈ N2 provides to each of its out-neighbors at time t

E2−it Value of negative evidence that node i ∈ N2 provides to each of its out-neighbors at time t

E1+jt Value of positive evidence that node j ∈ N1 provides to each of its followers in the second level at time t

S+jt { 1, if node j ∈ N1 is selected by the decision-maker to serve as a positive seed at time t,
0, otherwise

Fjt Fixed cost paid for having seed j ∈ N1 newly activated or reactivated at time t

Li0 = 0 i ∈ N2, (10)

Ki0 = 0 i ∈ N2. (11)

(III) Updating the evidence delivered by each node in the second level network to its out-neighbors at

each time period,

E2+it ≤ e+Xit i ∈ N2, t = 0,1, ..., T, (12)

E2−it ≥ e−Yit i ∈ N2, t = 0,1, ..., T. (13)

(IV) Budget constraints for activating seeds (taking into account the net present value of the fixed and
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per-period costs),
T∑
t=0
∑
j∈N1

(πt ⋅Cj(S+jt) + πt(Fjt)) ≤ B, (14)

∑
j∈N1

(πt ⋅Cj(S+jt) + πt(Fjt)) ≤ Rt t = 0,1, ..., T, (15)

Fjt ≥ f(S+jt − S+jt−1), j ∈ N1, t = 1,2, ..., T, (16)

Fj0 = f ⋅ S+j0 j ∈ N1. (17)

(V) Updating the evidence (positive) delivered by the activated seeds in the first level network to the

nodes in the second level network,

E1+jt ≤ (γE1+jt−1) + (1 − S+jt−1)e′ j ∈ N1, t = 1,2, ..., T, (18)

E1+jt ≤ e′(S+jt) j ∈ N1, t = 0,1, ..., T. (19)

(VI) Sign constraints,

0 ≤Xit, Yit,E2+it,E2−it i ∈ N2, t = 0,1, ..., T, (20)

0 ≤ E1+jt, Fjt j ∈ N1, t = 0,1, ..., T, (21)

S+jt ∈ {0,1} j ∈ N1, t = 0,1, ..., T, (22)

Uit, Zit ∈ {0,1} i ∈ N2, t = 0,1, ..., T. (23)

Constraints (6)-(7) ensure that the values of the binary variables Uit and Zit are correctly assigned

based on Lit and Kit for each node i ∈ N2 at each time period t. Constraints (2)-(5) ensure that each

node gets its positive or negative activation status properly updated in each time period. Note that the

objective function of (P ) favors higher values of Xit and lower values of Yit.

For the activation of node i at time t, four cases (namely, (a)-(d)) are possible: (a) node i is positively

activated but its net evidence level is less than its positive threshold (0 ≤ Lit−Kit < θ+i ); then, constraints
(6) and (7) result in Uit = 1 and Zit = 0; this setting makes (4) and (5) redundant and leads to Yit = 0;
on the other hand, (2) and (3) assign the partial positive activation of node i per the PPC diffusion

model: Xit = Lit−Kit

θ+
i

; (b) node i has full positive activation (Lit −Kit ≥ θ+i ); then, the values of binary

variables turn out the same as in case (a) (Uit = 1 and Zit = 0) as ensured by constraints (6) and (7); the

value of Zit makes (4) and (5) redundant and ensures Yit = 0; for the positive activation, (2) becomes

redundant and (3) results in Xit = 1; (c) node i has a partial negative activation (0 ≤ Kit − Lit < θ−i );
then, both binary variables take zero value as ensured by (6) and (7); as such, (2) and (3) result in

Xit = 0; meanwhile, (4) and (5), with the help of the objective function, ensure the correct partial

negative activation of node i (Yit = Kit−Lit

θ−
i

); (d) node i has a full negative activation (Kit − Lit ≥ θ−i );
12



then, by definition, Uit = 0 and Zit = 1, ensured by (6) and (7), and also, (2) and (3) ensure that Xit = 0,
(4) becomes redundant and (5) forces Yit = 1. The minimum values of the “big M” variables that make

constraints (2), (3), (6) and (7) in set (I) work are calculated in Appendix C.

Each node i ∈ N2 starts the diffusion process in a neutral state (Li0 =Ki0 = 0), which is guaranteed

by (10) and (11). Constraint (8) updates the cumulative positive evidence level of node i ∈ N2 at

time period t as a sum of its positive evidence accumulated by period t − 1 (discounted with β1 for

forgetfulness), the positive evidence received from all the connected nodes k ∈ N2 at the second level

(E2+kt−1) and the evidence received from all the seeds j ∈ N1 that i follows in the first level (E1+jt−1).

Similarly, (9) updates the cumulative negative evidence level for each node in the second level network,

where e′′ is the evidence amount that each node receives from the external source of negative evidence.

Constraints (12) and (13) ensure that each node in the second level delivers the right level of positive

or negative evidence (depending on its activation) to its out-neighbors. Constraint (14) ensures that

the total seed activation cost and the fixed cost of seed activations over the time horizon of the problem,

after applying the discount factors, is less than or equal to the total budget. Constraint (15) guarantees

that the total seed activation cost at each time period does not exceed the allocated budget. Constraints

(16) and (17) ensure that the fixed cost is incurred whenever an inactive seed gets activated.

Constraints (18) and (19) determine the evidence that a seed j ∈ N1 delivers to its followers at

time t: whenever an inactive seed j just becomes active, it can deliver the e′ amount of evidence to its

followers, but with every subsequent time period that seed j maintains its activation, the amount of

evidence that it delivers to its followers drops by the factor of γ.

The mathematical program (P ) includes two binary variable sets, Uit and Zit, that track the positive

and negative activations: these variables are the key drivers of the problem’s complexity.

THEOREM 1. The SASP under PPC diffusion model is NP-hard.

PROOF: See Appendix B.

On a final note, it is easy to show that the option to activate some seeds late can never make a

solution to an IM problem worse: i.e., the optimal value of the SASP provides an upper bound for the

OIMP (where seeds can only be selected/activated in the initial time period).

PROPOSITION 1. The optimal value of the SASP is a valid upper bound for the OIMP.

PROOF: See Appendix B.

3.4 Case Studies

This section presents two case studies that help explore the properties of optimal SASP solutions.

Case Study 1 demonstrates the value of seed activation scheduling as opposed to relying exclusively

on “early starters” for IM, in application to two real-world social networks. A detailed description of
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advantage over the original IM, particularly if the forgetfulness rate is high, i.e., when β1 is small. As

β1 grows, the forgetfulness has a smaller impact on the spread of evidence, and the objective values for

the SASP and the OIMP get closer. The advantage of using the SASP solution is greater with Obj.II.

When the seeds are all selected in the initial time period, and the results are evaluated at a certain time

horizon, the forgetfulness effect reduces the influence produced by the initial seeds. On the other hand,

scheduling seed activations over time allows one to continuously fuel evidence diffusion, i.e., stopping

the diffusion of negative evidence early and adding seeds at carefully selected time periods during the

diffusion process to combat the forgetfulness effect. Note that the optimal solutions to the SASP and

OIMP problems are still different when forgetfulness is removed from the problem (β1 = 1), because the
SASP permits the decision-maker to activate a single blogger multiple times. If superusers’ out-degrees

significantly differ, and/or the magnitude of the positive evidence delivered by positive seeds is small

(so that multiple evidence updates are required to cause activations in the second level network), then

the OIMP optima turn out far worse when plugged into an SASP, compared to the SASP true optima.

Another set of experiments is performed with Network 2 – a social network of users of “Herpes”

forum (see Section 5.1 for more details on this dataset). In 2015, 784 users have contributed to it; four

superusers with the average degree of 153 are placed into the first level of Network 2, with the second

level formed by 780 other forum users. The time horizon of the problem is slightly increased (T = 6) to
make the forgetfulness effect more pronounced. The results (see Figure 4) reveal a trend similar to the

one observed in the experiments with Network 1. However, the difference between the optimal objective

values of the SASP and those of the IM problem in the absence of forgetfulness is now more visible.

In summary, Case Study 1 experimentally validates the claim of Section 1: under the PPC diffusion

model, the idea of seed activation scheduling has merit.

Case Study 2. The impact of the SASP input parameters on the optimal seed activation schedules

is analyzed next. Consider a network in Figure 5(a), consisting of ten regular bloggers (second level)

that can be influenced by three high-profile bloggers (first level) and an external negative evidence

source (not shown in the figure).

For one fixed parameter setting, Figure 5(b) presents the optimal seed activation schedules for the

SASP instances with Obj.I and Obj.II, respectively. The schedule corresponding to each solution is

represented by a vertical ribbon, where the time periods go from t = 0 to t = T , separated from each

other by black lines. In each time period, a black circle in a square indicates seed activation; the lower

square is for node A, the middle one for B, and the upper one for C. Under Obj.I, all the activations

are equally profitable over the time horizon of the problem; thus, the corresponding optimal seeding

strategy focuses more on the initial time periods, in order to initiate the cascade, and also, holds a part

of budget for some late activations to keep the positive cascade alive. The optimal seeding strategy
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Note that an SASP with Obj.III, where the resource availability is stochastically dependent on the

intermediate campaign results, presents an interesting extension opportunity to the present work.

4 A Heuristic Solution Methodology using Column Generation

Most real-world SASP instances in the blogger-centric marketing domain cannot be expected to be

solved to optimality using exact optimization tools. This section presents a decomposition method,

using column generation, to solve the SASP, somewhat similarly to solving the well-studied vehicle

routing problem [14]. A solution to the relaxed master problem of the column generation procedure

provides an upper bound for an optimal solution to the mixed-integer program (P ). On the other hand,

the structure of the problem allows for extracting a tight integer solution within the column generation

procedure, offering a lower bound.

4.1 A Relaxed Master Problem for the SASP

The relaxed master problem keeps a pool of solutions (feasible schedules) generated by solving the sub-

problem and works to find an optimal combination of the schedules to maximize the SASP objective.

The binary decision variable representing a schedule is relaxed so that the dual information can be

extracted and exported to the sub-problem to generate new, improving feasible schedules. Table 2

provides a list of notation used hereafter, in addition to those in Table 1: the new notation are used

in the formulation of the column generation heuristic. To clarify the column generation procedure, the

inputs and outputs for the SASP relaxed master problem and sub-problem are presented in Table 3.

The relaxed master problem (RMP) for SASP is formulated as follows:

Table 2: Notation used in the Sub-Problem and the Relaxed Master Problem

Notation

H Set of solutions of the Relaxed Master Problem

Ŝh
jt Activation of seed j at time t in solution h ∈H
λ Dual cost of constraint (25)
δjt Dual cost of constraint (38) for seed j ∈ N1 at time t

σjt Dual cost of constraint (39) for seed j ∈ N1 at time t

Wh The portion of solution h ∈H included in the solution of the Relaxed Master Problem

Table 3: List of inputs and outputs of the Sub-Problem and the Relaxed Master Problem

Relaxed Master Problem Sub-Problem

Inputs H λ

Ŝh
jt j ∈ N1, t = 0,1, ..., T, h ∈H δjt j ∈ N1, t = 0,1, ..., T

σjt j ∈ N1, t = 0,1, ..., T
Outputs λ S+jt j ∈ N1, t = 0,1, ..., T

δjt j ∈ N1, t = 0,1, ..., T
σjt j ∈ N1, t = 0,1, ..., T

Wh h ∈H
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(RMP ) maxZ = ∑
i∈N2

T∑
t=0

(G1(Xit) −G2(Yit)) (24)

Subject to:

∑
h∈H

W h = 1 Dual cost: λ, (25)

Xit ≤ Lit −Kit

θ+i
+Mit(1 −Uit) i ∈ N2, t = 0,1, ..., T, (26)

Xit ≤ Uit i ∈ N2, t = 0,1, ..., T, (27)

Yit ≥ Kit −Lit

θ−i
−Mit(Zit) i ∈ N2, t = 0,1, ..., T, (28)

Yit ≥ Zit i ∈ N2, t = 0,1, ..., T, (29)

Uit ≤ 1 + Lit −Kit

M ′
it

i ∈ N2, t = 0,1, ..., T, (30)

Zit ≥ Kit −Lit − θ−i
M ′′

it

i ∈ N2, t = 0,1, ..., T, (31)

Lit = β1Lit−1 + ∑
k∈N2

(k,i)∈A2

E2+kt−1 + ∑
j∈N1

(j,i)∈A1

E1+jt−1 i ∈ N2, t = 1,2, ..., T, (32)

Kit = β2Kit−1 + ∑
(k,i)∈A2

E2−kt−1 + e′′ i ∈ N2, t = 1,2, ..., T, (33)

Li0 = 0 i ∈ N2, (34)

Ki0 = 0 i ∈ N2, (35)

E2+it ≤ e+Xit i ∈ N2, t = 0,1, ..., T, (36)

E2−it ≥ e−Yit i ∈ N2, t = 0,1, ..., T, (37)

E1+jt − γE1+jt−1 + e′ ∑
h∈H

W hŜh
jt−1 ≤ e′ j ∈ N1, h ∈H, t = 1,2, ..., T, Dual cost: δjt−1, (38)

E1+jt − e′ ∑
h∈H

W hŜh
jt ≤ 0 j ∈ N1, h ∈H, t = 0,1, ..., T, Dual cost: σjt, (39)

0 ≤Xit, Yit, Uit, Zit, Lit,Kit,E2+it,E2−it i ∈ N2, t = 0,1, ..., T, (40)

0 ≤ E1+jt j ∈ N1, t = 0,1, ..., T, (41)

0 ≤W h h ∈H, (42)

Uit, Zit ≤ 1 i ∈ N2, t = 0,1, ..., T, (43)

W h ≤ 1 h ∈H. (44)

Problem (RMP ) includes all the constraints of (P ) except for constraint sets (IV) and (VI). Index

h is the index of a schedule in the solution pool of (RMP ), and the decision variable W h denotes the
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portion of solution h included in the optimal solution of the (RMP ). The summation of the selected

portions of the complete available feasible solutions is equal to one (constraint set (25)), since (P )

is designed to find a single schedule. Note that the value of the dual variable is extracted only for

constraint sets (25), (38) and (39) – those that include the decision variable W h; the dual values of the

other constraints do not help the sub-problem in introducing new improving feasible schedules into the

(RMP ).

4.2 A Sub-Problem for the Partial Activation Model

The sub-problem receives the dual variable values from the relaxed master problem and finds a new

feasible schedule which, when added to the solution pool in the (RMP ), could enter the basis and

improve the problem’s objective value. As far as the optimal objective value of the sub-problem is

negative, adding the corresponding schedule to the (RMP ) is beneficial. As such, the column generation

routine stops when the sub-problem returns a non-negative objective value. The constraints of the sub-

problem (SP ) ensure the feasibility of the introduced schedules:

(SP ) minZ ′ = λ + e′ ∑
j∈N1

⎛
⎝

T−1∑
t=0

(δjt − σjt)S+jt − σjTS+jT⎞⎠ (45)

Subject to:
T∑
t=0
∑
j∈N1

(πt ⋅Cj(S+jt) + πt(Fjt)) ≤ B, (46)

Fjt ≥ f(S+jt − S+jt−1), j ∈ N1, t = 1,2, ..., T, (47)

Fj0 = f ⋅ S+j0 j ∈ N1, (48)

∑
j∈N1

(πt ⋅Cj(S+jt) + πt(Fjt)) ≤ Rt t = 0,1, ..., T, (49)

0 ≤ Fjt j ∈ N1, t = 0,1, ..., T, (50)

S+jt ∈ {0,1} j ∈ N1, t = 0,1, ..., T. (51)

This sub-problem is a generalized knapsack problem that selects as many items (seeds) as it can

afford, so that the objective function is optimized. However, this problem has multiple time periods

(namely, T + 1 periods) and the decisions are made sequentially; each item can be selected more than

once, and the fixed cost of item selection depends on what period(s) an item is being selected for. The

computational results with the SASP instances on real social networks in Section 5 showcase that in

practice, (SP ) can be solved to optimality rather fast even for large networks.
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4.3 Initialization of the Solution Pool for Column Generation

The presented column generation algorithm needs a pool of initial solutions to start with, to which it

iteratively adds more solutions (columns). The quality of the initial solutions may affect the number of

iterations till convergence. However, an organized selection of these solutions guarantees neither a faster

convergence to an optimum of the (RMP ), nor a higher quality of the best integer solution (schedule)

obtained at the end of the column generation procedure [49]. Random selection of initial solutions has

been previously explored in column generation research [20]. Appendix A presents four initialization

algorithms that exploit the properties of the SASP; each has a specific preference in scheduling seed

activation, and together, they generate a diverse set of good initial SASP solutions.

Each algorithm provides one initial solution; thus, the column generation process begins with four

initial columns. The results in Section 5 confirm the viability of this initialization method.

4.4 A Heuristic Toolbox for Finding Computational Bounds

The proposed column generation heuristic, when converges, provides an optimal solution to the relaxed

master problem. At that point, there is no new column (schedule), that, if added to the solution pool,

can improve the objective function of the relaxed master problem. As (P ) is a mixed-integer program,

the optimal solution to (RMP ) only provides an upper bound for (P ). On the other hand, solving an

integer program over all the columns in the solution pool of (RMP ) provides a feasible solution and

a valid lower bound for (P ). Only one schedule (column) is selected by the integer program from all

the generated columns – the column with the maximum objective value. Due to the special structure

of the problem, finding a lower bound can be done more efficiently than running the integer version

of (RMP ), i.e., with variables U,Z ∈ {0,1}. Given a valid schedule (column), the objective value of

SASP is calculated using a deterministic simulation process that spreads evidence over the network and

records the outcome. When the objective value of each available column is evaluated, the algorithm

returns the schedule with a maximum outcome. Running the evaluation module for each schedule takes

O(T ∣A∣) time, where A = A1⋃A2; thus, running the evaluation module takes less time than a solver.

At each iteration of the column generation procedure, when the sub-problem introduces a new

column into the (RMP ), the heuristic toolbox first sends a new schedule to the evaluation module

to calculate the corresponding objective value, and if this value turns out greater than that for the

best integer solution found so far, then the solution is stored as the new best integer solution. At the

end of the column generation procedure, the objective value of the best integer solution is returned

as the lower bound for (P ). An optimal solution to (P ) is contained in the range between this lower

bound and the upper bound, obtained for the solution to (RMP ) at the end of the column generation
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Table 4: Computational results with small- and medium-sized SASP problem instances.

Dataset ∣N1∣ ∣N2∣ T B Cplex Sol. Cplex Time Heu. Sol. UB Heu. Time Opt. Gap Heu. Gap
(Opt.) (sec.) LB (sec.) (%) (%)

EBV 1 51 7 450 18.25 0.8 18.25 18.25 2.6 0.00 0.00
Alcoholism 2 98 6 350 -29.14 5.61 -29.14 -29.14 7.22 0.00 0.00
Alcoholism 4 131 7 620 51.22 107.38 51.22 53.11 142.56 0.00 3.55

Relationships 6 405 6 1250 624.38 175.24 618.92 642.21 57.9 0.87 3.62
Pregnancy 21 925 6 2450 2486.27 16168.69 2440.24 2507.31 306.28 1.86 2.67

The first column of Table 4 contains (working) dataset name, columns 2 through 5 specify the SASP

parameters, and the other columns contain the computational results. For the instances solved by

Cplex, the optimality gap is reported, along with the heuristic gap. The results indicate that for small

instances of SASP, Cplex outperforms the presented heuristic algorithm, which is expected. Running

solution initialization algorithms as well as lower bound and upper bound routines for small SASP

problems is a more expensive computation than running Cplex. As the problem size increases, however,

the Cplex runtime grows fast while the heuristic runtime grows marginally.

Table 5 reports the results for large SASP instances, which could not be solved by Cplex in the set

time of four hours; after this time, a significant optimality gap (> 120%) was still observed, meaning

that Cplex was not able to find even one good feasible solution. Meanwhile, the heuristic performs well.

Table 5: Computational results with large-sized SASP problem instances.

Dataset ∣N1∣ ∣N2∣ T B Cplex Sol. Cplex Time Heu. Sol. UB Heu. Time Heu. Gap
(Opt.) (sec.) LB (sec.) (%)

HIV Prev. 14 3683 6 3250 – >4 hrs 3631.85 3740.14 1130.35 2.91
Anxiety 8 1295 7 1300 – >4 hrs 1436.45 1459.74 226.29 1.59

Women’s Health 7 3401 7 1400 – >4 hrs 1073.63 1132.77 480.45 5.21

The presented column generation-based algorithm provides a feasible SASP solution and a tight

lower bound on the optimum. Given such a bound, one can exploit the idea of warm start, i.e., using

the solver’s “mipstart” feature, to start with a tight lower bound and make the solver’s convergence

faster. In fact, the warm start strategy runs Cplex as a heuristic that works on the mixed-integer

program until a pre-defined gap is obtained. The performance of this method, compared to that of the

heuristic algorithm for the SASP instances, is also reported in Table 6.

Table 6: Comparing the heuristic algorithm and the warm start strategy for finding the upper bound.

Dataset ∣N1∣ ∣N2∣ T B Time Limit Heu. Gap Warm Start Gap
(sec.) (%) (%)

Relationships 6 405 6 1250 57.9 3.62 1.06
Pregnancy 21 925 6 2450 306.28 2.67 0.60
HIV Prev. 14 3683 6 3250 1130.35 2.91 9.16
Anxiety 8 1295 7 1300 226.29 1.59 8.74

Women’s Health 7 3401 7 1400 480.45 5.21 16.93
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the upper bounds and lower bounds for the optima.

In order to set up realistic SASP experiments, the networks based on the public communication

(questions, answers and discussions) in a large healthcare forum website were collected. The presented

experiments, motivated by the marketing practices in the blogger-centric domain, reveal how the optimal

SASP solutions depend on the type of the objective function. It is shown that the decision-maker has to

be particularly careful when pursuing time-dependent goals, e.g., in order to build a momentum before

each targeted campaign deadline.

The presented Column Generation-based heuristic is proposed as a means for solving the IM problem

efficiently. While the current paper focuses on the SASP under the PPC diffusion model, the column

generation method can be applied to any other IM problem, with the sub-problem introducing feasible

seed sets, with respect to budget and other problem instance-specific constraints, and the objective

function being improved in the relaxed master problem. Furthermore, the idea of column generation

bodes well for the situations where a decision-maker works to compose a portfolio of seed activation

strategies, to minimize the investment risk through assigning a part of the budget to each strategy.

This paper opens up a new area for modeling two-level diffusion-based optimization problems. An

example of another such problem in transportation planning is accepting/rejecting shipment orders

considering the impact of the decisions on the future orders and on the diffusion process within the

business network of the order owners. Such problems require the advances in both the two-level IM and

the dynamic and stochastic knapsack problems [35, 48]. Future research can investigate the stochastic

seed activation for IM. Moreover, further research can establish a connection between the presented

two-level seed activation scheduling problem and reward-based scheduling problems.
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Appendix A. Initialization Algorithms for the Presented Column Generation Method

The column generation algorithm presented for SASP in Section 4 needs a set of initial solutions

(columns) to begin with. The quality of the initial solutions may impact the solution time for the

column generation module of the heuristic toolbox. This appendix details four initialization algorithms

that generate such initial solutions exploiting the properties of SASP.

Algorithm 1 - The Time Priority Initialization Algorithm

S+ = 0; /* Initializes the schedule with zero*/
R′t = Rt; /* Initializes the remaining budget at time t with the allocated budget constraint at t */
R′′ = B; /* Initializes the remaining budget with the maximum seed activation budget */
for t ← 0 to T do

Cjt = NPV (Cj , t) /* Updates the cost of seed activation considering the net present value of money*/
Initialize ft /* Updates the fixed cost of seed activation considering the net present value of money*/
if t = 0 then

A = 1 /* Sets the coefficient of the fixed cost of seed activation */
else do

A = 0 /* Sets the coefficient of the fixed cost of seed activation */
end if

for j ← 1 to ∣N1∣ do

if R′t ≥ Cjt +Afjt then

if R′′ ≥ Cjt +Afjt then

S+jt = 1 /*schedules the activation of ode j at time t*/

R′′− = Cjt +Afjt /*updates the total remaining budget*/
R′t− = Cjt +Afjt /*updates the remaining budget at the current time period*/

end if

else do

Break; /*stops searching at the current time period and goes to t + 1, if possible*/
end if

end for

if R′′ ≤minj∈N1
Cjt then

Break; /*stops searching for more activations*/
end if

end for

Return S+

The Time Priority Initialization algorithm, named Algorithm 1, starts with the initial time period

and activates seeds in the order of the node index until the budget constraint is met, and then, moves

to the next time period. The initialization algorithm needs to include the seed activation fixed cost only

in the initial time period (t = 0); if node j ∈ N2 is selected at time t, the algorithm definitely has selected

it at time t−1, which removes the need for paying the fixed cost of seed activation after the initial time

period. After selecting each seed for activation, the algorithm compares the remaining budget against

the minimum seed activation cost and decides whether to continue searching for more seeds or stop.

To include NPV in the seed activation process, Algorithm 1 works with Cjt as the NPV of the cost for

activating node j ∈ N1 at time t.

The Knapsack initialization algorithm, named Algorithm 2, on the other hand, keeps the time

priority and selects the seeds within each time period based on their values. The value function for each

potential seed j ∈ N1 is calculated as the unit cost of influencing each node on the second level network

through seed j; the algorithm gives a priority to the seeds with lower unit cost. Algorithm 2 focuses on

selecting the seeds with a greater number of followers and tries to spend the budget more strategically.
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Algorithm 2 - The Knapsack Initialization Algorithm

S+ = 0; /* Initializes the schedule with zero*/
R′t = Rt; /* Initializes the remaining budget at time t with the allocated budget constraint at t*/
R′′ = B; /* Initializes the remaining budget with the maximum seed activation budget*/
for j ← 1 to ∣N1∣ do

Vj =
Cj

outDegreej
; /* Evaluates the unit cost of node j to influence each regular node*/

end for

SortV(); /* This function runs an ascending sort based on V value of seeds*/
for t ← 1 to T do

Cjt = NPV (Cj , t) /* Updates the cost of seed activation considering the net present value of money*/
Initialize ft /* Updates the fixed cost of seed activation considering the net present value of money*/
if t = 0 then

A = 1 /* Sets the coefficient of the fixed cost of seed activation */
else do

A = 0 /* Sets the coefficient of the fixed cost of seed activation */
end if

for j ← 1 to N1 do

if R′t ≥ Cjt +Afjt then

if R′′ ≥ Cjt +Afjt then

S+jt = 1 /*schedules the activation of ode j at time t*/

R′′− = Cjt +Afjt /*updates the total remaining budget*/
R′t− = Cjt +Afjt /*updates the remaining budget at the current time period*/

end if

else do

Break; /*stops searching at the current time period and goes to t + 1, if possible*/
end if

end for

if R′′ ≤minj∈N1
Cjt then

Break; /*stops searching for more activations*/
end if

end for

Return S+

Algorithms 1 and 2 are designed with the idea that seed activation timing is the key driver of the

SASP complexity. The computational results of solving (P ) on small social networks showcase a trade-

off between the time and seed values in the optimal seed activation schedule. Time and Connectivity

Trade-off Algorithm, called Algorithm 3, is designed to exploit this trade-off.

The algorithm assigns a value to each node j ∈ N1 that can be selected as a seed at the initial time

period, based on its out-degree and cost; larger out-degree and lower seed cost are preferred. In order

to make the value calculation fair, the value of a node at each time period is discounted based on time

horizon T and standardizing parameter δ so that each node has the greatest value at the initial time

period. Considering time as an important element in the seed activation, the algorithm prefers earlier

activation of a seed, because in this case, the seed has more time to spread evidence over the network.

All the nodes at the first level network are considered as viable candidates to become seeds. The

algorithm compares the value of all these nodes at the initial time period and selects the one with a

maximum value. If node j ∈ N1 is selected at the initial time period, the earliest time that node j

can become available as a seed again is time t = 1. As such, the algorithm updates the availability of

node j and discounts its value. The algorithm also updates the remaining budget after each new seed

selection. In the next iteration, the value of all the nodes at their earliest availability are compared.
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The algorithm continues scheduling nodes’ activation until the remaining budget becomes insufficient

for activating the node with a maximum value. Algorithm 3 allows a potential seed with a high value

(compared to other available candidates) to be selected multiple times before selecting other nodes; if

the values of some nodes turn out to be close to each other, then the algorithm emphasizes earliness for

the activation.

Algorithm 3 - Time and Connectivity Trade-off Algorithm

S+ = 0; /* Initializes the schedule with zero*/
R′t = Rt; /* Initializes the remaining budget at time t with the allocated budget constraint at t*/
R′′ = B; /* Initializes the remaining budget with the maximum seed activation budget */
for j ← 1 to ∣N1∣ do

Vj1 =
Cj

outDegreej
; /* Evaluates the unit cost of node j to influence each regular node*/

Vj2 = 0; /* Assigns the next available time period for each node */
Vj3 = 1; /* Assigns the coefficient of fixed cost for each node */

end for

Sort(V,1); /* This function sorts V by values of the first column descendingly*/
while R′′ >minj∈N1

Cjt do

for j ← 1 to ∣N1∣ do

if R′t ≥ CVj1Vj2
+ Vj3fVj1Vj2

then

if R′′ ≥ CVj1Vj2
+ Vj3fVj1Vj2

then

S+
Vj1Vj2

= 1 /*schedules the activation of node Vj1 at time Vj2*/

R′′− = CVj1Vj2
+ Vj3fVj1Vj2

/*updates the total remaining budget*/

R′t− = CVj1Vj2
+ Vj3fVj1Vj2

/*updates the remaining budget at the current time period*/
if Vj1 < T then

Vj1 = Vj1 ∗
T−1
T
∗ δ

Vj2 = Vj2 + 1
Vj3 = 0

else do

Vj1 = 0
end if

Sort(V,1)
Break; /*Stops running the for loop and jumps to the while loop*/

else do

Continue; /*Jumps to index j + 1 in the for loop, if possible*/
end if

else do

Continue; /*Jumps to index j + 1 in the for loop, if possible*/
end if

end for

end while

Return S+

The idea of random seed activation is exploited in the fourth initialization algorithm. The Random

Initialization Algorithm – Algorithm 4 – randomly selects a time period and the index of a node to

be activated, and continues as far as the budget constraint is not violated. Such random selection,

however, is not sensitive to the fixed cost: a seed selected at time t can be later selected for time t − 1.
To tackle this issue, when a seed, selected at time t, has already been selected at time periods t − 1
and t + 1, the algorithm adds the paid fixed cost at time t + 1 to the remaining budget. Otherwise, if

the seed selected at time t is also activated at time t − 1, then, the fixed cost is ignored. On the other

hand, if the node selected at time t has been already selected to be activated at time t + 1, the fixed

cost at time t + 1 is added to the remaining budget and the fixed cost at time t is deducted from the
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remaining budget. Note that here, the fixed cost of seed activation is a fixed number, independent of

the seed index, while the fixed cost of seed activation changes over time as a result of applying NPV.

The random seed activation procedure continues till the remaining budget falls below the summation of

the minimum seed activation cost and fixed costs. As such, it is possible for Algorithm 4 to stop when

it is still possible to add more seeds; this possibility, however, is ignored because the algorithm is just

providing a random initial solution for the column generation – this solution does not have to be the

best possible one.

Algorithm 4 - The Random Initialization Algorithm

S+ = 0; /* Initializes the schedule with zero*/
R′t = Rt; /* Initializes the remaining budget at time t with the allocated budget constraint at t*/
R′′ = B; /* Initializes the remaining budget with the maximum seed activation budget*/
for t ← 1 to T do

Initialize Ct /* Updates the cost of seed activation considering the net present value of money*/
Initialize ft /* Updates the fixed cost of seed activation considering the net present value of money*/

end for

while R′′ ≥minj∈N1
(Cjt + fjt) to T do

t = Rand(T); /* Selects a random time period 0 ≤ t ≤ T*/
j = Rand(∣N1∣); /* Selects a random seed j ∈ N1*/
if R′ ≥ Cjt + fjt then

Continue(); /* Tries to find another combination of t and j*/
else do

if S+jt already selected then

Continue(); /* Tries to find another combination of t and j*/
else

S+jt = 1;

if S+jt−1 = S
+

jt+1 = 1 then

R′′− = Cjt − fjt+1; /* Deducts the seed activation cost from and adds the fixed cost of time t + 1 to the
remaining budget*/

R′t− = Cjt − fjt+1; /* Deducts the seed activation cost from and adds the fixed cost of time t + 1 to the
remaining budget of time t*/

else if S+jt−1 = 1 then

R′′− = Cjt; /* Deducts the seed activation cost from the remaining budget*/
R′t− = Cjt; /* Deducts the seed activation cost from the remaining budget of time t*/

else if S+jt+1 = 1 then

R′′− = Cjt + fjt − fjt+1; /* Deducts the seed activation and fixed cost from the remaining budget and adds
the fixed cost of time t + 1*/

R′t− = Cjt + fjt − fjt+1; /* Deducts the seed activation and fixed cost from the remaining budget of time t

and adds the fixed cost of time t + 1*/
else

R′′− = Cjt + fjt; /* Deducts the seed activation and fixed cost from the remaining budget*/
R′t− = Cjt + fjt; /* Deducts the seed activation and fixed cost from the remaining budget of time t*/

end if

end if

end while

Return S+

Appendix B. SASP Complexity

Consider the case of SASP where a hire of any seed has a unit cost. As the SASP under the PPC

diffusion model has a budget constraint for seed selection over time, and relaxes the unit cost constraint

of the OIMP, it is natural to reduce the Budgeted Maximum Coverage Problem (BMCP), rather than

the MCP, to it. The BMCP is known to be NP-hard [34]. From the budgeting point of view, one
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can see that the relationship between BMCP and MCP is similar to the relationship between the IM

problem under the PC diffusion model [54] and that under the PPC diffusion model. However, the

SASP under the PPC diffusion model is a multi-period sequential seed selection problem, which makes

it much harder than the IM problem under the PC diffusion model and the reason for this increased

complexity lies in the cost that the decision-maker pays to better control the cascade over time.

Proof of Theorem 1. SASP under PPC diffusion model is NP-hard by a polynomial Turing

reduction from the Maximum Coverage Problem (MCP). The MCP selects a group of sets from a

number of given sets that may have common elements to maximize a resulting total number of unique

selected elements; MCP is NP-hard [19]. MCP is first formally stated, and then, the reduction from

SASP to MCP is presented.

MCP INSTANCE: A number k > 0 and a collection of sets V = {V1, V2, ..., Vm1
}.

MCP OBJECTIVE: Find a subset V ′ ⊆ J such that ∣V ′∣ ≤ k and the number of covered elements

∣ ⋃
Vj∈V ′

Vj ∣; j ∈ N1 is maximized.

Given an arbitrary MCP instance, define a particular instance of SASP as follows. Assume T = 1,
∣N1∣ = m1, ∣N2∣ = m2, B = k, G1 = G2 = 1 e′′ = 0 and Cj = 1 for each node j ∈ N1. Let e+ >
max θ+i ; i = 1,2, ...,m2, e

− = 0, f = 0, and set γ = β+ = β− = 1. Define set Vj for j = 1,2, ...,m1 such that

v ∈ Vj iff (j, i) ∈ A1, i = 1,2, ..., ∣N2∣ (all the nodes one hop away from j). This transformation can be

performed in polynomial time in the size of the arbitrary MCP instance.

In order to show that an optimal solution to SASP maps to an optimal solution to MCP, let X∗j0

for j = 1,2, ..., ∣N1∣ (Xj0 ∈ {0,1}) be an optimal solution to SASP. Then, ∑∣N1∣
i=1 CjXj0 ≤ B, Yit = 0

for i = 1,2, ..., ∣N2∣, t = 0,1, ..., T and ∑∣N2∣
i=1 ∑T

t=0(Xit − Yit) is maximized. The claim is that X∗j0 is an

optimal solution to MCP. Note that X∗j0 for j = 1,2, .., ∣N1∣ is a feasible solution to MCP because

∑∣N1∣
j=1 CjXj0 ≤ B = k.
Suppose there exists such a solution to MCP, X̄j0, for j = 1,2, .., ∣N1∣ that ∣ ⋃

Vj∈V̄ ′
Vj ∣ > ∣ ⋃

Vj∈V ′∗
Vj ∣.

Solution X̄j0 for j = 1,2, .., ∣N1∣ is a feasible solution to SASP: ∑∣N1∣
j=1 CjX̄j0 ≤ B = k. Therefore, the SASP

objective function for this solution is ∑∣N2∣
i=1 ∑T

t=0(X̄it−Ȳit) = ∣ ⋃
Vj∈V̄ ′

Vj ∣+k > ∣ ⋃
Vj∈V ′∗

Vj ∣+k = ∑∣N2∣
i=1 ∑T

t=0(X∗it−
Y ∗it ), which is a contradiction. Thus, X∗j0 for j = 1,2, .., ∣N1∣ is an optimal solution to MCP. ∎

Proof of Proposition 1. Assume that for a given set of parameters, the optimal solution of the

OIMP (S+o ) dominates the optimal solution of the SASP (S+s ) with the same set of parameters. The

objective functions in both the SASP and original IM are identical; let the objective value corresponding

to solution sets S+o and S+s be O∗o and O∗s , respectively. Each feasible solution to the OIMP is necessarily

feasible for the SASP, i.e., satisfies the total budget and allocated budget constraints. If O∗o > O∗s , then
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there is a feasible solution for SASP – S+o – that provides a greater objective value, and hence, S+s is

not the optimal solution of the SASP. This leads to a contradiction, which completes the proof. ∎
Appendix C. Big M Values for the Mathematical Program (P )

Three sets of large positive numbers (Mit, M
′
it and M ′′

it) are defined for constraint group (I) of the

mathematical model (P ). These numbers are chosen, and hence, labeled differently in the different

constraints, to facilitate the presentation. In this appendix, the minimum acceptable big M values that

guarantee the correctness of (P ) are derived.

With Ii denoting the in-degree of node i in the second level network, these numbers are bounded

from below,

Mit ≥ ( e−Ii + e′′
Min{θ+i , θ−i })(

1 − βt−1
2

1 − β2 ) i ∈ N2, t = 0,1, ..., T, (52)

M ′
it ≥ (e−Ii + e′′)(1 − β

t−1
2

1 − β2 ) i ∈ N2, t = 0,1, ..., T, (53)

M ′′
it ≥ (e−Ii + e′′)(1 − β

t−1
2

1 − β2 ) − θ
−
i i ∈ N2, t = 0,1, ..., T. (54)

In order to ensure that constraints (2), (4), (6) and (7) always correctly enforce the PPC diffusion

process, the following conditions need to be met, respectively:

Mit ≥ Kit −Lit

θ+i
i ∈ N2, t = 0,1, ..., T, (55)

Mit ≥ Kit −Lit

θ−i
i ∈ N2, t = 0,1, ..., T, (56)

M ′
it ≥Kit −Lit i ∈ N2, t = 0,1, ..., T, (57)

M ′′
it ≥Kit −Lit − θ−it i ∈ N2, t = 0,1, ..., T. (58)

The right hand sides in (55)-(58) are maximized when Kit attains its maximum value and Lit is zero.

The maximum value of Kit is achieved if all the in-neighbors of node i have been negatively activated

over the time periods 0 through t− 1. Node i starts off in a neutral state, with Ki0 = 0; from the period

t = 1 onward, the maximum amount of new negative evidence that node i receives at each time period

is Iie
− + e′′. At the end of each time period, the newly received negative evidence is added to Kit, while

the previously collected negative evidence is discounted by β2. Thus, the maximum value of Kit can be

calculated as the summation of a geometric series,

Kit ≤ βt−2
2 (Iie− + e′′) + βt−3

2 (Iie− + e′′) + ... + β2(Iie− + e′′) + (Iie− + e′′) = (1 − β
t−1
2

1 − β2 )(Iie
− + e′′). (59)

From (59), one directly obtains (52)-(54).
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Appendix D. Network Generation Algorithm for Thread Contributors

This appendix provides the algorithm that was used to generate networks from thread contribution

data.

Algorithm 5 - Network Generation Algorithm for Thread Contributors

Crawl(i); /* Crawls all the messages in thread i */
Sort(i); /* Sorts all the crawled messages in ascending order by posting date */
root = i(0); /* Assigns the first message to the root of the message tree */
for each message in thread i do

c1 = user(message) /* Stores the user of the current message as the current user */
if message is marked as “reply to” then

c2 = user(reply) /* Stores the user whose message has been replied */
c2 ← c1 /* Creates a communication edge */
Engagement(c2 ← c1) /* calculates the engagement score of the edge */

else

FindLeaves() /* Finds all the unanswered leaves of the tree */
Edge() /* Creates edge from the unanswered leaves to the current node */
Engagement() /* calculates and assigns the engagement score to the extracted edges */

end if

end for

Aggregate(); /* Aggregates the edge observations */
ExtractNetwork(); /* Applys the minimum threshold over the network and keep the strong edges */
Return network
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