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a b s t r a c t

Identification of the parameters of stable linear dynamical systems is a well-studied problem in the
literature, both in the low and high-dimensional settings. However, there are hardly any results for
the unstable case, especially regarding finite time bounds. For this setting, classical results on least-
squares estimation of the dynamics parameters are not applicable and therefore new concepts and
technical approaches need to be developed to address the issue. Unstable linear systems arise in key real
applications in control theory, econometrics, and finance.

This study establishes finite time bounds for the identification error of the least-squares estimates for
a fairly large class of heavy-tailed noise distributions, and transitionmatrices of such systems. The results
relate the time length (samples) required for estimation to a function of the problem dimension and
key characteristics of the true underlying transition matrix and the noise distribution. To establish them,
appropriate concentration inequalities for random matrices and for sequences of martingale differences
are leveraged.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of the transition matrix in linear dynamical sys-
tems has been extensively studied in the literature for the stable
case (Ljung, 1999; Lütkepohl, 2005; Söderström & Stoica, 1989).
Further, new work has also addressed this topic under a high-
dimensional scaling, with additional assumptions on sparsity of
the parameters imposed on it (Basu & Michailidis, 2015; Zorzi &
Chiuso, 2017; Zorzi & Sepulchre, 2016). However, in settingswhere
the underlying dynamics are not stable, this problem has not been
adequately studied. A key issue that arises in this case is that
the magnitude of the state vector explodes with high probability,
exponentially over time (Lai & Wei, 1985). Nevertheless, identifi-
cation of the dynamics in the non-stable case is of interest due to a
number of applications that give rise to such dynamics. In addition
to adaptive control (Bertsekas, 1995; Kailath, Sayed, Hassibi, &
Linear estimation. Prentice Hall, 2000; Kumar & Varaiya, 2015;
Söderström, 2012), these applications include a class of identifica-
tion problems involving asset bubbles and high inflation episodes
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(Alogoskoufis & Smith, 1991; Engsted, 2006; Garcia, Perron, et
al., 1991; Giacomini & White, 2006; Juselius & Mladenovic, 2002;
Nielsen, 2010, 2008; Pesaran, 2010; Pesaran & Timmermann, 2002,
2005; Stock & Watson, 1996, 1998).

Most existing work on the topic provides asymptotic results
on the convergence (Lai & Wei, 1985), as well as the limit distri-
bution (Buchmann & Chan, 2013; Buchmann, Chan, et al., 2007)
of the model parameters. Specifically, early work investigated the
limit distribution of the state vector under a set of restrictive
assumptions on the dynamics matrix (Anderson, 1959). Ensuing
work dealt with the accuracy of identification in infinite time, for a
class of structured transition matrices (Lai & Wei, 1983a). Further
extensions to more general classes were established by Nielsen
(2005, 2006). Finally, additional asymptotic results together with
the important concept of irregularity of the transitionmatrixwhich
leads to inconsistency, are presented in the literature (Nielsen,
2009). However, finite time (i.e. non-asymptotic) results are not
currently available.

In this work, we consider a linear dynamical system x(t) ∈

Rp, t = 0, 1, . . . that evolves according to the following Vector
Autoregressive (VAR) model

x(t + 1) = A0x(t) + w(t + 1), (1)

starting from an arbitrary initial state x(0), which can be either
deterministic or stochastic. Note that systems of longer but finite
memory can also be written in the above form (Kailath et al.,
2000; Söderström, 2012). We examine the general case where
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the system is not necessarily stable. The key contributions are: (i)
establishing finite time identification bounds for the ℓ2 error of
the least-squares estimates of the transition matrix A0, (ii) under
a fairly general heavy tailed noise (disturbance) process {w(t)}∞t=1.
In addition, the results due to the presence of a heavy-tailed noise
term are of independent interest for the stable case as well. The
novel results established provide insights on how the time length
required for identification scales both with the dimension of the
system, as well as with the characteristics of the transition matrix
and the noise process.

In order to establish results for accurate finite time identifi-
cation of A0, one needs to address the following set of technical
issues. Note that as long as A0 has eigenvalues outside of the unit
circle in the complex plane, the behavior of the Gram matrix of
the state vector is governed by a random matrix. However, when
A0 has eigenvalues both inside and outside of the unit circle, the
smallest eigenvalue of the Gram matrix scales linearly over time,
while its largest eigenvalue grows exponentially, which in turn
leads to the failure of the classical approaches to establish accurate
identification. These issues are addressed in Sections 3.2 and 3.3,
respectively. In the proofs, we leverage selected concentration
inequalities for randommatrices (Tropp, 2012), as well as an anti-
concentration property of martingale difference sequences (Lai &
Wei, 1983b).

The problem of fast accurate identification in unstable systems
has a number of interesting applications. For example, in stochastic
control, this includes the canonical problems of both stabilization,
as well as design of an efficient adaptive policy for linear systems.
First, since the dynamics are governed by unknown transition
matrices, the control action can destabilize the system. Moreover,
the user first needs to have an approximation of the dynamics,
to be able to design a suitable control policy. Therefore, accurate
identification of the dynamics of the transition matrices is neces-
sary, even if they happen to lead to instability of the underlying
system. More importantly, the identification result needs to be
provided within a relative short time period for the user to be
able to design the adaptive policy accordingly. More details are
discussed in Example 1.

Applications of this setting in econometrics and finance also
create the need to obtain finite time theoretic results. For ex-
ample, in macroeconomics, the outstanding performance of the
linear models marked them as a benchmark of forecasting the
market (Giacomini & White, 2006; Pesaran & Timmermann, 2005;
Stock & Watson, 1998). Their applications to the analysis of in-
flationary episodes in a number of OECD,1 countries (Pesaran &
Timmermann, 2005) as well as US stock prices (Engsted, 2006;
Lin & Michailidis, 2017) are available in the literature. The former
study establishes the structural non-stationarity of the process,
where the latter verifies the explosive behavior of speculative bub-
bles. In particular, if a technology market is capable of important
innovations with uncertain outcomes, it has been argued (Pesaran,
2010) that a bubble is very likely to emerge.

Another application involving unstable dynamics deals with
episodes of hyperinflation. For example, Juselius and Mladenovic
(2002) consider the case of (former) Yugoslavia and use data on
various economic indicators to gain insights into the dynamics
of the late 1990s episode. The analysis identifies wages, price
level expectations, and currency depreciation as the key factors.
In follow-up work, infinite time analysis techniques were used
(Nielsen, 2010), but as emphasized in the original work (Juselius
&Mladenovic, 2002) ‘‘hyperinflation episodes almost by definition
are short ’’. Therefore, the small sample size available can easily lead
to incorrect inference, while finite time guarantees are informative
about the sample size needed tomakeprecise statements about the

1 Organization for economic co-operation and development.

effects of different macroeconomic factors. Another hyperinflation
episode from Germany in the early 1920s is studied by Nielsen
(2008).

Recently, the problem of forecasting non-stationary mixing
(Kuznetsov & Mohri, 2014, 2017), and non-mixing (Kuznetsov &
Mohri, 2015) time series has received attention, assuming the loss
function employed is bounded. Unstable VARmodels are a special,
yet interesting, case of non-stationary time series. However, the
problem of estimation/identification is not still addressed in the
existing literature. Moreover, the results on forecasting are not
applicable to the identification problem, since the least-squares
loss function used in that study is not bounded. On the other hand,
the obtained results on identification are applicable to forecasting.

The remainder of the paper is organized as follows. In Section 2
we provide a rigorous formulation of the problem, introduce the
identification procedure, and outline examples that require accu-
rate identification but the system cannot assumed to be stable.
The contributions are discussed in Section 3, where we study
different scenarios. First, we provide identification results on (non-
stationary) stable linear systems in Section 3.1, followed by the
explosive case (Section 3.2). Finally, we study the accurate iden-
tification of the dynamics for general systems in Section 3.3.

1.1. Notations

The following notation is used throughout this paper. For a
matrixA ∈ Cp×q,A′ denotes its transpose.When p = q, the smallest
(respectively largest) eigenvalue of A (in magnitude) is denoted by
λmin(A) (respectively λmax(A)). For γ ∈ R, γ > 0, x ∈ Cq, define
the norm ||x||γ =

(∑q
i=1|xi|

γ
)1/γ . For γ = ∞, define the norm

||x||∞ = max1≤i≤q|xi|.
We also use the following notation for the operator norm of

matrices. For β, γ ∈ (0,∞] , A ∈ Cp×q let,

|||A|||γ→β = sup
v∈Cq\{0}

||Av||β
||v||γ

.

Whenever γ = β , we simply write |||A|||β . To show the di-
mension of manifold M over the field F , we use dimF (M). The
sigma-field generated by random vectors X1, . . . , Xn is denoted by
σ (X1, . . . , Xn). Finally, the symbol∨ denotes themaximum of two
or more quantities.

2. Problem formulation and preliminaries

The system {x(t)}∞t=0 evolves according to (1), while the un-
known transition matrix A0 ∈ Rp×p is not assumed to be stable,
i.e. the eigenvalues of A0 do not necessarily lie inside the unit
circle. Further, {w(t)}∞t=1 is the sequence of independent mean-
zero noise vectors with covariance matrix C , i.e. E [w(t)] = 0, and
E
[
w(t)w(t)′

]
= C .

Remark 1. The results established also hold if the noise vectors
are martingale difference sequences. Further, the generalization
to heteroscedastic noise, where the covariance matrix C is time
varying, is rather straightforward.

The objective is to identifyA0, using the least-squares estimator.
One observes the state vector during a finite time interval, {x(t)}nt=0,
and defines the sum-of-squares loss function

Ln (A) =

n−1∑
t=0

||x(t + 1) − Ax(t)||22.

Then, A0 is estimated by Â(n), which is the minimizer of the above
sum-of-squares; Ln

(
Â(n)
)

= minA∈Rp×pLn (A).
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Themain contribution of this paper is to establish thatwith high
probability, accurate identification of the true transition matrix is
achieved, excluding a pathological case. Formally, for arbitrary ac-
curacy ϵ > 0 and failure probability δ > 0, Â(n) is with probability
at least 1 − δ within an ϵ-neighborhood of A0, where apart from a
logarithmic factor, the time length n scales quadratically with ϵ−1,
and logarithmically with δ−1. In other words, for a fixed accuracy
ϵ > 0, the probability that the identification error

⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)
− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

exceeds ϵ, decays exponentially as n grows.
The following example elaborates on the problem of finite time

identification for unstable dynamical systems in control theory.

Example 1 (Stabilization in Adaptive Control). Consider the linear
stochastic system [Ax, Au], where the state evolution is governed
by the following dynamics:

x(t + 1) = Axx(t) + Auu(t) + w(t + 1).

In the previous equation, the vector x(t) ∈ Rp represents the
state of the system, and u(t) ∈ Rr is the control action taken by
the user. The unknown transition matrix Ax ∈ Rp×p determines the
evolution of the system, and the unknown input matrix Au ∈ Rp×r

shows the effect of the control policy on the state of the system.
Due to the simplicity of the structure, the main interest is in

linear feedbacks of the form u(t) = Lx(t), where L ∈ Rr×p is
the feedback matrix. Further, in addition to preserving the linear
nature of the system (which prevents the analysis from becoming
mathematically intractable), linear feedbacks correspond to im-
portant objectives for a class of optimal control problems (Kumar
& Varaiya, 2015; Söderström, 2012), including minimization of
quadratic costs (Bertsekas, 1995; Brunner, Antunes, & Allgöwer,
2018). So, the linear dynamics are essentially determined by the
closed-loop transition matrix A0 = Ax + AuL.

The system Θ0 = [Ax, Au] is assumed to be stabilizable, im-
plying there exists a stabilizer L0 such that the closed-loop ma-
trix Ax + AuL0 is stable; |λmax (Ax + AuL0)| < 1. Finding such a
stabilizer requires precise approximation of the true dynamicsΘ0
(Bertsekas, 1995), as shown in the following example. Consider a
systemof dimension p = 3, r = 2,which is stabilizable, since exact
knowledge ofΘ0 yields |λmax (A0)| = 0.22. Fig. 1 depicts the scatter
plot of the largest eigenvalue of the closed-loop transition matrix
versus the relativemagnitude of an AdditiveWhite Gaussian Noise
(AWGN). A stabilizing linear feedback L is applied to the system as
if the dynamics parameter isΘ0 +∆ instead ofΘ0, where entries
of∆ are independent Gaussianmeasurement errors. It can be seen
that a measurement error as small as 5% in the identification of the
system dynamics can lead to instability.

Fig. 2 graphs the largest eigenvalue of the closed-loop matrix
versus a perturbation in a single entry of Θ0. In fact, for different
entries of Θ0, the linear feedback L is designed as if the operator
approximates a single entry incorrectly. Formally, for ϵ ≥ 0, only
the (i, j)th entry ofΘ0 is approximated with error ϵ, while all other
entries are exactly provided to the operator. Fig. 2 corresponds
to the relationship between |λmax (A0)| and ϵ, for different entries
(i, j). Therefore, stabilization is very sensitive to the perturbation,
as an error of 3% in relative magnitude in a single element of the
system will totally destabilize the system. In many applications,
especially if the systemunder consideration is notman-made, such
precise information is not available. Hence, thematrix A0 cannot be
assumed to be a priori stable.

In addition, in order to design a desired policy (either steering
the system to a specific state (Faradonbeh, Tewari, & Michailidis,
2017) or minimizing a cost function (Bertsekas, 1995)), such an
approximation is necessary. To obtain it, learning accurately the
dynamics of an unstable system is needed. Importantly, such learn-
ing needs to conclude in finite time, because afterwards, the user

Fig. 1. |λmax (A0)| vs. ||∆||2/||Θ0||2 .

Fig. 2. |λmax (A0)| vs. ϵ/||Θ0||2 .

needs to control the system to achieve the corresponding objective,
determined by the application.

In order to establish high probability guarantees for accurate
identification of the closed-loop matrix, we apply the results from
Theorem 1 given in the next section. A random linear feedback,
denoted by L, suffices to satisfy the assumptions of Theorem 1
for the closed-loop matrix Ax + AuL. In fact, it suffices for L to be
a continuously distributed random matrix. This in turn, leads to
accurate identification of [Ax, Au], applyingmultiple random linear
feedbacks, drawn independently. Note that direct identification
of [Ax, Au] is infeasible, since by observing the state sequence
{x(t)}∞t=0, the best result one can provide is ‘‘closed-loop identifi-
cation’’ (Kumar, 1990; Söderström, 2012). Specifically, for a given
closed-loop transition matrix A0, the set of parameters guiding the
system’s dynamics Ax, Au which satisfy A0 = Ax +AuL is not unique
if one exactly knows the feedback matrix L. This set is indeed a
subspace of dimension pr in the space Rp×(p+r) the matrix [Ax, Au]
belongs to.

To analyze the finite time behavior of the aforementioned iden-
tification procedure, the following is assumed for the tail-behavior
of every coordinate of the noise vector.
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Assumption 1 (Sub-Weibull Noise Distribution). There exist posi-
tive constants b, d, and α, such that for all t = 1, 2, . . . ; i =

1, . . . , p; y > 0,

P (|wi(t)| > y) ≤ b exp
(

−
yα

d

)
.

In case of random initial state x(0), we assume it also follows
a sub-Weibull distribution. Intuitively, smaller values of the expo-
nent α correspond to heavier tails for the noise distribution, and
vice versa. Note that assuming a sub-Weibull distribution for the
noise coordinates is more general than the sub-Gaussian (or sub-
exponential) assumption routinely made in the literature (Abbasi-
Yadkori, Pál, & Szepesvári, 2011), where α ≥ 2 (α ≥ 1). In fact,
when α < 1, the noise coordinates wi(t) do not need to have a
moment generating function.

Note that for establishing consistency of infinite time identi-
fication procedures, the noise vectors need to satisfy a moment
condition, e.g. E

[
||w(t)||2+α2

]
< ∞, for some α > 0 (Lai & Wei,

1983a, 1985). On the other hand, finite time identification anal-
ysis results are usually obtained under an assumption of a light-
tail (or even uniformly bounded) noise distribution; e.g. Gaussian
process (Abbasi-Yadkori et al., 2011; Tropp, 2012). Thus, the above
assumption on sub-Weibull noise, that includes a family of heavy-
tailed noise processes, provides a fairly general framework to
narrow down the theoretical gap between asymptotic and non-
asymptotic approaches.

The noise coordinates can be either discrete or continuous
random variables, and are not assumed to have a probability den-
sity function. To proceed, we define a property of the population
covariance matrix of the system under study. It is easy to see
that the following property is necessary and sufficient for accurate
estimation of dynamics parameters.

Definition 1 (Reachability). The pair [A0, C] is called reachable if

rank
([

C1/2, A0C1/2, . . . , Ap−1
0 C1/2

])
= p.

Clearly, reachability is equivalent to |λmin (K (C))| > 0, where
K (C) =

∑p−1
i=0 A

i
0CA

′

0
i. Specifically, if C is positive definite, then

[A0, C] is reachable for all A0 ∈ Rp×p. Reachability is conceptu-
ally equivalent to the population covariance matrix of the system
being positive definite. More precisely, since the noise vectors are
independent, the covariancematrix of x(t) is given by

∑t−1
i=0A

i
0CA

′

0
i;

i.e. reachability is in fact stating that for t ≥ p, every coordinate of
x(t) has non-degenerate randomness.

Further, reachability is particularly helpful if the actual evolu-
tion of the system is guided by VAR(k) dynamics, for some k > 1.
In this case, the next step is determined by the k previous lags: for
t ≥ k, the state sequence x̃(t) ∈ Rm evolves according to

x̃(t) =

k∑
j=1

Ajx̃(t − j) + w̃(t),

for some initial vectors x̃(0), . . . , x̃(k − 1) ∈ Rm, and transition
matrices A1, . . . , Ak ∈ Rm×m, assuming Ak ̸= 0. Arranging blocks
of x̃(t) accordingly, x(t) =

[
x̃(t + k − 1)′, . . . , x̃(t)′

]′
∈ Rkm,

the state evolution can be written in the form of (1), for A0 =[
A1 · · · Ak−1 Ak
I(k−1)m 0

]
∈ Rkm×km. Then, as long as the covariance matrix

of w̃(t) is full rank, reachability holds.

3. Main results

Next, we establish the key identification results that character-
ize the time (samples) required, so thatwith high probability theA0
least-squares estimate is accuratewithin a certain degree. First, we
study the identification for stable systemswhere all eigenvalues of

A0 are inside the unit circle, i.e. |λmax (A0)| < 1. Subsequently, the
explosive case where all eigenvalues of the transition matrix A0 lie
outside of the unit circle, i.e. |λmin (A0)| > 1, is examined. Finally,
finite time identification results are presented for the general case
which is the combination of these two regimes.

Some straightforward algebra shows that the least-squares es-
timator can be written as

Â(n)
=

n−1∑
t=0

x(t + 1)x(t)′V−1
n ,

where Vn =
∑n−1

t=0 x(t)x(t)
′ denotes the empirical covariance ma-

trix of the state process (once normalized by n), which is assumed
to be non-singular.

The latter result implies that the behavior of Vn needs to be
carefully studied and this constitutes a major part of the following
two subsections.

3.1. Stable systems

The stable case has been extensively studied before, customar-
ily under the stronger assumption of sub-Gaussian noise (Abbasi-
Yadkori et al., 2011). Next, we generalize the results to sub-Weibull
noise vectors defined in Assumption 1. Further, these results will
be used for the general case in Section 3.3.

For a stable transitionmatrix A0 ∈ Rp×p, we define the constant
η (A0), that is critical in specifying various constants that appear in
the main results. Its definition is based on the Jordan decomposi-
tion of square matrices.

First, for λ ∈ C, define the sizem Jordan matrix of λ as follows.⎡⎢⎢⎢⎢⎣
λ 1 0 · · · 0 0
0 λ 1 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 λ 1
0 0 0 · · · 0 λ

⎤⎥⎥⎥⎥⎦ ∈ Cm×m.

Then, the Jordan decomposition of A0 is given by A0 = P−1ΛP ,
where Λ is block diagonal, Λ = diag (Λ1, . . . ,Λk), with Λi ∈

Cmi×mi , i = 1, . . . , k being a Jordan matrix of λi.

Definition 2. For a stable matrix A0, suppose that A0 = P−1ΛP is
the Jordan decomposition as described above. For t = 1, 2, . . ., let

ηt (Λi) = inf
ρ≥|λi|

tmi−1ρt
mi−1∑
j=0

ρ−j

j!
,

and ηt (Λ) = max1≤i≤kηt (Λi). Then, letting η0 (Λ) = 1, define

η (A0) =
⏐⏐⏐⏐⏐⏐P−1

⏐⏐⏐⏐⏐⏐
∞→2|||P|||∞

∞∑
t=0

ηt (Λ) .

Clearly, denoting the largest algebraic multiplicity of the eigen-
values of A0 (which is the same to the largest block-size in the
Jordan form) by µ (A0) = max1≤i≤kmi, we have

ηt (Λ) ≤ tµ(A0)−1
|λmax (A0)|

te|λmax(A0)|−1
. (2)

In the stable regime, the state process has a stationary limit
distribution. In this case, the empirical covariance matrix has an
approximately deterministic behavior, which is described by its
asymptotic distribution. Specifically, as time grows, Vn appropri-
ately normalized, can be approximated by κ (C), where κ (C) =∑

∞

i=0A
i
0CA

′

0
i denotes the asymptotic covariance matrix.

The following lemma provides a finite lower bound for the time
length (number of samples), based on the identification error ϵ, and
the failure probability δ. For this purpose, using the parameters
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b, d, and α specified in Assumption 1, we define the following
constant. Henceforth, one can let α → ∞, if the noise vectors
w(1), w(2), . . . are uniformly bounded.

c1 = 288(||x(0)||∞ ∨ 1)2η(A0)
2η
(
A′

0

)4 (
|||A0|||

2
2 + 1

)
× (|λmax (C)| + 1) (d log 2bp)4/αp log 8p.

Lemma1. Assuming |λmax (A0)| < 1, let c1 be as defined above. Then,
for arbitrary ϵ, δ > 0 if

n
(log n)4/α

≥
c1
ϵ2
(− log δ)1+4/α,

then

P
(⏐⏐⏐⏐λmax

(
1
n
Vn+1 − κ (C)

)⏐⏐⏐⏐ > ϵ

)
≤ δ.

A direct consequence of Lemma 1 is the following corollary,
which shows that high probability accurate identification can be
ensured, if reachability, as defined in Definition 1, is assumed. Note
that reachability implies that κ (C) is positive definite. Using c1
defined above, we define c2 = 4c1

(
|||A0|||

2
2 ∨ 1

)
|λmin (K (C))|−2

+2.

Corollary 1. Suppose that |λmax (A0)| < 1, and [A0, C] is reachable.
Then, for c2 above, and for all ϵ, δ > 0,

n
(log n)4/α

≥
c2
ϵ2
(− log δ)1+4/α,

implies

P
(⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)

− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2
> ϵ

)
< δ.

3.2. Explosive systems

In the explosive case, the empirical covariance matrix Vn grows
exponentially with respect to n. In addition, unlike the stable case,
Vn appropriately normalized, can be approximated by a random
matrix. Therefore, the eigenvalues of the normalized empirical
covariancematrix are stochastic as well. In order to find determin-
istic bounds for the eigenvalues of Vn, new quantities, denoted by
φ (A0) , ψ (A0, δ), need to be defined.

Subsequently, after providing formal definitions of these quan-
tities, we present in Lemma 2 bounds for the eigenvalues. Then,
a sufficient and necessary property of A0 for accurate identifica-
tion is introduced, followed by Propositions 1, 2, which establish
the positiveness of φ (·) , ψ (·, ·). This subsection concludes with
Corollary 2 that deals with identification in explosive systems.

First, for explosive A0, we define the nonnegative functions
φ (A0) , ψ (A0, δ) as follows. Assuming |λmin (A0)| > 1, let A0 =

P−1ΛP be the Jordan decomposition. Letting

z(∞) = x(0) +

∞∑
i=1

A−i
0 w(i),

P =
[
P1, . . . , Pp

]′
,

for δ > 0 define

ψ (A0, δ) = sup
{
y ∈ R : P

(
min
1≤i≤p

⏐⏐P ′

i z(∞)
⏐⏐ < y

)
≤ δ

}
.

Note that according to this definition, all coordinates of the vector
Pz(∞) are in magnitude at leastψ (A0, δ), with probability at least
1 − δ. Next, define

φ (A0) = |||P|||
−1
2→∞

inf
a∈Rp\{0}

1
||a||1

[p−1∑
i=0

ai+1Λ
−i

]
min

,

where for an arbitrary matrix M ∈ Cm×k, [M]min is the smallest
magnitude of the nonzero entries ofM:

[M]min = min{
⏐⏐Mij

⏐⏐ : 1 ≤ i ≤ m; 1 ≤ j ≤ k; Mij ̸= 0}.

In fact, φ (A0) represents the deterministic portion of the small-
est eigenvalue of the random matrix F∞ which approximates the
normalized Vn. It only depends on A0, while ψ (A0, δ) represents
the stochastic portion which depends on both A0 and the distribu-
tion of the noise sequence {w(t)}∞t=1. Intuitively, φ (A0) denotes the
minimum nontrivial distance between the polynomials of A−1

0 and
the origin, and ψ (A0, δ) denotes the high probability minimum
distance of the vector Pz(∞) from the origin. These minimum
distances show up, because for v ∈ Rp, v′F∞v is determined by the
product of a polynomial of A−1

0 (with coefficients determined by v),
and Pz(∞). More details are provided in the proof of Lemma 2.

Now, the behavior of the normalized empirical covariance ma-
trix can be controlled as follows:

Lemma 2. Suppose that |λmin (A0)| > 1; then, there is a constant
ξ (A0) < ∞ such that for all n, δ,

P
(⏐⏐λmax

(
A−n
0 Vn+1A′

0
−n)⏐⏐ > ξ (A0) (− log δ)2/α

)
≤ δ.

Further, there is a constant n1 < ∞, such that for arbitrary ϵ, δ > 0
if

n ≥
3 (α + 2)

α log |λmin (A0)|
log
(

− log δ
ϵ

)
∨ n1, (3)

then with probability at least 1 − 4δ it holds that⏐⏐λmin
(
A−n
0 Vn+1A′

0
−n)⏐⏐ ≥ φ(A0)

2ψ(A0, δ)
2
− ϵ. (4)

Remark 2. The inequality (3) is of interest for the following two
reasons. First, the accuracy ϵ decays exponentially fast when n
grows. Second, the failure probability δ decays doubly exponen-
tially fast with n.

This surprising strong behavior is intuitively caused by the
exponential growth of x(t). Broadly speaking, the growing signal
(i.e. x(t)) to noise (i.e. w(t)) ratio leads to the super fast decay of ϵ
and δ. Note that commonly in identification problems, the decay
rates of ϵ, δ are square-root, and exponential, respectively.

If φ (A0) ψ (A0, δ) = 0, obviously (4) holds. Thus, the main
interest is in the case where φ (A0) ψ (A0, δ) ̸= 0, which we
will show that holds under certain conditions, and is necessary
to ensure accurate identification. In fact, the first case is of no
interest, since it can be shown that Vn will be singular, and thus
identification of A0 fails, even if the time period becomes infinitely
large (Nielsen, 2009). For the second case, the transition matrix
A0 needs to be regular, according to the following definition. Reg-
ularity (of course in addition to reachability), leads to accurate
identification as shown in Corollary 2.

Definition 3 (Regularity). A ∈ Rp×p is called regular if for any
explosive eigenvalue of A, denoted by λ, the geometricmultiplicity
of λ is one.

Regularity essentially implies that the eigenspace correspond-
ing to λ is one dimensional. There are also equivalent formulations
for regularity. Indeed, A is regular, if and only if for any explosive
eigenvalue λ, in the Jordan decomposition of A there is only one
block corresponding to λ. In other words, no matter how large
the algebraic multiplicity of λ is, its geometric multiplicity is one.
Another equivalent formulation is the following one. A is regular if
and only if

rank
(
A − λIp

)
≥ p − 1,
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for all λ ∈ C such that |λ| > 1. For example, let P1, P2 ∈ C2×2 be
arbitrary invertible matrices, and

A1 = P−1
1

[
ρ 1
0 ρ

]
P1, A2 = P−1

2

[
ρ 0
0 ρ

]
P2,

where ρ ∈ C, |ρ| > 1. Then, A1 is regular, where A2 is not.

Proposition 1. Assuming |λmin (A0)| > 1, regularity of A0 is equiva-
lent to φ (A0) > 0.

The next proposition shows that positiveness of ψ (A0, δ) is
implied by reachability. Proposition 2 also reveals a linear scaling of
ψ (A0, δ)with respect to δ, when the noise is a continuous random
variable.

Proposition 2. Assume |λmin (A0)| > 1, and [A0, C] is reachable.
We then have ψ (A0, δ) > 0. Moreover, if there is i ≥ p, such that
w(i − p + 1), . . . , w(i) have bounded probability density functions
(pdf) over certain subspaces of Rp, then,

ψ (A0, δ) ≥ ψ (A0) δ,

for some constant ψ (A0) > 0. If the bounded pdfs mentioned above
correspond to the normal distribution, then

ψ (A0) ≥

⎛⎝ π |λmin (K (C))|

2
⏐⏐⏐λmax

(
A0

iA′

0
i
)⏐⏐⏐
⎞⎠1/2

p−1
(
min
1≤i≤p

||Pi||2

)
.

Now, we are ready to state the key result for the time length
required to achieve accurate estimation for an explosive transition
matrix.

Corollary 2. Suppose that |λmin (A0)| > 1, A0 is regular, and [A0, C] is
reachable. There exists a constant n2 < ∞, such that for all ϵ, δ > 0,

n ≥
3 (α + 4)

α log |λmin (A0)|
log
(

− log δ
ϵψ (A0, δ)

)
∨ n2 (5)

implies

P
(⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)

− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2
> ϵ

)
< 4δ.

The time length specified in (5) is similar to that of Lemma 2 in
terms of the accuracy ϵ, while the dependence in δ is different. In
fact, compared to (3), the decay rate of δ is of the common expo-
nential order as n grows (assuming the linear scaling of ψ (A0, δ)
with respect to δ).

Remark 3. Another interesting property of explosive systems is
that n1, n2 scale logarithmically with respect to the dimension p.

The dependency of n1, n2 onA0, aswell as b, d, andα specified in
Assumption 1 are outlined explicitly in the corresponding proofs.
Moreover, the constants n1, n2 are in fact universal; for ρ1 > 0, a
single n1 depending on ρ1 implies (4) for all matrices A0 satisfying
|λmin (A0)| ≥ 1 + ρ1.

In addition, let λ1 (A) , . . . , λk(A) (A) be the distinct eigenvalues
of A. Then, there is a single universal constant n2 depending on
ρ1, ρ2, such that (5) implies the desired estimation result of Corol-
lary 2, for all regular explosive transitionmatrices A0 satisfying 1+

ρ1 ≤ |λmin (A0)|, and 0 < ρ2 ≤ min1≤i<j≤k(A0)
⏐⏐λi (A0)− λj (A0)

⏐⏐.
3.3. General systems

The previous results enable us to establish the key result of the
paper. Theorem 1 establishes the accuracy of identification, when
the regular matrix A0 has no eigenvalue on the unit circle. As the
following well known fact states, this assumption includes almost
all matrices (Mumford, 1999).

Fact 1. The set of all p × p real matrices with at least one eigenvalue
on the unit circle has Lebesgue measure zero. Moreover, almost all
matrices are regular.

However, note that transition matrices with unit eigenvalues
occur in applications, including resonating mechanical systems
(Fossen & Nijmeijer, 2011), the study of macroeconomic indica-
tors (Engsted, 2006; Nelson & Plosser, 1982) and the timeline of
bubbles during the crisis in the mid-late 2000s (Phillips & Yu,
2011). Therefore, addressing the identification problem for unit
root transition matrices, even though they constitute a measure
zero set, is an interesting direction for future work.

Excluding two pathological cases of square matrices with at
least one eigenvalue on the unit circle, and irregular matrices, the
estimation of the transition matrix for a general unstable system
is with high probability arbitrarily accurate, as determined in the
following theorem. Awell known fact states that there is an invert-
ible matrix M ∈ Rp×p, such that Ã = MA0M−1

∈ Rp×p is a block
diagonal matrix,

Ã =

[
A1 0
0 A2

]
,

where for i = 1,2, we have Ai ∈ Rpi×pi , p1 + p2 = p, and

|λmax (A1)| < 1 < |λmin (A2)| .

Technically, p1 (p2) is sum of the algebraic multiplicities of the
stable (explosive) eigenvalues of the true unknown matrix A0.
Conceptually, it determines the dimension of a certain subspace
of Rp, on which the linear transformation A0 is stable (explosive).
Note that since M is not known in advance, the above split of the
true transition matrix to a stable one and an explosive one cannot
be used in the identification procedure.

Theorem1. Suppose that A0 is regular, has no unit eigenvalue, [A0, C]
is reachable, and A2 is as above. Then, there exist constants c3, n3 <

∞, such that for all ϵ, δ > 0,
n

(log n)4/α
≥

c3
ϵ2

(
(− log δ)1+4/α

− logψ (A2, δ)
)
∨ n3, (6)

implies that

P
(⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)

− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2
> ϵ

)
< 6δ.

Regarding the time length above in (6), the exact specification of
the constants c3, n3 requires some additional definitions, provided
in the proof of Theorem 1. Broadly speaking, the behavior of c3
(respectively n3) is similar to that of c2 (resp. n2) used in Corollary 1
(resp. 2). Note that in order to compute c3 (resp. n3), one has to use
the stable (resp. explosive) matrix A1 (resp. A2). Further, since A0
is regular, regularity of A2 is automatically guaranteed. Therefore,
Corollaries 1 and 2 can be used. Note that the reachability condition
is inherited from the matrix A0, as formally presented in Proposi-
tion 12. Thus, Proposition 2 implies that − logψ (A2, δ) < ∞, and
it is up to a constant less than − log δ, if the noise vectors have
bounded probability density functions. Therefore, using Proposi-
tion 2, for continuously distributed noise vectors with bounded
pdfs one can substitute (6) with

n
(log n)4/α

≥
2c3
ϵ2
(− log δ)1+4/α

∨ (n3 − 2 logψ (A2)) .

4. Concluding remarks

We studied the problem of providing finite time bounds for
the least-squares estimates of general linear dynamical systems,
where the transition matrix does not necessarily need to be stable.
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The relationships between different parameters involved, includ-
ing time length, accuracy of the identification, failure probability,
the transition and noise matrices, and dimension are investigated.
We prove that apart from a pathological case of zero Lebesgue
measure, the identification is with high probability accurate, if the
length of the time period scales similar to standard results in esti-
mation theory, i.e. quadratic scaling with the inverse identification
error and logarithmic scaling with the failure probability.

These finite time results for such a widely used model can be
helpful to obtain analogous results for more complicated models
exhibiting temporal dependence, such as nonlinear systems. Fur-
ther, the techniques used in this work to analyze the accuracy
when the systems under study are not necessarily stable, provide
insight for settings where additional knowledge on the structure
of the dynamics is available. In particular, potential extensions to
a high-dimensional setting (assuming that the transition matrix is
sparse), or other structured classes such as low-rank matrices, as
well as addressing practically interesting cases of null measure, are
topics of interest and for future investigation.

5. Proofs of main results

5.1. Proof of Lemma 1

In this proof, we use the following propositions.

Proposition 3. For n = 1, 2, . . ., and 0 < δ < 1, define the following
event.

W =

{
max
1≤t≤n

||w(t)||∞ ≤ νn (δ)

}
.

where νn (δ) =
(
d log bnp

δ

)1/α
. We have P (W) ≥ 1 − δ.

Proposition 4. If A0 is stable, on the event W we have

||x(t)||2 ≤ η (A0) (||x(0)||∞ + νn (δ)) ,

for all t = 1, 2, . . . , n.

Proposition 5. Define Cn =
1
n

∑n
i=1w(i)w(i)′, and assume

n
νn(δ)

2 ≥
6 |λmax (C)| + 2ϵ

3ϵ2
p log

(
2p
δ

)
. (7)

On the event W we have

P (|λmax (Cn − C)| > ϵ) ≤ δ.

Proposition 6. For stable A0 define

Un =
1
n

n−1∑
i=0

[
A0x(i)w(i + 1)′ + w(i + 1)x(i)′A′

0

]
,

βn (δ) = |||A0|||2η (A0) νn (δ) (||x(0)||∞ + νn (δ)) .

Assuming
n

βn(δ)
2 ≥

32p
ϵ2

log
(
2p
δ

)
,

on the event W we have

P (|λmax (Un)| > ϵ) ≤ δ.

Next, letting βn (δ) be the same as Proposition 6, suppose that
N1 (ϵ, δ) is large enough, such that

n
νn(δ)

2 ≥
18 |λmax (C)| + 2ϵ

ϵ2
pη
(
A′

0

)4 log(4p
δ

)
, (8)

n
βn(δ)

2 ≥
288p
ϵ2

η
(
A′

0

)4 log(4p
δ

)
, (9)

n
(||x(0)||∞ + νn (δ))

2 ≥
6
ϵ

(
|||A0|||

2
2 + 1

)
η
(
A′

0

)2
η(A0)

2, (10)

hold for all n ≥ N1 (ϵ, δ). We prove that on the event W , for all
n ≥ N1 (ϵ, δ)we have

P
(⏐⏐⏐⏐λmax

(
1
n
Vn+1 − κ (C)

)⏐⏐⏐⏐ > ϵ

)
< δ.

First, according to (1) we have

Vn+1 = x(0)x(0)′ + A0

n−1∑
i=0

x(i)x(i)′A′

0 +

n∑
i=1

w(i)w(i)′

+

n−1∑
i=0

[
A0x(i)w(i + 1)′ + w(i + 1)x(i)′A′

0

]
= A0Vn+1A′

0 + nUn + nCn

+ A0
(
x(0)x(0)′ − x(n)x(n)′

)
A′

0 + x(0)x(0)′,

where Cn, and Un are defined in Proposition 5, and Proposition 6,
respectively. Letting En = Un+Cn+

1
nA0

(
x(0)x(0)′ − x(n)x(n)′

)
A′

0+
1
nx(0)x(0)

′, since |λmax (A0)| < 1, the Lyapunov equation Vn+1 =

A0Vn+1A′

0 + nEn has the solution

1
n
Vn+1 =

∞∑
i=0

Ai
0EnA

′

0
i
= κ (En) .

Henceforth in the proof, we assume the event W holds. According
to Proposition 5, (8) implies that

P

(
|λmax (Cn − C)| >

ϵ

3η
(
A′

0

)2
)

≤
δ

2
. (11)

In addition, by Proposition 6, (9) implies that

P

(
|λmax (Un)| >

ϵ

3η
(
A′

0

)2
)

≤
δ

2
. (12)

Finally, using Proposition 4, by (10) we get
1
n

(
|||A0|||

2
2 + 1

) (
||x(0)||22 + ||x(n)||22

)
≤

ϵ

3η
(
A′

0

)2 . (13)

Now, similar to the proof of Proposition 4, we have∑
∞

t=0

⏐⏐⏐⏐⏐⏐A′

0
t ⏐⏐⏐⏐⏐⏐

∞→2 ≤ η
(
A′

0

)
, which because of

⏐⏐⏐⏐⏐⏐A′

0
t ⏐⏐⏐⏐⏐⏐

2
≤
⏐⏐⏐⏐⏐⏐A′

0
t ⏐⏐⏐⏐⏐⏐

∞→2 leads to

∞∑
t=0

⏐⏐⏐⏐⏐⏐A′

0
t ⏐⏐⏐⏐⏐⏐2

2 ≤

(
∞∑
t=0

⏐⏐⏐⏐⏐⏐A′

0
t ⏐⏐⏐⏐⏐⏐

2

)2

≤ η
(
A′

0

)2
. (14)

Putting (11), (12), (13), and (14) together, on the eventW we have

|λmax (κ (En − C))| ≤

∞∑
t=0

⏐⏐λmax
(
At
0 (En − C) A′

0
t)⏐⏐

≤ η
(
A′

0

)2
|λmax (En − C)| ≤ ϵ,

with probability at least 1 − δ. Then, since the definition of c1
implies (15)–(17) for δ/2, the desired result holds. ■

5.2. Proof of Corollary 1

We prove that if the followings hold, then on the event W we
have

⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)
− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ ϵ, with probability at least 1 − δ. Letting
N1 (·, ·) be as defined in the proof of Lemma 1, suppose that

n ≥ N1

(
|λmin (K (C))|

2
,
δ

2

)
+ 1, (15)

n − 2
βn(δ)

2 ≥
32p

|λmin (K (C))|2ϵ2
log
(
4p
δ

)
, (16)
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ξ (A0, δ) = ||x(0)||2 +
⏐⏐⏐⏐⏐⏐P−1

⏐⏐⏐⏐⏐⏐
∞→2|||P|||∞

∞∑
t=1

ηt
(
Λ−1) (d log 2bpt2

δ

)1/α

< ∞, (19)

ξ (A0) = η
(
A−1
0

)2[
||x(0)||2 +

⏐⏐⏐⏐⏐⏐P−1
⏐⏐⏐⏐⏐⏐

∞→2|||P|||∞

∞∑
t=1

ηt
(
Λ−1) d1/α log (2bpt2)1/α]2

, (20)

ρ1 = 2
(⏐⏐⏐⏐⏐⏐P−1

⏐⏐⏐⏐⏐⏐
∞→2|||P|||∞η

(
A

′
−1
0

)2
+ η

(
A−1
0

) ⏐⏐⏐⏐⏐⏐P ′
⏐⏐⏐⏐⏐⏐2

∞→2

⏐⏐⏐⏐⏐⏐⏐⏐⏐P ′−1
⏐⏐⏐⏐⏐⏐⏐⏐⏐2

∞

)
e2|λmin(A0)|, (21)

ρ2 = 2η
(
A

′
−1
0

)2 (
2 + η

(
A−1
0

)) ⏐⏐⏐⏐⏐⏐P−1
⏐⏐⏐⏐⏐⏐

∞→2|||P|||∞e|λmin(A0)|. (22)

Box I.

where

βn (δ) = η (A0) νn (δ) (||x(0)||∞ + νn (δ)) .

First, by Lemma 1, (15) implies that on the event W ,
|λmin (Vn)|

n − 1
≥

|λmin (K (C))|
2

, (17)

with probability at least 1 − δ/2. Since [A0, C] is reachable,
|λmin (K (C))| > 0. Thus,

Â(n)
=

n−1∑
t=0

x(t + 1)x(t)′V−1
n = A0 + UnV−1

n ,

where Un =
∑n−1

t=0w(t + 1)x(t)′, which leads to⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)
− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

≤
|||Un|||2

|λmin (Vn)|
. (18)

To proceed, for an arbitrary matrix H ∈ Rk×ℓ, defining the linear
transformation

Φ (H) =

[
0k×k H
H ′ 0ℓ×ℓ

]
∈ R(k+ℓ)×(k+ℓ),

it holds that |||H|||2 = |λmax (Φ (H))| (see Tropp, 2012). Note that
Φ (H) is always symmetric. Next, letting Xt = w(t + 1)x(t)′, apply
Matrix Azuma inequality (Tropp, 2012) toΦ (Xt) ∈ R2p×2p. Since

Φ(Xt)
2

=

[
||x(t)||22w(t + 1)w(t + 1)′ 0p×p

0p×p ||w(t + 1)||22x(t)x(t)
′

]
,

by Proposition 3, and Proposition 4, all matricesΦ(Mt)
2
− Φ(Xt)

2

are positive semidefinite on the event W , where

Mt = p1/2η (A0) νn (δ) (||x(0)||∞ + νn (δ)) Ip.

By

σ 2
=

⏐⏐⏐⏐⏐λmax

(
n−1∑
t=0

Φ(Mt)
2

)⏐⏐⏐⏐⏐ = npβn(δ)
2,

letting y =
|λmin(K (C))|

2 (n − 1) ϵ, according to Matrix Azuma in-
equality (Tropp, 2012), (16) implies

P (|||Un|||2 > y) = P (|λmax (Φ (Un))| > y) ≤
δ

2
,

which in addition to (17) gives the desired result, once plugged in
(18).

Finally, the definition of c2 implies all above statements for δ/2,
which completes the proof. ■

5.3. Proof of Lemma 2

Proposition 7. Let z(n) = x(0) +
∑n

t=1A
−t
0 w(t), where A0 is an

explosive matrix with Jordan decomposition A0 = P−1ΛP. Define the

event

V =

{
sup

1≤n≤∞

||z(n)||2 ≤ ξ (A0, δ)

}
,

where ξ (A0, δ) is defined in (19)which is given in Box I. Then, we have
P (V) ≥ 1 − δ.

Letting A0 = P−1ΛP be the Jordan decomposition, and z(0) =

x(0), for n = 1, 2, . . ., define

z(n) = x(0) +

n∑
t=1

A−t
0 w(t),

Un = A−n
0 Vn+1A′

0
−n
,

Fn =

n∑
t=0

A−t
0 z(n)z(n)′A′

0
−t
.

First, using x(t) = At
0z(t), since

Un =

n∑
t=0

A−n
0 x(t)x(t)′A′

0
−n

=

n∑
t=0

A−n+t
0 z(t)z(t)′A′

0
−n+t

,

by Proposition 7, on the event V we have

|λmax (Un)| ≤

∞∑
t=0

⏐⏐⏐⏐A−t
0 z(n − t)

⏐⏐⏐⏐2
2

≤

∞∑
t=0

⏐⏐⏐⏐⏐⏐A−t
0

⏐⏐⏐⏐⏐⏐2
2||z(n − t)||22 ≤ η

(
A−1
0

)2
ξ(A0, δ)

2,

which is the desired result, because the right hand side above is at
most ξ (A0) (− log δ)2/α , for the constant ξ (A0) defined by (20) is
given in Box I. In the sequel, we prove the desired result about the
smallest eigenvalue. Lettingρ1, ρ2 be as defined in (21), (22)which
are given in Box I, assume the followings hold for all n ≥ N2 (ϵ, δ):

νn (δ) n2µ(A0)|λmin (A0)|
−2n/3

≤
ϵ

ρ1ξ (A0, δ)
, (23)

nµ(A0)−1
|λmin (A0)|

−n
≤

ϵ

ρ2ξ(A0, δ)
2 , (24)

where µ (A0) is defined after Definition 2. Note that taking

n1 =
3 log

(
ρ1ρ2ξ(A0)

3(d log bp)1/α
)
+ 12µ (A0)+ 6/α

|λmin (A0)|
,

(3) implies (23) and (24).
For all n ≥ N2 (ϵ, δ), we show that with probability at least

1 − 4δ it holds that⏐⏐λmin
(
A−n
0 Vn+1A′

0
−n)⏐⏐ < φ(A0)

2ψ(A0, δ)
2
− ϵ.

The proof is based on the following propositions.
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Proposition 8. On the event W ∩ V , we have

|λmax (Un − Fn)| ≤
ϵ

2
. (25)

Proposition 9. On V , with probability at least 1 − δ,

|λmax (F∞ − Fn)| ≤
ϵ

2
. (26)

Next, we show that with probability at least 1 − δ,

|λmin (F∞)| ≥ (φ (A0) ψ (A0, δ))
2

= λ0. (27)

For this purpose, we need the following propositions.

Proposition 10. Letting f (x) =
∑p−1

i=0 ai+1xi be a real polynomial, we
have

P
(⏐⏐⏐⏐f (A−1

0

)
z(∞)

⏐⏐⏐⏐
2 < ||a||1φ (A0) ψ (A0, δ)

)
≤ δ.

Proposition 11. If φ (A0) ψ (A0, δ) ̸= 0, then,

P
(
rank

([
z(∞), A0z(∞), . . . , A−p+1

0 z(∞)
])
< p

)
= 0.

If λ0 = 0, (27) is trivial. Otherwise, assume |λmin (F∞)| < λ0,
and let v ∈ Rp be such that ||v||2 = 1, and v′F∞v < λ0. Then,

λ0 >

p−1∑
t=0

v′A−t
0 z(∞)z(∞)′A′

0
−t
v

≥

⏐⏐⏐⏐⏐⏐v′

[
z(∞), . . . , A−p+1

0 z(∞)
]⏐⏐⏐⏐⏐⏐2

∞

= max
0≤i≤p−1

⏐⏐v′A−i
0 z(∞)

⏐⏐2.
By Proposition 11, almost surely, there is a ∈ Rp, such that v =∑p−1

i=0 ai+1A−i
0 z(∞). So,

||v||2 =

⏐⏐⏐⏐⏐v′

(p−1∑
i=0

ai+1Ai
0

)
z(∞)

⏐⏐⏐⏐⏐ ≤

p−1∑
i=0

|ai+1|
⏐⏐v′Ai

0z(∞)
⏐⏐

<

p−1∑
i=0

|ai+1| λ0
1/2

= λ0
1/2

||a||1,

which, by Proposition 10, holds with probability at most δ. Putting
(25), (26), and (27) together, on the event W ∩ V , we get the
following, which holds with probability at least 1 − 2δ:

|λmin (Un)| ≥ λ0 − ϵ,

which is the desired result. ■

5.4. Proof of Corollary 2

Indeed, we prove that if the followings hold, then, we have⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)
− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ ϵ, with probability at least 1 − 4δ. Letting N2 (·, ·)

be as defined in the proof of Lemma 2, suppose that

n ≥ N2 (λ0, δ)+ 1, (28)

λ0ϵ ≥ ρνn (δ) nµ(A0)−1
|λmin (A0)|

−n+1, (29)

where

λ0 =
1
2
φ(A0)

2ψ(A0, δ)
2,

ρ = p1/2ξ (A0, δ) η
(
A−1
0

) ⏐⏐⏐⏐⏐⏐P−1
⏐⏐⏐⏐⏐⏐

∞→2|||P|||∞e|λmin(A0)|.

Note that taking

n2 = n1 +
3

|λmin (A0)|
log

(
2pξ (A0) η

(
A−1
0

)
φ (A0)

)
+

3
|λmin (A0)|

log
(⏐⏐⏐⏐⏐⏐P−1

⏐⏐⏐⏐⏐⏐
∞→2|||P|||∞e|λmin(A0)|

)
,

(5) implies (28), (29).

First, by Lemma 2, (28) implies that on the event W ∩ V ,⏐⏐⏐λmin

(
A−n+1
0 VnA′

0
−n+1

)⏐⏐⏐ ≥ λ0, (30)

with probability at least 1− 2δ. According to Propositions 1 and 2,
regularity, in addition to reachability, imply λ0 > 0. Thus,

Â(n)
=

n−1∑
t=0

x(t + 1)x(t)′V−1
n = A0 + UnA′

0
n−1V−1

n ,

where Un =
∑n−1

t=0w(t + 1)x(t)′A′

0
−n+1, which leads to⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)

− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

≤
|||Un|||2

⏐⏐⏐⏐⏐⏐A0
−n+1

⏐⏐⏐⏐⏐⏐
2⏐⏐λmin

(
A0

−n+1VnA0
−n+1)⏐⏐ . (31)

Since x(t) = At
0z(t), Propositions 3 and 7 imply that on the event

W ∩ V ,

|||Un|||2 ≤ p1/2νn (δ) ξ (A0, δ) η
(
A−1
0

)
(32)

Plugging (30) and (32) in (31), and using (2), we get⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n)
− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

≤
ρ

λ0
νn (δ) nµ(A0)−1

|λmin (A0)|
n−1,

which by (29) is at most ϵ, holding with probability at least 1 − 2δ
on W ∩ V . ■

5.5. Proof of Theorem 1

We split the original system into two parts, eachwith transition
matrix Ai. First, let

C̃ = MCM ′
=

[
C11 C12
C21 C22

]
,

where Cij ∈ Rpi×pj for i = 1,2. Then, for t = 0, 1, . . ., defining

x̃(t) = Mx(t),
w̃(t + 1) = Mw(t + 1),

we have

x̃(t + 1) = M (A0x(t) + w(t + 1))
= ÃMx(t) + Mw(t + 1)
= Ãx̃(t) + w̃(t + 1).

Note that letting

νn+1 (δ) = (|||M|||∞ ∨ 1)
(
d log

bp (n + 1)
δ

)1/α

,

similar to Proposition 3, we have P (W) ≥ 1 − δ, where

W =

{
max

1≤t≤n+1
(||w(t)||∞ ∨ ||w̃(t)||∞) ≤ νn+1 (δ)

}
.

Let

x̃(t) =
[
x(1)(t)′, x(2)(t)′

]′
,

w̃(t + 1) =
[
w(1)(t + 1)′, w(2)(t + 1)′

]′
,

where x(i)(t), w(i)(t+1) ∈ Rpi , for i = 1,2. Since Ã is block diagonal,
the processes x(1)(t), x(2)(t) are separated:

x(i)(t + 1) = Aix(i)(t) + w(i)(t + 1),
Cii = E

[
w(i)(t + 1)w(i)(t + 1)′

]
.

Both new processes inherit reachability from the original one.
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n ≥ N2

(
φ(A2)

2ψ(A2, δ)
2

2
, δ

)
, (33)

n ≥ 3N1

(
|λmin (K1)|

2
, δ

)
, (34)

ρ0

ρ1
≥ nµ(A2)−1/2

|λmin (A2)|
−2n/3, (35)

1
ρ2

≥ νn+1 (δ) nµ(A2)|λmin (A2)|
−n/3, (36)

ϵ

3ρ3ρ4
≥ νn+1 (δ) nµ(A2)−1/2

|λmin (A2)|
−2n/3, (37)

ϵ

3ρ3ρ5
≥ νn+1(δ)

2nµ(A2)+1/2
|λmin (A2)|

−n/3, (38)

1
ρ6

≥ nµ(A2)−1/2
|λmin (A2)|

−n, (39)

n2(n + 1)−1(⏐⏐⏐⏐x(1)(0)⏐⏐⏐⏐
∞

+ νn+1 (δ)
)2
νn+1(δ)

2
≥

8pρ2
3η(A1)

2

ϵ2
log
(
4 (p + p1)

δ

)
, (40)

n
νn+1(δ)

2 ≥
72p2ρ2

3

ϵ2
log
(
4 (p + p2)

δ

)
. (41)

Box II.

Proposition 12. If [A0, C] is reachable, then for i = 1,2, [Ai, Cii] is
reachable as well.

Now, we define the following parameters, which will be used
in the proof. Letting A2 = P−1Λ2P be the Jordan decomposition of
the explosive matrix A2, and K1 =

∑
∞

t=0A
t
1C11A′

1
t , define

ρ0 =
1
2

−
1
2

(
1 −

|λmin (K1)|

9 |λmax (K1)|

)1/2

,

ρ1 =

2p |λmin (A2)| ξ (A2, δ)
⏐⏐⏐⏐⏐⏐P ′

⏐⏐⏐⏐⏐⏐
∞→2

⏐⏐⏐⏐⏐⏐⏐⏐⏐P ′−1
⏐⏐⏐⏐⏐⏐⏐⏐⏐

∞

e|λmin(A2)|

φ (A2) ψ (A2, δ)
,

ρ2 =

8η
(
A′

2
−1
)2
ξ (A2, δ)

⏐⏐⏐⏐⏐⏐P−1
⏐⏐⏐⏐⏐⏐

∞→2|||P|||∞e|λmin(A2)|

φ(A2)
2ψ(A2, δ)

2 ,

ρ3 =
4
(
4|λmin (K1)|

−1
+ 3

)1/2
|||M|||2

|λmin (K1)|
1/2ρ0

,

ρ4 =
2p1/2ξ (A2, δ)

⏐⏐⏐⏐⏐⏐P−1
⏐⏐⏐⏐⏐⏐

∞→2|||P|||∞e|λmin(A2)|

φ (A2) ψ (A2, δ)
,

ρ5 =
2
⏐⏐⏐⏐⏐⏐P−1

⏐⏐⏐⏐⏐⏐
∞→2|||P|||∞e|λmin(A2)|

φ (A2) ψ (A2, δ)
,

ρ6 =

⏐⏐⏐⏐⏐⏐P ′
⏐⏐⏐⏐⏐⏐

∞→2

⏐⏐⏐⏐⏐⏐⏐⏐⏐P ′
−1
⏐⏐⏐⏐⏐⏐⏐⏐⏐

∞

e|λmin(A2)||λmin (K1)|
1/2

φ (A2) ψ (A2, δ)
.

Note that the constants ρ0, ρ3 do not depend on δ, and all other
parameters depend on δ, only through ξ (A0, δ) and ψ (A0, δ).
UsingN1 (·, ·), andN2 (·, ·) defined in Lemmas 1 and 2, respectively,
suppose that the conditions (33)–(41) which are given in Box II
hold.

We show that
⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n+1)

− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ ϵ, with probability at least

1−6δ. Among the conditions (33)–(41), themain inequalities for ϵ
are (40), (41), for ψ (A2, δ) are (33), (35), (36), (37), (38), (39), and
for δ are (34), (40), (41).

Therefore, taking

c3 = 72p(|||M|||2 ∨ 1)4ρ2
3c2 +

18 (α + 4)
α log |λmin (A2)|

, (42)

n3 = 12 (n2 + log (ρ3|||M|||∞ ∨ 1)) , (43)

(6) implies (33)–(41). Above c2 is computed for the pair of matrices
[A1, C11], and n2 is computed for the pair [A2, C22].

First,

MVn+1M ′
=

n∑
t=0

x̃(t)x̃(t)′

=

n∑
t=0

[
x(1)(t)
x(2)(t)

] [
x(1)(t)′, x(2)(t)′

]
=

[
V (1)
n+1 Y ′

n+1
Yn+1 V (2)

n+1

]
,

where for i = 1,2,

V (i)
n =

n−1∑
t=0

x(i)(t)x(i)(t)′,

Yn =

n−1∑
t=0

x(2)(t)x(1)(t)′.

Let the event E ⊂ W ∩ V be the following:⏐⏐⏐⏐λmin

(
1
n
V (1)
n+1

)⏐⏐⏐⏐ ≥
1
2

|λmin (K1)| ,⏐⏐⏐λmin

(
A−n
2 V (2)

n+1A
′

2
−n
)⏐⏐⏐ ≥

1
2
φ(A2)

2ψ(A2, δ)
2.

According to Lemma 1, and Lemma 2, (33), (34) imply P (E) >
1−5δ. Henceforth in the proof,we assume the event E holds. Define
the invertible symmetric matrix

Un =

[
V (1)
n+1 0p1×p2

0p2×p1 V (2)
n+1

]−1/2

∈ Rp×p,
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and let

En = UnMVn+1M ′Un

=

[
Ip1 V (1)

n+1
−1/2

Y ′

n+1V
(2)
n+1

−1/2

V (2)
n+1

−1/2
Yn+1V

(1)
n+1

−1/2
Ip2

]
.

Proposition 13. On the event E , we have

|λmin (En)| ≥ ρ0. (44)

Then, lettingm =
⌈ n

3

⌉
, define

Σn = V (2)
m+1(m) +

n∑
t=m+1

At−m
2 x(2)(m)x(2)(m)′A′

2
t−m
.

Proposition 14. For Ũn =

[
n−1/2Ip1 0p1×p2
0p2×p1 Σ

−1/2
n

]
, we have⏐⏐⏐⏐⏐⏐⏐⏐⏐Ũ−1

n Un

⏐⏐⏐⏐⏐⏐⏐⏐⏐2
2

≤
2

|λmin (K1)|
+

3
2
. (45)

To proceed, define the following matrices:

Gn = n−1
n∑

t=0

w(t + 1)x(1)(t)′,

Hn = n−1/2
n∑

t=0

w(t + 1)x(2)(t)′Σ−1/2
n .

Proposition 15. For matrices Gn,Hn defined above, it holds that

P
(

|||Gn|||2 >
ϵ

ρ3

)
≤
δ

2
, (46)

P
(

|||Hn|||2 >
ϵ

ρ3

)
≤
δ

2
. (47)

Finally, since the event E holds, (39) implies⏐⏐⏐⏐⏐⏐n1/2Un
⏐⏐⏐⏐⏐⏐

2 ≤ 23/2
|λmin (K1)|

−1/2. (48)

This completes the proof as follows. Writing

Â(n+1)
− A0 =

n∑
t=0

w(t + 1)x(t)′V−1
n+1

= [Gn,Hn]
(
Ũ−1
n Un

)
E−1
n n1/2UnM,

according to inequalities (44), (45), (46), (47), and (48), on the event
E , with probability at least 1 − δ,⏐⏐⏐⏐⏐⏐⏐⏐⏐Â(n+1)

− A0

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ (|||Gn|||2 + |||Hn|||2)

⏐⏐⏐⏐⏐⏐⏐⏐⏐Ũ−1
n Un

⏐⏐⏐⏐⏐⏐⏐⏐⏐
2

⏐⏐⏐⏐⏐⏐E−1
n

⏐⏐⏐⏐⏐⏐
2

⏐⏐⏐⏐⏐⏐n1/2Un
⏐⏐⏐⏐⏐⏐

2|||M|||2

≤
2ϵ
ρ3

(
2

|λmin (K1)|
+

3
2

)1/2

ρ−1
0 23/2

|λmin (K1)|
−1/2

|||M|||2

= ϵ,

which is the desired result. ■
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