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ABSTRACT

This article studies a coordination mechanism between a renewable energy supplier and a conventional
supplier in a regional electricity market. The intermittent nature of the renewable supplier results in ran-
dompower shortages. Though the renewable supplier can buy backup power from a conventional supplier
who prepares backup capacity to cover the shortage, there is no commitment that enough backup capacity
will be prepared without any incentives to the conventional supplier. We design a coordinationmechanism
where the renewable supplier offers the conventional supplier Renewable Energy Certificates (RECs) pro-
portional to the backup capacity committed. We prove that this mechanism coordinates the conventional
supplier’s decision on backup capacity and can arbitrarily split the system profit between the two suppliers.
Our analytical results show that when the shortage cost increases, the backup capacity increases, the REC
offering rate increases, the total profit decreases, and the renewable supplier’s profit decreases but the con-
ventional supplier’s profit increases. We also show analytically that the social welfare under this mechanism
is higher than in the decentralized case unless the regional environment is extremely sensitive to conven-
tional power’s carbon footprint, and the benefit of buffering power shortage cannot compensate for the
damage to the environment.

1. Introduction

Renewable energy, typically wind power or solar power, has
become an important source in electricity markets (Hammons,
2008). To promote the growth of renewable energy genera-
tion, many countries in Europe and more than 30 states in the
United States have established the Renewable Portfolio Standard
(RPS) regulations in their electricity markets. The RPS regula-
tion requires that a certain percentage of the supplied electric-
ity must be from renewable sources, and the RPS percentage
increases gradually per year. For example, the EuropeanUnion is
aiming to generate 20% of its electricity from renewable sources
by 2020 and 27% by 2030. In the United States, Illinois has set
a 25% target with mandatory RPS regulation to be reached by
2025; California has set mandatory RPS targets of 33% by 2020,
40% by 2024, 45% by 2027, and 50% by 2030; New York’s RPS
targets are 29% by 2015 and 50% by 2030 (Durkay, 2017). Under
the RPS framework, themarkets of renewable energy certificates
(RECs) have been established, which allow renewable suppliers
to sell their surplus RECs to other suppliers who do notmeet the
RPS requirements.

A critical problem for renewable electricity suppliers is the
intermittent nature of the renewable energy sources. Wind
and solar power are not as stable and controllable as conven-
tional sources (Sovacool, 2009). Power shortages may occur in a
regional electricity market that heavily relies on renewable sup-
pliers, when the renewable power outputs cannot meet the cus-
tomers’ demand.
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There are several options for renewable suppliers to cover
the shortage and to mitigate the intermittence issue. The first
option is to prepare energy storage capacities, such as pumped
storage units (Garcia-Gonzalez et al., 2008), compressed air
storage (Daneshi and Srivastava, 2012), or batteries (Jiang and
Wang, 2013), to absorb extra power during low-demand peri-
ods and release power during peak-demand periods (Sovacool,
2009). Unfortunately, although energy storage capacities are
generally readily available from ancillary service providers,
their high costs hinder large-volume installations. According
to Beaudin et al. (2010), current energy storage technologies,
including pumped hydro storage, compressed air storage, bat-
teries, superconducting magnetic energy storage, hydrogen
storage, flywheels, capacitors, and supercapacitors, are still
expensive. With the high penetration of renewable power, it will
be too costly to solely rely on energy storage capacity to cover
the shortage.

Another viable option for renewable suppliers is to purchase
reserve power from balancing markets moderated by regional
Independent System Operators (ISOs; Vandezande et al.
(2010)). In a balancing market, a renewable supplier predicts
and proposes its demand (power shortage) for a future time
period. Suppliers’ biddings in the balancingmarket form a stair-
wise supply–price curve as shown in Figure 1. The suppliers ask-
ing the lowest prices win the bids and provide power up to their
respective capacities. Although capacity auctions provide a cer-
tain level of protection, challenges still remain in implementing
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Figure . The stairwise supply–price curve in the balancing market.

capacity markets under high-volatility renewable energy pen-
etrations (Jenkin et al., 2016). Due to the long lead time of
capacity delivery and the high uncertainties on both the supply
and the demand sides, without necessary incentives, it is diffi-
cult for balancing markets to guarantee enough reserve power
to meet a renewable supplier’s need at an acceptable price all
the time.

The third option for renewable suppliers is to directly pur-
chase backup capacity (Sovacool, 2009) from other suppliers.
Backup capacity is a dispatchable energy source that can be
turned on and off in a short time, and its power output is
easy to adjust. Among dispatchable renewable power sources,
hydropower generation is limited by geographical locations that
may not be near the renewable power suppliers (Yang et al.,
2012), and biomass generation has a limited capacity (Steinke
et al., 2013). Although wind and solar energy may serve as
reserves when demand surges, they are not very reliable as back-
ups due to their high uncertainties. Particularly, if the short-
age is caused by low outputs from renewable sources, the wind
or solar outputs in the surrounding regions are also likely to
be low. Thus, the majority of backup power is still generated
from conventional power sources, including natural gas, coal,
and oil, because they are easier to access than other dispatch-
able sources (Andersen and Lund, 2007). Among conventional
sources, gas-fired generators are a popular choice to serve as
backup capacity, as they can quickly respond to demand changes
(Lee et al., 2012). For example, the South Texas Electric Coop-
erative built the gas-fired Pearsall Power Plant (202.5 MW) to
provide backup power for their customers in 65 counties where
an increasing penetration of wind power brought challenges to
the grid stability.1 Conventional electricity generators are inter-
ested in selling backup capacity to renewable suppliers, as in this
way, they directly obtain the demands from the renewable sup-
pliers. Therefore, in this article, we only consider conventional
suppliers as backup power providers.

Most renewable suppliers outsource backup power capaci-
ties from conventional suppliers (Vandezande et al., 2010) due
to the difference in the generation technologies. However, when
a renewable supplier and a conventional supplier operate inde-
pendently, there is no economic incentive for the latter to build
enough backup capacity for the former (Yang et al., 2012).
Due to high variability, backup power suppliers cannot always
operate at their optimal points where the generation efficiency
is maximal. Thus, backup suppliers’ profits will be negatively

 http://www . wartsila . com / en / gas - power - plant - to - south - texas - electric-
cooperative

affected. Therefore, incentives are needed to encourage conven-
tional suppliers to build up more backup capacity to buffer the
uncertainty of renewable power output.

In this article, we propose a coordination mechanism based
on an REC offering from a renewable supplier to a conventional
supplier. In this mechanism, the renewable supplier offers
RECs to the conventional supplier, which then prepares backup
capacity dedicated to cover the renewable supplier’s shortage.
The quantity of RECs is proportional to the backup capacity
committed by the conventional supplier. The REC offering
mechanism is in fact an options contract. It gives the renewable
supplier the option to buy up to a certain amount of backup
power at a given price from the conventional supplier. The
renewable supplier may buy reserve power from the balancing
market if the price there is lower. After satisfying the renew-
able supplier’s request, the conventional supplier may sell the
remaining capacity on the balancing market.

Comparedwith amonetary payment for the backup capacity,
offering RECs has the following advantages. First, given the RPS
regulation and the national RECmarket, RECs are a reliable and
convenient asset for trading between power suppliers. Second,
transferring REC is more secure than monetary payment for
both suppliers. For renewable suppliers, an REC is a by-product
of its daily operation and the supply is reliable, and its impact
on the cash flow is smaller than preparing a monetary payment
for the backup capacity. For conventional suppliers, having a
stable supply of RECs from a coordination contract reduces
the risk from both price uncertainty and supply uncertainty
of the national REC market (Klessmann et al., 2010). Third,
by directly offering RECs, both parties save a transaction cost
charged by a third-party broker (3% typically) when they buy
or sell RECs in the national market.

We establish a game theory framework to model the market
structure with a renewable supplier and a conventional supplier.
We show that the coordination mechanism leads to system-
optimal investment of backup power and system-optimal profit,
and the profit can be arbitrarily allocated between the two par-
ties by adjusting the wholesale price of the backup power. The
coordinationmechanism achieves Pareto improvement for both
parties compared with the decentralized case. The social welfare
in the coordination case is higher than that in the decentralized
case, unless the regional environment is extremely sensitive
to conventional power’s carbon footprint, and the benefit of
buffering power shortage cannot compensate for the damage to
the environment.

The rest of this article is organized as follows. In Section 2,
we provide a brief literature review. In Section 3, the models for
the decentralized case and the coordinated case are provided.
In Section 4, we analyze the coordination contract and discuss
its properties. A sensitivity analysis and a social welfare anal-
ysis are also performed analytically in Section 4. In Section 5,
we summarize our findings and discuss future research
directions.

2. Literature review

Our research is related to the impacts of RPS regulation on
the electricity market and the coordination between power
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suppliers. In this section, we provide a brief literature review in
these two streams.

Recently, the impacts of RPS regulations and REC markets
on energy firms’ decisions have received increasing attention.
Kydes (2007) analyzes the impacts of imposing a 20% federal
RPS requirement on the U.S. energy markets by 2020 and shows
that it will be effective in promoting renewable generation tech-
nologies and reducing emissions. Tamas et al. (2010) compare
decisions made by firms in an oligopoly market under the feed-
in-tariff policy and the RPS regulation and perform numerical
analysis using data from the UK. Zhou and Tamas (2010) show
that the RPS regulationmay inducemergers of conventional and
renewable generators, which will enable the integrated firms to
extend their market power from the REC market to the elec-
tricity market. Fischer (2010) analyzes price-taking firms’ deci-
sions in electricity and RECmarkets under perfect competition.
Tanaka and Chen (2013) build a Stackelberg game model with
a renewable supplier and a conventional supplier to examine
the impact of market power on both the electricity and REC
markets. Zhou and Liu (2014) find that in a regional power
market with access to the national REC market, higher REC
price promotes the local renewable power output, but higher
regional RPS percentages do not. The above papers focus on
the impacts of RPS regulations on firms’ competition behaviors,
whereas this article studies the collaborations between conven-
tional and renewable suppliers facing the RPS regulation in a
regional market. Instead of the mergers suggested by Zhou and
Tamas (2010), we design a coordination mechanism to achieve
system-optimal backup capacity investment while keeping con-
ventional and renewable suppliers independent.

Coordination in electricity markets has been studied for a
long time. The recent rise of renewable power motivates more
research in this area, due to the intermittent nature of renewable
energy sources requiring more coordination between power
suppliers. Andersen and Lund (2007) study how to integrate
fluctuating renewable power supplies into power systems by
using combined heat and power plants as backups. They focus
on the methodologies and computer tools necessary to opti-
mize the participants’ market decisions. Klessmann et al. (2010)
discuss three coordination mechanisms, including transferring
RECs between regions, to assist European countries to achieve
the RPS target of reaching 20% in 2020. Milligan et al. (2010)
evaluate important factors to improve electricity systems’ ability
to absorb renewable power. By studying the Eastern Intercon-
nection electricity markets of the United States, they show how
large and responsive energy markets can help the integration of
renewable electricity. Vandezande et al. (2010) discuss the mar-
ket structure for backup power. They suggest that a two-part tar-
iff payment, one for backup capacity and one for backup power,
is appropriate to build a well-functioning market. Lee et al.
(2012) explore potential synergies of natural gas and renewable
energy in the U.S. power sector and discuss how to design the
market mechanism to benefit from collaborative engagement.
Although the above literature discusses many aspects of coor-
dination between power suppliers, none of them provide math-
ematical analysis to support their conclusions. Particularly, the
potential of coordination mechanisms based on offering RECs
has not yet been fully discussed. In this article, we fill these
voids bymathematically analyzing the coordinationmechanism

between renewable suppliers and conventional suppliers based
on offering RECs. This coordination model mathematically val-
idates and also provides an innovative approach to implement
the two-part tariff payment coordination mechanism suggested
by Vandezande et al. (2010).

3. Models

In this section, we first introduce our major assumptions and
notations used in this article and then we present the decentral-
ized model (baseline case) and the coordination model.

3.1. Assumptions and notations

We study a regional electricity market served by a renewable
supplier (G), who sells power to local customers at a regulated
retail price r. G utilizes intermittent energy sources, which may
cause a random power shortage, incurring a unit shortage cost
cu toG. Let a series of randomvariables, xt ≥ 0, t = 1,...,m, and
denote the shortage faced by G at period t . The probability den-
sity function of xt is ft (·).When a power shortage occurs, Gmay
seek backup power from an electricity balancing market agency
(E), where multiple power suppliers in surrounding regions sell
their power. Notice that we focus on a retail renewable sup-
plier but not on large-scale renewable power farms whose major
business is selling power to the inter-regional electricity mar-
ket. We assume the power supply from E to G is unidirectional,
because G only serves the local retail market and it is uneco-
nomic to invest in expensive equipment (for voltage-increasing
and high-voltage transmission, etc.) to enable inter-regional
sales.

As E may not always have enough backup power to cover G’s
shortage at low prices, G may request an adjacent conventional
supplier (B) to prepare backup capacity to buffer its shortage,
and B decides the backup capacity units, S. Notice that the entity
of B can be a single supplier or a coalition of suppliers acting as
a single decision maker (Andersen and Lund, 2007). For sim-
plicity, we treat the latter case also as a single supplier. B makes
the capacity investment and accepts the risk if demand for the
backup capacity is low. Thus, B may not build enough capacity
to satisfy G’s needs.

In the proposed coordination mechanism, to encourage B
to build enough capacity, G offers B a number of RECs that is
proportional to the amount of committed backup capacity. The
coordination mechanism is in fact an options contract, which
gives G the option to buy up to a certain amount of backup
power at a given price from the conventional supplier. G may
choose to buy reserve power from the balancing market if the
price there is lower. After fulfilling G’s request, B may sell any
remaining capacity on the balancing market. If B cannot satisfy
all of G’s requirement, G will buy the rest from E at a high price
or choose not to buy.

We assume that B incurs a one-time capacity cost c f S for
the wholem-period planning horizon. We assume that the vari-
able cost of B is cv , which is at the average level among peers.
We assume that B has necessary electrical equipment for inter-
regional sales on E when it is profitable. To avoid the trivial case
that the average cost is too high and B cannot make any profit,
we assume c f /m + cv < r.
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We simplify the stairwise supply–price curve of E into three
pricing scenarios {H,M, L} (see Figure 1), eachwith a respective
probability {pH, pM, pL}, and pH + pM + pL = 1. We use these
three scenarios to approximate most of the prices on the balanc-
ing market. The complexity of the model increases if more sce-
narios are included, however, the structure of the major results
remains similar. We assume that there is a non-negligible dif-
ference between buying price and selling price in E, because the
ISOs need to cover their maintenance costs (Bona et al., 2017).
In the medium-price scenario (M), the suppliers sell backup
power at price cv , which is near their average variable cost, and
those who need power buy at rate r. In the high-price scenario
(H) where the backup power supply is not enough, E purchases
backup power at price r and sells at a premium greater than or
equal to r + cu. Only key customers whose shortage penalty is
higher than that will buy at this price. In the low-price scenario
(L)where the amount of backuppower is ample, Ewill sell power
at cv and purchase at a price lower than cv . Only the most cost-
effective backup power suppliers (variable cost less than cv ) can
earn a profit in this scenario. Lastly, we assume that the random
variables xt (describing the status of a localmarket) are indepen-
dent of the probability distribution of {pH, pM, pL} (describing
the status of the balancing market connecting many states).

3.2. The decentralizedmodel

The decentralized model (shown in Fig. 2) is the baseline case
where B agrees to sell backup capacity to G without REC incen-
tives. B and G need to come to some agreement before the
backup capacity is built. When backup power is needed, G will
try to buy at the lowest price available to maintain its efficiency.
However, G agrees to buy fromB first if B’s price equals E’s price.
In return, G requests to set a ceiling price of the backup power
to make sure that it will not be unprofitable to purchase from B.
In this model, we assume that the ceiling price equals the retail
price, r. Please note that an alternative approach is to make the
ceiling price a decision variable. In that case, the decentralized
model, (D), will become a special case of the later coordination
model by setting the number of offered RECs to zero.

In scenarios H and M, B can sell backup power to G at the
ceiling price r because E sells at r or higher; in scenario L, B can
only sell at cv because E sells at cv .We use {uk, vk,wk}, where k =

H,M, L, to denote prices between parties in the three scenarios,
and their values are summarized in Table 1.

Figure . The market structure of the decentralized model.

Table . Prices between parties in different scenarios.

k = H k = M k = L

B→ E u
k

r c
v

No purchase
B→ G v

k
r r c

v

E→ G w
k

No purchase r c
v

To simplify the notation, let Yt (S) = E[Min(xt , S)] =

E[
∫ S

0
xt ft (xt )dxt +

∫ +∞

S
S ft (xt )dxt ], which is the expected

amount of power from B to G at period t .Y (S) =
∑m

t=1Yt (S) is
the summation of the expected amount of backup power deliv-
ered to G, which is a monotonically increasing function of S.
D̄ =

∑m
t=1

∫ ∞

0
xt ft (xt )dxt is a constant denoting the expected

demand (shortage). It is easy to seeY (s) ≤ D̄.
With the notation defined above, the profit function of G is

�D
G =

m
∑

t=1

⎧

⎨

⎩

∑

k=H,M,L

pkYt (S)(r − vk)

+
∑

k=M,L

pk(xt −Yt (S))(r − wk) − pH (xt −Yt (S))cu

⎫

⎬

⎭

= pL(r − cv )D̄ − pHcu(D̄ −Y (S)).

B makes the backup capacity decision S to maximize its
profit:

�D
B =

m
∑

t=1

⎧

⎨

⎩

∑

k=H,M,L

pkYt (S)(vk − cv )

+
∑

k=H,M

pk(S −Yt (S))(uk − cv )

⎫

⎬

⎭

− c f S

= pMY (S)(r − cv ) − [c f − pH (r − cv )m]S. (1)

Notice that in scenario M, B can only sell to E at cv . In sce-
nario L, since the selling price to E is lower than cv , it is uneco-
nomic for B to generate the power. Setting ∂�D

B/∂S = 0, we can
find B’s optimal capacity that satisfies the following condition:

F̄(SD) = m −
c′f

pM(r − cv )
, (2)

where F̄(·) =
∑m

t=1 Ft (·) is the sum of the cumu-
lative distribution functions (cdfs) of the ran-
dom demands in m periods, and c′f = c f − pH
(r − cv )m is the modified capacity cost.

It is easy to see that the backup capacity investment in the
decentralized case is less than the global optimum in the cen-
tralized case.

Proposition 1. The decentralizedmodel leads to underinvestment
of backup capacity:

SD < SC,

where SC is the optimum in the centralized case and

F̄(SC) = m −
c′f

pM(r − cv ) + pHcu
. (3)

Please refer to the online Appendix for all of the proofs. Intu-
itively, this is true because in the decentralized case B is only
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Figure . The market structure of the coordination model.

concerned with its own profit without considering G’s shortage
cost. On the other hand, G does not offer any incentive to B and
does not share the risk of investing in the backup capacity, which
leads to underinvestment in backup capacity.

3.3. The coordinationmodel

In this section, we design a coordination mechanism (shown
in Fig. 3) to encourage B to prepare backup capacity up to the
global optimal quantity. In this contract, G first offers B RECs
in proportion to the amount of the committed backup capacity,
S. Then in each period, G has the option to buy up to S units of
backup power at a wholesale price w. The wholesale price w is
G’s decision variable and we assume r ≥ w ≥ cv such that both
parties’ unit profits are non-negative. We assume that G gener-
ates sufficient RECs to cover the offering and sells the rest in the
national REC market.

In scenariosM andH , G buys up to S units of backup power
fromB atw to cover its shortage. The amount of revenue B gains
from selling backup power is (w − cv )Y (S) and G’s revenue is
(r − w)Y (S). In scenario L, B still sells at vk = cv because E sells
at cv . Again, we assume G will buy from B first if B offers the
same price as E, due to their long-term collaboration, and also
because B is a local supplier; thus, transmitting power with B is
more efficient than other options.

The contract defines a Stackelberg game as follows:

Stage 1: G decides the REC offering rate ρ and the wholesale
price w.

Stage 2: B decides the backup capacity S.

The profit functions of the two suppliers in the coordination
model (P) are as follows:

�P
G =

m
∑

t=1

⎧

⎨

⎩

∑

k=H,M,L

pkYt (S)(r − vk)

+
∑

k=M,L

pk(xt −Yt (S))(r − wk)

−pH (xt −Yt (S))cu

⎫

⎬

⎭

− ρS,

�P
B =

m
∑

t=1

⎧

⎨

⎩

∑

k=H,M,L

pkYt (S)(vk − cv )

+
∑

k=H,M

pk(S −Yt (S))(uk − cv )

⎫

⎬

⎭

− (c f − ρ)S,

or in the concise form:
⎧

⎨

⎩

�P
G(ρ,w) = [pH (r − w + cu) + pM(r − w)]Y (S)

+[pL(r − cv ) − pHcu]D̄ − ρS,
�P

B(S) = [pM(w − cv ) − pH (r − w)]Y (S) − (c′f − ρ)S.
(4)

4. Analytical results

In this section, we first show the properties of the coordina-
tion contract. Thenwe specify the conditions where the contract
achieves Pareto improvements compared with the decentralized
case. Lastly, we perform sensitivity analysis and social welfare
analysis to reveal more properties of the contract.

4.1. Coordination analysis

Theorem 1. The coordination model has the following properties:
� The system achieves coordination when the two parameters

(ρ,w) satisfy the following condition:

ρ =
pH (r − w + cu) + pM(r − w)

pHcu + pM(r − cv )
c′f . (5)

� When the system is coordinated, there exists a unique global
optimal solution of backup capacity SP that simultaneously
maximizes the total profit and both suppliers’ profits:

F̄(SP) = m −
c′f

pM(r − cv ) + pHcu
, (6)

where F̄(·) =
∑m

t=1 Ft (·) is the sumof the cdfs of the random
demands in m periods.

� By adjusting the wholesale price w, the system profit can be
arbitrarily allocated between the two suppliers.

Through a numerical analysis, we find that the performance
of the coordination model is robust; e.g., when ρ deviates from
the optimal point by±15%, the total profit loss of the coordina-
tion model is less than 6% (see details in the online Appendix).

The coordination is achieved because G compensates for B’s
capacity risk by offering RECs, which encourages B to invest in
the backup capacity at the global optimal level. To intuitively
explain the coordination condition specified in Theorem 1, let
us compare Equation (4) with the total profit of the central-
ized model. When (ρ,w) meets the coordination condition as
shown in Equation (5), we have

{

�P
G(S) = a�C(S) + b,

�P
B(S) = (1 − a)�C(S) − b,

where {a, b} are parameters indicating the allocation of system
profit between the two suppliers:

{

a = ρ/c′f ,

b = (1 − ρ/c′f )[pL(r − cv ) − pHcu]D̄.

Thus, there exists a global optimal S to maximize
{�C(S),�G(S),�B(S)} simultaneously, and the optimal
capacity in the coordination model reaches the global optimum
as shown in the centralized model (Equation (3)), SP = SC. It
also shows that w is a lever to arbitrarily split the total profit
between G and B.
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Figure . Impacts of the wholesale price on profits.

4.2. Pareto improvements

Under the coordination contract, the wholesale price w serves
as a lever to allocate the system profit between the two
parties. When w increases, the renewable supplier’s profit
�P

G(w) decreases and the conventional supplier’s profit �P
B(w)

increases. The total profit can be arbitrarily allocated between
the two parties.

To ensure that the coordination contract achieves Pareto
improvements for both suppliers compared with the decentral-
ized case, the wholesale price must be appropriately decided.
Noticing that the system profit in the coordination structure is
more than in the decentralized structure, we can find the range
ofw where both suppliers have higher profits than in the decen-
tralized case. Derived from �P

G(w) ≥ �D
G , �P

B(w) ≥ �D
B and

Equation (4), we have the closed form of w’s lower bound and
upper bound as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wL =
�D

B + (pHr + pMcv )Y (S) − (c′f − ρ)S

(pH + pM )Y (S)
,

wU =
(pH (r + cu) + pMr)Y (S) + (pL(r − cv ) − pHcu)D̄ − ρS − �D

G

(pH + pM )Y (S)
.

Following the numerical setting in the onlineAppendix, we have
�D

G = 18.41 and �D
B = 29.21. From the above equations, we

can calculate that wL = 0.677 and wU = 0.945. As shown in
Figure 4, when 0.677 < w < 0.945, the coordination contract
achieves Pareto improvements compared with the decentralized
case.

4.3. Sensitivity analysis

Here we examine the impacts of market conditions on the sup-
pliers’ decisions and their profits in the coordination model. We
consider the followingmarket conditions: the fixed cost (c f ), the
electricity price (r), the variable cost (cv ), and the shortage cost
(cu). We summarize the results in Table 2.

Table . Summary of the sensitivity analyses.

S
P

ρ �
C

�
G

�
B

c
f
↑ ↓ ↑ ↓ ↓ ↓

c
v

↑ ↓ ↑ ↓ ↓ ↓

r ↑ ↑ ↑ ↑ ↑ ↑

c
u

↑ ↑ ↑ ↓ ↓ ↑

... Impacts on the two suppliers’ decisions: Backup

capacity and REC rate

According to Equation (5), the REC rate (ρ) is a linear function
of the wholesale price (w) when the system is coordinated. Since
we are more interested in ρ, we fix w to focus on the impacts
on ρ.

Proposition 2. When the wholesale price (w) is unchanged, the
impacts of market conditions on the backup capacity (SP) and the
rate of offering RECs (ρ) are as follows:

� When the fixed cost (c f ) increases or the variable cost (cv )
increases, the backup capacity (SP) decreases and the rate of
offering RECs (ρ) increases.

� When the electricity price (r) increases or the shortage cost
(cu) increases, the backup capacity (SP) increases and the
rate of offering RECs (ρ) increases.

The first result reveals that a higher fixed cost or a higher vari-
able cost pushes up B’s cost burden and B’s investment in backup
capacity decreases. Facing this change, G will increase the rate
of offering RECs to encourage B’s investment. The second result
reveals that when the backup power becomes more valuable, G
offers more RECs to encourage B to invest more in the backup
capacity.

... Impacts on the profits

Proposition 3. The impacts of market conditions on the total
profit and the two suppliers’ profits are as follows:

� When the fixed cost (c f ) increases, the total profit (�C)

decreases. Both the renewable supplier’s profit (�G) and the
conventional supplier’s profit (�B) decrease.

� When the electricity price (r) increases or the variable cost
(cv ) decreases, the total profit (�C) increases. Both the
renewable supplier’s profit (�G) and the conventional sup-
plier’s profit (�B) increase.

� When the shortage cost (cu) increases, the total profit (�C)

decreases, the renewable supplier’s profit (�G) decreases, but
the conventional supplier’s profit (�B) increases.

The first result reveals that when the fixed cost is higher, the
system-wide cost increases and the total profit decreases. It is a
direct cost burden on B and its profit decreases. G shares this
burden by offering more RECs (Proposition 2), and its profit
also decreases. The second result reveals that when the mar-
gin of selling electricity is higher, the total profit increases. If r
increases, G directly gains more profit and it offers more RECs
to B (Proposition 2). If cv decreases, B directly gains more profit
and G reduces its REC offering to B (Proposition 2). In both
conditions the two suppliers share the profit gain and their
profits increase. The third result reveals that when the short-
age cost is higher, the system-wide cost increases and the total
profit decreases. In this case, G needs more backup capacity
to cover the electricity shortage, so G offers more RECs to B
(Proposition 2), which leads to a decrease in G’s profit and an
increase in B’s profit.

The sensitivity analysis results are summarized in Table 2.
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Figure . Social welfare under different values of environmental damage.

4.4. Social welfare analysis

An important purpose for promoting renewable energy is to
increase the social welfare, defined in Microeconomics as fol-
lows (Tamas et al., 2010):

social welfare = customer utility − production cost

−env ironmental damage

To quantitatively measure the social welfare (W ) in the
regional market considered in this article, we adopt the follow-
ing form:

W = Y (S)U − cu(D̄ −Y (S)) − c f S.

The first term represents the net utility of generated electricity,
where U = u − e − cv is the per unit utility of backup power.
u is the utility of consuming electricity, e is the environmental
damage of conventional power production, and cv is the variable
cost. The second termmeasures society’s disutility due to power
shortage. Being the only power supplier in the regional market,
G takes all of the reputation loss due to the inconvenience caused
by power shortage. Thus, we assume that the disutility to society
is close to G’s shortage cost, and use the same cu here. The third
term is the fixed cost to build the backup capacity.

Proposition 4. There exists a unique optimal capacity of SW to
maximize the social welfare in the regionalmarket in the following
form:

SW = F−1

(

m −
c f

U + cu

)

= F−1

(

m −
c f

u − e − cv + cu

)

.

By comparison of SW with the optimal capacity in the coordi-
nation structure (SP) and in the decentralized structure (SD), we
find that their relationships depend on the environmental dam-
age (e) as follows.

Proposition 5. SW decreases with the environmental damage e.
To compare with SP and SD we have

� when e is low such that e ≤ u − cv + cu − pM(r − cv ) −

pHcu, SD < SP ≤ SW ;
� when e is high such that e ≥ u − cv + cu − pM(r − cv ),
SW ≤ SD < SP;

� when e is medium such that u − cv + cu − pM(r − cv ) −

pHcu < e < u − cv + cu − pM(r − cv ), SD < SW < SP.

To interpret the results, first we note that SD is always lower
than SP, since the decentralized structure leads to under-
investment compared with the coordination structure. Second,
if the environmental damage e is low, building more backup

capacity leads to higher power output without major environ-
mental damage, which makes SW larger; if e is high, the trend
reverses and SW becomes smaller. Please see Figure 5, which
illustrates the social welfare under different values of e, using
the previous numerical setting.

5. Conclusions and future research directions

The intermittent energy sources of a supplier of renewable
energy can result in random power shortages. ISOs need online
reserves to prepare to prepare for any shortage caused by lower-
than-predicted renewable energy output. The increase in backup
capacity will help improve the system reliability and economic
efficiency of energy interchange.

To encourage the conventional supplier to build backup
capacity to cover the shortage, we design a coordinationmecha-
nism where the renewable supplier offers the conventional sup-
plier RECs in proportion to the committed backup capacity in a
regional market. The renewable supplier decides on the rate of
offering RECs and the wholesale price of the backup power and
then the conventional supplier decides the amount of backup
capacity. With the closed-form solution of this coordination
model, we prove that the contract achieves system coordination.
The system’s profit can be arbitrarily allocated between the two
suppliers by adjusting the wholesale price. By comparing with
the decentralized case, we find that the coordinationmechanism
can achieve Pareto improvement for both suppliers.

Sensitivity analyses are conducted on the impacts of the fol-
lowing market conditions. First, when the fixed cost increases,
the backup capacity decreases and the rate of offering RECs
increases. Both suppliers’ profits decrease and the total profit
decreases. Second, when the electricity price increases or the
variable cost decreases, the backup capacity increases and the
rate at which RECs are offered decreases. Both suppliers’ profits
increase and the total profit increases. Lastly, when the short-
age cost increases, the backup capacity increases and the rate at
which RECs are offered increases. The total profit decreases, the
renewable supplier’s profit decreases, but the conventional sup-
plier’s profit increases.

A social welfare analysis is conducted, and we find that the
social welfare of the coordination structure is greater than that
of the baseline case unless the regional environment is extremely
sensitive to conventional power’s carbon footprint, and the ben-
efit of buffering power shortage cannot compensate that the
damage experienced by the environment.

To obtain tractable results, we simplify the prices on the
balancing market and the wholesale price of the backup power
into three scenarios, and we also assume that the prices and the
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shortages of different periods are independent. To implement
the coordination mechanism, more sophisticated models and
algorithms need to be developed to capture the dynamics
and uncertainties from both the renewable sources and the
balancing markets.

Most of the existing models on optimal bidding strategies for
renewable energy suppliers are based on a two-stage stochas-
tic programming approach (e.g., Morales et al. (2010), Pous-
inho et al. (2011), Dai and Qiao (2013), de la Nieta et al. (2013),
and Khodayar and Shahidehpour (2013)). In the first stage, the
renewable supplier submits its bids in theDay-Ahead (DA)mar-
ket. In the second stage, it makes its bids in the Real-Time
(RT) market after the DA price is known. It is assumed that
the bids for all hours of the operating day are made simultane-
ously at the beginning of the day on the RT market. Hence, this
two-stage approach does not capture the flexibility in RT deci-
sions after revealing the uncertain parameters during each time
period. Moreover, the above papers did not capture the correla-
tions among consecutive periods of renewable energy outputs.
Baringo and Conejo (2016) improve the two-stage approach by
allowing suppliers to make their bids in the RT market for each
hour of the day separately and adjust their decisions after new
information becomes available. However, it does not consider
the impact of hourly based RT market bidding on the DA mar-
ket bidding.

A future research direction would be to develop stochastic
programming models to study the backup power capacity coor-
dination problem with more realistic price and shortage scenar-
ios of different periods. Both the conventional and renewable
suppliers need to make strategic plans to participate in the DA
and RT markets. The model should consider the output corre-
lations and allow the suppliers to decide their RT bidding for
each period sequentially and adjust the decisions as new infor-
mation becomes available. The model should also consider the
impacts of backup capacity on RT and DA bidding and vice
versa. To achieve coordination, we will design the model in the
game theory framework and achieve win win situations for the
conventional and renewable suppliers. Newly developed game-
theoretic models for electricity bidding strategies (e.g., Chat-
topadhyay and Alpcan (2014), Wu et al. (2016), and Xu et al.
(2016)) do not consider the backup agreements between con-
ventional and renewable suppliers. We will fill this void in our
future research.

Another future research direction will be to design the coor-
dination mechanism with multiple conventional energy sup-
pliers and multiple renewable suppliers in different regions.
The multi-region coordination problem brings both opportu-
nities and challenges. On the one hand, the risk-pooling effect
across different regions can help renewable energy suppliers to
reduce the intermittency in their power outputs. If the power
shortage in one region cannot be fully covered by the local
backup capacity, other regions’ power suppliers may send their
extra backup power through the grid. All of the intercon-
nected regions can benefit from such a resource-pooling prac-
tice.On the other hand, the coordination problem itself becomes
much more complicated, as we need to consider how to allo-
cate the profit among multiple suppliers, while facing both the
intermittent supplies and the transmission loss across different
regions.
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