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Abstract

This paper addresses the challenge of strategically maximizing the influence spread in a social net-
work, by exploiting cascade propagators termed “seeds”. It introduces the Seed Activation Scheduling
Problem (SASP) that chooses the timing of seed activation under a given budget, over a given time
horizon, in the presence/absence of competition. The SASP is framed as a blogger-centric marketing
problem on a two-level network, where the decisions are made to buy sponsored posts from promi-
nent bloggers at calculated points in time. A Bayesian evidence diffusion model — the Partial Parallel
Cascade (PPC) model — allows the network nodes to be partially activated, proportional to their
accumulated evidence levels. The SASP under the PPC model is proven NP-hard. A mixed-integer
program is presented for the SASP, along with an efficient column generation heuristic. The paper
sets up its problem instances in real-world settings, taking web-based marketing as an application ex-
ample. Favorable optimality gaps are achieved for SASP solutions on networks based on observed user
interactions in pro-health discussion forums. The presented analyses highlight a trade-off between
early and late seed activation in igniting and maintaining influence cascades over time. The results
reveal the importance of early seeds for campaigns that favor longevity, e.g., in service industry, and
the importance of late seeds for campaigns with deadline(s), e.g., in political competitions.
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1 Introduction and Motivation

Diffusion-driven information transfer is the key driver behind knowledge accumulation and opinion
formation resulting from the communication between individuals in social networks [30, 45]. The viral
spread of news, goods and judgments via such network-based information transfer is often referred
to as “spread of influence” [4, 21]. Influence cascades are typically ignited through injection of new
information, e.g., about new technologies or major social/political events, and grow through word-of-
mouth (WOM). Coordinating the emergence and penetration depth of influence cascades is of much
interest to practitioners, e.g., to the companies introducing new products or political parties running
campaigns [61]. The problem of strategically exploiting the WOM effect in a given connected population

motivates the Influence Maximization (IM) problem, where a set of early starters, termed seeds, is



selected to start a diffusion-based cascade to achieve maximum spread [33]. There are two widely known
ways of implementing the IM solutions in practice. The first one lies in offering the selected seeds
free/discounted products to increase the probability that these seeds “adopt” the products/opinions
(offered /supported by the decision-maker), in anticipation that their neighbors/peers would follow suit
[60]. Mailing discount coupons to a pre-selected group of customers is an example of such a seed
activation process [63]. The second one has a decision-maker paying the seeds for spreading a supporting
sentiment about the products/opinions over time [36]. Hiring influential bloggers to post sponsored
articles is an example of this practice. Platforms such as PayPerPost.com support it by providing
online services for buyers to find the sponsored bloggers matching the buyers’ needs.

Kempe et al., [33] proposed the first discrete optimization problem for IM; they developed two
time-independent stochastic diffusion models — the Independent Cascade (IC) model and the Linear
Threshold (LT) model. The original IC and LT diffusion models are time-independent in that (1)
influence is assumed to never diminish over time, and hence, (2) the final outcome of the diffusion
process is only affected by the selection of seeds, but not the timing of seed activation. Kempe et al.,
[33] pointed to the submodularity of the problem’s objective function under the IC and LT models, and
presented a greedy algorithm for IM seed selection: the algorithm features a theoretical bound on the
problem optima, however, its practical application proved to be computationally challenging [10, 26].

Much research has emerged following up on the seminal work on IC and LT models. However, one
question in the IM domain has remained unanswered thus far: “Is it always most beneficial to activate
the seeds all at once, and if not, then what modeling approach(es) can allow for optimizing the seed
activation timing?”. The IM efforts relying on the time-independent models, including the IC and LT
models, cannot explicitly account for the dynamics of the information diffusion. Thus, any conclusions
obtained using such models are valuable only if it can be assumed that the influence spread is instant
or that its effect lingers forever and it is only this final (eventual) effect that matters. However, in
many real-world situations, decision-makers plan for long campaigns that need not only be initiated
but controlled over time, and whose maximal impact should be achieved at specific time point(s), i.e.,
meeting pre-determined deadlines.

Chierichetti et al., [12] revised the Original IM Problem (OIMP) formulation to arrive at a cascade
scheduling problem where the adoption status of a node is a function of two quantities: (1) the fraction
of the current adopters in the node’s neighborhood, and (2) the fraction of the current adopters in the
whole network. This work has provided a basis for an emerging cascade scheduling literature [6, 27, 42].
Hajiaghayi et al., [28] considered competition in cascade scheduling, under the assumption that the
network nodes are market segments sharing certain similarities, and developed models for this problem’s

variations with and without recourse (when the state of the network may be observable or unobservable



between sequential seeding actions). Still, all the above-mentioned works bypass the modeling of time,
instead focusing only on the order, in which the seeds are exposed to a new opinion/product. Hence, the
relaxation of the OIMP’s requirement to select and activate all the seeds prior to the ensuing cascade
formation opens a previously unexplored field of study. In addition to selecting the early starters
(“initial seeds”) for IM, the Seed Activation Scheduling Problem (SASP) presented in this paper allows
one to select “late seeds”, i.e., activate them in a calculated way during the diffusion process. An SASP
solution informs a strategy that can be implemented by a decision-maker who seeks to gradually spend
resources to maintain the activation of seeds over a given time window, e.g., to ensure the continued
support of a marketing campaign by sponsored bloggers. In such a setting, the duration of activation
and re-activation of seeds becomes important.

There are multiple practical considerations motivating the development of SASP. First, the resources
required to activate seeds (campaign budget, free products, man-power, etc.) may not all be available
to a decision-maker at once, early on. Second, any seed activation strategy becomes time-dependent
when the Net Present Value (NPV) of money is taken into account, with the late seed additions being
less costly. Third, the activation of late seeds may prevent the exposed population from forgetting the
information they receive [41, 53-55], requiring regular “reminders” to keep a campaign going.

This paper relies on the latest findings in the experimental marketing literature to solve a practical
two-level problem of initiating and controlling social cascades over blogger networks, such as Twitter, or
online forums. The sponsored bloggers available to be hired (as ad-hoc paid-per-post marketing agents),
are assumed to form the first level of a network under study, with the other users and lower-profile
bloggers forming its second level. A decision-maker is tasked with activating and de-activating the first
level nodes over time, with the goal to maximize the effect of the campaign on the second level nodes,
under a given resource/budget constraint. The adopted influence spread model tracks the information
exchanges between all the nodes, recording the levels of the evidence that the nodes accumulate in
support or against the claim of interest, e.g., that the marketed product is worth purchasing. In what
follows, the time-dependent Bayesian evidence diffusion model with partial activation (positive and
negative) of nodes is detailed and a mixed-integer program is presented for the resulting SASP that
maximizes the spread of positive evidence and minimizes the spread of negative evidence through the
second level network. The computational investigations with two case studies provide insights on how
the seed selection strategies depend on the time horizon and the problem’s objective function form.

The rest of this paper is organized as follows. Section 2 reviews the IM literature. Section 3
presents the seed activation scheduling idea and the partial parallel cascade model, and then, develops
a mixed-integer program for the SASP and investigates two case studies. An efficient heuristic solution

methodology for SASP using column generation is presented in Section 4. Section 5 provides the



computational results for the SASP instances formulated for several real-world social networks. Section

6 concludes the paper and suggests the directions for future research.

2 Literature Review

Social influence, the phenomenon where the revealed/observed judgments of people make their peers
adjust their judgments, has received much attention in marketing [3, 61], health care [13, 56], and po-
litical science [2, 29]. Prescriptive social influence research works towards calculated campaign planning
in support of an opinion, behavior or product of interest. The earliest methods for finding influential
nodes in social networks were based on centrality calculations. One limitation of the centrality-based
heuristics is that they only exploit the information about the network positions of the nodes, while
ignoring the information about the individual differences in the node characteristics [52]. Recent devel-
opments in centrality-based heuristics look to incorporate the data of such differences and of overlapping
communities into the centrality scores [43, 47].

The idea of modeling the social influence mechanisms to formulate and solve IM problems was first
introduced by Domingos and Richardson [15, 50]. Kempe et al., [33] posed a discrete IM problem, intro-
ducing two time-independent diffusion models (IC and LT diffusion models) to describe how influence
may spread in a social network from a set of seeds. These models have long served as a basis for the al-
gorithmic developments [9, 10]. However, the basic IC and LT diffusion models do not incorporate time
in describing influence propagation. A stream of literature on algorithmic seed selection has focused on
addressing this issue over the last few years. Goyal et al., [23] were among the first who addressed the
need for time-aware diffusion models. Ever since, the IM problems where a certain objective is to be
achieved by some preset deadlines has received much attention [8, 17, 24, 39].

The aspect of seed selection timing in IM, and the notion of cascade scheduling where the seeds
fueling a cascade are added iteratively, have been considered most recently [6, 12, 28, 55]. It is important
to distinguish the idea of late seed activation planning, presented in this paper, from the work on
adaptive seed selection [22]. To be more specific, in the latter efforts, seed selection is viewed as a
multi-stage decision-making process where the decision-maker observes the results (reward) of earlier
actions prior to making decision of the subsequent actions. Seeman and Singer [57] presented a two-stage
IM problem: in the first stage, the decision-maker spends a portion of the budget in seed activation
to make nodes “accessible”, and in the second stage, spends the rest of budget for activating some
of those accessible nodes. The adaptive submodularity property of the multi-stage IM problem helps
designing efficient greedy algorithms to find the near optimal solutions with guaranteed bounds [11].

Note, however, that in a typical real-world setting, one can only observe the actions performed by an



exposed population (e.g., purchases), as opposed to the spread of judgments in it [53, 54].

The original diffusion models for IM were designed for single campaign problems, with the activation
status of each node represented by a binary variable. Such models interpreted each node activation as
an event of a completed purchase or technology adoption: it was assumed that the once activated nodes
never lose their activation [33]. The later studies of competition — between multiple parties — in IM
relaxed this assumption and introduced the concept of activation loss/reversal [5]. The experimental
marketing literature, meanwhile, models the process of buying decision formation as a gradual transition
through multiple states, between the completely inactive one to the fully active one [1, 46, 62]. The
current paper introduces a new evidence-based diffusion model that permits such partial activation,
which is also particularly suitable for describing opinion adoption: the adoption/influence level of a
node ranges from zero (inactive state) to one (fully activated state). Additionally, from a marketing IM
perspective, the problem formulations and methods developed in this paper allow the decision-maker to
plan not only for increasing the immediately realized sales, but also, for increasing the overall awareness
about the product in the population, potentially leading to an indirect (delayed) profit.

In summary, compared to the presented literature, this paper introduces the concept of seed ac-
tivation scheduling and employs the exact solution methodology using mathematical programming to
explore and exploit the effects of seed activation timing on the IM strategies. Moreover, the idea of
modeling partial activations in a two-level blogger network serves as a generalization of the previously

existing diffusion models for marketing, healthcare and political applications to new settings.

3 Influence Propagation Models for Seed Activation Scheduling

The SASP is designed to schedule the seed selection/activation over the time window of a given IM prob-
lem. Section 3.1 describes an SASP formulation for campaign planning in the blogger-centric marketing
setting, and explains the practical appeal of seed activation scheduling from a theoretical perspective. A
two-level IM problem is developed, where the decision-maker pays sponsored bloggers (seeds), by time
period, to maintain the influence they deliver over time. Section 3.2 presents an evidence-based diffusion
model with partial activation of nodes, called Partial Parallel Cascade (PPC) model. In Section 3.3, the
NP-hardness of the IM problem under the PPC diffusion model is proved, and a mixed-integer program
is designed to solve the NP-hard SASP under the PPC diffusion model, optimally. Finally, two case
studies are presented to showcase the utility of the SASP and to computationally explore the impact of

the objective function variations on the optimal seed activation strategy.



3.1 The Seed Activation Scheduling Problem with Partial Activation

This section presents the SASP for planning a blogger-centric social campaign, where sponsored blog-
gers, whose posts get exposed to many readers in an online social network, are paid to publish the posts
supporting a marketing or ideological campaign. The idea of blogger-centric advertising is well-discussed
in marketing and experimentally proven to be effective for increasing product awareness [18, 40]. How-
ever, when a group of sponsored bloggers with overlapping/separate areas of influence are available and
each blogger has its own cost for providing sponsored posting, selecting the bloggers and scheduling
their actions over the time horizon of a budget-constrained campaign can be challenging.

The conventional IM problem formulation views all the nodes in a network as potential seeds, and
assumes that no node can reject a seed nomination. However, in a real-world setting, a blogger cannot be
expected to blindly accept one’s proposition to serve as a seed. Also, decision-makers typically consider
only a few most prominent bloggers as potential seeds; the network positions and characteristics of
blogger nodes inform this preliminary selection. Indeed, on the sponsored blogger service platforms, such
as PayPerPost.com, a segmentation system allows one to filter bloggers based on their profiles, taking
into account their Google page rank and Alexa rank: only some bloggers qualify as good candidates to
be employed for a given campaign [36]. By separating the potential seeds (influencers) from the regular

nodes (influencees) in SASP, one reduces the solution space of the seed selection problem.
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Figure 1: Modeling evidence
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work: the first level contains

O s the potential seeds (influential
nodes) and the second level
o

Potential seed contains the regular nodes.

Regular node

Figure 1 shows a network separated into two levels. The first level contains the nodes that can
be hired to support a campaign — the activation status of these nodes does not figure in the objective
function of the SASP. The second level contains the nodes that are the targets of the campaign. A

cascade is to be ignited at the first level, consequently spreading to the second level, e.g., through



(re)sharing/(re)tweeting. No arcs are assumed to go from the second level to the first: the nodes in
the first level are assumed not to be influenced by their audiences — they spend their time writing, on a
paid basis. The model does not count on the voluntary activation of potential seeds, without being paid
by the decision-maker, as the first level nodes are assumed to represent marketing agents/accounts, not
personal blogs. The assumption that the first-level nodes are sponsored bloggers also reduces the chance
of the rejection of a seed nomination — such nodes are assumed to have already made themselves available
as potential seeds, albeit at a certain price. Finally, the source of negative influence in the SASP is
assumed to access and affect all the nodes uniformly, as mass media (e.g, television) advertisements do.
The objective of the SASP is to schedule seed activations (in the first level) over the time horizon of
the problem to maximize the spread of positive evidence and minimize the spread of negative evidence
among the second level nodes, under a budget constraint.

Each potential seed in the first level network has its own cost of service for one time period. Without
loss of generality, the service cost of the bloggers is assumed to be proportional to the number of their
followers [37]. While scheduling the activation of seeds at each time period, the decision-maker has to
meet the resource constraint for that time period, and also, the resource constraint over the whole time
horizon. The lack of flexibility in defining resource constraints has long posed a challenge in applied
IM [37, 60]. The resource constraints in the existing IM formulations (those which seek to activate all
the seeds at once, in the initial time period) were either about the limit on the number of seeds to be
selected [8, 25, 38] or the limit on the total budget to be spent on the seeds [37]. Prior to this work, no
IM problem with a time-based profile of the available resources has been formulated and solved, to the
authors’ awareness. This research gap, addressed by this paper with the introduction of SASP, is likely
due to the fact that all the original IM formulations were time independent.

SASP assumes that the activation of the same seed in multiple consecutive time periods leads to
the reduction of its influenceability. This is because if the users in the second level perceive the “same
message” in some consecutive posts by a blogger, they might suspect that the posts are paid and
gradually lose the trust in the provided information. Thus, when a seed (a hired sponsored blogger)
in the SASP maintains its activation over multiple time periods, its influenceability is multiplied by
the factor v < 1. To mitigate this effect, the decision-maker might want to deactivate seeds from time
to time, to help them regain their influenceability. Note, however, that while this makes frequent
deactivations and reactivations of the same seed appealing over the span of a campaign, this practice
might not be cheap if each new (re)activation (think a new contract) incurs a fixed cost. The PPC
diffusion model, presented in Section 3.2, models how the positive evidence (initiated in the first level
network), as well as the negative evidence, spread through the second level network over time.

Continuing with the introduction of the SASP, it assumes that the cost Cj is incurred for hav-



ing/keeping node j in the first level network active at each time period. Further, a fixed cost f is
incurred with each new activation: if f is large, the preferred scheduling policies will keep the seeds
activated for longer time periods, and vice versa. Also, the SASP allows one to account for the Net
Present Value (NPV) of money. The corresponding multiplication factor m; is introduced for time period
t, where 0 < <1 for 0 <¢ <T (T is the campaign horizon). It is natural to have m; decrease with
time to reflect a positive interest rate. Note that the seed activation spending is restricted at each time
period 0 <t < T by the allocated budget R:, and over the whole time horizon of the problem by the
total campaign budget B.

In the objective function of the SASP, the positive activation of each node in the second level at
each time period results in the gain of GG1, while the negative activation of each node similarly incurs
the loss of G2. Naturally, when G is much greater than G2, the SASP solutions will ignore the presence
of a competitor, i.e., the seeds will be selected in a way to spread the positive evidence most efficiently.

Meanwhile, With the large G2, the solutions will focus on blocking the spread of the negative evidence.

3.2 Partial Parallel Cascade (PPC) model

Samadi et al., [54] were first to model the spread of influence in a social network as a transfer of Bayesian
evidence: they assume that each node is testing the null hypothesis that the opinion/claim preferred by
the decision-maker is true, based on the evidence in support of or against this opinion/claim received
from/through their directly connected peers. This paper presents a more general evidence-based diffu-
sion model that allows for partial activation of nodes. This model can track not only opinion/product
“adoption” but also “awareness”, which is in line with the concepts in the experimental sociology and
marketing literature [31, 44, 51].

The PPC model is now described in detail, in application to the blogger-centric marketing setting
presented in Section 3.1. Consider a finite directed graph G(Na, As), where Ny and Ay denote the set
of nodes and arcs in the second level network, respectively. Let N; denote the set of potential seeds
in the first level network and A; be defined as the set of arcs directed from the first level network to
the second level network. The diffusion process begins with the activation of seeds in the first level,
the binary variable S;’t indicates whether node j € Ny is activated at time t. At each discrete time
period 0 <t < T, each node i € Ny receives the positive evidence e’ from each of the activated seeds that
it is following in first level (note that this amount is subject to the discount based on the activation
history, and hence, the current influenceability of each seed), and a piece of negative evidence e” from
the competing evidence source. The nodes do not just count on their own observations in making
judgments about the hypotheses; they communicate and transfer their impressions/opinions to each

other: the opinion transferred to a node through a friend is viewed as a piece of evidence supporting
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Figure 2: Partial activation of node ¢ as a function its net evidence value at time t.

the corresponding hypothesis. At each time period 0 <t < T, each node i € No delivers e* X;; (e7Y;) of
positive (negative) evidence to its out-neighbors, where 0 < X;; <1 and 0 < Y}, < 1 denote the partial
positive and negative activation levels of node i at time ¢, respectively. The amount of positive (negative)
evidence resulting from a single new observation, supporting the null (alternative) hypothesis, defines
the evidence increment e* (e7); the numerical value of e* (e7) can be calculated using the Bayesian
inference logic [54]. Note that the PPC is a non-progressive diffusion model: the nodes may lose/change
their activation states over time [7].

At the end of each time period 0 <t < T, each node i € Ny updates its cumulative positive evidence
tally (L;; > 0), and separately, negative evidence tally (K;; > 0), based upon the evidence it receives
from its activated neighbors (in N2) and/or connected seeds (in Np). While testing the null hypothesis
(which is supported by positive evidence) versus the alternative hypothesis (which is supported by
negative evidence) at time t, node i aggregates the tallies L and Kj;;, which determines whether, in
this time period, it adopts the positive view towards the marketed opinion/product (favoring the null
hypothesis), or adopts the negative view (favoring the alternative hypothesis), or stays indifferent. The
node’s view is reflected in its activation state: either (partial) positive or (partial) negative activation,
or no activation. Node i has its own positive (negative) threshold value 6] > 0 (6; > 0), representing
the minimum net positive (negative) evidence level L;; — K;; (K — L) it needs to match or exceed to
get fully positively (negatively) activated. Once a node gets fully activated, it can be assumed ready to
take a stance/action supporting the corresponding hypothesis, e.g., purchase the marketed product (if
positively activated) or a competing product (if negatively activated). Any evidence that strengthens a
node’s stance beyond the threshold levels 8* and 6, does not lead to any further action in support of or
against the marketed product [1]. Figure 2 has the partial positive and negative activation levels for a
node plotted as a function of its net evidence value. The positive threshold () and negative threshold
(67) levels reflect the node’s sensitivity towards perceived positive and negative evidence, respectively,
and are not necessarily equal. On the vertical axis in Figure 2, one has the sum of X;; and Yj;; at each

time period t, at least one of the quantities X;; and Yj; is zero.



Further, in line with the mathematical sociology literature, at the end of each time period, each
node is assumed to forget a part of the evidence it has aggregated. The presence of this forgetfulness
effect, the strength of which is quantified by parameters 51 and (9, for positive and negative evidence,
respectively, motivates the SASP as a further development of influence maximization problem ideas and

formulations.

3.3 A Mathematical Model for the SASP under the PPC Diffusion Model

A mixed-integer program is designed for the SASP under the PPC diffusion model, so as to find such
a schedule for activating the potential seeds in the first level network that maximizes (minimizes) the
spread of positive (negative) evidence in the second level network. A summary of notation used hereafter
is given in Table 1. The objective of the SASP is to maximize the cumulative gain resulting from the
partial positive and negative activations in the second level network within the problem time window,
T
(P) max Z = ’Z Z(Gl(xﬁ) —Gz(Yit)). (1)
ieNy t=0
The SASP is a maximization problem subject to the constraints presented in groups as follows.
(I) Setting the partial positive and negative evidence processing rules so that (1) the positive (negative)
activation level of a node linearly increases until its net evidence value reaches its positive (negative)
threshold, and (2) after the net evidence value of a node passes the positive (negative) threshold, the
node gets full positive (negative) activation. Also, these constrains ensure that no node can be both

positively and negatively activated at the same time,

Ly - K;

Xitht+Mit(1—Uit) ieNy, t=0,1,..,T, (2)
(]
Xit < Uy 1€ Ny, t=0,1,...,7T, (3)
K. _L.
Yip > == = Mi(Ziz) ieNy, t=0,1,..,T, (4)
7
}/itZZit ’iGNQ, t=0,1,...,T, (5)
L. _K.
Up <1+ =42 ieNy, t=0,1,..,T, (6)
Mit
Kt — Ly — 07
Zy> -0 0 ieNy, t=0,1,..,T. (7)
Mz't

(IT) Updating cumulative positive and negative evidence levels for the nodes in the second level network,

Lit = BlLitfl + Z E2;t—l + Z El;—t—l 7€ NQ, t= 1, 2, ...,T, (8)
keN: je V-
(ki)e s (e
K = 52Kit—1 + Z EZI;t—l +e 1€ Ng, t=1,2,...,T, (9)
(k,i)EAQ

10



Table 1: Definitions of the indices, input parameters and decision variables in mathematical problem

Indices
i Index used for the nodes in the first level network
ik Indices used for the nodes in the second level network
t Time period index
Inputs
A Set of arcs connecting the nodes in the first level network to those in the second level network
Ay Set of arcs connecting the nodes within the second level network
Ny Set of nodes in the first level network
N> Set of nodes in the second level network
T Total number of time periods in the time horizon
0F Positive threshold for node 7 in the second level network
0; Negative threshold for node 7 in the second level network
e’ Positive evidence delivered in one transfer among the second level network nodes
e Negative evidence delivered in one transfer among the second level network nodes
e’ Positive evidence value delivered in one transfer by each positive seed (before any discount)
e’ Negative evidence value delivered in one transfer by the external competitor
51 Rate at which the second level network nodes forget the previously received positive evidence
B2 Rate at which the second level network nodes forget the previously received negative evidence
vy Efficiency reduction discount factor for the seeds being active in consecutive time periods
B Maximum budget available for seed activations over the time horizon of the problem
f Fixed cost of activating a new seed for any number of consecutive time periods
G Unit gain of a positive activation per time period
G» Unit cost of a negative activation per time period
C; Cost of node j € N; to serve as a seed at each time period
e Discount factor applied to the cost of seed activation at time period ¢
R, Budget allocation for seed activation at time period ¢
Decision Variables
Xt Partial positive activation level of node i € N2 at time ¢
Y; Partial negative activation level of node i € Na at time ¢

1, if node ¢ € N3 is fully positively activated at time ¢ (L;z — K;+ > 0)

Ui 0, otherwise

7 1, if node i € N2 is fully negatively activated at time ¢ (Kt — Lt > 0;)
w 0, otherwise

Lt Cumulative level of positive evidence for node i € Ny at time ¢

Kit Cumulative level of negative evidence for node i € Ny at time ¢

E2}, Value of positive evidence that node i € N2 provides to each of its out-neighbors at time ¢

E2;, Value of negative evidence that node ¢ € N> provides to each of its out-neighbors at time ¢

E 1;% Value of positive evidence that node j € N1 provides to each of its followers in the second level at time ¢
. 1, if node j € N; is selected by the decision-maker to serve as a positive seed at time ¢,
Jt { 0, otherwise

F; Fixed cost paid for having seed j € N1 newly activated or reactivated at time ¢

LiOZO ’iENQ, (10)
KZ'(]:O 7:€N2. (11)

(IIT) Updating the evidence delivered by each node in the second level network to its out-neighbors at
each time period,

B2}, < e" Xy i€Ny, t=0,1,....T, (12)
E2; > eYy ieNg, t=0,1,..,T. (13)

(IV) Budget constraints for activating seeds (taking into account the net present value of the fixed and
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per-period costs),

T
Z Z (WtC](S;rt) +7Tt(th)) < B, (14)
t=0 jeN1
> (me- Ci(Sh) +m(Fye)) < Ry t=0,1,...,T, (15)
JjeN:
Fji > (S} - S51), jeNy, t=1,2,..,T, (16)
Fj():f'S;O jENl. (17)

(V) Updating the evidence (positive) delivered by the activated seeds in the first level network to the

nodes in the second level network,
El}, < (yEl}q) +(1-5,4)e jeNy, t=1,2,..,T, (18)

E1}, <€'(5}) jeN;, t=0,1,...,T. (19)

(VI) Sign constraints,

0< X, Yie, E25,, E2;, 1eNy, t=0,1,...,T, (20)
0< E1}, Fj jeNy, t=0,1,..,T, (21)
She{0,1} jeNy, t=0,1,...T, (22)

U’itaZit € {0,1} iENQ, t=0,1,...,T. (23)

Constraints (6)-(7) ensure that the values of the binary variables U;; and Z;; are correctly assigned
based on L;; and Kj; for each node i € Ny at each time period t. Constraints (2)-(5) ensure that each
node gets its positive or negative activation status properly updated in each time period. Note that the
objective function of (P) favors higher values of X;; and lower values of Yj;.

For the activation of node ¢ at time ¢, four cases (namely, (a)-(d)) are possible: (a) node i is positively
activated but its net evidence level is less than its positive threshold (0 < Ly —Kj; < 6] ); then, constraints
(6) and (7) result in Uy =1 and Zj; = 0; this setting makes (4) and (5) redundant and leads to Yj; = 0;
on the other hand, (2) and (3) assign the partial positive activation of node i per the PPC diffusion
model: X;; = L“e;if(“; (b) node ¢ has full positive activation (L; — Kj > 6;); then, the values of binary
variables turn out the same as in case (a) (U = 1 and Z;; = 0) as ensured by constraints (6) and (7); the
value of Z;; makes (4) and (5) redundant and ensures Yj; = 0; for the positive activation, (2) becomes
redundant and (3) results in X;; = 1; (c) node ¢ has a partial negative activation (0 < K — Lz < 6;);
then, both binary variables take zero value as ensured by (6) and (7); as such, (2) and (3) result in
Xit = 0; meanwhile, (4) and (5), with the help of the objective function, ensure the correct partial

negative activation of node i (Y =

%); (d) node 7 has a full negative activation (K — L > 60} );
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then, by definition, U;; = 0 and Z;; = 1, ensured by (6) and (7), and also, (2) and (3) ensure that X;; =0,
(4) becomes redundant and (5) forces Yz = 1. The minimum values of the “big M” variables that make
constraints (2), (3), (6) and (7) in set (I) work are calculated in Appendix C.

Each node i € Ny starts the diffusion process in a neutral state (L;o = K0 = 0), which is guaranteed
by (10) and (11). Constraint (8) updates the cumulative positive evidence level of node i € Ny at
time period t as a sum of its positive evidence accumulated by period ¢ — 1 (discounted with (; for
forgetfulness), the positive evidence received from all the connected nodes k € Ny at the second level
(E2;;_,) and the evidence received from all the seeds j € Ny that i follows in the first level (E17,_).
Similarly, (9) updates the cumulative negative evidence level for each node in the second level network,
where €’ is the evidence amount that each node receives from the external source of negative evidence.

Constraints (12) and (13) ensure that each node in the second level delivers the right level of positive
or negative evidence (depending on its activation) to its out-neighbors. Constraint (14) ensures that
the total seed activation cost and the fixed cost of seed activations over the time horizon of the problem,
after applying the discount factors, is less than or equal to the total budget. Constraint (15) guarantees
that the total seed activation cost at each time period does not exceed the allocated budget. Constraints
(16) and (17) ensure that the fixed cost is incurred whenever an inactive seed gets activated.

Constraints (18) and (19) determine the evidence that a seed j € Nj delivers to its followers at
time ¢: whenever an inactive seed j just becomes active, it can deliver the ¢’ amount of evidence to its
followers, but with every subsequent time period that seed j maintains its activation, the amount of
evidence that it delivers to its followers drops by the factor of ~.

The mathematical program (P) includes two binary variable sets, U;; and Z;;, that track the positive
and negative activations: these variables are the key drivers of the problem’s complexity.
THEOREM 1. The SASP under PPC diffusion model is NP-hard.

PROOF: See Appendix B.

On a final note, it is easy to show that the option to activate some seeds late can never make a
solution to an IM problem worse: i.e., the optimal value of the SASP provides an upper bound for the
OIMP (where seeds can only be selected/activated in the initial time period).

PROPOSITION 1. The optimal value of the SASP is a valid upper bound for the OIMP.
PROOF: See Appendix B.

3.4 Case Studies

This section presents two case studies that help explore the properties of optimal SASP solutions.
Case Study 1 demonstrates the value of seed activation scheduling as opposed to relying exclusively

on “early starters” for IM, in application to two real-world social networks. A detailed description of
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these data, along with an explanation of how they informed the construction of the networks used in
the presented experiments, is provided in Section 5. Case Study 2 is conducted with a small artificial
social network to capture the effect of the problem parameters and objective function on the optimal
seed activation strategies. The SASP is considered with two objective functions: first, counting the
weighted activation (positive minus negative) over time, i.e., ¥, >, (Gl(Xit) - Gg(Yit)), named
Obj.I, and second, counting the weighted activation (positive minus negative) at the final time period,
e, Yien, (Gl(XZ-T) - Gg(YiT)), named Obj.II. While Obj.I is suitable for such problems where the
positive activation of each user benefits the decision-maker in each period, Obj.II works better for a
time constrained campaign, e.g., an election, where the decision-maker only cares about the activation
status/awareness level of the nodes at a pre-set time deadline.

Case Study 1. In this study, the optimal values for the SASP and OIMP are reported for problem
instances with the forgetfulness rate (1) values ranging from 0 to 1, with no budget constraints.

Figure 3 compares the optimal values of the SASP and OIMP for Obj.I and Obj.Il on the real-
world social network of people contributing in “Multiple Sclerosis” forum, named Network 1. Network
1 includes 709 bloggers, of which six superusers are designated as potential seeds and placed in the first
level network, with all the other nodes forming the second level network. Note that in online health
forum research, most well-connected users and voluminous contributors are conventionally referred to

as “superusers.”

Seed Activation Scheduling Vs. Initial Seed Activation Scheduling Vs. Initial
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Figure 3: SASP optimal values vs. those for strategies relying purely on initial seeding, over the range
of feasible values for forgetfulness, with Ny =6, No =703, T =4, fo=v=0.7,e" =0.45, ¢ =0.2, ¢’ = 1.1,
e"=0.1,Gy=Gy=1, B=900, f =25, I; =0.02 and 0* =6~ =2: (a) with Obj.I, (b) with Obj.IL

The results in Figure 3 show that, even with a small time horizon, seed activation scheduling has an
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advantage over the original IM, particularly if the forgetfulness rate is high, i.e., when S is small. As
51 grows, the forgetfulness has a smaller impact on the spread of evidence, and the objective values for
the SASP and the OIMP get closer. The advantage of using the SASP solution is greater with Obj.II.
When the seeds are all selected in the initial time period, and the results are evaluated at a certain time
horizon, the forgetfulness effect reduces the influence produced by the initial seeds. On the other hand,
scheduling seed activations over time allows one to continuously fuel evidence diffusion, i.e., stopping
the diffusion of negative evidence early and adding seeds at carefully selected time periods during the
diffusion process to combat the forgetfulness effect. Note that the optimal solutions to the SASP and
OIMP problems are still different when forgetfulness is removed from the problem (f3; = 1), because the
SASP permits the decision-maker to activate a single blogger multiple times. If superusers’ out-degrees
significantly differ, and/or the magnitude of the positive evidence delivered by positive seeds is small
(so that multiple evidence updates are required to cause activations in the second level network), then
the OIMP optima turn out far worse when plugged into an SASP, compared to the SASP true optima.

Another set of experiments is performed with Network 2 — a social network of users of “Herpes”
forum (see Section 5.1 for more details on this dataset). In 2015, 784 users have contributed to it; four
superusers with the average degree of 153 are placed into the first level of Network 2, with the second
level formed by 780 other forum users. The time horizon of the problem is slightly increased (7" = 6) to
make the forgetfulness effect more pronounced. The results (see Figure 4) reveal a trend similar to the
one observed in the experiments with Network 1. However, the difference between the optimal objective
values of the SASP and those of the IM problem in the absence of forgetfulness is now more visible.
In summary, Case Study 1 experimentally validates the claim of Section 1: under the PPC diffusion
model, the idea of seed activation scheduling has merit.

Case Study 2. The impact of the SASP input parameters on the optimal seed activation schedules
is analyzed next. Consider a network in Figure 5(a), consisting of ten regular bloggers (second level)
that can be influenced by three high-profile bloggers (first level) and an external negative evidence
source (not shown in the figure).

For one fixed parameter setting, Figure 5(b) presents the optimal seed activation schedules for the
SASP instances with Obj.I and Obj.II, respectively. The schedule corresponding to each solution is
represented by a vertical ribbon, where the time periods go from ¢ = 0 to t = T', separated from each
other by black lines. In each time period, a black circle in a square indicates seed activation; the lower
square is for node A, the middle one for B, and the upper one for C. Under Obj.I, all the activations
are equally profitable over the time horizon of the problem; thus, the corresponding optimal seeding
strategy focuses more on the initial time periods, in order to initiate the cascade, and also, holds a part

of budget for some late activations to keep the positive cascade alive. The optimal seeding strategy
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Figure 4: SASP optimal values vs. those for strategies relying purely on initial seeding, over the range
of feasible values for forgetfulness, with Ny =780, No=4,T =6, f2=v=0.7,e" =04, e =0.2, ¢’ =0.1,
G1=Gy=1, B=1100, f =25, I; =0.02 and " = 6~ = 2: (a) with Obj.I, (b) with Obj.IL.

under Obj.II, on the other hand, focuses more on the few last time periods, to secure the largest number
of active nodes at the very end of the campaign. It spends a small portion of the budget early, to hamper
the negative evidence spread, and then, uses most of the budget late to achieve a favorable network
state by the preset deadline T

Unrestricted Budget: A campaign with an unlimited budget represents a situation where the
decision-maker is not worried about the seeding costs; both the budget (B) and allocated budget at
time ¢ (R;) are assumed infinite. In this case, nothing can stop the decision-maker from activating all
the seeds at all the time periods (0 < ¢ < T). The 7 parameter (the efficiency reduction parameter of
the activated seeds) is the only driver behind the decision-maker’s willingness to have seeds deactivated
at times.

Figure 6 shows how the optimal objective value and optimal seed activation schedule change under
the varied values of . According to Figure 6(a), the same trend emerges with both Obj.I and Obj.II:
the higher ~ values allow the influence of each seed to have a lasting effect, propelling the positive
cascades on. Under the optimal seed activation strategy (see Figure 6(b)), when ~ is large (so that the
efficiency of activated seeds does not decrease over time), the decision-maker activates all the seeds in
each time period. As 7 decreases, a trade-off emerges between keeping the less efficient seeds activated
for a longer time and alternating the seed activations while making each activation short. When the ~
value is either too small or too large, an optimal seeding strategy is easy to find, but finding an optimum

under the medium values of v becomes challenging. In the latter case, the optimal strategy activates at
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Figure 6: Analysis of optimal seed activation schedules under unrestricted budget: (a) the optima for
Obj.I and Obj.I1, with v parameter, (b) the optimal seed activation schedules with v parameter.

least one seed at each time period to fuel the diffusion in the second level network while coping with the
seed efficiency reduction (over consecutive time periods). One insight of this case study is that spending
all the available resources does not always work out for the best. Indeed, consider a billionaire running
an election campaign in a community whose members do not like to be fed the same/repeating content
by the media. In such a situation, activating all the possible bloggers, although financially feasible,
can make the electorate unresponsive to all-out campaigns. Finding an optimal campaign strategy,
considering the population characteristics on the one hand and the competitor influence on the other
hand, is a hard problem that can be addressed as a carefully formulated instance of SASP.

Time Horizon Analysis: This case study explores the effect of SASP time horizon on optimal

seed activation scheduling. Under a limited campaign budget, a decision-maker in search of a schedule
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that optimizes the positive evidence spread must be mindful of the campaign length and deadline(s).
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Figure 7: Analysis of the variation in the optimal seed activation schedules under a varied time horizon:
(a) a trend in the optimal value of the objective function (Obj.I and Obj.IT) with time horizon, (b) the
optimal seed activation schedules with time horizons.

The results of a series of experiments with SASPs with competition are reported in Figure 7. As
expected, for T' = 1, the optimal solutions for the problem instances with Obj.I or Obj.II turn out the
same. Indeed, Obj.I returns the count of the activated nodes in the second level network at times ¢ =0
and ¢ = 1, and since no node is activated at ¢ = 0, then Obj.I turns out equal to the count at the
cascade deadline (¢ =T = 1), defined as Obj.II (see Figure 7(a)). The time-based dynamics of evidence
cascade propagation and decline have been studied in another work of the authors [55]. The non-zero
forgetfulness factor B2, and the presence of a competitor whose influence intensity does not decrease
over time, are the key factors responsible for the unimodal form of the curves in Figure 7(a). Note that
it is important for a decision-maker to define the problem time horizon in a way most fitting their needs,
before solving and interpreting the results of the SASP. Observe that for each pre-set time horizon value
T > 0, when the same SASP is solved with either Obj.I or Obj.II, the range of the possible objective
function values (distance between its upper and lower bounds) for Obj.I is greater than or equal to that
of Obj.Il. As such, when the time horizon is defined so that the positive evidence is able to spread,
Obj.I is always greater than Obj.II. On the other hand, when the time horizon is large enough so that
the predefined fixed budget cannot keep the positive cascade alive, Obj.I turns negative earlier than

Obj.IL.
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The results of this experiment suggest that under a limited budget, the SASP optimum is necessarily
a unimodal function of its time horizon. This, in general, is not true. For example, with a large interest
rate, a large time horizon provides more opportunities for the decision-maker to activate more late
seeds under the same budget. The results of the same experiment, repeated with a higher interest rate
value (I; = 0.14), are shown in Figure 8: the objective value-based bar chart now has multiple peaks.
Finally, with no NPV effect, i.e., when [; = 0, an optimum of the SASP with a fixed budget does not

monotonically increase with the growing time horizon.
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Figure 8: Analysis of the optima for SASP under varied time horizons, with high interest rates.

Pure positive cascades: In an SASP with no competition, e.g., for a decision-maker promoting a
new product in a new market, increasing the time horizon never reduces the objective function value;

however, it decreases the marginal gain in the objective value per period, due to forgetfulness.
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Figure 9: Analysis of the behavior of optimal value of the objective function (Obj.I and Obj.II) with
time horizon in pure positive cascade: (a): no forgetfulness effect, (b): high forgetfulness effect.

The results of an experiment with a pure positive cascade are shown in Figure 9. When the forget-

fulness effect is negligible, increasing the time horizon helps the decision-maker to secure a larger gain,
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under a fixed budget (Figure 9(a)). Note that Obj.II is bounded from above by a total number of nodes
in the second level network. When this bound is reached, a further increase of the time horizon has no
effect. Meanwhile, with Obj.I, increasing the time horizon always allows the decision-maker to achieve
a higher possible gain, to the point where all the resources have been optimally exploited.

With a non-zero forgetfulness effect, the marginal gain in the optimal objective value reduces over
time, even for purely positive cascades. This is because the amount of fresh evidence injected into the
network by the seeds is fixed, and the intensity of communication between the second level nodes drops
due to forgetfulness. Figure 9(b) shows how the addition of forgetfulness affects theT SASP optima.

Cascades with intermediate and final deadlines: In this case study, Obj.II is revised to Obj.III,
to quantify the activation gain (the number of positively activated nodes minus the number of negatively
activated ones) at multiple deadlines: e.g., an SASP with Obj.III would assist a political party candidate
in maximizing the electorate support both at the time of a primary election (intermediate deadline)
and general election (final deadline). Obj.II1 is given as Y.y, (Gl(XiT) —GQ(YL'T)) + YN, (Gg(XZ'T/) -
G4(Y;-T/)), where GG and G4 are the weights applied to the counts of the positively and negatively
activated nodes at the intermediate deadline ¢ * T, with 0 < ¢ < 1, and at final deadline T", respectively.
Note that Obj.I is a special case of Obj.III, with T intermediate deadlines uniformly distributed over

the time horizon.
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Figure 10: Optima for Obj.III with an intermediate deadline, for varied time horizons.

An experiment is performed with the SASP instances with Obj.III with the varied parameter q. The
results in Figure 10 show that the intermediate deadline in the middle of the time horizon presents the
biggest challenge for the decision-maker. In this case, the decision-maker needs to ignite the cascade

early to achieve a high gain, while trying to save resource in order to finish strong.
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Note that an SASP with Obj.III, where the resource availability is stochastically dependent on the

intermediate campaign results, presents an interesting extension opportunity to the present work.

4 A Heuristic Solution Methodology using Column Generation

Most real-world SASP instances in the blogger-centric marketing domain cannot be expected to be
solved to optimality using exact optimization tools. This section presents a decomposition method,
using column generation, to solve the SASP, somewhat similarly to solving the well-studied vehicle
routing problem [14]. A solution to the relaxed master problem of the column generation procedure
provides an upper bound for an optimal solution to the mixed-integer program (P). On the other hand,
the structure of the problem allows for extracting a tight integer solution within the column generation

procedure, offering a lower bound.

4.1 A Relaxed Master Problem for the SASP

The relaxed master problem keeps a pool of solutions (feasible schedules) generated by solving the sub-
problem and works to find an optimal combination of the schedules to maximize the SASP objective.
The binary decision variable representing a schedule is relaxed so that the dual information can be
extracted and exported to the sub-problem to generate new, improving feasible schedules. Table 2
provides a list of notation used hereafter, in addition to those in Table 1: the new notation are used
in the formulation of the column generation heuristic. To clarify the column generation procedure, the
inputs and outputs for the SASP relaxed master problem and sub-problem are presented in Table 3.
The relaxed master problem (RMP) for SASP is formulated as follows:
Table 2: Notation used in the Sub-Problem and the Relaxed Master Problem

Notation
H Set of solutions of the Relaxed Master Problem
S'Jht Activation of seed j at time ¢ in solution h € H
A Dual cost of constraint (25)
0jt Dual cost of constraint (38) for seed j € N1 at time ¢
ojit Dual cost of constraint (39) for seed j € Ny at time ¢
wh The portion of solution h € H included in the solution of the Relaxed Master Problem

Table 3: List of inputs and outputs of the Sub-Problem and the Relaxed Master Problem

Relaxed Master Problem Sub-Problem

Inputs H A

St jeNi,t=0,1,.,T,heH | & jeNi,t=0,1,..,T

Ot jE]Vl7 t:O,L...,T

Outputs A St jeN;, t=0,1,..,T

50 jeNi,t=0,1,..,T

Ojt jEN1,t:0,1,...,T
W' heH
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(RMP) maxZ =Y i (Gl(Xit) - G2(Y;t)) (24)

’iENQt:O
Subject to:
> wh=1 Dual cost: A, (25)
heH
LA _K. .
Xits%+Mit(1—Uit) ieNy, t=0,1,..,T, (26)
(]
Xit < U 1€ Ny, t=0,1,...,T, (27)
K. _L.
Vit 2 %—Mit(zﬁ) ieNy, t=0,1,...,T, (28)
7
Yie > Zis ie€Ny, t=0,1,..,T, (29)
L, _K.
Up<l+ =20 ieNy, t=0,1,..,T, (30)
it
Ki — Ly — 07
Zy> -0 70 ieNy, t=0,1,..,T, (31)
Mit
Lit=P1Li1+ ), E2,+ > FElj, ieNy, t=1,2,..T, (32)
keNo JjeNy
(ki)eAs (4,1)eAs
Kit=BoKip1+ Y, FE2,  +¢€" ieNy, t=1,2,...,T, (33)
(k‘,i)GAQ
Li() =0 1€ NQ, (34)
KiO =0 ’iENQ, (35)
E2;}S6+Xit 1€ Ny, t=0,1,...,7T, (36)
E2; > e Yy i€Nyy t=0,1,..,T, (37)
Bl -yE1}  +e Y WSl <€ jeNy, heH, t=1,2,..,T, Dual cost: §j;-1,  (38)
heH
Bl -¢ > WSk <o jeN, heH, t=0,1,..,T,  Dual cost: oj, (39)
heH
OS—Xitv}/:itvUitazitvLit7KitaE2;t?E2;t Z‘EJZ\T27 t:O717'”7T7 (40)
0< E1j, jeNy, t=0,1,..,T, (41)
0<wh heH, (42)
Ui, Zip < 1 ieNy, t=0,1,..,T, (43)
wh<1 heH. (44)

Problem (RM P) includes all the constraints of (P) except for constraint sets (IV) and (VI). Index
h is the index of a schedule in the solution pool of (RM P), and the decision variable W" denotes the
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portion of solution A included in the optimal solution of the (RM P). The summation of the selected
portions of the complete available feasible solutions is equal to one (constraint set (25)), since (P)
is designed to find a single schedule. Note that the value of the dual variable is extracted only for
constraint sets (25), (38) and (39) — those that include the decision variable W"; the dual values of the
other constraints do not help the sub-problem in introducing new improving feasible schedules into the

(RMP).
4.2 A Sub-Problem for the Partial Activation Model

The sub-problem receives the dual variable values from the relaxed master problem and finds a new
feasible schedule which, when added to the solution pool in the (RM P), could enter the basis and
improve the problem’s objective value. As far as the optimal objective value of the sub-problem is
negative, adding the corresponding schedule to the (RM P) is beneficial. As such, the column generation
routine stops when the sub-problem returns a non-negative objective value. The constraints of the sub-

problem (SP) ensure the feasibility of the introduced schedules:

T-1
(SP) minZ' =X+e Y | 3 (60— 05t)Sh - 005y (45)
j€N1 t=0
Subject to:
T
>0 (m- Ci(SH) + m(Fye)) < B, (46)
t=0 jeNp
thzf(S;t_S;t—l)7 jENh t:1727"'7T7 (47)
Fjo=f-Sj J €Ny, (48)
> (7w Ci(S) + m(Fjt)) < Ry t=0,1,..,T, (49)
jeN1
Oﬁfwjt jeNy, t=0,1,...,T, (50)
S e{0,1} jeNy, t=0,1,..,T. (51)

This sub-problem is a generalized knapsack problem that selects as many items (seeds) as it can
afford, so that the objective function is optimized. However, this problem has multiple time periods
(namely, T + 1 periods) and the decisions are made sequentially; each item can be selected more than
once, and the fixed cost of item selection depends on what period(s) an item is being selected for. The
computational results with the SASP instances on real social networks in Section 5 showcase that in

practice, (SP) can be solved to optimality rather fast even for large networks.
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4.3 Initialization of the Solution Pool for Column Generation

The presented column generation algorithm needs a pool of initial solutions to start with, to which it
iteratively adds more solutions (columns). The quality of the initial solutions may affect the number of
iterations till convergence. However, an organized selection of these solutions guarantees neither a faster
convergence to an optimum of the (RM P), nor a higher quality of the best integer solution (schedule)
obtained at the end of the column generation procedure [49]. Random selection of initial solutions has
been previously explored in column generation research [20]. Appendix A presents four initialization
algorithms that exploit the properties of the SASP; each has a specific preference in scheduling seed
activation, and together, they generate a diverse set of good initial SASP solutions.

Each algorithm provides one initial solution; thus, the column generation process begins with four

initial columns. The results in Section 5 confirm the viability of this initialization method.

4.4 A Heuristic Toolbox for Finding Computational Bounds

The proposed column generation heuristic, when converges, provides an optimal solution to the relaxed
master problem. At that point, there is no new column (schedule), that, if added to the solution pool,
can improve the objective function of the relaxed master problem. As (P) is a mixed-integer program,
the optimal solution to (RM P) only provides an upper bound for (P). On the other hand, solving an
integer program over all the columns in the solution pool of (RM P) provides a feasible solution and
a valid lower bound for (P). Only one schedule (column) is selected by the integer program from all
the generated columns — the column with the maximum objective value. Due to the special structure
of the problem, finding a lower bound can be done more efficiently than running the integer version
of (RMP), i.e., with variables U, Z € {0,1}. Given a valid schedule (column), the objective value of
SASP is calculated using a deterministic simulation process that spreads evidence over the network and
records the outcome. When the objective value of each available column is evaluated, the algorithm
returns the schedule with a maximum outcome. Running the evaluation module for each schedule takes
O(T|A|) time, where A = A1 U Ag; thus, running the evaluation module takes less time than a solver.
At each iteration of the column generation procedure, when the sub-problem introduces a new
column into the (RMP), the heuristic toolbox first sends a new schedule to the evaluation module
to calculate the corresponding objective value, and if this value turns out greater than that for the
best integer solution found so far, then the solution is stored as the new best integer solution. At the
end of the column generation procedure, the objective value of the best integer solution is returned
as the lower bound for (P). An optimal solution to (P) is contained in the range between this lower

bound and the upper bound, obtained for the solution to (RM P) at the end of the column generation
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procedure. In practice, the column generation upper bound turns out to be loose. In fact, it turns out
to be not far from the linear programming relaxation bound, and hence, using the Branch and Price
approach, initiated at the corresponding solution, is also not advisable. In order to tackle the challenge
of improving the upper bound, the structural properties of (P) must be exploited.

The basic idea of strengthening the upper bound is to develop a simpler problem by relaxing some
constraints in (P) and then solving the remaining problem to optimality (using Cplex); indeed, this
upper bound remains valid. To obtain the tightest such upper bound, one can relax as far as possible the
constraints that are inactive, so that the remaining problem can be solved easily without affecting the
upper bound quality too much. The lower bound solution is examined to see which constraints of set (I)
can be relaxed. The diffusion process is simulated from the lower bound solution S;t (VjeNy,0<t<T),
and thereby, the values of the binary variables U;; and Z;; and of the activation variables X;; and Yy
(Vi e N2,0 <t <T) are obtained. When the value of X;; is 1, all constraints in set (I) can be relaxed
for node 7 at time ¢. On the other hand, when the value of Z;; is 1, then constraints (3) and (5) can be
relaxed. The results in Section 5 confirm that this developed upper bound performs well in practice.

To recap, Figure 11 summarizes the interaction among modules in the presented heuristic toolbox.
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5 Computational Results

This section presents computational results for SASP instances with real-world data. Section 5.1 de-
scribes the data. Section 5.2 compares the performance of the SASP heuristics of Section 4 against

Cplex. Section 5.3 performs sensitivity analyses of the SASP parameters.
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5.1 Data Description

For the purposes of this study, the pro-health discussion forum data were retrieved from a website
popular among English speakers'. The website users maintain the personal pages and online “friend”
lists, and discuss health-related topics within medical issue-specific “communities”. (See Kaplan and
Haenlein [32] to learn more about the characteristics typical of modern online content communities.)
The website, with its ontology being similar to other forum-hosting platforms [59], was crawled in 2015
[58]. The user personal profile data were not saved and the usernames were anonymized. The website
contains more than a hundred communities; overall, more than a Million users contributed to about two
Million threads, consisting of ten Million messages. Figure 12(a) plots the number of messages grouped
by day. Figure 12(b) gives a log-log plot of the message counts across different topics (forum threads);
the horizontal axis shows the number of topics each of which has the number of messages shown on the

vertical axis. The largest number of messages observed in a topic exceeded 10,000.

Number of Crawled Messages by Day Frequency of the Messages Per Topic

9000 100000

10000

1000 '

100

6000

3000

Number of Messages
Number of Messages

10
e,
0 ®e

1 ®
299, 9. 0. 0. <. . %m0 0. 2
0> 99 0, ~%y % %> “9 %, % ~%s 1 10 100 1000 10000 100000 1000000

Time (Day) Number of Topics

(a) (b)

Figure 12: The aggregate patterns based on the crawled website data: (a) the number of messages
grouped by day, (b) the number of contributed messages per topic on the logarithmic scales.

The collected data were used to build the social networks of the forum contributors; Appendix D
details the algorithm used for the network generation. Note that the built networks may not necessarily
represent friendship connections; however, they properly reflect the likely channels of information spread,
as appropriate for the SASP. Multiple SASP instances were created with the built networks, with the
identified (most active) superusers designated as first-level nodes: indeed, these individuals are most
likely to be approached by decision-makers looking to advertise their products, or promote the spread
of health behavior-related information.

The density of the edges in the second level network is a factor that affects the SASP solution time

'For user privacy purposes, the name of the website is not disclosed.

26



very much. Recall that simulating the evidence exchange resulting from the activation of a given set of
positive seeds takes O(T|A|) time. In order to experimentally explore this dependence, an experiment
is run over the network based on the “Stroke” forum: while the SASP parameters remain fixed, the
network density is iteratively increased by random edge addition. Figure 13 exhibits an exponential

growth of the solution time, as a function of the density of the second level network.
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Figure 13: Analyzing impact of second level network density on the SASP solution time.

Note that when the density of the second level network for problem (P) is reduced, the resulting
problem (P') is significantly different from (P). However, while the optimal objective value of (P’)
does not provide any bound for the optimal objective value of (P), the optimal solution (seed activation
schedule) of (P’) provides a valid feasible solution for (P). This observation is used in Section 5.2 along

with the column generation-based algorithm to obtain a tighter lower bound for the SASP.

5.2 Column Generation-Based Heuristic Performance

The presented heuristic toolbox provides both upper and lower bounds for the SASP optimum, and
informs us of the quality of the best heuristically obtained solution. However, with the availability of
the true optimal value (attainable by Cplex for small- and medium-sized problems), one can evaluate
the performance of the algorithms that return the lower and upper bounds separately from each other.

Table 4 presents the results of a computational study with a set of small and medium-sized SASP
instances. In each instance, the nodes with out-degree above p + 30 (where p and o are the mean and
standard deviation of out-degree over the instance network) were designated as potential seeds. The
Mixed-Integer Program and the Column Generation-based heuristic were implemented using Concert
Technology in JAVA and the commercial solver CPLEX 12.6. All the experiments have been performed
on a desktop with an Intel(R)Core(TM)i5 3.2GHz processor, 64-bit operating system and 12GB RAM.
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Table 4: Computational results with small- and medium-sized SASP problem instances.

Dataset [Ni| |[Nof T B Cplex Sol.  Cplex Time Heu. Sol. UB Heu. Time Opt. Gap Heu. Gap
(Opt.) (sec.) LB (sec.) (%) (%)
EBV 1 51 7 450 18.25 0.8 18.25 18.25 2.6 0.00 0.00
Alcoholism 2 98 6 350 -29.14 5.61 -29.14 -29.14 7.22 0.00 0.00
Alcoholism 4 131 7 620 51.22 107.38 51.22 53.11 142.56 0.00 3.95
Relationships 6 405 6 1250 624.38 175.24 618.92 642.21 57.9 0.87 3.62
Pregnancy 21 925 6 2450 2486.27 16168.69 2440.24 2507.31 306.28 1.86 2.67

The first column of Table 4 contains (working) dataset name, columns 2 through 5 specify the SASP
parameters, and the other columns contain the computational results. For the instances solved by
Cplex, the optimality gap is reported, along with the heuristic gap. The results indicate that for small
instances of SASP, Cplex outperforms the presented heuristic algorithm, which is expected. Running
solution initialization algorithms as well as lower bound and upper bound routines for small SASP
problems is a more expensive computation than running Cplex. As the problem size increases, however,
the Cplex runtime grows fast while the heuristic runtime grows marginally.

Table 5 reports the results for large SASP instances, which could not be solved by Cplex in the set
time of four hours; after this time, a significant optimality gap (> 120%) was still observed, meaning

that Cplex was not able to find even one good feasible solution. Meanwhile, the heuristic performs well.

Table 5: Computational results with large-sized SASP problem instances.

Dataset INi| |N2] T B Cplex Sol.  Cplex Time Heu. Sol. UB Heu. Time Heu. Gap
(Opt.) (sec.) LB (sec.) (%)
HIV Prev. 14 3683 6 3250 - >4 hrs 3631.85 3740.14 1130.35 2.91
Anxiety 8 1295 7 1300 - >4 hrs 1436.45 1459.74 226.29 1.59
Women’s Health 7 3401 7 1400 - >4 hrs 1073.63 1132.77 480.45 5.21

The presented column generation-based algorithm provides a feasible SASP solution and a tight
lower bound on the optimum. Given such a bound, one can exploit the idea of warm start, i.e., using
the solver’s “mipstart” feature, to start with a tight lower bound and make the solver’s convergence
faster. In fact, the warm start strategy runs Cplex as a heuristic that works on the mixed-integer
program until a pre-defined gap is obtained. The performance of this method, compared to that of the

heuristic algorithm for the SASP instances, is also reported in Table 6.

Table 6: Comparing the heuristic algorithm and the warm start strategy for finding the upper bound.

Dataset [Ni| |N2] T B  Time Limit Heu. Gap Warm Start Gap
(sec) (%) (%)
Relationships 6 405 6 1250 57.9 3.62 1.06
Pregnancy 21 925 6 2450 306.28 2.67 0.60
HIV Prev. 14 3683 6 3250 1130.35 291 9.16
Anxiety 8 1295 7 1300 226.29 1.59 8.74
Women’s Health 7 3401 7 1400 480.45 5.21 16.93
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Objective Value

For a fair comparison between the warm start method and the heuristic algorithm, the time limits
for both were set to be equal to the heuristic runtimes as in Tables 4 and 5. The results in Table 6 show
that for the medium-sized instances of SASP, the warm start method provides a tighter bound on the

optimum; however, it is not the case with the larger problem instances.

5.3 Network Density and Evidence Spread

Another study is performed with the “Stroke” forum network — a small, sparse network of 58 nodes,
three of which were designated as superusers. Across multiple SASP instances with the low-density
second level network with 31 edges, the positive evidence increment value e*, et < €/, is iteratively
increased. In order to investigate the effect of the network density on the optimal SASP values, edges
are added randomly to the second level network. The statistics of the original network of the “Stroke”

forum users and the revised networks (obtained via edge additions) are presented in Table 7.

Table 7: Statistics of the networks used for density analysis in SASP.

Network # of edges  Density
Original Net. 31 0.0104
Net. 2 46 0.0154
Net. 3 93 0.0313
Net. 4 155 0.0522
Optimal Value of SASP With Density of the SecondLevel Network Optimal Value of SASP With Density of the SecondLevel Network

~— Original Network Original Network

Net. 2 Net. 2

Net. 3 Net. 3

——Net. 4 ——Net. 4

ObjectiveValue

0.8

maximum value of positive evidence (e+) maximum value of positive evidence (e+)

(a) (b)

Figure 14: Analyzing impact of second level network density on the evidence spread: (a) low budget
(580), (b) high budget (800).

The results of the experiments for two different budget limits, low and high, are presented in Figures
14(a) and 14(b), respectively. The optimal SASP values grow consistently as e* is increased: a higher
evidence increment allows the positive evidence to spread more effectively. A comparison of the results
across the instances with the networks of varied density suggests that the higher the density, the greater

the effect of the network structure on the campaign outcome. When the positive party is stronger

29



(weaker) than the opponent, a denser network generates a greater positive (negative) outcome. The
objective function dynamics is similar in the experiments, irrespective of the budget limit.

The presented results suggest that a dense social network benefits decision-makers promoting highly
appealing products. Otherwise, it is beneficial to the decision-maker to limit the consumer communi-

cation on the subject. Note that this is in line with the findings of Easley and Kleinberg [16].
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Figure 15: The impact of the second level network density on the evidence spread.

The final computational study is performed over the “Hepatitis B” forum network, with five desig-
nated superusers and 98 nodes in the second level network, to investigate how the budget limit impacts
the SASP solution value and the runtime to find it. The results are reported in Figures 15(a) and 15(b).
As the budget limit increases, the objective value grows up to a certain point. As for the runtime, when
the SASP budget limit is low, the problem becomes easy; if the budget is large, any schedule becomes
feasible, and the runtime is also low. The highest runtimes are observed with medium budget limits.

This observation is consistent with the results in [54].

6 Discussion

This paper solves for an optimal seed activation schedule in IM. In the presented Seed Activation
Scheduling Problem (SASP), depending on the budget limitations, the problem time horizon, and/or
under positive NPV, the activation of late seeds is shown to help keep the influence cascades alive. The
new evidence-based diffusion model, the Partial Parallel Cascade (PPC) model, describes the spread
of evidence through networks where nodes can be partially activated, in line with the modern product
adoption theories in the experimental marketing literature. The SASP is formulated as a mixed-integer
program and solved using Cplex. As the SASP problem under the PPC diffusion model is NP-hard, a

heuristic decomposition algorithm is designed using a Column Generation technique that provides both
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the upper bounds and lower bounds for the optima.

In order to set up realistic SASP experiments, the networks based on the public communication
(questions, answers and discussions) in a large healthcare forum website were collected. The presented
experiments, motivated by the marketing practices in the blogger-centric domain, reveal how the optimal
SASP solutions depend on the type of the objective function. It is shown that the decision-maker has to
be particularly careful when pursuing time-dependent goals, e.g., in order to build a momentum before
each targeted campaign deadline.

The presented Column Generation-based heuristic is proposed as a means for solving the IM problem
efficiently. While the current paper focuses on the SASP under the PPC diffusion model, the column
generation method can be applied to any other IM problem, with the sub-problem introducing feasible
seed sets, with respect to budget and other problem instance-specific constraints, and the objective
function being improved in the relaxed master problem. Furthermore, the idea of column generation
bodes well for the situations where a decision-maker works to compose a portfolio of seed activation
strategies, to minimize the investment risk through assigning a part of the budget to each strategy.

This paper opens up a new area for modeling two-level diffusion-based optimization problems. An
example of another such problem in transportation planning is accepting/rejecting shipment orders
considering the impact of the decisions on the future orders and on the diffusion process within the
business network of the order owners. Such problems require the advances in both the two-level IM and
the dynamic and stochastic knapsack problems [35, 48]. Future research can investigate the stochastic
seed activation for IM. Moreover, further research can establish a connection between the presented

two-level seed activation scheduling problem and reward-based scheduling problems.
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Appendix A. Initialization Algorithms for the Presented Column Generation Method

The column generation algorithm presented for SASP in Section 4 needs a set of initial solutions
(columns) to begin with. The quality of the initial solutions may impact the solution time for the
column generation module of the heuristic toolbox. This appendix details four initialization algorithms

that generate such initial solutions exploiting the properties of SASP.

Algorithm 1 - The Time Priority Initialization Algorithm

S*=0;  /* Initializes the schedule with zero*/

R} = Ry; /* Initializes the remaining budget at time ¢ with the allocated budget constraint at ¢ */

R" = B; /* Initializes the remaining budget with the maximum seed activation budget */

for t< 0toT do
Cji = NPV (Cj,t) /* Updates the cost of seed activation considering the net present value of money*/
Initialize f; /* Updates the fixed cost of seed activation considering the net present value of money*/

if t=0 then

A =1 /* Sets the coefficient of the fixed cost of seed activation */
else do

A = 0 /* Sets the coeflicient of the fixed cost of seed activation */
end if

for j< 1to|Ni| do
if R; > Cjt + Af]‘t then
if R > Cjt + Afjt then
S;Tt =1 /*schedules the activation of ode j at time t*/
R'"—=Cj + Afj /*updates the total remaining budget*/
Ri-=Cj +Afj /*updates the remaining budget at the current time period*/

end if
else do
Break; /*stops searching at the current time period and goes to t + 1, if possible*/
end if
end for
if R” <minjen, Cj¢ then
Break; /*stops searching for more activations™®/
end if
end for
Return S*

The Time Priority Initialization algorithm, named Algorithm 1, starts with the initial time period
and activates seeds in the order of the node index until the budget constraint is met, and then, moves
to the next time period. The initialization algorithm needs to include the seed activation fixed cost only
in the initial time period (¢ = 0); if node j € Ny is selected at time ¢, the algorithm definitely has selected
it at time ¢ — 1, which removes the need for paying the fixed cost of seed activation after the initial time
period. After selecting each seed for activation, the algorithm compares the remaining budget against
the minimum seed activation cost and decides whether to continue searching for more seeds or stop.
To include NPV in the seed activation process, Algorithm 1 works with C}; as the NPV of the cost for
activating node j € N7 at time t.

The Knapsack initialization algorithm, named Algorithm 2, on the other hand, keeps the time
priority and selects the seeds within each time period based on their values. The value function for each
potential seed j € Ny is calculated as the unit cost of influencing each node on the second level network
through seed j; the algorithm gives a priority to the seeds with lower unit cost. Algorithm 2 focuses on

selecting the seeds with a greater number of followers and tries to spend the budget more strategically.
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Algorithm 2 - The Knapsack Initialization Algorithm

S*=0;  /* Initializes the schedule with zero*/

R} = Ry; /* Initializes the remaining budget at time ¢ with the allocated budget constraint at t*/
R" = B; /* Initializes the remaining budget with the maximum seed activation budget*/

for j< 1to|Ny| do

Vj = ﬁ; /* Evaluates the unit cost of node j to influence each regular node*/
gree ;
end for
SortV();  /* This function runs an ascending sort based on V value of seeds*/
for t< 1toT do
Cjy = NPV (Cj,t) /* Updates the cost of seed activation considering the net present value of money*/
Initialize f; /* Updates the fixed cost of seed activation considering the net present value of money*/

if t=0 then

A =1 /* Sets the coefficient of the fixed cost of seed activation */
else do

A = 0 /* Sets the coefficient of the fixed cost of seed activation */
end if

for j< 1to N; do
if R; > Cjt + Afjt then
if R > Cjt + Afjt then
S;-'t =1 /*schedules the activation of ode j at time t*/

R'"-=Cj+ Afj /*updates the total remaining budget*/
Ri-=Cj+ Afjt /*updates the remaining budget at the current time period*/
end if
else do
Break; /*stops searching at the current time period and goes to t + 1, if possible*/
end if
end for
if R” <minjen, Cj¢ then
Break; /*stops searching for more activations™®/
end if
end for
Return S*

Algorithms 1 and 2 are designed with the idea that seed activation timing is the key driver of the
SASP complexity. The computational results of solving (P) on small social networks showcase a trade-
off between the time and seed values in the optimal seed activation schedule. Time and Connectivity
Trade-off Algorithm, called Algorithm 3, is designed to exploit this trade-off.

The algorithm assigns a value to each node j € N7 that can be selected as a seed at the initial time
period, based on its out-degree and cost; larger out-degree and lower seed cost are preferred. In order
to make the value calculation fair, the value of a node at each time period is discounted based on time
horizon T and standardizing parameter § so that each node has the greatest value at the initial time
period. Considering time as an important element in the seed activation, the algorithm prefers earlier
activation of a seed, because in this case, the seed has more time to spread evidence over the network.

All the nodes at the first level network are considered as viable candidates to become seeds. The
algorithm compares the value of all these nodes at the initial time period and selects the one with a
maximum value. If node j € Ny is selected at the initial time period, the earliest time that node j
can become available as a seed again is time ¢t = 1. As such, the algorithm updates the availability of
node j and discounts its value. The algorithm also updates the remaining budget after each new seed

selection. In the next iteration, the value of all the nodes at their earliest availability are compared.
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The algorithm continues scheduling nodes’ activation until the remaining budget becomes insufficient
for activating the node with a maximum value. Algorithm 3 allows a potential seed with a high value
(compared to other available candidates) to be selected multiple times before selecting other nodes; if
the values of some nodes turn out to be close to each other, then the algorithm emphasizes earliness for

the activation.

Algorithm 3 - Time and Connectivity Trade-off Algorithm

St =0; /* Initializes the schedule with zero*/
R} = Ry; /* Initializes the remaining budget at time ¢ with the allocated budget constraint at ¢t*/

R" = B; /* Initializes the remaining budget with the maximum seed activation budget */
for j< 1to|Ny| do
Vi1 = <mtDc+greeJ; /* Evaluates the unit cost of node j to influence each regular node*/
Via = 0; /* Assigns the next available time period for each node */
Viz =1; /* Assigns the coefficient of fixed cost for each node */

end for

Sort(V,1); /* This function sorts V' by values of the first column descendingly*/

while R” >minjen, Cj¢ do

for j< 1to|Ni| do
if R; > Cvj1Vj2 + \/']5']"\/]1\/]2 then
if R > Clevjz + ngfvjlvj2 then
5’{;],1‘,]_2 =1  /*schedules the activation of node Vj1 at time Vjp*/
R'—=Cv,y vy, + Visfvvis /*updates the total remaining budget*/
Ri—=Cv, v, + Vizfvy vy, /*updates the remaining budget at the current time period*/
if V1 <T then
‘/jl = ‘/jl * -1 * 0

T
Vjz2 = Va2 +1
Viz=0
else do
Vi1 =0
end if
Sort(V,1)
Break; /*Stops running the for loop and jumps to the while loop*/
else do
Continue; /*Jumps to index j + 1 in the for loop, if possible*/
end if
else do
Continue; /*Jumps to index j + 1 in the for loop, if possible*/
end if
end for
end while
Return S*

The idea of random seed activation is exploited in the fourth initialization algorithm. The Random
Initialization Algorithm — Algorithm 4 — randomly selects a time period and the index of a node to
be activated, and continues as far as the budget constraint is not violated. Such random selection,
however, is not sensitive to the fixed cost: a seed selected at time ¢ can be later selected for time ¢ — 1.
To tackle this issue, when a seed, selected at time ¢, has already been selected at time periods t — 1
and t + 1, the algorithm adds the paid fixed cost at time t + 1 to the remaining budget. Otherwise, if
the seed selected at time ¢ is also activated at time ¢t — 1, then, the fixed cost is ignored. On the other
hand, if the node selected at time ¢ has been already selected to be activated at time ¢ + 1, the fixed

cost at time ¢t + 1 is added to the remaining budget and the fixed cost at time ¢ is deducted from the
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remaining budget. Note that here, the fixed cost of seed activation is a fixed number, independent of
the seed index, while the fixed cost of seed activation changes over time as a result of applying NPV.
The random seed activation procedure continues till the remaining budget falls below the summation of
the minimum seed activation cost and fixed costs. As such, it is possible for Algorithm 4 to stop when
it is still possible to add more seeds; this possibility, however, is ignored because the algorithm is just
providing a random initial solution for the column generation — this solution does not have to be the

best possible one.

Algorithm 4 - The Random Initialization Algorithm

St =0; /* Initializes the schedule with zero*/
R} = Ry; /* Initializes the remaining budget at time ¢ with the allocated budget constraint at ¢t*/
R" = B; /* Initializes the remaining budget with the maximum seed activation budget*/
for t< 1toT do
Initialize Ct /* Updates the cost of seed activation considering the net present value of money*/
Initialize f; /* Updates the fixed cost of seed activation considering the net present value of money*/
end for
while R” >minjen, (Cjt + fj¢) to T do
t = Rand(T);  /* Selects a random time period 0 <t < T*/
j = Rand(|N1]); /* Selects a random seed j € N1*/
if R/ > Cj¢ + fjt  then

Continue(); /* Tries to find another combination of ¢ and j*/
else do
if S;Tt already selected then
Continue();  /* Tries to find another combination of ¢ and j*/
else
S;t =1
if S;t—l = S}'Hl =1 then
R'"— = Cji = fjt+1; /* Deducts the seed activation cost from and adds the fixed cost of time ¢ + 1 to the
remaining budget*/
RQ, = Cjt = fjt+1; /* Deducts the seed activation cost from and adds the fixed cost of time ¢ + 1 to the

remaining budget of time t*/
else if S}'Fl =1 then

R'"-=Cjy; /* Deducts the seed activation cost from the remaining budget*/
R} - = Cjy; /* Deducts the seed activation cost from the remaining budget of time t*/
else if S;THI =1 then
R"— = Cji + fjt — fit+15 /* Deducts the seed activation and fixed cost from the remaining budget and adds
the fixed cost of time ¢ + 1%/
Ri— = Cj¢ + fjt — fje+1; /* Deducts the seed activation and fixed cost from the remaining budget of time ¢
and adds the fixed cost of time ¢ + 1*/
else
R'"-=Cj + fjt; /* Deducts the seed activation and fixed cost from the remaining budget*/
R} - = Cji + fjt; /* Deducts the seed activation and fixed cost from the remaining budget of time t*/
end if
end if
end while
Return S*

Appendix B. SASP Complexity

Consider the case of SASP where a hire of any seed has a unit cost. As the SASP under the PPC
diffusion model has a budget constraint for seed selection over time, and relaxes the unit cost constraint
of the OIMP, it is natural to reduce the Budgeted Maximum Coverage Problem (BMCP), rather than
the MCP, to it. The BMCP is known to be NP-hard [34]. From the budgeting point of view, one
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can see that the relationship between BMCP and MCP is similar to the relationship between the IM
problem under the PC diffusion model [54] and that under the PPC diffusion model. However, the
SASP under the PPC diffusion model is a multi-period sequential seed selection problem, which makes
it much harder than the IM problem under the PC diffusion model and the reason for this increased

complexity lies in the cost that the decision-maker pays to better control the cascade over time.

Proof of Theorem 1. SASP under PPC diffusion model is NP-hard by a polynomial Turing
reduction from the Maximum Coverage Problem (MCP). The MCP selects a group of sets from a
number of given sets that may have common elements to maximize a resulting total number of unique
selected elements; MCP is NP-hard [19]. MCP is first formally stated, and then, the reduction from
SASP to MCP is presented.

MCP INSTANCE: A number k >0 and a collection of sets V' = {V1, Vs, ..., Viy, }.

MCP OBJECTIVE: Find a subset V' c J such that |V'| < k and the number of covered elements
| U Vj|;j € Ny is maximized.

Vjev!

Given an arbitrary MCP instance, define a particular instance of SASP as follows. Assume T =1,
IN1| = mq, |Nao| = mg, B =k, Gi = Go =1¢€" =0 and C; = 1 for each node j € Ni. Let e* >
max6;;i=1,2,...,mg, e =0, f =0, and set v =" = 37 = 1. Define set V; for j = 1,2,...,m; such that
veVjiff (j,i) € A1,i =1,2,...,|Na| (all the nodes one hop away from j). This transformation can be
performed in polynomial time in the size of the arbitrary MCP instance.

In order to show that an optimal solution to SASP maps to an optimal solution to MCP, let X7,
for j = 1,2,...,|N1| (Xjo0 € {0,1}) be an optimal solution to SASP. Then, ¥ ;X0 < B, Yy = 0
for i = 1,2,...,|No|,t = 0,1,...,T and Z‘Nﬂ Y7 o(Xt — Yi) is maximized. The claim is that X o is an
optimal solution to MCP. Note that X7, for j = 1,2,..,[Ni1] is a feasible solution to MCP because
sMCi X< B=k.

Suppose there exists such a solution to MCP, Xjo, for j = 1,2,..,|Ny| that | U_ V| > | U V|

]G

Solution on for j =1,2,..,|N1| is a feasible solution to SASP: Z|N1| C; X; jo < B = k. Therefore, the SASP
objective function for this solution is Z' Na| YL o(Xit—Yit) = | U V |+k > | U Vi |+k = Z‘NZ‘ SLo( X

Y;}), which is a contradiction. Thus, X7, for j =1,2,.. ,|N1| is an optimal solutlon to MCP. m

Proof of Proposition 1. Assume that for a given set of parameters, the optimal solution of the
OIMP (S7) dominates the optimal solution of the SASP (S7) with the same set of parameters. The
objective functions in both the SASP and original IM are identical; let the objective value corresponding
to solution sets S} and ST be O} and O}, respectively. Each feasible solution to the OIMP is necessarily
feasible for the SASP, i.e., satisfies the total budget and allocated budget constraints. If O} > O}, then
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there is a feasible solution for SASP — S} — that provides a greater objective value, and hence, S7 is

not the optimal solution of the SASP. This leads to a contradiction, which completes the proof. m

Appendix C. Big M Values for the Mathematical Program (P)

Three sets of large positive numbers (M;;, M/, and M]]) are defined for constraint group (I) of the
mathematical model (P). These numbers are chosen, and hence, labeled differently in the different
constraints, to facilitate the presentation. In this appendix, the minimum acceptable big M values that
guarantee the correctness of (P) are derived.

With I; denoting the in-degree of node i in the second level network, these numbers are bounded

from below,
e I+e 1- B4t ,
M > Ny, t=0,1,...,T, 52
‘ (Mm{@;,e; )( 1- 5 e (52)
~ 1_5t—1
M, > (eI +e" 2 €Ny, t=0,1,..,T 53
Zt_(e +e )( 1—ﬁ2) 1€ INg, gy Lyeeeydy ( )
" " 1- 5_1
M > e I; -0 €Ny, t=0,1,...,T. 54
it (e +e )( 1_@) i i€ Na (54)

In order to ensure that constraints (2), (4), (6) and (7) always correctly enforce the PPC diffusion

process, the following conditions need to be met, respectively:

Kt — L

My > o i€Ny, t=0,1,..T, (55)
K3
K. _L.
Mitz% ieNy, t=0,1,...,T, (56)
7
M}, > Ky — Ly ieNy, t=0,1,..,T, (57)
M!'> Ky - Ly - 0, i€Ny, t=0,1,..,T. (58)

The right hand sides in (55)-(58) are maximized when Kj; attains its maximum value and L;; is zero.
The maximum value of K is achieved if all the in-neighbors of node ¢ have been negatively activated
over the time periods 0 through ¢t — 1. Node i starts off in a neutral state, with K;y = 0; from the period
t =1 onward, the maximum amount of new negative evidence that node i receives at each time period
is I;e~ +€”. At the end of each time period, the newly received negative evidence is added to Kj;, while
the previously collected negative evidence is discounted by (2. Thus, the maximum value of K;; can be
calculated as the summation of a geometric series,

1- a1
Ky <52 (Lie” +€")+ 53 (Lie” +€") + ...+ Bo(Lie” + ") + (Lie” +¢") = (1_—;2)(Iie_ +e”).  (59)

From (59), one directly obtains (52)-(54).
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Appendix D. Network Generation Algorithm for Thread Contributors
This appendix provides the algorithm that was used to generate networks from thread contribution

data.

Algorithm 5 - Network Generation Algorithm for Thread Contributors

Crawl(4); /* Crawls all the messages in thread i */
Sort(2); /* Sorts all the crawled messages in ascending order by posting date */
root = i(0); /* Assigns the first message to the root of the message tree */

for each message in thread ¢ do
c1 = user(message) /* Stores the user of the current message as the current user */
if message is marked as “reply to” then

co = user(reply) /* Stores the user whose message has been replied */

coy < C1 /* Creates a communication edge */

Engagement(co « c1) /* calculates the engagement score of the edge */
else

FindLeaves() /* Finds all the unanswered leaves of the tree */

Edge()  /* Creates edge from the unanswered leaves to the current node */

Engagement() /* calculates and assigns the engagement score to the extracted edges */
end if

end for

Aggregate(); /* Aggregates the edge observations */

ExtractNetwork(); /* Applys the minimum threshold over the network and keep the strong edges */
Return network
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