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ABSTRACT

We consider the load-balancing design for forwarding incoming
flows to access points (APs) in high-density wireless networks with
both channel fading and flow-level dynamics, where each incoming
flow has a certain amount of service demand and leaves the system
once its service request is complete. The efficient load-balancing
design is strongly needed for supporting high-quality wireless con-
nections in high-density areas. In this work, we propose a Joint
Load-Balancing and Scheduling (JLBS) Algorithm that always for-
wards the incoming flows to the AP with the smallest workload
in the presence of flow-level dynamics and each AP always serves
the flow with the best channel quality. Our analysis reveals that
our proposed JLBS Algorithm not only achieves maximum system
throughput, but also minimizes the total system workload in the
heavy-traffic regime. Moreover, we observe from both our theoreti-
cal and simulation results that the mean total workload performance
under the proposed JLBS Algorithm does not degrade as the num-
ber of APs increases, which is strongly desirable in high-density
wireless networks.
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1 PROBLEM SETUP

Multiple access points (APs) must be deployed for providing satis-
factory services for users in high-density areas, such as convention
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centers, auditoriums, hotel meeting rooms, lecture halls, sports
stadiums, and concert halls. However, in traditional wireless local
access networks (WLANSs), each user is automatically associated
with the AP that has the best channel quality, which causes sig-
nificant load imbalance among APs and results in poor network
performance. This raises a natural question in how to develop an
efficient joint load-balancing and scheduling algorithm that first
determines which AP an incoming user should associate with, and
then each individual AP needs to decide which users it serves. The
goal of such an algorithm is to maximize system throughput (or
equivalently support network users as many as possible) and to
minimize average user’s delay.

To this end, in this paper, we consider a wireless network with M
APs operating in orthogonal channels. We assume that the system
operates in a slotted time manner. Due to the wireless interference,
within each AP, at most one flow can be served in each time slot.
Let Ax[t] denote the number of flows arriving at the system in
time slot ¢ that is bounded and independently and identically dis-
tributed (i.i.d.) over time with mean A5 > 0. We use F;[¢] to denote
the number of packets of newly arriving flow j that follows any
probability distribution with finite support. We use Ny, [¢] to denote
the number of flows in AP m in time slot ¢t. We also use Ay [t] and
Nm[t] to denote the set of newly arriving flows at the system and
the set of existing flows in AP m in time slot ¢, respectively. Let
Rj[t] be the number of residual packets of flow j in time slot ¢. We
assume that each AP has a finite number of possible channel rates
with cmax denoting its maximum channel rate. We use C,, j[t] to
capture wireless channel fading of each flow j in the m'h AP, which
measures the maximum number of packets that can be transmitted
in time slot ¢ if flow j is scheduled. We assume that (Cim, j[t]) je nv,, [ 1]
are independently distributed across APs and i.i.d. over both time
and flows within each AP.

In order to characterize the underlying dynamics of flows, we in-
troduce following notations. Let Wi, [t] £ 2ieNmlt] [Rj[t]/cmax]
be the total workload in AP m in time slot ¢ that measures the
minimum number of slots required for completing all existing ser-
vice requests in AP m. We use vs[t] 2 YjeAs(t][Fjlt]/cmax] and
vmlt] & YieAmlt] |—Fj[t]/cmax-| to denote the total amount of new
workload arriving at the system and the amount of new workload
injected to AP m under some load-balancing policy in time slot ¢,
respectively, where A, [¢] denotes the set of arriving flows at AP m
in time slot ¢. We also use A, [t] to represent the number of newly
arriving flows at AP m in time slot t. Let p £ E[vs[t]] = Axw be the
traffic intensity, where w £ IE [|'F [t/ cmax]] denotes the expected
minimum number of slots required for serving a newly arriving
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Figure 1: Performance of the JLBS Algorithm

flow. We define pi,[t] to be the amount of workload decreasing at
AP m in time slot ¢.

2 LOAD-BALANCING ALGORITHM DESIGN

Based on the setup described in Section 1, the evolution of the
workload W, [t] at each AP m can be characterized as follows:
Wlt + 1] = Winlt] + vimlt] — pmlt],Ym = 1,..., M. We call AP
m stable if its average workload is finite. We say that the system
is stable if all its APs are stable. The capacity region A is defined
as a maximum set of traffic intensity p for which the system is
stable under some policy. It is shown in our technical report [1]
that A = {p : p < M}, where we recall that M is the number of APs.
Next, we propose a joint load-balancing and scheduling algorithm.

Joint Load-Balancing and Scheduling (JLBS) Algorithm: In
each time slot t, given the workload W[t] = (Wm[t])%[:l, perform
(1) Load-balancing decision: Forward all the arriving flows to the

AP with the smallest workload, i.e.,

A*[t] € (A, W[t]). (1)

argmin
A:(Am)?n/le 2032%:1 Am:A):[t]
(2) Scheduling decision: Within each AP m, serve the flow jy,, with
the maximum channel rate among all its existing flows, i.e.,
Jjm € argmax Cp, j[1]. (2)
JENmlt]

Next, we show that our proposed JLBS Algorithm achieves both
throughput-optimality and heavy-traffic optimality. The detailed
proofs can be found in our technical report [1].

ProprosITION 1. The JLBS Algorithm is throughput-optimal, i.e.,
it stabilizes the system for any traffic intensity lying strictly inside
the capacity region A.

To characterize the heavy-traffic performance of the JLBS Al-
gorithm, we consider the workload arrival process {v(;)[t]} £>0,
parameterized by € > 0, with traffic intensity p(e) satisfying € =

M- p(e) > 0 and Var(vée)). Here, € characterizes the closeness of
the traffic intensity to the boundary of the capacity region, and is
usually referred as heavy-traffic parameter.

PROPOSITION 2. The JLBS Algorithm is heavy-traffic optimal in
the sense that it minimizes the total system workload in the heavy-
traffic limit, i.e., € | 0.

3 SIMULATION RESULTS

In this section, we perform extensive simulations to validate the
efficiency of our proposed JLBS Algorithm by comparing it with
the Best-Channel-First (BCF) Algorithm and the Randomized Load-
Balancing (RLB) Algorithm. Here, both BCF and RLB Algorithms
use the same scheduling decision as the JLBS Algorithm under
which each AP always schedules the flow with the best channel
quality. However, for the load-balancing decision, the BCF Algo-
rithm always forwards the arriving flows to the AP with the best
signal quality, while the RLB Algorithm makes the load-balancing
decision in a purely randomized fashion. We assume that the num-
ber of flows arriving at the system in each time slot follows a
Bernoulli distribution with mean A. Each flow at each AP faces i.i.d.
channel fading with rates 0, 1, 5, 10 and corresponding probability
0.1,0.2,0.5,0.2. The flow size F is equal to 10 X § with probability
(w—1)/(f — 1) and 10 otherwise. We let w be equal to the number
of APs M and thus the capacity region Ais {1: 0 < A < 1}. We set
M = 5and § = 20 in the simulations.

We can see from Fig. 1b that the mean total workload under the
JLBS Algorithm converges to the theoretical lower bound derived
in our technical report [1, Proposition 3], while the RLB Algorithm
always keeps it away from the theoretical lower bound. This con-
firms the heavy-traffic optimality of the JLBS Algorithm, i.e., it
minimizes the mean total workload as the heavy-traffic parameter
€ diminishes. Fig. 1c illustrates that the performance of the JLBS
Algorithm stays close to the theoretical lower bound and its perfor-
mance does not scale with the number of APs. This desired property
indicates that our proposed JLBS Algorithm works perfectly in the
high-density wireless networks.
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