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ABSTRACT
Vector autoregressive (VAR)models aim to capture linear temporal interdependencies amongmultiple time
series. They have been widely used inmacroeconomics and financial econometrics andmore recently have
found novel applications in functional genomics and neuroscience. These applications have also accentu-
ated the need to investigate the behavior of the VAR model in a high-dimensional regime, which provides
novel insights into the role of temporal dependence for regularized estimates of the model’s parameters.
However, hardly anything is known regarding properties of the posterior distribution for Bayesian VARmod-
els in such regimes. In this work, we consider a VAR model with two prior choices for the autoregressive
coefficient matrix: a nonhierarchical matrix-normal prior and a hierarchical prior, which corresponds to an
arbitrary scale mixture of normals. We establish posterior consistency for both these priors under standard
regularity assumptions, when the dimension p of the VAR model grows with the sample size n (but still
remains smaller than n). A special case corresponds to a shrinkage prior that introduces (group) sparsity in
the columns of the model coefficient matrices. The performance of the model estimates are illustrated on
synthetic and real macroeconomic datasets. Supplementary materials for this article are available online.

1. Introduction

There has been recent interest in modeling high-dimensional
time series datasets. In macroeconomics, Mol, Giannone, and
Reichlin (2008) advocated the need to include a large number
of variables in econometric models to improve forecastability,
while Billio et al. (2012) examined stock returns of many finan-
cial institutions to assess systemic risk of the financial system.
Similarmodeling challenges arise in functional genomics for the
reconstruction of regulatory networks as discussed in Basu, Sho-
jaie, and Michailidis (2015), while in neuroscience one is inter-
ested in understanding functional connectivity between brain
regions (Seth, Barrett, and Barnett 2015).

A popular and informative model has been vector autore-
gressions (VAR), that captures linear temporal dependencies
between time series. The VAR model and its properties have
been thoroughly explored in low-dimensional settings both
from a frequentist (for a comprehensive overview see Lütke-
pohl 2007) and a Bayesian perspective (Bańbura, Giannone, and
Reichlin 2010).

More recently, Basu and Michailidis (2015) provided an
in-depth analysis of the model for Gaussian data in a high-
dimensional setting under sparsity assumptions, while Melnyk
and Banerjee (2016) extended the results to other regularizers
(e.g., group lasso, sparse group lasso, etc.). The results of Basu
andMichailidis (2015); Melnyk and Banerjee (2016) and related
follow-up work (Raskutti, Yuan, and Chen (2018); Schwein-
berger, Babkin, and Ensor (2017); Lin and Michailidis (2017))
indicate that the resulting estimation error rates are those
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obtained for independent and identically distributed data times
a factor that captures the temporal dependence in the data.

On the Bayesian front, there has been primarilymethodolog-
ical/computational work for low-dimensional VARmodels. The
so-called Minnesota prior (Litterman 1979; Doan, Litterman,
and Sims 1984) has been a staple of applied econometric work
involving VAR models. This is a normal prior distribution on
the elements of the transition matrix that puts stronger weights
on the “own” lags of each time series, since they are consid-
ered more informative for forecasting purposes than lags from
“other” time series. For large size VAR models, Bańbura, Gian-
none, and Reichlin (2010) advocated normal-inverted Wishart
distribution that leads to a posterior mean that can be inter-
preted as a ridge shrinkage estimator, suitable for suchmodels. A
first attempt for Bayesian estimation of VAR models combined
with variable selection is presented in Korobilis (2013), where
an indicator variable is specified for each parameter in the tran-
sition matrix that indicates whether the cross-autocorrelation
coefficient is included or set to zero. A prior is specified for the
indicator variables that in principle can also be combined with
the Minnesota prior.

On the other hand, Bayesian investigations into high-
dimensional asymptotics of statistical models that incorporate
sparsity with temporally dependent data are not in general avail-
able to the best of our knowledge. Hence, the main objective
of this work is to study posterior (estimation) consistency for
a VAR model, which asserts that the posterior concentrates
around the “true” parameter value (in an appropriate norm)
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as the sample size increases. There is a rich literature on high-
dimensional posterior estimation consistency for linear regres-
sion models for independent and identically distributed data.
Ghoshal (1999) established posterior consistency and asymp-
totic normality with a general prior on the p-vector of regression
coefficients (with appropriate positivity and Lipschitz assump-
tions) when p3 log p/n → 0 and p4 log p/n → 0, respectively.
Bontemps (2011) extended the work of Ghoshal (1999) by per-
mitting the model to be misspecified and the number of predic-
tor variables to grow proportionally to the sample size. Armagan
et al. (2013) focused on shrinkage priors, which are appropriate
scalemixtures of normal priors and inducedweak sparsity in the
vector of regression coefficients (see Carvalho, Polson, and Scott
2010; Griffin and Brown 2010; Armagan, Clyde, and Dunson
2011; Armagan, Dunson, and Lee 2013). They established pos-
terior consistency under a simple sufficient condition on prior
concentration when p = o(n). Lee and Oh (2013) established
posterior consistency under a high-dimensional Bayesian prin-
cipal component analysis (PCA) regression setup with p > n
under appropriate assumptions on the rank of the designmatrix.
Posterior estimation consistency in linear regression models
with g-priors has also been addressed in Sparks, Khare, and
Ghosh (2015).

A crucial difference between the linear regression models
considered in the above work and VAR models (expressed as
a linear model) is that the design matrix in the latter case is
random, and exhibits dependencies both between its rows and
across its columns, and also with the error term in the model
(see Section 2). This leads to a significantly more involved and
challenging theoretical analysis that we successfully resolve. In
this article, we investigate high-dimensional posterior consis-
tency for Bayesian VAR models in two natural and relevant set-
tings: (a) with a nonhierarchical matrix normal prior on the
dp× p autoregressive parameter matrix and (b) a hierarchical
prior which corresponds to a general scale mixture of normals.
In particular, this includes spherically symmetric priors such as
the multivariate-t and standard shrinkage priors which induce
(group) sparsity in the columns of the coefficient matrices, such
as the group structure in Basu, Shojaie, and Michailidis (2015).
Further, we employ a flat (uniform) prior distribution for the
error term. Note that the joint maximum likelihood estimation
problem for a sparse VAR model, with a sparse error covari-
ance matrix is investigated in Lin and Michailidis (2017). The
posterior consistency results are established under mild regu-
larity assumptions on the underlying spectral density and with
p = o(n/ log n). The key to handling the dependencies, within
the design matrix and also between the design matrix and the
error term, is a pair of high-dimensional concentration inequal-
ities established in the supplementary material (Propositions B1
and B3). Note that we are considering the “large p large n” set-
ting with p = o(n). However, we make no assumption reducing
the effective dimension of the “true parameter matrix.” We only
assume that the matrix norm of the true parameter matrix is of
the order p in the nonhierarchical prior setting and bounded by
a constant in the hierarchical prior setting. The large p small n
situation, where p is allowed to grow at a much faster rate than
n is also of interest, but assumptions such as sparsity/restricted
eigenvalue type conditions are required, which in turn reduce
the effective dimension of the true parameters. General

posterior consistency results for VARmodels in the large p small
n setting are also not available to the best of our knowledge and
are topics of future discussion/research.

The remainder of the article is organized as follows. In
Section 2, we introduce theVARmodel and necessary notions of
posterior consistency. We consider the nonhierarchical matrix
normal prior on the coefficient matrix in Section 3.1 and estab-
lish posterior consistency under suitable regularity assumptions.
In Section 3.3, we prove posterior consistency considering a
hierarchical prior corresponding to a scale-mixture of matrix
normals. In Sections 4 and 5, the methodology/results of this
article are illustrated on simulated and real datasets, respectively.
Finally, we conclude with a discussion in Section 6.

1.1. Notation

Throughout this article, Z, R, and C denote the sets of inte-
gers, real numbers, and complex numbers, respectively. We
denote the cardinality of a set J by |J|. For a vector v ∈ R

p,

‖v‖ :=
√∑

v2
j denotes the �2-norm. For a matrix A, ‖A‖ and

σmax(A) denote spectral norm, that is, ‖A‖ = supx �=0
‖Ax‖2
‖x‖2 and

the largest singular value of A, respectively. For a symmetric or
Hermitian matrix A, we denote its maximum and minimum
eigenvalues by λmax(A) and λmin(A). The vector ei is used for
the ith unit vector in R

p. Bold uppercase letters are only used
to denote matrices, and vectorized form of such matrices is rep-
resented by corresponding lower cases. For example, if � is a
p× pmatrix then φ is vec(�). Also,O represents a zero-matrix
of appropriate dimension, and in general vectors are denoted by
italicized bold lowercase letters.

2. Model Formulation

For a p-dimensional stationary time series {Xt}, a vector autore-
gressive model of lag-d is given by

Xt = c +
d∑
i=1

AiXt−i + εt . (1)

The temporal dependence structure of the VAR model is char-
acterized by the p× p transition matrices A1,A2, . . . ,Ad and c
is a p× 1 location vector which we choose to be 0. In the Gaus-
sian VAR, the errors εt are iid Np(0,�ε) where �ε is a p× p
unknown error covariance matrix. The model in (1) can be
rewritten in the Yule–Walker representation (Lütkepohl 2007)
as

Xt − μ =
d∑
i=1

Ai(Xt−i − μ) + εt ,

whereμ = (I − A1 − A2 − · · · − Ad )
−1c is known as the pro-

cess mean. Usually μ will not be known in advance. In that
case, μ may be estimated by the vector of sample means X̄ =∑n

1 X
t . An alternative estimator is μ̂ = (I − Â1 − Â2 − · · · −

Âd )
−1ĉ inwhich ĉ and Âi’s are the least-square estimator.Hence-

forth we assume without loss of generality μ = 0. Based on the
data {X0, . . . ,XT }, we define the response matrix Y and design
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matrix X as follows,

Y =

⎡⎢⎣ (XT )′
...

(Xd )′

⎤⎥⎦
n×p

X =

⎡⎢⎣ (XT−1)′ · · · (XT−d )′
...

. . .
...

(Xd−1)′ · · · (X0)′

⎤⎥⎦
n×dp

.

We can now rewrite the abovemodel in a linear regression setup
as

Y = X� + E, (2)

where

� =

⎡⎢⎢⎢⎣
A′

1
A′

2
...
A′

d

⎤⎥⎥⎥⎦ E =

⎡⎢⎣ (εT )′
...

(εd )′

⎤⎥⎦.

In this formulation, the number of samples is n = T − d + 1
and the number of unknown parameters is q = dp2, respec-
tively. Vectorizing (column-wise) each matrix, we get

y := vec(Y) = Zφ + ε,

where Z := (Ip ⊗ X), φ = vec(�), and ε = vec(E). In this arti-
cle, we consider a high-dimensional setting where the dimen-
sion p of the VARmodel increases with the sample size n. How-
ever, we assume that the lag d does not vary with n. This basic
formulation of regression lends itself easily to a Bayesian analysis
in which priors are placed on the unknown parameter matrices
� and �ε.

As previously mentioned, we let the dimension p = pn of the
VAR model vary with n, so that our results are relevant to high-
dimensional settings. We assume that our data come from a
true VARmodel described as follows: for every, n ≥ 1, let Yn :=
(Xn,0, . . . ,Xn,n+d−1) be the set of observations for sample size
n, which satisfy Xn,k =∑d

i=1 Ai,0nXn,k−i + εn,k for d ≤ k ≤
n + d − 1. The errors {εn,k}n+d−1

k=d are iid Npn (0,�ε,0n). Here
{�0n}n≥1 denotes the sequence of the true coefficient matrices
given by�′

0n := [A1,0n A2,0n . . . Ad,0n], and {�ε,0n}n≥1 denotes
the sequence of the true error covariancematrices. LetP0 denote
the probability measure underlying the true model described
above.

Next, consider a Bayesian model which builds on (2) by
placing priors on the parameters (�,�ε). In particular, let
{πn(�,�ε)}n≥1 and {πn(�,�ε | Yn)}n≥1 denote the sequences
of the corresponding (joint) prior and posterior densities.
Analogously, {�n(·)}n≥1 and {�n(· | Yn)}n≥1 denote the cor-
responding sequences of (joint) prior and posterior distribu-
tions. We will also use the notation πn an �n to denote the
marginal prior and posterior densities/distributions for � and
�ε as appropriate.

Note that ourmain parameter of interest is�, while the error
covariance matrix�ε is more of an unknown nuisance parame-
ter that we need to deal with. One would hope that as the sample
size n tends to infinity, the posterior probability assigned to any
ε neighborhood of �0n converges to 1 almost surely under P0.
We now formally define a notion of posterior consistency that
formalizes this.

Definition 1. The sequence of posterior distributions�n(· | Yn)

is said to be consistent at {�0n}n≥1, if for every ε > 0, �n(‖� −
�0n‖ > ε | Y ) → 0 as n → ∞ a.s. P0.

For ease of exposition, we will henceforth denote �0n as
�0, and �ε,0n as �ε,0, and highlight their dependence on n as
needed.

2.1. Stability of VAR(d) Process

Since VAR models are dynamical systems, the notion of “sta-
bility” plays an important role in their analysis and asymptotic
properties.

Definition 2. A VAR(d) process defined in (1) is said to be sta-
ble if the matrix valued polynomials A(z) := Ip −∑d

i=1 Aizi
satisfies det(A(z)) �= 0 on the unit circle of the complex plane
{z ∈ C : |z| = 1}.

The autocovariance function of a p-dimensional centered
covariance-stationary time series {Xt} is defined as �X (h) =
cov(Xt ,Xt+h) t, h ∈ Z and the corresponding spectral density
is given by fX (θ ) := 1

2π
∑∞

h=−∞ �X (h)e−ihθ , θ ∈ [−π, π].
For a Gaussian stable VAR(d) model, the spectral density has
a closed-form expression,

fX (θ ) = 1
2π

⎛⎝Ip −
d∑
j=1

A je−i jθ

⎞⎠−1

×�ε

⎡⎣⎛⎝Ip −
d∑
j=1

A je−i jθ

⎞⎠−1⎤⎦∗

,

where * denotes the Hermitian conjugate of a matrix and i ≡√−1. The autocovariance function which characterizes a cen-
tered Gaussian process, can be used to quantify the temporal
and cross-sectional dependence for VAR(d) models. The peak
of the spectral density, measured by its maximum eigenvalue
M( fX ) := maxθ∈[−π,π] λmax( fX (θ )) can be used as a mea-
sure of stability of the process. Also the minimum eigenvalue
m( fX ) := minθ∈[−π,π] λmax( fX (θ )) captures cross-dependence
among its components. However, as mentioned in Basu and
Michailidis (2015) instead of working with M( fX ) and m( fX )

it is often easier to work with the eigenvalues ofA∗(z)A(z) over
the unit circle {z ∈ C : |z| = 1}. Let

μmin(A) := min
|z|=1

λmin(A∗(z)A(z))

= min
θ∈[−π,π]

λmin

⎛⎝⎛⎝Ip −
d∑
j=1

A′
je
i jθ

⎞⎠⎛⎝Ip −
d∑
j=1

A je−i jθ

⎞⎠⎞⎠
μmax(A) := min

|z|=1
λmax(A∗(z)A(z))

= max
θ∈[−π,π]

λmax

⎛⎝⎛⎝Ip −
d∑
j=1

A′
je
i jθ

⎞⎠⎛⎝Ip −
d∑
j=1

A je−i jθ

⎞⎠⎞⎠ .

For stable VAR(d) process, 0 < μmin(A) ≤ μmax(A) < ∞.
Since each εt is iid as Np(0,�ε), each row of X is distributed
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asNdp(0,CX ), where the covariance matrix CX has the follow-
ing structure,

CX =

⎡⎢⎢⎢⎣
�(0) �(1) · · · �(d − 1)
�(1)′ �(0) · · · �(d − 2)
...

...
. . .

...
�(d − 1)′ �(d − 2)′ · · · �(0)

⎤⎥⎥⎥⎦
dp×dp

. (3)

The quantities μmin(A) and μmax(A) provide a useful bound
for the eigenvalues of CX . As mentioned in Melnyk and Baner-
jee (2016) and from Proposition 2.3 and eq. (2.6) of Basu and
Michailidis (2015), we have the following chain of inequalities,

λmin(�ε)

μmax(A)
≤ 2πm( fX ) ≤ λmin(CX ) ≤ λmax(CX )

≤ 2πM( fX ) ≤ λmax(�ε)

μmin(A)
. (4)

We finally note that the p-dimensional VAR(d) model in (2)
can be equivalently written as a dp-dimensional VAR(1) pro-
cess. Let

X̃t =

⎡⎢⎣ Xt

...
Xt−d+1

⎤⎥⎦
dp×1

, Ã1 =

⎡⎢⎢⎢⎢⎢⎣
A1 A2 · · · Ad−1 Ad
Ip O · · · O O
O Ip · · · O O
...

...
. . .

...
...

O O · · · Ip O

⎤⎥⎥⎥⎥⎥⎦
dp×dp

,

and

ωt =

⎡⎢⎢⎢⎣
εt+1

0
...
0

⎤⎥⎥⎥⎦
dp×1

.

Then the new representation becomes

X̃t = Ã1X̃t−1 + ωt t = d, . . . , n + d − 1. (5)

It follows that X = [X̃n+d−2 X̃n+d−3 · · · X̃d−1]′, that is, ith
row of X is denoted as (dp× 1 vector) X̃n+d−i−1. Note that if
the underlying VAR(d) process {Xt} is stable then the process
X̃t with the characteristic polynomial, Ã(z) := Idp − Ã1z is also
stable. This is because {X̃t} can be viewed as generated according
to a stable VAR(1) process with transition matrix Ã1 and {X̃t} is
stable if and only if {Xt} is stable (Lütkepohl 2007). Based on
Ã(z), we define

μmin(Ã) := min
θ∈[−π,π]

λmin

((
Ip − Ã′

1e
iθ
) (

Ip − Ã1e−iθ
))

μmax(Ã) := max
θ∈[−π,π]

λmax

((
Ip − Ã′

1e
iθ
) (

Ip − Ã1e−iθ
))

.(6)

While μmin(Ã) and μmax(Ã) are not necessarily the same as
μmin(A) and μmax(A), the inequalities in (4) still hold with
μmin(A) and μmin(A) replaced by μmin(Ã) and μmax(Ã),
respectively.

3. Bayesian Estimation and Posterior Consistency

In this section, we first discuss Bayesian estimation ofVARmod-
els with nonhierarchical and hierarchical scale mixture matrix

normal prior distributions on the parameter matrix � (con-
ditioned on �ε) and subsequently establish high-dimensional
posterior consistency in this setting under mild regularity
assumptions.We start by introducing the necessary notation for
thematrix-variate normal distribution. LetMa,b denote the space
of a × bmatrices.
Definition 3. An a × b random matrix X is defined to follow a
matrix-variate normal distribution (MN a×b(M,B1,B2)) if its
density function (on the spaceMa,b) is given by

|B1|−b/2|B2|−a/2

(2π)ab/2
e− 1

2 tr{B−1
1 (X−M)B−1

2 (X−M)′}.

Here M ∈ Ma,b. B1 ∈ Ma,a and B2 ∈ Mb,b which are both
positive definite matrices corresponding to the variances among
the rows and columns of X, respectively. Note that the matrix
normal distribution is related to the multivariate normal distri-
bution in the following way: X ∼ MN n×p(M,B1,B2), if and
only if vec(X) ∼ Nnp(vec(M),B2 ⊗ B1).

3.1. Nonhierarchical Matrix Normal Prior

We consider amatrix normal prior for� conditional on�ε, and
a flat (uniform) prior on �ε. In particular,

� | �ε ∼ MN dp×p(O,U−1,�ε) and π(�ε) ∝ 1, (7)

where U is a dp× dp known positive definite matrix. Note that
under this matrix normal prior U−1 and �ε are the covariance
matrices corresponding to the columns and rows of �, respec-
tively. The posterior distribution of � (conditional on �ε) can
easily be shown to beMN dp×p(�PM, (X′X + U)−1,�ε), where
�PM := (X′X + U)−1X′Y is the (conditional) posterior mean
which does not depend on �ε. Hence, the unconditional poste-
riormean of� is available in closed form and is given by�PM. It
follows by standard computations using themultivariate normal
density that the marginal posterior density of�ε is proportional
to

|�ε|−n/2 e−tr(�−1
ε �̂res),

where �̂res = YT (I − X(XTX + U)−1XT )Y. This density is
proper if and only if n > 2p. In this case, the marginal poste-
rior density of �ε corresponds to the Inverse-Wishart density
with scale parameter �̂res and shape parameter n − p− 1. We
summarize the above observations in the lemma below.
Lemma 1. Under the nonhierarchical prior in (7), the posterior
density of (�,�ε) is proper if and only if n > 2p. In this case

� | �ε,Y ∼ MN dp×p
(
�PM, (X′X + U)−1,�ε

)
�ε | Y ∼ Inverse-Wishart(�̂res, n − p− 1).

3.2. Assumptions for Posterior Consistency

We will establish our results under the high-dimensional set-
ting from Section 2. Recall that �0 = �0n denotes the true
underlying parametermatrix, and�ε,0 = �ε,0n denotes the true
underlying error covariance matrix in this setting. The quanti-
tiesμmin(Ã),μmax(Ã), andCX are as defined in (6) and (3), but
with�0 and�ε,0 as the underlying parameter values.We assume
the following:
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Assumption A1. The VAR(d) model given in (1) is stable.

Assumption A2. 1+μmax(Ã)

μmin(Ã)
is O

(
5

√
n
p

)
as n → ∞.

Assumption A3. 0 < infn≥1 λmin(CX ) < ∞ and λmax(�ε,0n) =
O(1).

Assumption A4. The true parameter matrix of the VAR model
(2), �0 and the hyperparameter U of (7) are such that∥∥�T

0U�0
∥∥ = o(n) and ‖U�0‖ = o(n).

Assumption A5. p = o(n).

When d = 1, we deal with a VAR(1) model and CX becomes
�X (0), while μmin(Ã) is the same as μmin(A) and μmax(Ã) is
also equal to μmax(A). Assumption A1 is a standard assump-
tion which ensures that the underlying VAR process is well-
behaved. Assumption A2 plays an important role in deriving
high-dimensional concentration bounds for X′X/n and X′E/n
around CX and O, respectively (see Propositions B.1 and B.3
in the supplementary material). Assumption A3 is needed to
ensure that λmin(X′X/n) is bounded away from 0 with high
probability. Further, if we consider that each column of � is
independently and identically distributed according to a normal
prior distribution, that is, U = Idp, Assumption A4 reduces to
‖�′

0�0‖2 = o(n) and ‖�0‖ = o(n).
We now state the main theoretical result of posterior consis-

tency with a nonhierarchical matrix normal prior distribution
on �. The proof is given in Appendix C.1 of the supplementary
material.

Theorem 1 (Posterior consistency for nonhierarchical prior). For
any centered VAR(d) model (2) with nonhierarchical prior (7)
on � satisfying Assumptions A1–A5, the posterior consistency
of the parameter matrix can be achieved, that is, for every fixed
every ε > 0

E0
[
�n(‖� − �0‖ > ε|Y = (X0, . . . ,Xn))

]→ 0 as n → ∞
where �0 is the true parameter matrix under the model (2).

A natural question to ask is whether the assumption p = o(n)

can be relaxed for posterior consistency. In the lemma below,
we consider a situation in which Assumptions A1–A4 are satis-
fied and p is the same order as n, and prove that the resulting
posterior is not consistent. The proof is given in Appendix C.2 of
the supplementary material.

Lemma 2. Consider a (sequence of) VAR(1) model with pn =
γ n, �0n = αIpn , and �ε,0n = Ipn , where γ ∈ (0, 1

2 ), α ∈ (0, 1)
do not depend on n. If we use the nonhierarchical prior (7) on
� with ‖U‖ = o(n), then there exists ε > 0 such that

lim inf
n→∞ E0

[
�n(‖� − �0‖ > ε|Y = (X0, . . . ,Xn))

]
> 0.

Remark. Note that the condition ‖U‖ = o(n) assumed in
Lemma 2 corresponds to Assumption A4 in the setting of the
lemma. The reason for making this assumption is that we want
to show violating Assumption A5 (p = o(n)) can lead to poste-
rior inconsistency, even if all of Assumptions A1–A4 hold. If we
decide to violate Assumption A4 too by assuming ‖U‖ = O(n)

or ‖U‖ � n (goes to ∞ at the same rate or faster than n), then

the posterior inconsistency proof becomes comparatively eas-
ier.We have provided the corresponding proofs in supplemental
Section C.3 and supplemental Section C.4, respectively.

3.3. Hierarchical Normal-Mixture Prior

Next, we study the posterior consistency of the parametermatrix
in model (2) in which � has the following hierarchical prior:

�|�ε,U ∼ MN dp×p(O,U−1,�ε),

π(�ε) ∝ 1,

and

U ∼ πscl(.), (8)

whereU is the dp× dpmatrix having probability density πscl(·)
over the space of dp× dp positive definite matrices, M+

dp. As
shown below, the group lasso and multivariate t distribution
prior on � can be obtained from (8) using appropriate choices
of πscl(·). The lemma below shows that the posterior is proper if
n > (d + 1)p, and provides the form of various conditional and
marginal posterior densities. The proof is given in Appendix C.5
of the supplementary material.

Lemma 3. Under the hierarchical normal-mixture prior in (8),
the posterior density of (�,�ε,U) is proper if n > (d + 1)p. In
this case,

� | �ε,U,Y ∼ MN dp×p
(
�PM, (X′X + U)−1,�ε

)
�ε | U,Y ∼ Inverse-Wishart(�̂res, n − p− 1)

π(U|Y ) ∝ |U|dp/2
|X′X + U|dp/2|�̂res|(n−p−1)/2

πscl(U).

The Bayesian group lasso prior was proposed by Kyung et al.
(2010) in the context of linear regression. We adapt it to the
VAR setting as follows. Suppose the rows of � are divided in G
groups �[1], . . . ,�[G], where each �[g] is an mg × p submatrix
of � (hence

∑
mg = dp) and Xg is the submatrix of X of order

n × mg corresponding to the group �[g]. The frequentist group
lasso estimator (conditional on �ε) is obtained by solving

min
�[1],...,�[G]

∥∥∥∥∥∥∥�−1/2
ε

⎛⎝Y −
G∑

g=1

Xg�[g]

⎞⎠
∥∥∥∥∥∥∥
2

F

+
G∑

g=1

λg

∥∥∥∥∥∥∥�[g]�
−1/2
ε

∥∥∥∥∥∥∥
F

,

where λg is a tuning parameter corresponding to the group
g. The group lasso estimator (conditional on �ε) can also be
expressed as the maximum a posteriori probability (MAP) esti-
mate under model (2) with the prior

π(� | �ε) ∝ exp

⎛⎝−
G∑

g=1

λg
∥∥�[g]�

−1/2
ε

∥∥
F

⎞⎠ ,

which is a multivariate generalization of the double exponential
prior and can also be expressed as a scale mixture of normals
with Gamma hyperpriors (Park and Casella 2008; Kyung et al.
2010) leading to the group lasso hierarchy,

�[g]|τg,�ε
ind∼ MNmg×p(O, τgImg ,�ε)
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and

τg
ind∼ Gamma

(
mg + 1

2
,
λ2
g

2

)
, g = 1, . . . ,G.

HereGamma(α, λ) denotes theGamma distributionwith shape
parameter α and rate parameter λ. This can be alternatively
presented as �|τ,�ε ∼ MN dp×p(O,BDiag(τ1, . . . , τG),�ε)

and τg
ind∼ Gamma(mg+1

2 ,
λ2
g

2 ) where BDiag(τ1, . . . , τG) denotes
a block-diagonal matrix with gth block to be τgImg . Note
that under the above hierarchical prior, conditionally on
(τ1, . . . , τG) and�ε, the columns of� are independent. Ifmg =
1 ∀ g = 1, . . . , dp we get the ordinary Bayesian lasso.

Under the specification given in (8), suppose we assumeU =
Diag(τ1, . . . , τdp) and 1/τi

ind∼ Gamma(αi, λi/2) then it can be
shown that the prior density for� given only�ε is proportional
to

dp∏
i=1

(∥∥�i·�−1/2
ε

∥∥2
2 + λi

)−(αi+ 1
2 )

,

which corresponds to the multivariate t-distribution.

3.4. Estimation

For the hierarchical model given in (8), the posterior density
of � is intractable and quantities such as the posterior mean
are not available in closed form. Hence, we develop a Markov
chain Monte Carlo algorithm to generate values from the
posterior density. It follows by straightforward calculations
that

� | �ε,U,Y ∼ MN dp×p(�PM, (X′X + U)−1,�ε)

�ε | U,Y ∼ Inverse-Wishart
(
�̂res, n − p− 1

)
π(U|�,�ε,Y ) ∝ |U|dp/2 exp

[
−1
2
tr
{
��−1

ε �′U
}]

πscl (U),

where �̂res = YT (I − X(XTX + U)−1XT )Y. While the condi-
tional posterior distribution of � given �ε,U and �ε given U
are easy to simulate from (being Matrix-normal and Inverse-
Wishart), the tractability of the conditional posterior density
of U given �,�ε depends on the form of the prior πscl (U). We
show below that for three standard choices of πscl (U) corre-
sponding to the Wishart prior, the group lasso prior, and the
multivariate t-prior π(U|�) becomes a tractable density and
easy to simulate from.

Case 1: Wishart Prior

For a dp× dp positive definite matrix V, let
U ∼ Wishartdp(V, d f = ν + dp), that is, π(U) ∝
|U| ν−1

2 exp[− 1
2 tr{V−1U}]. In this case,

π(U|�,�ε,Y ) ∝ |U| ν+dp−1
2 exp

[
−1
2
tr
{
(��−1

ε �′ + V−1)U
}]

,

which isWishartdp((��−1
ε �′ + V−1)−1, d f = ν + 2dp). Note

that as long as we have ν > −(dp+ 1) the posterior of U given
�,�ε,Y is proper.

Case 2: Bayesian Group Lasso

In this case as already discussed in Section 3.3, U−1 has a block
diagonal form BDiag(τ1, . . . , τG) and τg’s are a priori indepen-
dently distributed as Gamma with scale (mg + 1)/2 and rate
λ2
g/2. Hence, the conditional distribution of τg has the follow-

ing form,

1
τg

∣∣∣∣�,�εY ind∼ Inverse − Gaussian

(
μg = λg

‖�[g]�
−1/2
ε ‖F

, λ2
g

)
.

Case 3: Multivariate t-Distribution

By taking U−1 = Diag(τ1, . . . , τdp) and 1/τi to be indepen-
dently distributed as Gamma with shape αi and rate λi/2, we
have the multivariate t-distribution as the prior on �. In this
case, the conditional distribution of τi has the following form:

1
τi

∣∣∣∣�,�ε,Y ind∼ Gamma

(
αi + dp

2
,

‖�′
i·�

−1/2
ε ‖22 + λi

2

)
.

3.5. Assumptions for Posterior Consistency

We now introduce regularity conditions to establish posterior
consistency under the hierarchical prior model.

Assumption B1. The VAR(d) model given in (1) is stable.

Assumption B2. 1+μmax(Ã)

μmin(Ã)
is O

(
5

√
n
p

)
as n → ∞.

Assumption B3. 0 < infn≥1 λmin(CX ) ≤ supn≥1 λmax(CX ) < ∞
and 0 < λmax(�ε,0n) = O(1).

Assumption B4. The singular values of the true parametermatri-
ces {�0n}n≥1 are uniformly bounded. Equivalently, the eigenval-
ues of {�′

0n�0n}n≥1 are uniformly bounded.

Assumption B5. p = o
(

n
log n

)
.

Assumption B6. There exists (fixed and not-depending on n)
α > 0 such that

lim infn→∞ πscl,n(λmax(U) > α) > 0 and for every β > 0 we
have limn→∞ πscl,n(λmax(U) > βn) = 0.

We now discuss these assumptions and compare them to the
assumptions for the nonhierarchical prior model.

� Assumptions B1 and B2 are identical to A1 and A2, while
B3 is fairly similar to A3.

� One key difference is the permissible scaling of p as a
function of the sample size n in Assumption B5, which is
slightly more stringent than the permissible scaling for the
nonhierarchical matrix normal prior in Assumption A5.

� Note that Assumption B6 is a mild one. For example, a suf-
ficient condition for this assumption to be satisfied is that
lim supn→∞ max1≤i≤pEπscl,n[Uδ

ii] < ∞ for some δ > 0 and
lim infn→∞ πscl,n(U11 > α) > 0. It can be easily checked
that this condition, and hence Assumption B6, is satisfied
in the case of Wishart, Inverse-Wishart, Bayesian group
lasso, multivariate t-distribution, Horseshoe (Carvalho,
Polson, and Scott 2010), Strawderman-Berger and gener-
alized double Pareto (Armagan et al. 2013) priors as long
as the prior parameters do not depend on n.
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� In the nonhierarchical prior case, assumptions regarding
�0 and U (nonrandom) are simultaneously and exclu-
sively provided in Assumption A4 through the conditions∥∥�T

0U�0
∥∥ = o(n) and ‖U�0‖ = o(n). For the hierarchi-

cal prior case, for clarity of exposition, we provide the
assumptions regarding �0 in Assumption B4, and those
regarding the distribution of U (random) in Assumption
B6. Combining these two assumptions, it can be easily
shown that a priori

∥∥�T
0U�0

∥∥ and ‖U�0‖ converge to
zero in �scl,n-probability as n → ∞. In that sense, the
assumptions on (�0,U) in the hierarchical model are
stronger than in the nonhierarchical model case.

With these assumptions in hand, we state our key consistency
result, whose proof is delegated to Appendix C.6 of the supple-
mentary material.

Theorem 2 (Posterior consistency for hierarchical prior). For any
centered VAR(d) model with the hierarchical prior (8) on the
transition matrix satisfying Assumptions B1–B6, the posterior
consistency of the transition matrix can be achieved, that is, for
every fixed cε > 0

E0
[
�n(‖� − �0‖ > ε|Y = (X0, . . . ,Xn))

]→ 0 as n → ∞
where �0 is the true parameter matrix under the model (2).

4. Performance Evaluation

To illustrate the performance of our Bayesian modeling frame-
work for VAR processes, we design three sets of numerical
experiments involving: (a) Small VAR (p = 10), (b) Medium
VAR (p = 100), and (c) Large VAR (p = 500)models, each with
two lags—(i) d = 1 and (ii) d = 2.

In each setting, we use transitionmatricesAi’s with 10%–30%
nonzero entries that are generated from U (0, 2) ∪U (−2, 0)
selected at random and rescaled to ensure that the pro-
cess is stable with SNR = 2. For small VAR models, we
generate n = 40, 80, 120 time points, for medium VAR
models, n = 400, 800, 1200, while for large VAR models

we use n = 2000, 4000, 6000. The hyper-parameters for the
prior distributions are selected using the deviance infor-
mation criterion (DIC). Note that DIC = 2D̄ − D(�̄, �ε),
where D(�,�ε) := −2 log L(Y|�,�ε) = n log |�ε| +
tr{�−1

ε (�′X′X� − 2�′X′Y + Y′Y)}, D̄ is the posterior expec-
tation ofD(�,�ε), and �̄ and�ε are the posterior expectation
of � and �ε, respectively.

4.1. Nonhierarchical Prior

We generate two different error processes using �ε = σ 2Ip
and �ε = σ 2((ρ|i− j|)

)
i j (Toeplitz form). For each of the small,

medium, and large VAR models, U is taken to be a diagonal
matrix, cIdp where c is chosen according to the minimum DIC
value over the interval [0, 10]. In Table 1, for both the poste-
rior mean (PM) and least-square estimator (LS), we report their
relative estimation error (‖�̂ − �0‖2/‖�0‖2) and the standard
error of ‖�̂‖2 within parenthesis averaged over 10 × p repli-
cates for small and medium VAR and 100 replications for large
VAR (p = 500). Since the true parametermatrix�0 is sparse, we
identify entries whose 95% posterior credible intervals contain
zero, and set them to zero in both parameter matrix estimates
(PM and LS).

First, we assume the true error covariancematrix�ε is diago-
nal, that is, σ 2Ip. Here % denotes percentage of nonzero entries
in � and d represents lag length of the underlying VAR pro-
cess. Recall that the sample sizes used for small VAR mod-
els are n1 = 40, n2 = 80, n3 = 120, for medium VAR ones
n1 = 400, n2 = 800, n3 = 1200, and for large VAR ones n1 =
2000, n2 = 4000, n3 = 6000.

It can be seen that the relative estimation error decreases with
an increase in the number of time points (sample size) n for
both lags d = 1, 2; further, its values are significantly larger in
medium and large size VAR models than in small VAR ones.
Moreover, the estimation error for lag 1 is uniformly smaller
than that for lag 2, and the same holds true for their respective
standard errors. Regarding the percentage of nonzero entries in

Table . Relative error in VAR (d = 1, 2) with�ε = σ 2Ip where % denotes percentage of nonzero entries in�0 .

Lag d = 1 Lag d = 2

n1 n2 n3 n1 n2 n3

% LS PM LS PM LS PM LS PM LS PM LS PM

Small VAR  . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

Medium VAR  . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

Large VAR  . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)
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Table . Relative error in VAR (d = 1, 2) with�ε = Toeplitz (ρ = 0.80) where % denotes percentage of nonzero entries in�0 .

Lag d = 1 Lag d = 2

n1 n2 n3 n1 n2 n3

% LS PM LS PM LS PM LS PM LS PM LS PM

Small VAR  . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (. (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

Medium VAR  . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

Large VAR  . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

 . . . . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.) (.)

the true transition matrices, the results show that for fixed n
and p, the more true nonzero entries in A1,A2, the less accu-
rate the posterior mean and the LS estimator are, while their
variability as indicated by their standard errors also follows the
same pattern. However, the posterior mean clearly outperforms
the LS estimates, especially in settings with large p. This is to a
large extent because the true transition matrices A1,A2 exhibit
weaker signal as p or the number of nonzero edges increases
(this is to ensure stability of the underlying VARmodel) and due
to our choice ofU = c Idp the posteriormean is the ridge regres-
sion estimator which applies shrinkage on the coefficients.

Next, we introduce correlation in the error components by
specifying �ε to be of Toeplitz form. As discussed in sec. 3.2.1
of Lütkepohl (2007) the generalized least-square estimate in this
multivariate regression set-up is the same as the ordinary one,
that is, (X′X)−1X′Y, a result due to Zellner (1962). In Table 2, we
compare the performance of least squares and posterior (ridge)
estimates with noise covariance �ε = Toeplitz (ρ = 0.8).

In this setting, the relative estimation error of both the least
squares and ridge estimators increases compared to that with
an uncorrelated error structure given in Table 1; in particular,
the performance of the LS estimator deteriorates even further.
However, with an increase in sample size, the accuracy of both
estimates significantly improves. Further, as gleaned from the

entries of the table corresponding to lag 2, the relative error
exhibits a further increase, a pattern consistent with the results
in Table 1. This is quite expected as we not only have Toeplitz
type error covariance structure, but also the total number of
unknown parameters has increased by p2.

Finally, we study the support recovery under both error pro-
cesses. In Table 3, we provide the percentage of true positives
recovered by using 95% posterior credible intervals based on the
same sample sizes n1, n2, and n3 as used previously.

Table 3 indicates that support recovery is not sensitive to
the sample size, or to the lag; however, it deteriorates for all
VAR models and error covariance settings, as the density of
nonzero entries increases and exhibits a small increase with
model dimension.

4.2. Hierarchical Priors

As discussed in Section 3.4, three types of hierarchical priors
(Wishart, group-lasso, and multivariate t) are studied. Anal-
ogously to the nonhierarchical prior case, the performance
of the LS estimator is not at all satisfactory in this setup as
well. Thus, we only compare the relative accuracy of the three
prior choices in this setting. We select V = cIdp and d f = ν =
dp for the Wishart prior, λi = λ for all 1 ≤ i ≤ dp for the

Table . Percentage of true positive nonzero entries recovered in�.

Lag d = 1 Lag d = 2

�ε = σ 2Ip �ε = Toep �ε = σ 2Ip �ε = Toep

% n1 n2 n3 n1 n2 n3 n1 n2 n3 n1 n2 n3

Small VAR  . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

Medium VAR  . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .

Large VAR  . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
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Table . Relative error in VAR (d = 1, 2) with�ε = σ 2Ip, where % denotes percentage of nonzero entries in�0 .

Wishart Group lasso Multivariate t

Lag d = 1 % n1 n2 n3 n1 n2 n3 n1 n2 n3

Small VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Medium VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Large VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Lag d = 2

Small VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Medium VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Large VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

group-lasso prior and αi = 1, λi = λ for all 1 ≤ i ≤ dp for the
multivariate t prior. The hyperparameters c and λ are chosen
using DIC. In Table 4, we report the relative estimation error
(‖�̂ − �0‖2/‖�0‖2, d = 1, 2) of the three hierarchical estima-
tors when the error process covariance is set to σ 2Ip and d rep-
resents lag length in the underlying VAR model.

Next in Table 5, we present relative estimation errors with the
same three hierarchical priors when �ε = Toeplitz (ρ = 0.8).

All of our hierarchical estimates outperform the ridge esti-
mator (Tables 1 and 2) across all settings considered. This is
again expected, since theAi’s have sparse structure by construc-
tion and the group lasso prior favors sparsity. However, the
above results are not conclusive whether the group lasso esti-
mate exhibits better accuracy than theWishart or multivariate t
estimates.

To gain some insight into this issue, we use a VAR(1) model
with p = 9 and transition matrix A1 in which the columns
form three groups each containing three columns. The sparsity
increases as wemove from group 1 to group 3. Finally, we rescale
the coefficient matrix so that the corresponding VAR process is
stable with SNR= 2. The structure of the resultingA1 transition
matrix is depicted next, where * indicates nonzero entries.

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 ∗ 0 0 0 0
∗ ∗ ∗ 0 0 ∗ 0 0 0
0 0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 0 ∗ 0
0 0 0 0 0 0 0 0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
9×9

Table . Relative error in VAR (d = 1, 2) with�ε = Toeplitz (ρ = 0.80), where % denotes percentage of nonzero entries in�0 .

Wishart Group lasso Multivariate t

Lag d = 1 % n1 n2 n3 n1 n2 n3 n1 n2 n3

Small VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Medium VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Large VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Lag d = 2

Small VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Medium VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Large VAR  . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .
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Table . Relative error.

Estimator �ε = σ 2Ip �ε = Toeplitz

LS . .
Non H . .
W . .
Mult. t . .
GL . .

We generate n = 100 observations from the above VAR(1)
model using two white noise variances (1) �ε = σ 2Ip and
(2) �ε = Toeplitz (ρ = 0.80) and report the relative estima-
tion error (‖Â1 − A1‖2/‖A1‖2) of five different estimates—least
squares (LS), posterior mean for nonhierarchical normal prior
(Non H), hierarchical Wishart (W), group lasso (GL), and mul-
tivariate t prior (Mult. t), in Table 6.

The results show that the group lasso estimator exhibits the
best performance, followed by the multivariate t one, whereas
the LS estimator is the least accurate. The result is consistentwith
the structure of the underlying transitionmatrix, since the group
lasso prior can capitalize on it.

In Appendix A.1 of the supplementary document, we illus-
trate the posterior estimate of a VAR(1) model transitionmatrix
A1, 95% credible intervals and estimated posterior densities of
several entries of A1. We also look into the performance of �̂ε

when the true error covariance is Toeplitz(ρ = 0.8). The rela-
tive error of �̂ under all the four different priors using a new
noise covariance matrix which is generated from a Wishart dis-
tribution with degrees of freedom ν = p and scale matrix Ip is
also given.

5. Application toMacroeconomic Data

We use the proposed Bayesian framework to understand the
lead-lag relationships in the FRED-MD dataset containing
p = 137 key macroeconomic variables for the period January
1973 to December 2014. VAR modeling for this task was
strongly advocated by Sims (1980) and since then has become a
standard tool for it, althoughusually the focus is on smallmodels
involving few macroeconomic indicators (e.g., consumer price
index, employment index, and the federal funds rate). However,
recentwork has advocated for largerVARmodels (see Bernanke,
Boivin, and Eliasz 2005; Bańbura, Giannone, and Reichlin 2010,
and references therein), to improve forecastability and also
avoid the presence of hard to interpret or even contradictory to
economic theory relationships, because of not including an ade-
quate number of variables for properly modeling the economic
phenomenon under consideration. Before centering the data
and estimating �ε as discussed earlier in Section 3.4, we ensure
stationarity by processing the variables according to the recom-
mendations in Stock and Watson (2012). The specific transfor-
mations used for each time series are given in the supplementary
documents. Analogously to Bańbura, Giannone, and Reichlin
(2010), we consider the following three different size VAR
models:

� SMALL: This model contains p = 4 key variables—CPI,
number of employees nonfarm (PAYEMS), Federal Funds
Rate (FEDFUNDS), and Unemployment Rate (UNRATE).

� MEDIUM: In addition to the four variables in the
SMALL VAR model, this one contains an additional 16

variables (total p = 20) listed next—Reserves Of Depos-
itory Institutions (NONBORRES), Total Reserves of
Depository Institutions (TOTRESNS), M2 (M2REAL),
Real Personal Income (RPI), Real personal consumption
expenditures (DPCERA), IP Index (INDPRO), Capacity
Utilization: Manufacturing (CAPT), Housing Starts: Total
New Privately Owned (HOUST), Avg Hourly Earnings
: Goods-Producing (CES), M1 (M1), S & P’s Common
Stock Price Index: Composite (S.P.), 10-Year Treasury Rate
(GS10), Personal Cons. Expend.: Chain Index (PCEPI),
Foreign Exchange Rate (EXS), Crude Oil, spliced WTI,
and Cushing (OIL), and Retail and Food Services Sales
(RETAILx).

� LARGE: This specification has all p = 134 macroeco-
nomic indicators (three were excluded from further analy-
sis due to the presence of a large number ofmissing values).

Based on initial exploratory work, we choose lag d = 6
according to the Bayesian information criterion (BIC) and
the following distributions were used for prior specification
to obtain the estimated parameter matrix �: (i) nonhierarchi-
cal normal (Non H), (ii) hierarchical Wishart (W), (iii) group
lasso (GL), and (iv) multivariate t prior (Mult. t). Since with an
increase in the lag length d the number of parameters increases
linearly, we suggest using BIC over the Akaike information
criterion (AIC). For the nonhierarchical prior, we use U =
BDiag(λ1, . . . , λd ), while for the hierarchical Wishart, group-
lasso, and multivariate t priors on � , we use V = c1Idp and
αi = α for all 1 ≤ i ≤ dp. The values of c1 andλ are chosenusing
the deviance information criterion (DIC) which, as explained
previously, is a hierarchical Bayesianmodeling generalization of
BIC. The respective posteriormeanswere compared to the least-
square (LS) estimate. For each of the estimates �̂, the residual
norm ratio ( ‖Y − X�̂‖F/‖Y‖F ) which measures the in-sample
fit, is reported in Table 7.

Note that since the LS estimator is obtained by minimizing
‖Y − X�‖F , it will always result in minimum relative residual
norm as observed in Table 7, that is, the LS estimator is always
the best one in terms of in-sample prediction accuracy.

Next, we investigate the four different Bayesian estimates
based on their out-of-sample prediction performance with
respect to the benchmark prior, analogously to the evaluation
strategies discussed in Bańbura, Giannone, and Reichlin (2010)
and Stock and Watson (2012). We consider the following two
benchmark priors:

1. Prior information is imposed exactly by setting U−1 = O
matrix (the zeromatrix) and it corresponds to λ = 0 in the
Minnesota prior. Bańbura, Giannone, and Reichlin (2010)
used this specification as the benchmark prior, in which
case the corresponding benchmark model becomes a ran-
dom walk with drift, that is, Xt = α + Xt−1 + εt .

Table . In-sample prediction error.

SMALL (p = 4) MEDIUM (p = 20) LARGE (p = 134)

LS . . .
Non H . . .
W . . .
Mult. t . . .
GL . . .
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Table . Out-of-sample relative prediction error.

Uniform prior Randomwalk

SMALL MEDIUM LARGE SMALL MEDIUM LARGE
p = 4 p = 20 p = 134 p = 4 p = 20 p = 134

Nonhierarchical h = 1 . . . . . .
h = 6 . . . . . .
h = 12 . . . . . .

Wishart h = 1 . . . . . .
h = 6 . . . . . .
h = 12 . . . . . .

Group Lasso h = 1 . . . . . .
h = 6 . . . . . .
h = 12 . . . . . .

Mult. t h = 1 . . . . . .
h = 6 . . . . . .
h = 12 . . . . . .

2. Auniformprior on�by settingU = Owhich corresponds
to λ = ∞ in the Minnesota prior. The posterior mean
coincides with the least-squared estimate (LS).

Let X̂t+h be the h-step ahead predicted value for Xt+h based
on our posited Bayesian model and using the data up to time
t . The corresponding forecast under the benchmark prior is
X̂t+h
O . The mean squared forecast error relative to the bench-

mark (RMSFE) is defined to be
∑T1

t=T0
‖Xt+h−X̂t+h‖2∑T1

t=T0
‖Xt+h−X̂t+h

O ‖2
. Table 8 gives

the RMFSE results for three different choices of forecasting
horizons, h = 1, 6, 12, for the two benchmark priors consid-
ered, over the period T0 = January 1978 to T1 = Decem-
ber 2006. An RMSFE value smaller than 1 implies the VAR
model with the corresponding prior outperforms that with the
naive/benchmark prior.

It can easily be seen that all four Bayesian methods not only
outperform the LS estimate (uniform prior on �), but also
exhibit substantially smaller relative error compared to the ran-
dom walk with drift process (point-mass prior on �). Further,
increasing the number of predictor variables improves forecast-
ing performance, a point argued forcefully in favor of large VAR

models by Sims Sims (1980). On the other hand, forecasting
performance deteriorates for larger values of h, an expected
result. Nevertheless, even for h = 12 (1 year ahead), the results
are still very satisfactory. Further, for the SMALL andMEDIUM
VAR models, the nonhierarchical normal and hierarchical
Wishart priors result in better prediction, whereas for the
LARGE VAR model the group lasso prior outperforms other
forecasts.

Next, in Table 9, we examine closely the out-of-sample pre-
diction performance of the following three macroeconomic
variables—CPI, PAYEMS, and FEDFUND under the hierarchi-
cal Wishart prior.

Note that Bańbura, Giannone, and Reichlin (2010) only
considered a random walk process as the naive prior. From
Table 9, it can be seen that although for CPI and PAYEMS
the LS estimate performs better than the Bayesian estimates
in SMALL and MEDIUM VARs, overall the Wishart prior has
better forecasting accuracy than both of the benchmark pri-
ors. As previously observed, adding information (i.e., including
more variables) improves the accuracy of forecasts for all three
variables. The fourth column (LARGE BGR) provides the

Table . Out-of-sample relative prediction error for CPI, PAYEMS, and FedFund for the three VARmodel specifications considered. The column LARGE BVAR corresponds to
the entries of Table III in Bańbura, Giannone, and Reichlin () for a Bayesian VAR model with a normal-inverted Wishart prior distribution and d = 13 lags, based on the
same set of variables, but covering the period –.

SMALL MEDIUM LARGE LARGE BVAR
Uniform prior p = 4 p = 20 p = 134 p = 134

h = 1 CPI . . . —
PAYEMS . . . —
FFUND . . . —

h = 6 CPI . . . —
PAYEMS . . . —
FFUND . . . —

h = 12 CPI . . . —
PAYEMS . . . —
FFUND . . . —

Randomwalk

h = 1 CPI . . . .
PAYEMS . . . .
FFUND . . . .

h = 6 CPI . . . .
PAYEMS . . . .
FFUND . . . .

h = 12 CPI . . . .
PAYEMS . . . .
FFUND . . . .
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Figure . Posterior densities of entries (), (), (), and () in A1 under four different priors.

numbers reported in Table III in Bańbura, Giannone, andReich-
lin (2010), where a Bayesian VAR model on the same 134 vari-
ables, with d = 13 lags was estimated using a normal-inverted
Wishart distribution that leads to a ridge type posterior mean
estimate for the parameters in� and based on data covering the
period 1971–2003. Although the results are not directly compa-
rable to those obtained by our methodology, they nevertheless
provide a certain degree of calibration. It can be seen that our
model is more parsimonious using only d = 6 lags and provides
better forecasting performance for all three variables at all fore-
casting horizons.

Next, we examine in more detail the estimated transition
matrix A1 for the SMALL VAR model (p = 4) and the non-
hierarchical normal and group lasso priors. Estimated posterior
densities of the bold marked entries are shown in Figure 1. It
is worth noting that the nonhierarchical prior centers around
a different value and exhibits a less smooth behavior than the

hierarchical one. This smoothness should be expected given the
specification of the latter.

Â
NonH
1 =

CPI PAYEMS FEDFund UnRate
CPI

PAYEMS
FEDFund
UnRate

⎛⎜⎜⎝
−0.133 −0.001 0.001 0.001
−0.016 0.311 0.001 −0.002
−1.000 10.200 0.498 −0.185
1.217 −23.300 −0.035 −0.105

⎞⎟⎟⎠

Â
GL
1 =

CPI PAYEMS FEDFund UnRate
CPI

PAYEMS
FEDFund
UnRate

⎛⎜⎜⎝
−0.167 −0.005 0.001 0.001
−0.021 0.560 0.001 −0.001
−1.614 18.607 0.486 −0.134
1.609 −41.818 −0.015 −0.107

⎞⎟⎟⎠
Further, we present the 95%posterior credible intervals (PCI)

of A1 under the above two priors.

Figure . Network representation of the transition matrix (A1).
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Nonhierarchical:

=

⎛⎜⎜⎜⎝
(−0.19, −0.07) (−0.08, 0.07) (+0, +0) (−0, +0)
(−0.05, 0.01) (0.27, 0.35) (+0, +0) (−0, −0)
(−7, 5.25) (1.86, 19) (0.44, 0.55) (−0.3, −0.06)

(−1.98, 4.45) (−27.8, −18.7) (−0.06, −0.01) (−0.07, 0.06)

⎞⎟⎟⎟⎠
Group lasso:

=

⎛⎜⎜⎜⎝
(−0.22, −0.11) (−0.10, 0.1) (+0, +0) (−0, +0)
(−0.05, 0.01) (0.51, 0.61) (+0, +0) (−0, −0)
(−8.58, 5.7) (6.5, 31.01) (0.44, 0.55) (−0.26, −0)
(−1.75, 4.86) (−47.72, −36.37) (−0.04, 0.01) (−0.07, 0.06)

⎞⎟⎟⎟⎠
Next, in Figure 2 we depict the estimated networks for the

MEDIUMVARbased on the first lag transitionmatrix produced
by: (a) least squares and (b) a nonhierarchical normal prior,
where for ease of representation the nodes of the network are
abbreviated; the full list of the variable names is given in Table
A1 of Appendix A in the supplementary material.

As expected, for most variables their previous lag value influ-
ences the current value. Further, for the LS-based network, there
is a high degree of connectivity, whereas the nonhierarchical-
based one exhibits a sparser structure. For the latter, of interest
is that the employment index (PAYEMS), the personal consumer
expenditures (GS10) andCPI are influenced bymany other vari-
ables. On the other hand, the Federal Funds Rate influences the
broad stockmarket (SP500) as expected based on finance theory
and GS10. In general, the sparser result provided by the non-
hierarchical prior, in addition to better forecasting also aids in
interpretation, vis-a-vis the LS estimate.

6. Discussion

In this article, we investigate posterior consistency in Bayesian
VAR(d) models with both nonhierarchical and hierarchical
matrix normal prior distributions on the transition matrices
under a Gaussian assumption for the temporal evolution of the
time series under consideration and in the presence of a gen-
eral covariance matrix that captures additional contemporary
dependence between them. We establish posterior consistency
for both of these priors under high-dimensional scaling. To
obtain the desired results, some novel concentration inequali-
ties are provided that are of independent interest. The method-
ology is illustrated on synthetic and real macroeconomic data.
The proposed priors provide better forecasts than the LS esti-
mates for periods up to 1 year ahead,while leading to sparser and
potentially easier to interpret relationships, especially for large-
scale models.

SupplementaryMaterials
For the sake of brevity we move additional simulation and real data study,
proofs of Lemmas 1–3, Theorems 1 and 2 and useful high-dimensional
results of VAR models to the supplementary document.

Funding

The authors gratefully acknowledge support from NSF grants DMS-
1511945 (KK) and IIS-1632730 andCNS-1422078 (GM)andNIHgrant R01
5R01GM11402902.

References

Armagan, A., Clyde, M., and Dunson, D. B. (2011), “Generalized BetaMix-
tures of Gaussians,” in Advances in Neural Information Processing Sys-
tems 24, eds. J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger. Available at https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4214276/. [2]

Armagan, A., Dunson, D. B., and Lee, J. (2013), “GeneralizedDouble Pareto
Shrinkage,” Statistica Sinica, 23, 119–143. [2]

Armagan, A., Dunson, D. B., Lee, J., Bajwa, W. U., and Strawn, N. (2013),
“Posterior Consistency in Linear Models under Shrinkage Priors,”
Biometrika, 100, 1011–1018. [2]
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