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The neural architecture of prediction over a continuum of
spatiotemporal scales

Michael T. Gravina ! Per B. Sederberg '*

Abstract

Theories of time and space in memory have traditionally focused on their role in dividing
experience into discrete episodes, despite the arbitrary nature of these divisions. We offer an
alternative characterization that focuses on the fundamentally predictive role of perception and
memory. In this account, perceptual hierarchies in sensory cortex detect patterns of feature-
change across a logarithmic continuum of scales in time and space, which allows them to efficiently
converge on nuanced, yet short-range, predictions of the present situation. Time and space
emerge from this continuum as representations of feature-distance that provide a measure of
the relevance of non-simultaneous experiences, allowing for long-range associations, mental
time-travel, and predictions that go far beyond the immediate moment. This reframing of the
nature and role of time and space in memory has implications for both the interpretation of
existing findings and the design of future experiments.
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Highlights

o The ventral temporal cortex detects and predicts patterns of feature-change across a logarithmic
continuum of scales.

o Time and space are representations of feature-distance between experiences, and are used to
filter long-range associative bindings by relevance.

e The medial temporal lobe supports long-range associations that form rich cognitive maps and
allow for prediction beyond the immediate present.

Introduction

Humans are drawn to strict divisions and clear categories, which help us to simplify the otherwise
intractable complexities we encounter in the world. Yet these same simplifying constructs may
become a stumbling block to true comprehension when they impoverish meaningful complexity.
A foundational concept in the field of memory is the categorical distinction between episodic and
semantic memory (1). However, the very notion of an episodic memory presupposes that an experience
is bound to a specific time and space to produce discrete “episodes” (2). This distinction rests on
deeper assumptions that “time” and “space” actually exist in the brain as representational scaffolds
onto which experience can be bound. Moreover, the temporal and spatial components of episodic
memory are frequently treated in isolation (3), even though it has not been firmly established that
they are meaningfully separable.
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We argue here that the apparent division of experience into discrete episodes is actually an over-
simplification within the basic mechanisms of perception and memory. The flow of experience is
continuous across temporal and spatial scales, from milliseconds to decades, and from millimeters
to hundreds of kilometers. Given the need to adapt predictively across this full continuum of
scales, the basic representations of our experience, and our episodic memories for that experience,
must also span this continuum. This proposition does not imply that there are no meaningful
boundaries in our experience (see (4) for discussion), but only that the establishment of a spectrum of
spatiotemporal scales necessarily precedes, and provides the fundamental substrate for, the definition
and identification of such boundaries.

In discussing this idea we also challenge the current discourse on representation in hierarchical sensory
cortical streams, such as the ventral temporal stream, in order to move away from models of discrete
regional specialization towards a continuous spectrum of scale-sensitivities. Finally, we position the
neural representations of time and space as emergent, rather than elemental, properties in the brain,
founded on a gradient of experiential scales established in the architecture of the medial temporal
lobe.

To ground this proposal, we must first discuss how our senses and all layers of perceptual processing
are basically change-detectors operating on continuous streams of low-level features. From this
starting point, we must solve the evolutionary challenge of preparing adaptively for the future by
making predictions on these feature-changes. Detailing how we accomplish this efficiently will lead
us to the alternate memory paradigms that we champion here.

Prediction machines

The function of perception is to predict changes in sensory streams

We are accustomed to think of the brain primarily as a device for recognizing and responding to the
higher-level wholes of exogenous experience: not only object recognition (5), but also recognition of
scenes, events, and the subjectively “real” dimensions of time and space. In this framework, sensory
processing streams in cortex are conceptualized as hierarchies of distinct processing centers, each
of which responds to a discrete higher-order category. For example, observations that anatomical
loci in the ventral temporal cortex respond to specific visual categories (e.g., lateral occipital cortex,
LOC, for objects (6), parahippocampal place area, PPA, for scenes (7), etc...) have been taken as
evidence that the primary role of these loci is to represent those categories (8).

But a living organism does not have direct access to any of these complex structures in its environment.
It must extract them from experience mediated entirely by the streams it receives through its sensory
receptors, each of which conveys only the intensity of a simple sensory feature, like the luminance
of light or the pressure of dermal contact, as it varies continuously over time. Thus, at the input
level, neither category, nor time, nor space, nor any of the other high-level “bins” of content exist to
the brain, only the content itself (a set of continuous, single-feature inputs). Furthermore, as we
argue below, recognizing high-level phenomena isnot even perception’s fundamental objective, but is
rather an instrumental byproduct of a living system’s attempt to predict relevant fluctuations in
these sensory streams in an energy-efficient manner.

The evolutionary fitness of a living system depends on its ability to efficiently reduce its entropy
through interactions with its environment. Even though the universe exhibits a global trend towards
increasing entropy, a living system can maintain or even reduce its own entropy, and therefore
persist and propagate in the face of constant, disordering external perturbations, by identifying
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and exploiting likely environmental changes. In other words, they can proactively adapt themselves
to survive energetic fluctuations from the environment, thereby correlating their own behavior
with the environment (9-11). Thus, the environment can be thought of as a state machine, and
the organism’s principal adaptive challenge is to infer and encode that state machine’s transition
probability structure, using its set of sensory feature inputs as the only available proxy for learning
those states and transitions (12). The resulting correlation between information stored in the system
and probabilistically likely regularities in the environment can be considered the rudiment of memory
that is harnessed by a living system to guide behavior.

So the primary function of perception is not actually to represent familiar categories of content, but
rather to register and predict changes in that content. This accords well with the established principle
that repetitive content is disregarded through neural habituation, with the retained information
representing only the change from what was predicted (13). Thus, every aspect of the architecture of
our sensory processing must ultimately serve to predict the future of a continuous stream of sensory
features based on changes it has observed in that stream in the past.

Perceptual cortex differentiates scales, not categories

We therefore have reason to doubt the characterization of perceptual hierarchies as chains of loci
representing discrete categories and properties. To the extent perceptual hierarchies do construct
discrete representations of higher-order categories, we hold that it is likely only a mechanism in
service of prediction of feature changes across a continuum of scales. In this view, each interval along
the continuum of perceptual processing in the ventral temporal stream and medial temporal lobe is
simply specialized for learning the patterns of feature-change that occur over a particular interval of
temporal and, as we will argue below, spatial scales (14-17).

Take, for example, an office. An office is not a discrete whole, but rather a collection of objects (e.g.,
walls, floor, computer, coffee mug, desk, chairs, bookshelves, etc.). Neurally, an office as a whole
tends to activate scene-sensitive regions such as PPA, while its constituents activate object-sensitive
regions such as LOC. We assert that this difference in selectivity stems from the duration of time
over which each region integrates the continuum of scales to register behaviorally-relevant changes in
sensory features.

The behavioral significance of timescale can be easily illustrated in the office example depicted in
Figure 1. The timescale over which our senses stably interact with individual objects, such as a coffee
mug, is short; our eyes, as they make numerous saccades around the area, only process the mug for a
matter of partial or full seconds, and our hands typically manipulate the mug for similar periods. On
these short timescales, in which we must predictively guide our interactions with individual objects,
it is necessary to maximally distinguish between, say, the cup and a stapler, hence the regional
specialization of LOC for representing and detecting changes in patterns on this scale. In contrast,
we may remain in the general office environment from several full minutes up to several hours, and
even as the constituent objects repeatedly pass in and out of perception on their smaller timescales,
we must integrate over all those features to extract a stable, longer-lasting context from the scene
as a whole. In this latter case we would want to maximally distinguish this office scene context
from others, such as a supermarket, a street corner, or a beach (18). This idea of a continuum of
representational scales is shared by other recent work on Temporal Receptive Windows (TRWs)
for representing narratives, whereby regions that integrate over large TRWs have highly divergent
representations when individuals interpret narratives that differ in only a few words on a finer scale,
but where those small changes give rise to a very different meaning at larger scales (19).

Similarly, spatial relationships emerge from the stream of experience through time, extracted as
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structural regularities in features over different time scales. Referring back to the figure, the temporal
stream of features representing objects in an office also includes retinotopic and, at least implicitly,
spatiotopic information about the relative locations of those objects [Golomb.Kanwisher.2012]. Thus,
integrating over one time scale allows for extracting the typical configurations of objects in office
scenes. Integrating over more time, we can represent the spatial relationships between larger regions
of the environment.

Figure 1: The brain represents change across a range of temporal scales. As our senses scan the
environment, such as the office and the objects in the figure above (left panel), they integrate
conceptual wholes over time from low-level features with activation level and specificity decaying
logarithmically into the past (middle panel). Regions in the ventral temporal stream (VTS, right
panel) are specialized for integrating over different spatiotemporal scales in order to maximally
differentiate entities of a particular scale. In the example, LOC differentiates objects like the mug
and the keyboard on a smaller timescale (shades of red), while PPA gradually integrates the same
features into a larger-scale representation of the whole office (shades of blue) in order to differentiate
it from other environmental contexts. These loci may not exist as anatomically discrete regions, but
rather, as points on a continuum of scale-sensitivity seen in both the VTS and MTL (arrows in right
panel). This scale continuum enables the efficient detection and prediction of patterns across all
scales.

Although the spectrum of scalar sensitivity in ventral temporal stream may itself be continuous,
specific entities in our world can plausibly be expected to manifest more often within particular
scale intervals (20), giving rise to anatomical clusters that tend to code for specific scales. Thus, the
apparent representational discreteness in regions like ventral temporal cortex may simply result from
our experience of scalar non-uniformities in our external environment, which give rise to groups of
features that are structurally stable within the spatial and temporal ranges to which those localized
regions are sensitive (21). We alluded to this above, with the idea that the time scales over which
we interact with objects can reliably just span seconds to minutes, whereas we are most often in
locations for minutes to hours. Other components of our neural apparatus may link together features
of experience that, because they have similar localization and extent, are likely to have arisen from
the same object or behaviorally-significant subdivision of the environment. This, too, is all in service
of prediction because these shared features can be expected to co-occur again in future experiences.

It is important to stress that just because a region may be responding most strongly to features
that would change over longer timescales (e.g., the PPA), this does not mean that it requires long
integration times to represent that information during the normal perceptual process (22). Instead,
once a stable set of possible configurations for a scene has emerged over multiple experiences with
scenes of that type, the regions representing the longer timescales will receive inputs from earlier
visual regions and quickly activate representations that code for information relevant to the particular
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temporal scale that region tracks in order to provide maximal differentiation across experiences
(23,24). This initial representation can then be refined with additional feature input as the individual
scans the environment.

This proposal suggests that regions specializing in differentiating experience integrated over longer
and longer timescales will emerge through development as we gain more experience with various
contexts at these different temporal scales. Some evidence in support of this claim exists such that
children aged 7-11 have a relatively smaller PPA than adults, yet the LOC is no different (25). This
further suggests that this same principle would apply to earlier visual areas if researchers tracked
neural representations earlier in development (e.g., LOC might exhibit relative differences between
adults and younger children, perhaps ages 3—4.)

A continuum of logarithmically-spaced scales enables efficient prediction

A proposal such as ours must not only describe a plausible predictive mechanism, but also explain
how that particular mechanism would be favored by evolutionary constraints. As described above,
life is driven to become maximally efficient given the computational costs and physical constraints
of the processes that adaptively correlate it with the experiential environment. In other words, we
do not have unlimited energy, neurons, and synapses to encode all of experience at full elaboration
without becoming highly inefficient. Consequently, we must resolve this efficiency—utility trade-off by
some means of abstraction (9,26). It seems that one way the brain has addressed this problem is by
extracting a scale-invariant representation from continuous experience. Also called Weber—Fechner
law in perception, a scale-invariant representation implies a logarithmic encoding of the lag between
feature change observations, with a corresponding fall-off in precision proportional to the size of the
interval between those observations (27).

Figure 1 illustrates the logarithmic scaling present as an individual scans a scene. Note how the
representations of when the participant saw each object become less accurate the farther it happened
in the past. Even though the figure focuses on tracking changes in when features activated, the same
applies for where, as in the configural relationship between objects is more precise the closer they are.

While the potential neural mechanisms that underlie this scale-free representation are beyond the
scope of the present proposal (28), there exists a large and growing literature providing evidence for
its existence, regardless of how it is implemented in the brain (16). We instead review the reasons why
this scale-invariant representation is an optimal solution for the efficiency—utility trade-off. First, it
allocates precision proportional to proximity and certainty. The larger an interval, the more associative
and causal uncertainty there will be as the uncertainty compounds with both temporal and spatial
distance. Thus, a scheme that filters out information most likely to be uncertain/uninformative “noise’
in favor of more certain/informative “signal” would be one that assigns precision in proportion to scale:
a logarithmic representation. Second, this logarithmic representation can accommodate associations
over arbitrarily large scales. Compared to many previous models that describe a finite memory buffer
(30,31), scale-invariant models of memory and representation avoid the risk of neglecting associations
with scales beyond the capacity of the buffer itself (16,32). Third, a logarithmic representation of
experience ezploits inter-scale dependencies to increase the cost-efficiency of building/learning the
representations. Here the algorithm harnesses stability from integrating over features of experience
at larger scales to set expectations for features at smaller scales, then the system can focus on only
processing and learning maximally from deviations in this predicted stability. For example, as the
ventral temporal cortex processes a scene in the woods, the recognition of the global scene properties
as “woods-like” by PPA would bias LOC towards interpreting small, green objects as leaves rather
than, say, cans of Mountain Dew, and tall, thin objects as tree-trunks instead of streetlamps. This
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biasing sharply reduces the cost of processing the average situation, allowing the system to focus
maximally on deviations from what was predicted.

From predictive coding in cortex to memory in the MTL

Our proposed scale-free spatiotemporal gradient of representation in the cortex dovetails nicely with
theories of predictive coding and the free energy principle (33,34). In this paradigm, the brain
constructs representations of complex and spatiotemporally extensive entities from simpler and more
localized constituents, and in turn, these higher-level representations help to predict what will come
next at the simpler, smaller level. The predictions are sent down the hierarchy, where they are
squared against incoming information, generating error signals moving back up the hierarchy (33).
Thus, each link on the chain infers patterns of a given complexity /spatiotemporal scale, and each link
also informs, and is informed by, its neighbors’ inferences. In this way, both finer- and coarser-scale
context can be predicted from a stimulus at one certain scale — effectively allowing for inter-scale
pattern-completion. However, this is still a temporally (and therefore spatially) local associative
architecture. Each link in the chain is informed only by what its neighbors are identifying right
here and now. They cannot, on their own, exploit associative information that is spatiotemporally
removed from the present. They can rapidly and efficiently derive a rich picture spanning many scales
from a sparse sample, while minimizing the energy it takes to represent that information, but that
picture still only represents what is currently happening, along with the logarithmic gradient of recent
experience leading up to this point. This graded representation has limited ability to extrapolate in
detail across many experiences.

There is growing evidence that without a hippocampus (or as the MTL degrades with increasing
dementia), a person’s ability to simulate the future becomes more and more generic and general (35).
This, along with a wealth of other data (36), points to the critical role of the MTL in both forming
long-range associations and generating predictions of the future because the MTL is necessary for
our ability to relive and draw on earlier experiences to generate predictions, and even to generate
complex predictive value-maps to guide future actions (37). In other words, the MTL allows us
to mentally time travel (38) and, hence, flexibly navigate our past to make detailed predictions of
the future across spatiotemporal scales, whereas the cortex can integrate across scales based on the
present, but only by generalizing so much that specificity is lost.

In order to accomplish this feat, we argue that the same scale free representations that emerge
during continuous experience in the cortex are mirrored along the longitudinal axis of the MTL
(15,39), though with the added architecture for quickly forming associations between sets of features
reinstated from past experience (40). For example, after experiencing A->B at one point and then
B->C at another, the hippocampus makes the transitive inference between A->C possible because
experiencing B the second time will reinstate A and bind it to C (41). Consequently, the MTL
is able to form associations between events that share features, but occur at completely different
times. In functional imaging studies, the hippocampus, and particularly subfield CA1, has in fact
been identified as central to such transitive-inferential associations (42). These enhanced transitive
associations mean the organism can not only access the logarithmically-compressed history of very
recent and local experience, but that it can harness the MTL to reinstantiate experience from
any significant point in the whole of time and space through which it has passed previously and
bind it to the present experience. The organism thus maintains a representation of the world that
becomes efficiently abstracted with increasing distance from here and now, yet nonetheless supports
high representational density for the subset of remote events that are highly relevant despite their
spatiotemporal distance. Through this process the organism is able to create a rich cognitive map of
the world through the lens of experience (43).
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We, therefore, interpolate between actually-experienced representations to create a complex model of
the world that serves as an extended and flexible map. This map allows not only for highly-selective
reaction to the current situation, which non-MTL cortical hierarchies can produce already, but
also proactive pathfinding of multiple future courses of navigation and action based on previous
experiences in related contexts (44). Long-range associations can be enhanced further through replay
of sequences of feature-states from the past or even imagining entirely new sequences constructed
from those states. All of the reinstantiated states of the chain then become available once again
for binding not only to the current, exogenous sensory input, but to each other. Therefore, long
after their originating events have passed, large numbers of new predictive associations can be built
between feature-state representations stored in memory. This highly developed, associative web
implemented in the brain by the MTL and, in particular, the hippocampus is what that we most
colloquially refer to with the word “memory”; it serves a prospective function of correlating an
organism’s adaptive responses with the spatiotemporally extended regularities in the environment,
thereby creating the cognitive map over all experience and allowing us to be highly efficient prediction
machines.

Time and Space in Memory

Neural time and space enable long-range associations

In expounding the virtues of harnessing the MTL to form long-range associations, we have neglected
an important detail: how the brain decides what long-range associations to form. The short-range
associative capability of unaided perceptual cortex has an inherent advantage in filtering for highly
relevant associations between stimuli, since sensory inputs that are immediate neighbors in time are
naturally related to one another. Pushing that associative frontier outwards in time would impair this
quality-control, swamping the organism with a flood of long-distance associations, a much smaller
proportion of which will improve the predictive signal enough to justify the added noise. To be
adaptive, then, any long-range associative mechanism would have to filter candidate binding targets
by some measure of relevance to the current context.

As argued above, the purpose of the spatiotemporal continuum in the brain is to detect and predict
feature change at different scales. Detecting neural feature changes also provides the measure with
which to calculate neural distance. For example, the more two experiences diverge in feature-change
distance, the greater their separation in distance-based neural time and space (46). Once such a
neural distance measure is established, the probability that any particular past experience will be
reactivated by, and then bound to, the current context can be made inversely proportional to its
neural distance to the current context. The result is that experiences that are more predictively
relevant are more likely to be associatively bound.

It is further possible to focus attention on a particular spatiotemporal scale more relevant for a
particular task, which would change the anatomical locus of the distance metric along the longitudinal
axis of the MTL. Evidence from gene-expression, anatomical, electrophysiological and fMRI data
support the notion that there are functional long-axis scale gradients in the hippocampus, with
anterior regions representing more global scales (e.g., larger place fields) and posterior regions
representing finer scales (e.g., smaller place fields) (15,39,48,49). Temporal and spatial memory
are differentially impaired by damage to different positions on the long axis of the hippocampus,
which suggests that this structural difference is also one of the typical scale of relevant feature
change (50). Further support for these long-axis gradients of scale comes from recent fMRI work
demonstrating that neural distances between remembered real-life experiences spanning days to
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weeks and 100 meters to kilometers tracked these long-range time and space distances in the anterior
hippocampus (51). Recent work also provides evidence that temporal and spatial representations are
functionally intertwined in regions of the hippocampus, and that between-stimulus intervals in both
dimensions are represented in a logarithmic fashion, suggesting Weber-Fechner scales, as predicted
by the spatiotemporal continuum of feature change described above (17,51,52).

Thus, space and time, which manifest in the spatiotemporal scales tracking feature change along
the longitudinal axis of the MTL, may actually provide the critical distance metric that makes
relevant long-range associations possible. These same spatiotemporal distance metrics may also
provide a means for targeting and reinstating past experiences when more-specific content-based
cues are lacking, by reconstructing their positions within the real-world dimension in which those
experiences happened (53). As stated above, long-range associations also allow for the construction
of rich cognitive maps of experience, allowing for flexible prediction across spatiotemporal scales.
In the following section we explore how even though space and time arise from the same distance
metrics based on feature change, their informational content differs, which leads to distinct scenarios
where they can be employed as useful memory cues.

Despite a common basis, neural time and space are informationally distinct

We have argued that neural time and space are both emergent properties of feature change along
a continuum of scales, yet there is reason to believe they differ in information content, giving
rise to priority differences in the memory system. To understand why this may be the case, we
should first consider the characteristics of the real-world dimensions whose regularities these neural
representations must emulate in order to serve their adaptive function. The most obvious concerns the
number of subordinate dimensions; external time has one, while external space has three, affording
a geometrically larger set of associative possibilities between events. Experiences in space can be
interrelated in complex topological networks, while experiences in time can only occupy earlier or
later positions on a line. Equally important, the flow of time is also unidirectional, whereas it is
possible to revisit spatial locations.

These qualitative differences have major consequences for us as we interact with the world. While we
can return to the same point in real space during many different experiences, each time arriving and
departing along a different trajectory in both real and perceptual space, we have no corresponding
ability to revisit a point in real time. Lacking in these repetitions, time appears inherently less stable
than space from the perspective of a living system. However, the representational architecture of
neural space appears to leverage the additional information, incorporating a variety of intermediate
constructs that have no apparent counterparts in the computation of neural time. These include
optic flow (16), ocular motion (54), direction (55), vestibular cues (57), as well as a number of more
integrative mechanisms including boundary cells (58), speed cells (59), place cells (60), and grid-like
neuronal firing fields that map to evenly distributed spatial geometries and also follow the same
coarse to fine representational continuum along the longitudinal axis of the MTL (61). Each of these
captures some contingency between change in one subordinate dimension and change in another, and
functions to modulate and reinforce the underlying distance-based representation depending on those
constraints. By incorporating this additional between-dimension contingency information over and
above the more basic contextual-distance measures, the neural representations of space thus provide
stronger and more reliable retrieval cues than those of time.

It is informative to consider the case of a sharp boundary, such as the transition a person experiences
moving indoors to outdoors. Such transitions are marked by large changes in feature-space, which
give rise to large changes in the spatiotemporal context used to guide predictions. These large feature
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changes also likely provide the anchor points to help identify event boundaries at particular scales
(4). This scale specificity for tracking event boundaries is underlined by the fact that just because
you transitioned from inside to outside your office building it does not mean you have left the context
of your university, which can still provide useful predictions, such as seeing students and colleagues,
at larger and longer spatiotemporal scales. Finally, just because modern life may tend to have more
sharp transitions than the past (i.e., with fewer buildings, elevators, or motorized vehicles, especially
air travel), this does not mean that the general neural architecture we propose here has actually
changed over such a short evolutionary timescale. Instead, it may be that these sharp changes in
spatiotemporal features are one way in which modern life induces stress in neural processing.

Conclusions

Here we have recast the neural machinery of perception, memory, and prediction, away from the classic
narrative of a set of discrete brain regions whose main role is to represent higher-order categories,
towards a continuum of scales whose aggregate function is to predict future changes in streams of
elemental sensory features based on the history of those streams. The foundation of this system is a
perceptual continuum in cortex, where each point on the continuum integrates over, and maximally
responds to, a particular spatiotemporal scale of feature-change. Each integrator cross-talks with its
higher- and lower-scale neighbors to leverage predictive coding for greater classification accuracy and
efficiency. Together, the full continuum provides a comprehensive representation of the trans-scale
immediate context and a prediction of its very immediate future.

Nonetheless, without the contribution of the medial temporal lobe, particularly the hippocampus,
this prediction is limited to a tiny slice of the present stream of experience, decaying logarithmically
in both forward and backward directions. Neural time and space provide a distance metric derived
from feature change across these spatiotemporal scales that the MTL can harness to identify relevant
similarity of past experiences to the present. This enables reinstatement of remote contexts, which
can be bound to the present experience to support long-range associations or to enrich the richness
of predictions from the present. The long-range associations ultimately lead to the construction of
cognitive maps across the entire spectrum of feature change, integrating over all life’s experiences.

In this sense, semantic knowledge would constitute experiences embedded in a map that has been so
thoroughly elaborated that they “transcend” neural time and space entirely to become universally-
applicable concepts and facts, since there is no longer anything to anchor them to any specific
temporal or spatial contingency. This would render the classically sharp division between episodic
and semantic memory a difference of extremity, not of kind. Instead, episodic and semantic memory
both emerge due to the same extraction of regularities in the continuum of spatiotemporal feature
change across experiences (63).

Implications for future research

This synthesis has a number of experimental ramifications. First, we should watch for opportunities
to resolve apparent contradictions in functional results that stem from expectations that perceptual
brain regions primarily respond to specific, discrete categories. The example of (64) is instructive. If
the PPA represents only place identity, then the finding that it also responds to material category
requires radical reevaluation of the first hypothesis; but if PPA instead recognizes feature-change at
a scale common to both place and material, there is no contradiction.
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Second, by focusing inquiry on the function of isolated loci in perceptual cortex and medial temporal
lobe, we may be missing more important trends happening across continuua. In order to mitigate
this, future work in this area should record and analyze data from across a much wider range of
scales in both space and time (51). This is facilitated by the proliferation of life-logging technology
which permits persistent collection of multimodal data (digital imaging, accelerometry, GPS, etc.)
across the naturalistic settings of the subjects’ own lives (65).

Third, in the realm of computational modeling, particular attention should be given to models with
logarithmic representations of spatiotemporal scale and distance following the Weber-Fechner law
(29).

Fourth, if the apparent discreteness of perceptual loci is not endogenous, but results from actual
scalar non-uniformities in the structure of the external sensory environment, this raises the interesting
question of whether organisms learning in environments with artificially-distorted scalar distributions
would come to recognize alternate dimensions of feature change that do not readily correspond with
the familiar labels we currently utilize to describe our world, similar to the way brain regions for
vision are co-opted for other forms of representation in congenitally blind individuals (66).

Fifth, if higher-order perceptual integrators depend on smaller-scale integrators acting in concert
with the hippocampus for learning at their own scale, this suggests that earlier visual areas should
follow the same sequential pattern of development as LOC and PPA. Comparing relative differences
in neural representations in these areas between adults and younger children would help to determine
if this is the case.

Finally, to our knowledge, no study to date has been performed with the explicit goal of comparing
the representational boundaries of time and space. An experimental paradigm that intentionally
manipulates temporal contexts in order to enhance their space-like characteristics (such as the
recurrence of temporal “landmarks”) and then compares the resulting patterns of neural activations
with those based on true spatial contexts would help to answer this.
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hippocampus (CA1) in rats impaired memory differently: dorsal inactivation selectively impaired
temporal order judgments while intermediate inactivation impaired more spatial memory. This
supports the idea that representations of neural time and space may differ in scale along the
longitudinal axis of the hippocampus.

(57) A virtual reality study in rats consistent with the notion that rich information from multiple
sensory sources is necessary to support spatial coding. Barring that informational richness, only
temporal coding is found, as expected by our observations of the differences between the physical
dimensions of time and space.

(23) Supports a complexity gradient in the ventral temporal stream, demonstrated by layering in
deep neural network models of that region.

(68) Description of a coding scheme for scale-invariant representations of temporal history that can
be applied to all sensory modalities and corresponds with a range of observed behavioral phenomena.

(39) In-depth review of hippocampal longitudinal specialization. Offers a model of a functional
gradient of scale superimposed on locally discrete regional divisions defined by gene expression and
connectivity. It is consistent with models of a continuum of scale-sensitivity, while accommodating
the possibility of discrete underlying mechanisms.

Of Outstanding Interest

(52) Provides evidence that temporal and spatial aspects of episodic memory are supported by the
same coding mechanism in anterior hippocampus, with implications for the construction of cognitive
maps.

(51) Provides evidence that the anterior hippocampus represents both space and time at very large
scales. The results support the idea that neural space and time are intertwined in the hippocampus
and that there is a gradient of small- to large-scale representations along the longitudinal axis of the
hippocampus.

(27) Describes many cases where the scale-invariant Weber-Fechner law is found to operate in
perceptual mechanisms, and explains how this permits the brain to represent information from an
uncertain world without prior assumptions.
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