
Diving into the shallows: a computational perspective on
large-scale shallow learning

Siyuan Ma, Mikhail Belkin
Department of Computer Science and Engineering

The Ohio State University
{masi,mbelkin}@cse.ohio-state.edu

June 20, 2017

Abstract

Remarkable recent success of deep neural networks has not been easy to analyze
theoretically. It has been particularly hard to disentangle relative significance of archi-
tecture and optimization in achieving accurate classification on large datasets. On the
other hand, shallow methods (such as kernel methods) have encountered obstacles in
scaling to large data, despite excellent performance on smaller datasets, and extensive
theoretical analysis. Practical large-scale optimization methods, such as variants of
gradient descent, used so successfully in deep learning, seem to produce below par
results when applied to kernel methods.

In this paper we first identify a basic limitation in gradient descent-based opti-
mization methods when used in conjunctions with smooth kernels. An analysis based
on the spectral properties of the kernel demonstrates that only a vanishingly small
portion of the function space is reachable after a polynomial number of gradient de-
scent iterations. This lack of approximating power drastically limits gradient descent
for a fixed computational budget leading to serious over-regularization/underfitting.
The issue is purely algorithmic, persisting even in the limit of infinite data.

To address this shortcoming in practice, we introduce EigenPro iteration, based
on a simple and direct preconditioning scheme using a small number of approximately
computed eigenvectors. It can also be viewed as learning a new kernel optimized
for gradient descent. It turns out that injecting this small (computationally inex-
pensive and SGD-compatible) amount of approximate second-order information leads
to major improvements in convergence. For large data, this translates into signifi-
cant performance boost over the standard kernel methods. In particular, we are able
to consistently match or improve the state-of-the-art results recently reported in the
literature with a small fraction of their computational budget.

Finally, we feel that these results show a need for a broader computational per-
spective on modern large-scale learning to complement more traditional statistical and
convergence analyses. In particular, many phenomena of large-scale high-dimensional
inference are best understood in terms of optimization on infinite dimensional Hilbert
spaces, where standard algorithms can sometimes have properties at odds with finite-
dimensional intuition. A systematic analysis concentrating on the approximation
power of such algorithms within a budget of computation may lead to progress both
in theory and practice.

1 Introduction

In recent years we have witnessed remarkable advances in many areas of artificial intelli-
gence. In large part this progress has been due to the success of machine learning methods,
notably deep neural networks, applied to very large datasets. These networks are typically
trained using variants of stochastic gradient descent (SGD), allowing training on large data

1

ar
X

iv
:1

70
3.

10
62

2v
2

 [s
ta

t.M
L]

 1
7

Ju
n

20
17

using modern hardware. Despite intense recent research and significant progress toward
understanding SGD and deep architectures, it has not been easy to understand the under-
lying causes of that success. Broadly speaking, it can be attributed to (a) the structure
of the function space represented by the network or (b) the properties of the optimization
algorithms used. While these two aspects of learning are intertwined, they are distinct and
there is hope that they may be disentangled.

As learning in deep neural networks is still largely resistant to theoretical analysis,
progress both in theory and practice can be made by exploring the limits of shallow meth-
ods on large datasets. Shallow methods, such as kernel methods, are a subject of an
extensive and diverse literature. Theoretically, kernel machines are known to be univer-
sal learners, capable of learning nearly arbitrary functions given a sufficient number of
examples [STC04, SC08]. Kernel methods are easily implementable and show state-of-the-
art performance on smaller datasets (see [CK11, HAS+14, DXH+14, LML+14, MGL+17]
for some comparisons with DNN’s). On the other hand, there has been significantly less
progress in applying these methods to large modern data1. The goal of this work is to
make a step toward understanding the subtle interplay between architecture and optimiza-
tion for shallow algorithms and to take practical steps to improve performance of kernel
methods on large data.

The paper consists of two main parts. First, we identify a basic underlying limitation
of using gradient descent-based methods in conjunction with smooth kernels typically used
in machine learning. We show that only very smooth functions can be well-approximated
after polynomially many steps of gradient descent. On the other hand, a less smooth target
function cannot be approximated within ε using any polynomial number P (1/ε) steps of
gradient descent for kernel regression. This phenomenon is a result of the fast spectral
decay of smooth kernels and can be readily understood in terms of the spectral structure
of the gradient descent operator in the least square regression/classification setting, which
is the focus of our discussion. Note the marked contrast with the standard analysis of
gradient descent for convex optimizations problems, requiring at most O(1/ε) steps to get
an ε-approximation of a minimum. The difference is due to the infinite (or, in practice,
very high) dimensionality of the target space and the fact that the minimizer of a convex
functional is not generally an element of the same space.

A direct consequence of this theoretical analysis is slow convergence of gradient descent
methods for high-dimensional regression, resulting in severe over-regularization/underfitting
and suboptimal performance for less smooth functions. These functions are arguably very
common in practice, at least in the classification setting, where we expect sharp transi-
tions or even discontinuities near the class boundaries. We give some examples on real
data showing that the number of steps of gradient descent needed to obtain near-optimal
classification is indeed very large even for smaller problems. This shortcoming of gradi-
ent descent is purely algorithmic and is not related to the sample complexity of the data,
persisting even in the limit of infinite data. It is also not an intrinsic flaw of kernel archi-
tectures, which are capable of approximating arbitrary functions but potentially require
a very large number of gradient descent steps. The issue is particularly serious for large
data, where direct second order methods cannot be used due to the computational con-
straints. Indeed, even for a dataset with only 106 data points, practical direct solvers
require cubic, on the order of 1018 operations, weeks of computational time for a fast
processor/GPU. While many approximate second-order methods are available, they rely
on low-rank approximations and, as we discuss below, also lead to over-regularization as
important information is contained in eigenvectors with very small eigenvalues typically
discarded in such approximations.

1However, see [HAS+14, MGL+17] for some notable successes.

2

In the second part of the paper we address this problem by proposing EigenPro itera-
tion (see github.com/EigenPro for the code), a direct and simple method to alleviate slow
convergence resulting from fast eigen-decay for kernel (and covariance) matrices. Eigen-
Pro is a preconditioning scheme based on approximately computing a small number of
top eigenvectors to modify the spectrum of these matrices. It can also be viewed as con-
structing a new kernel, specifically optimized for gradient descent. While EigenPro uses
approximate second-order information, it is only employed to modify first-order gradient
descent leading to the same mathematical solution (without introducing a bias). Moreover,
only one second-order problem at the start of the iteration needs to be solved. EigenPro
requires only a small overhead per iteration compared to standard gradient descent and is
also fully compatible with SGD. We analyze the step size in the SGD setting and provide
a range of experimental results for different kernels and parameter settings showing con-
sistent acceleration by a factor from five to over thirty over the standard methods, such
as Pegasos [SSSSC11] for a range of datasets and settings. For large datasets, when the
computational budget is limited, that acceleration translates into significantly improved
accuracy and/or computational efficiency. It also obviates the need for complex computa-
tional resources such as supercomputer nodes or AWS clusters typically used with other
methods. In particular, we are able to improve or match the state-of-the-art recent results
for large datasets in the kernel literature at a small fraction of their reported computational
budget, using a single GPU.

Finally, we note that in the large data setting, we are limited to a small number of
iterations of gradient descent and certain approximate second-order computations. Thus,
investigations of algorithms based on the space of functions that can be approximated
within a fixed computational budget of these operations (defined in terms of the input
data size) reflect the realities of modern large-scale machine learning more accurately than
the more traditional analyses of convergence rates. Moreover, many aspects of modern in-
ference are best reflected by an infinite dimensional optimization problem whose properties
are sometimes different from the standard finite-dimensional results. Developing careful
analyses and insights into these issues will no doubt result in significant pay-offs both in
theory and in practice.

2 Gradient descent for shallow methods

Shallow methods. In the context of this paper, shallow methods denote the family of
algorithms consisting of a (linear or non-linear) feature map φ : RN → H to a (finite
or infinite-dimensional) Hilbert space H followed by a linear regression/classification algo-
rithm. This is a simple yet powerful setting amenable to theoretical analysis. In particular,
it includes the class of kernel methods, where the feature map typically takes us from finite
dimensional input to an infinite dimensional Reproducing Kernel Hilbert Space (RKHS).
In what follows we will employ the square loss which significantly simplifies the analysis
and leads to efficient and competitive algorithms.
Linear regression. Consider n labeled data points {(xxx1, y1), ..., (xxxn, yn) ∈ H × R}. To
simplify the notation let us assume that the feature map has already been applied to the
data, i.e., xxxi = φ(zzzi). Least square linear regression aims to recover the parameter vector
α∗ that minimize the empirical loss as follows:

L(ααα)
def
=

1

n

n∑
i=1

(〈ααα,xxxi〉H − yi)2 (1)

ααα∗ = arg min
ααα∈H

L(ααα) (2)

3

http://www.github.com/EigenPro

When ααα∗ is not uniquely defined, we can choose the smallest norm solution. We do not
include the typical regularization term, λ‖α‖2H for reasons which will become clear shortly2.

Minimizing the empirical loss is related to solving a linear system of equations. Define
the data matrix3 X

def
= (xxx1, ...,xxxn)T and the label vector yyy def

= (y1, ..., yn)T , as well as the
(non-centralized) covariance matrix/operator,

H
def
=

2

n

n∑
i=1

xxxixxx
T
i =

2

n
XTX (3)

Rewrite the loss as L(ααα) = 1
n ‖Xααα− yyy‖

2
2. Since ∇L(ααα) |ααα=ααα∗= 0, minimizing L(ααα) is

equivalent to solving the linear system

Hααα− bbb = 0 (4)

with bbb = XTyyy. When d = dim(H) <∞, the time complexity of solving the linear system in
Eq. 4 directly (using Gaussian elimination or other methods typically employed in practice)
is O(d3).

Remark 2.1. For kernel methods we frequently have d = ∞. Instead of solving Eq. 4,
one solves the dual n × n system Kααα − yyy = 0 where K def

= [k(zzzi, zzzj)]i,j=1,...,n is the ker-
nel matrix corresponding to the kernel function k(·, ·). The solution can be written as∑n

i=1 k(zzzi, ·)ααα(zzzi). A direct solution requires O(n3) operations.

Gradient descent (GD). While linear systems of equations can be solved by direct
methods, their computational demands make them impractical for large data. On the
other hand, gradient descent-type iterative methods hold the promise of a small number
of O(n2) matrix-vector multiplications, a much more manageable task. Moreover, these
methods can typically be used in a stochastic setting, reducing computational require-
ments and allowing for very efficient GPU implementations. These schemes are adopted
in popular kernel methods implementations such as NORMA [KSW04], SDCA [HCL+08],
Pegasos [SSSSC11], and DSGD [DXH+14].

For linear systems of equations gradient descent takes a particularly simple form known
as Richardson iteration [Ric11]. It is given by

ααα(t+1) = ααα(t) − η(Hααα(t) − bbb) (5)

We see that
ααα(t+1) −ααα∗ = (ααα(t) −ααα∗)− ηH(ααα(t) −ααα∗)

and thus
ααα(t+1) −ααα∗ = (I − ηH)t(ααα(1) −ααα∗) (6)

It is easy to see that for convergence of αααt to ααα∗ as t → ∞ we need to ensure4 that
‖I − ηH‖ ≤ 1. It follows that 0 < η < 2/λ1(H).

Remark 2.2. When H is finite dimensional the inequality has to be strict. In infinite
dimension convergence is possible even if ‖I − ηH‖ = 1 as long as each eigenvalue of
I − ηH is strictly smaller than one in absolute value. That will be the case for kernel
integral operators.

2We will argue that explicit regularization is rarely needed when using kernel methods for large data
as available computational methods tend to over-regularize even without additional regularization.

3We will take some liberties with infinite dimensional objects by sometimes treating them as vec-
tors/matrices and writing 〈ααα,xxx〉H as αααTxxx.

4In general η is chosen as a function of t. However, in the least squares setting η can be chosen to be a
constant as the Hessian matrix does not change.

4

It is now easy to describe the computational reach of gradient descent CRt, i.e. the set
of vectors which can be ε-approximated by gradient descent after t steps

CRt(ε)
def
= {vvv ∈ H, s.t.‖(I − ηH)tvvv‖ < ε‖vvv‖}

It is important to note that any bbb /∈ CRt(ε) cannot be ε-approximated by gradient descent
in less than t+ 1 iterations.

Remark 2.3. We typically care about the quality of the solution ‖Hααα(t)−bbb‖, rather than
the error estimating the parameter vector ‖ααα(t) − ααα∗‖ where ααα∗ = H−1bbb. Thus (noticing
that H and (I − ηH)t commute), we get ‖(I − ηH)tvvv‖ = ‖H−1(I − ηH)tHvvv‖ in the
definition.

Remark 2.4 (Initialization). We assume that the initialization ααα(1) = 0. Choosing a
different starting point will not significantly change the analysis unless second order infor-
mation is incorporated in the initialization conditions5. We also note that if H is not full
rank, gradient descent will converge to the minimum norm solution of Eq. 4.

Remark 2.5 (Infinite dimensionality). Some care needs to be taken when K is infinite-
dimensional. In particular, the space of parameters α = K−1H and H are very different
spaces when K is an integral operator. The space of parameters is in fact a space of
distributions (generalized functions). Sometimes that can be addressed by using K1/2

instead of K, as K−1/2H = L2(Ω).

To get a better idea of the space CRt(ε) consider the eigendecomposition ofH. Let λ1 ≥
λ2 ≥ . . . ≥ 0 be its eigenvalues and eee1, eee2, . . . the corresponding eigenvectors/eigenfunctions.
We have

H =
∑

λieeeieee
T
i , 〈eeei, eeej〉 = δij (7)

Writing Eq. 6 in terms of eigendirection yields

ααα(t+1) −ααα∗ =
∑

(1− ηλi)t〈eeei,ααα(1) −ααα∗〉eeei (8)

and hence, putting ai = 〈eeei, vvv〉,

CRt(ε) = {vvv, s.t.
∑

(1− ηλi)2ta2
i < ε2

∑
a2
i (9)

Recalling that η < 2λ1 and using the fact that (1−1/z)z ≈ 1/e, we see that a necessary
condition for vvv ∈ CRt

1

3

∑
i,s.t.λi<

λ1
2t

a2
i <

∑
i

(1− ηλi)2ta2
i < ε2

∑
a2
i (10)

This is a convenient characterization, we will denote

CR′t(ε)
def
= {vvv, s.t.

∑
i,s.t.λi<

λ1
2t

a2
i < ε2 ‖vvv‖2 ⊃ CRt(ε) (11)

Another convenient necessary condition for vvv ∈ CRt, is that

∀i

∣∣∣∣∣
(

1− 2λi
λ1

)t
〈eeei, vvv〉

∣∣∣∣∣ < ε‖vvv‖.

Applying logarithm and noting that log(1 − x) < −x results in the following inequality
that must hold for all i (assuming λi < λ1/2):

t >
λ1

2λi
log

(
|〈eeei, vvv〉|
ε‖vvv‖

)
(12)

5This is different for non-convex methods where different initializations may result in convergence to
different local minima.

5

Remark 2.6. The standard result (see, e.g., [BV04]) that the number of iterations nec-
essary for uniform convergence is of the order of the condition number λ1/λd follows im-
mediately. However, we are primarily interested in the case when d is infinite or very
large. The corresponding operators/matrices are extremely ill-conditioned with infinite or
approaching infinity condition number. In that case instead of a single condition number,
one should consider a sequence of “condition numbers” along each eigen-direction.

2.1 Gradient descent, smoothness, and kernel methods.

We now proceed to analyze the computational reach for kernel methods. We will start by
discussing the case of infinite data (the population case). It is both easier to analyze and
allows us to demonstrate the purely computational (non-statistical) nature of limitations
of gradient descent.

We will show that when the kernel is smooth, the reach of gradient descent is limited
to very smooth, at least infinitely differentiable functions. Moreover, to approximate a
function with less smoothness within some accuracy ε in the L2 norm one needs a super-
polynomial (or even exponential) in 1/ε number of iterations of gradient descent.

Let the data be sampled from a probability with density µ on a compact domain
Ω ⊂ Rp. In the case of infinite data K becomes an integral operator corresponding to a
positive definite kernel k(·, ·). We have

Kf(x) =

∫
Ω
k(x, z)f(z)dµz (13)

This is a compact self-adjoint operator with an infinite positive spectrum λ1, λ2, . . . with
limi→∞ λi = 0.

We start by stating some results on the decay of eigenvalues of K.

Theorem 1. If k is an infinitely differentiable kernel, the rate of eigenvalue decay is
super-polynomial, i.e.

λi = O(i−P) ∀P ∈ N
Moreover, if k is an infinitely differentiable radial kernel (e.g., a Gaussian kernel), there
exist constants C,C ′ > 0 such that for large enough i,

λi < C ′ exp
(
−Ci1/p

)
Proof. The statement for arbitrary smooth kernels is an immediate corollary of Theorem 4
in [Küh87]. The rate for the practically important smooth radial kernels, including Gaus-
sian kernels, Cauchy kernel and a number of other kernel families, is given in in [SS16],
Theorem 6.

Remark 2.7. Interestingly, while eigenvalue decay is nearly exponential, it becomes milder
as the dimension increases, leading to an unexpected “blessing of dimensionality" for
gradient-descent type methods in high dimension. On the other hand, while not reflected
in Theorem 1, this depends on the intrinsic dimension of the data, moderating the effect.

The computational reach of gradient descent in kernel methods. Consider now
the eigenfunctions of K, Kei = λiei, which form an orthonormal basis for L2(Ω) by the
Mercer’s theorem. We can write a function f ∈ L2(Ω) as f =

∑∞
i=1 aiei. We have

‖f‖2L2 =
∑∞

i=1 a
2
i .

We can now describe the reach of kernel methods with smooth kernel (in the infinite
data setting). Specifically, functions which can be approximated in a polynomial number
of iterations must have super-polynomial coefficient decay in the basis of kernel eigenfunc-
tions.

6

Theorem 2. Suppose f ∈ L2(Ω) is such that it can be approximated within ε using a
polynomial in 1/ε number of gradient descent iterations, i.e., ∀ε>0f ∈ CRε−M (ε) for some
M ∈ N. Then for any N ∈ N and i large enough |ai| < i−N .

Proof. Note that f ∈ CR′t(ε). We have 1/3
∑

i,s.t.λi<
λ1

2εM
a2
i < ε2‖f‖ and hence |ai| <

√
3ε‖f‖ for any i, such that λi < λ1

2εM
. From Theorem 1 we have λi = o(i−NM). Thus this

inequality holds whenever i > Cε−1/N for some C. Writing ε in terms of i yields |ai| < i−N

for i sufficiently large.

It is easy to see that the eigenfunctions ei corresponding to an infinitely differentiable
kernel are also infinitely differentiable. Suppose in addition that their derivatives grow at
most polynomially in i, i.e. ‖ei‖Wk,2

< Pk(i), where Pk is some polynomial and Wk,2 is a
Sobolev space. Then by differentiating the expansion of f in terms of eigenfunctions we
have the following

Corollary 1. Any f ∈ L2(Ω) that for any ε > 0 can be ε-approximated with polynomial
in 1/ε number of steps of gradient descent is infinitely differentiable. Thus, if f is not
infinitely differentiable it cannot be ε-approximated in L2(Ω) using a polynomial number of
gradient descent steps.

We contrast Theorem 2 showing extremely slow convergence of gradient descent with
the analysis of gradient descent for convex objective functions. The standard analysis
(e.g. [B+15]) indicates that O(1/ε) steps of gradient descent is sufficient to recover the
optimal value with ε accuracy and at first glance seems to apply in general to infinite
dimensional Hilbert spaces. However in this case the standard analysis cannot be used is
that the sequenceααα(t) diverges in L2(Ω) as the optimal solution f∗ = K−1y is not generally a
function6 in L2(Ω). This is a consequence of the fact that the infinite-dimensional operator
K−1 is unbounded (see Appendix D for some experimental results).

Remark 2.8. Note that in finite dimension every non-degenerate operator, e.g. an inverse
of a kernel matrix, is bounded. Nevertheless, infinite dimensional unboundedness manifests
itself as the norm of the optimal solution can increase very rapidly with the size of the
kernel matrix.

Gradient descent for periodic functions on R. Let us now consider a simple but
important special case, where gradient descent and its reach can be analyzed very explicitly.
Let Ω be a circle with the uniform measure, or, equivalently, consider periodic functions
on the interval [0, 2π]. Let ks(x, z) be the heat kernel on the circle [Ros97]. This kernel is
very close to the Gaussian kernel ks(x, z) ≈ 1√

2πs
exp

(
− (x−z)2

4s

)
. The eigenfunctions ej of

the integral operator K corresponding to ks(x, z) are simply the Fourier harmonics7 sin jx

and cos jx. The corresponding eigenvalues are {1, e−s, e−s, e−4s, e−4s, . . . , e−bj/2+1c2s, . . .}
and the kernel can be written as

ks(x, z) =
∞∑
0

e−bj/2+1c2sej(x)ej(z).

Given a function f on [0, 2π], we can write its Fourier series f =
∑∞

j=0 ajej . A direct
computation shows that for any f ∈ CRt(ε), we have

∑
i>
√
2 ln 2t
s

a2
i < 3ε2

∑∞
0 a2

i . We see

that the space f ∈ CRt(ε) is “frozen” as
√

2 ln 2ts grows extremely slowly when the number
6It can be viewed as a generalized function in the space K−1L2(Ω).
7We use j for the index to avoid confusion with the complex number i.

7

of iterations t increases. As a simple example consider the Heaviside step function f(x)
(on a circle), taking 1 and −1 values for x ∈ (0, π] and x ∈ (π, 2π], respectively. The step
function can be written as f(x) = 4

π

∑
j=1,3,...

1
j sin(jx). From the analysis above, we need

O(exp(s
ε2

)) iterations of gradient descent to obtain an ε-approximation to the function.
It is important to note that the Heaviside function is a rather natural example in the
classification setting, where it represents the simplest two-class classification problem.

Figure 1: Top: Heaviside step func-
tion approximated by 100 iterations of
gradient descent with the Heat kernel
(s=0.5). Middle: Approximation after
106 iterations of gradient descent. Bot-
tom: Fourier series approximation with
200 Fourier harmonics.

In contrast, a direct computation of inner
products 〈f, ei〉 yields exact function recovery
for any function in L2([0, 2π]) using the amount
of computation equivalent to just one step8 of
gradient descent9. Thus, we see that the gra-
dient descent is an extremely inefficient way to
recover Fourier series for a general periodic func-
tion. See Figure 1 for an illustration of this phe-
nomenon. We see that the approximation for
the Heaviside function is only marginally im-
proved by going from 100 to 106 iterations of
gradient descent. On the other hand, just 200
Fourier harmonics provide a far more accurate
reconstruction.

Things are not much better for functions
with more smoothness unless they happen to
be extremely smooth with exponential Fourier
component decay. Thus in the classification
case we expect nearly exponential increase in
computational requirements as the margin between classes decreases.

The situation is only mildly improved in dimension d, where the span of at most
O∗
(
(log t)d/2

)
eigenfunctions of a Gaussian kernel or O

(
t1/p
)
eigenfunctions of an arbitrary

p-differentiable kernel can be approximated in t iterations. The discussion above shows
that the gradient descent with a smooth kernel can be viewed as a heavy regularization
of the target function. It is essentially a band-limited approximation with (ln t)α Fourier
harmonics for some α. While regularization is often desirable from a generalization/finite
sample point of view in machine learning, especially when the number of data points is
small, the bias resulting from the application of the gradient descent algorithm cannot
be overcome in a realistic number of iterations unless the target functions are extremely
smooth or the kernel itself is not infinitely differentiable.

Remark 2.9 (Rate of convergence vs statistical fit). Note that we can improve
convergence by changing the shape parameter of the kernel, i.e. making it more “peaked”
(e.g., decreasing the bandwidth s in the definition of the Gaussian kernel) While that
does not change the exponential nature of the asymptotics of the eigenvalues, it slows their
decay. Unfortunately improved convergence comes at the price of overfitting. In particular,
for finite data, using a very narrow Gaussian kernel results in an approximation to the 1-
NN classifier, a suboptimal method which is up to a factor of two inferior to the Bayes
optimal classifier in the binary classification case asymptotically. See Appendix H for some
empirical results on the bandwidth selection for Gaussian kernels. Another possibility is to
use a kernel, such as the Laplace kernel, which is not differentiable at zero. However, it also
seems to consistently under-perform more smooth kernels on real data, see Appendix E for

8Applying an integral operator, i.e. infinite dimensional matrix multiplication, is roughly equivalent to
a countable number of inner products

9Of course, direct computation of inner products requires knowing the basis explicitly and in advance.
In higher dimensions it also incurs a cost exponential in the dimension of the space.

8

some experiments.

Finite sample effects, regularization and early stopping. So far we have discussed
the effects of the infinite-data version of gradient descent. We will now discuss issues
related to the finite sample setting we encounter in practical machine learning. It is well
known (e.g., [B+05, RBV10]) that the top eigenvalues of kernel matrices approximate the
eigenvalues of the underlying integral operators. Therefore computational obstructions
encountered in the infinite case persist whenever the data set is large enough.

Note that for a kernel method, t iterations of gradient descent for n data points require
t · n2 operations. Thus, gradient descent is computationally pointless unless t � n. That
would allow us to fit only about O(log t) eigenvectors. In practice we would like to have t
to be much smaller than n, probably a reasonably small constant.

At this point we should contrast our conclusions with the important analysis of early
stopping for gradient descent provided in [YRC07] (see also [RWY14, CARR16]). The
authors analyze gradient descent for kernel methods obtaining the optimal number of
iterations of the form t = nθ, θ ∈ (0, 1). That seems to contradict our conclusion that
a very large, potentially exponential, number of iterations may be needed to guarantee
convergence. The apparent contradiction stems from the assumption in [YRC07] and other
works that the regression function f∗ belongs to the range of some power of the kernel
operator K. For an infinitely differentiable kernel, that implies super-polynomial spectral
decay (ai = O(λNi) for any N > 0). In particular, it implies that f∗ belongs to any Sobolev
space. We do not typically expect such high degree of smoothness in practice, particularly
in classification problems. In general, we expect sharp transitions of label probabilities
across class boundaries to be typical for many classifications datasets. The Heaviside step
function seems to be a simple but reasonable model for that behavior in one dimension.
These areas of near-discontinuity10 will result in slow decay of Fourier coefficients of f∗

and a mismatch with any infinitely differentiable kernel. Thus a reasonable approximation
of f∗ would require a large number of gradient descent iterations.

Dataset Metric Number of iterations
1 80 1280 10240 81920

MNIST-10k L2 loss train 4.07e-1 9.61e-2 2.60e-2 2.36e-3 2.17e-5
test 4.07e-1 9.74e-2 4.59e-2 3.64e-2 3.55e-2

c-error (test) 38.50% 7.60% 3.26% 2.39% 2.49%

HINT-M-10k L2 loss train 8.25e-2 4.58e-2 3.08e-2 1.83e-2 4.21e-3
test 7.98e-2 4.24e-2 3.34e-2 3.14e-2 3.42e-2

To illustrate this point with a
real data example, consider the
results in the table on the right.
We show the results of gradi-
ent descent for two subsets of
10000 points from the MNIST and
HINT-M datasets (see Section 6 for the description) respectively. We see that the regres-
sion error on the training set is roughly inverse to the number of iterations, i.e. every
extra bit of precision requires twice the number of iterations for the previous bit. For
comparison, as we are primarily interested in the generalization properties of the solution,
we see that the minimum regression (L2) error on both test sets is achieved at over 10000
iterations. This results in at least cubic computational complexity equivalent to that of a
direct method. While HINT-M is a regression dataset, the optimal classification accuracy
for MNIST is also achieved at about 10000 iterations.
Regularization “by impatience”/explicit regularization terms. The above discus-
sion suggests that gradient descent applied to kernel methods would typically result in
underfitting for most larger datasets. Indeed, even 10000 iterations of gradient descent
is prohibitive when data size is more than 106. As we will see in the experimental re-
sults section this is indeed the case. SGD ameliorates the problem mildly by allowing
us to take approximate steps much faster but even so running standard gradient de-
scent methods to optimality is often impractical. In most cases we observe little need

10Interestingly these sharp transitions can lead to lower sample complexity for optimal classifiers (cf.
Tsybakov margin condition [Tsy04]).

9

for explicit early stopping rules. Regularization is a result of computational constraints
(cf. [YRC07, RWY14, CARR16]) and can be termed regularization “by impatience” as we
run out of time/computational budget allotted to the task.

Note that typical forms of regularization, result a large bias along eigenvectors with
small eigenvalues λi. For example, adding a term of the form λ‖f‖K (Tikhonov reg-
ularization/ridge regression) replaces 1

λi
by 1

λ+λi
. While this improves the condition

number and hence the speed of convergence, it comes at a high cost in terms of over-
regularization/under-fitting as it essentially discards information along eigenvectors with
eigenvalues smaller than λ. In the Fourier series analysis example, introducing λ this is

similar to considering band-limited functions with ∼
√

log(1/λ)

s Fourier components. Even
for λ = 10−16 (machine precision for double floats) and the kernel parameter s = 1 we can
only fit about 10 Fourier components! We argue that in most cases there is little need for
explicit regularization in the big data regimes as our primary concern is underfitting.

Remark 2.10 (Stochastic gradient descent). Our discussion so far has been centered
entirely on gradient descent. In practice stochastic gradient descent is often used for large
data. In our setting, for fixed η, using SGD results in the same expected step size in each
eigendirection as gradient descent. Hence, using SGD does not expand the algorithmic
reach of gradient descent, although it speeds up convergence in practice. On the other
hand, SGD introduces a number of interesting algorithmic and statistical subtleties. We
will address some of them below.

3 EigenPro iteration: extending the reach of gradient descent

We will now propose some practical measures to alleviate the issues related to over-
regularization of linear regression by gradient descent. As seen above, one of the key
shortcomings of shallow learning methods based on smooth kernels (and their approxi-
mations, e.g. Fourier and RBF features) is their fast spectral decay. That observation
suggests modifying the corresponding matrix H by decreasing its top eigenvalues. This
“partial whitening” enables the algorithm to approximate more target functions in a fixed
number of iterations.

It turns out that accurate approximations of the top eigenvectors can be obtained from
small subsamples of the data with modest computational expenditure. Moreover, “partially
whitened" iteration can be done in a way compatible with stochastic gradient descent thus
obviating the need to materialize full covariance/kernel matrices in memory. Combining
these observations we construct a low overhead preconditioned Richardson iteration which
we call EigenPro iteration.
Preconditioned (stochastic) gradient descent. We will modify the linear system in
Eq. 4 with an invertible matrix P , called a left preconditioner.

PHααα− Pbbb = 0 (14)

Clearly, the modified system in Eq. 14 and the original system in Eq. 4 have the same
solution. The Richardson iteration corresponding to the modified system (preconditioned
Richardson iteration) is

ααα← ααα− ηP (Hααα− bbb) (15)

It is easy to see that as long as η‖PH‖ < 1 it converges to ααα∗, the solution of the original
linear system.

Preconditioned SGD can be defined similarly by

ααα← ααα− ηP (Hmααα− bbbm) (16)

10

where we define Hm
def
= 2

mX
T
mXm and bm

def
= 2

mX
T
myyym using (Xm, yyym), a sampled mini-

batch of size m. This preconditioned iteration also converges to ααα∗ with properly chosen
η [Mur98].

Remark 3.1. Notice that the preconditioned covariance matrix PH does not in general
have to be symmetric. It is sometimes convenient to consider the closely related iteration

βββ ← βββ − η(P
1
2HP

1
2βββ − P

1
2bbb) (17)

Here P
1
2HP

1
2 is a symmetric matrix. We see that βββ∗ = P−1/2ααα∗.

Preconditioning as a linear feature map. It is easy to see that preconditioned iteration
in Eq. 17 is in fact equivalent to the standard Richardson iteration in Eq. 5 on a dataset
transformed with the linear feature map,

φP (xxx)
def
= P

1
2xxx (18)

This is a convenient point of view as the transformed data can be stored for future use. It
also shows that preconditioning is compatible with most computational methods both in
practice and, potentially, in terms of analysis.

3.1 Linear EigenPro

We will now discuss properties desired to make preconditioned GD/SGD methods effective
on large scale problems. Thus for the modified iteration in Eq. 15 we would like to choose
P to meet the following targets:
Acceleration. The algorithm should provide high accuracy in a small number of itera-
tions.
Initial cost. The preconditioning matrix P should be accurately computable without
materializing the full covariance matrix.
Cost per iteration. Preconditioning by P should be efficient per iteration in terms of
computation and memory.

Algorithm: EigenPro(X,yyy, k,m, η, τ,M)
input training data (X,yyy), number of eigen-

directions k, mini-batch size m, step size
η, damping factor τ , subsample size M

output weight of the linear model ααα
1: [E,Λ, λ̂k+1] = RSVD(X, k + 1,M)

2: P
def
= I − E(I − τ λ̂k+1Λ−1)ET

3: Initialize ααα← 0
4: while stopping criteria is False do
5: (Xm, yyym) ← m rows sampled from

(X,yyy) without replacement
6: ggg ← 1

m(XT
m(Xmααα)−XT

myyym)
7: ααα← ααα− ηPggg
8: end while
Table 1: EigenPro iteration in vector space

The relative approximation error along
i the eigenvector for gradient descent after t

iterations is
(

1− λi(PH)
λ1(PH)

)t
. Minimizing the

error suggests choosing the preconditioner
P to maximize the ratio λi(PH)

λ1(PH) for each
i. We see that modifying the top eigen-
values of H makes the most difference in
convergence. For example, decreasing λ1

improves convergence along all directions,
while decreasing any other eigenvalue only
speeds up convergence in that direction .
However, decreasing λ1 below λ2 does not
help unless λ2 is decreased as well. There-
fore it is natural to decrease the top k eigen-
values to the maximum amount, i.e. to
λk+1, leading to the preconditioner

P
def
= I −

k∑
i=1

(1− λk+1

λi
)eeeieee

T
i (19)

11

In fact it can be readily seen that P is the optimal preconditioner of the form I−Q, where Q
is a low rank matrix. We will see that P -preconditioned iteration accelerates convergence
by approximately a factor of λ1/λk.

However, exact construction of P involves computing the eigendecomposition of the
d× d matrix H, which is not feasible for large data size. To avoid this, we use subsample
randomized SVD [HMT11] to obtain an approximate preconditioner, defined as

P̂τ
def
= I −

k∑
i=1

(1− τ λ̂k+1

λ̂i
)êeeiêee

T
i (20)

where algorithm RSVD (see Appendix A) computes the approximate top eigenvectors
E ← (êee1, . . . , êeek) and eigenvalues Λ← diag(λ̂1, . . . , λ̂k) and λ̂k+1 for subsample covariance
matrix HM . Alternatively, a Nyström method based SVD (see Appendix A) can be applied
to obtain eigenvectors (slightly less accurate although with little impact on training in
practice) through a highly efficient implementation for GPU.

Additionally, we introduce the parameter τ to counter the effect of approximate top
eigenvectors “spilling” into the span of the remaining eigensystem. Using τ < 1 is preferable
to the obvious alternative of decreasing the step size η as it does not decrease the step size
in the directions nearly orthogonal to the span of (êee1, . . . , êeek). That allows the iteration
to converge faster in those directions. In particular, (êee1, . . . , êeek) are computed exactly, the
step size in other eigendirections will not be affected by the choice of τ .

We call SGD with the preconditioner P̂τ (Eq. 16) EigenPro iteration. The details of
the algorithm are given in Table 1. Moreover, the key step size parameter η can be selected
in a theoretically sound way discussed below.

3.2 Kernel EigenPro

While EigenPro iteration can be applied to any linear regression problem, it is particularly
useful in conjunction with smooth kernels which have fast eigenvalue decay. We will now
discuss modifications needed to work directly in the RKHS (primal) setting.

Algorithm: EigenPro(k(·, ·), X,yyy, k,m, η, s0)
input kernel function k(·, ·), training data

(X,yyy), number of eigen-directions k,
mini-batch size m, step size η, subsam-
ple size M , damping factor τ

output weight of the kernel method ααα
1: K

def
= k(X,X) materialized on demand

2: [E,Λ, λk+1]← RSVD(K, k + 1,M)

3: D
def
= EΛ−1(I − τλk+1Λ−1)ET

4: Initialize ααα← 0
5: while stopping criteria is False do
6: (Km, yyym) ← m rows sampled from

(K,yyy)

7: αααm
def
= portion of ααα related to Km

8: gggm ← 1
m(Kmααα− yyym)

9: αααm ← αααm − ηgggm, ααα← ααα+ ηDKT
mgggm

10: end while
Table 2: EigenPro iteration in RKHS space

In this setting, a reproducing kernel
k(·, ·) : RN×RN → R implies a feature map
from X to an RKHS space H (typically) of
infinite dimension. The feature map can be
written as φ : x 7→ k(x, ·),RN → H. This
feature map leads to the (shallow) learning
problem

f∗ = arg min
f∈H

1

n

n∑
i=1

(〈f, k(xxxi, ·)〉H − yi)2

Using properties of RKHS, EigenPro
iteration in H becomes f ← f −
ηPτ (K(f) − b) where covariance opera-
tor K def

= 2
n

∑n
i=1 k(xxxi, ·)⊗ k(xxxi, ·) and b

def
=

2
n

∑n
i=1 yik(xxxi, ·). The top eigensystem of

K forms the preconditioner

Pτ
def
= I−

k∑
i=1

(1− τ λk+1(K)

λi(K)
) ei(K)⊗ ei(K)

12

Notice that by the Representer theorem [Aro50], f∗ admits a representation of the form∑n
i=1 αi k(xxxi, ·). Parameterizing the above iteration accordingly and applying some linear

algebra lead to the following iteration in a finite-dimensional vector space,

ααα← ααα− ηPτ (Kααα− yyy)

whereK def
= [k(xxxi,xxxj)]i,j=1,...,n is the kernel matrix and EigenPro preconditioner P is defined

using the top eigensystem of K (assume Keeei = λieeei),

Pτ
def
= I −

k∑
i=1

1

λi
(1− τ λk+1

λi
)eeeieee

T
i

This preconditioner differs from that for the linear case (Eq. 19) with an extra factor of
1
λi

due to the difference between the parameter space of α and the RKHS space. Table 2
details the SGD version of this iteration.
EigenPro as kernel learning. Another way to view EigenPro is in terms of kernel learn-
ing. Assuming that the preconditioner is computed exactly, we see that in the population
case EigenPro is equivalent to computing the (distribution-dependent) kernel

kEP (x, z)
def
=

k∑
i=1

λk+1ei(x)ei(z) +

∞∑
i=k+1

λiei(x)ei(z)

Notice that the RKHS spaces corresponding to kEP and k contain the same functions but
have different norms. The norm in kEP is a finite rank modification of the norm in the
RKHS corresponding to k, a setting reminiscent of [SNB05] where unlabeled data was used
to “warp” the norm for semi-supervised learning. However, in our paper the “warping" is
purely for computational efficiency.

3.3 Costs and Benefits

We will now discuss the acceleration provided by EigenPro and the overhead associated
with the algorithm.
Acceleration. Assuming that the preconditioner P can be computed exactly, EigenPro
computes the solution exactly in the span of the top k + 1 eigenvectors. For i > k + 1

EigenPro provides the acceleration factor of α = (1−λi/λ1)t

(1−λi/λk+1)t
along the ith eigendirection.

Assuming that λi � λ1, a simple calculation shows an acceleration factor of at least λ1
λk+1

over the standard gradient descent. Note that this assumes full gradient descent and exact
computation of the preconditioner. See below for an acceleration analysis in the SGD
setting resulting in a potentially somewhat smaller acceleration factor.
Initial cost. To construct the preconditioner P , we perform RSVD (Appendix A) to
compute the approximate top eigensystem of covariance H. Algorithm RSVD has time
complexity O(Md log k+ (M + d)k2) (see [HMT11]). The subsample size M can be much
smaller than the data size n while still preserving the accuracy of estimation for top eigen-
vectors. In addition, we need extra kd memory to store the top-k eigenvectors.
Cost per iteration. For standard SGD with d features (or kernel centers) and mini-
batch of size m, the computational cost per iteration is O(md). In addition, applying the
preconditioner P in EigenPro requires left multiplication by a matrix of rank k. That
involves k vector-vector dot products for vectors of length d, resulting in k · d operations
per iteration. Thus EigenPro using top-k eigen-directions needs O(md + kd) operations
per iteration. Note that these can be implemented efficiently on a GPU. See Section 6 for
actual overhead per iteration achieved in practice.

13

4 Step Size Selection for EigenPro Preconditioned Methods

We will now discuss the key issue of the step size selection for EigenPro iteration. For
iteration involving covariance matrix H, η = ‖H‖−1 results in optimal (within a factor of
2) convergence.

This suggests choosing the corresponding step size η = ‖PH‖−1 = λ−1
k+1. However, in

practice this will lead to divergence due to (1) approximate computation of eigenvectors
(2) the randomness inherent in SGD. One possibility would be to compute ‖PHm‖ at
every step. That, however, is costly, requiring computing the top singular value for every
mini-batch. As the mini-batch can be assumed to be chosen at random, we propose using a
lower bound on ‖Hm‖−1 (with high probability) as the step size to guarantee convergence
at each iteration, which works well in practice.
Linear EigenPro. Consider the EigenPro preconditioned SGD in Eq. 16. For this analysis
assume that P is formed by the exact eigenvectors11 of H. Interpreting P

1
2 as a linear

feature map as in Section 2, makes P
1
2HmP

1
2 a random subsample on the dataset XP

1
2 .

Now applying Lemma 3 (Appendix C) results in

Theorem 3. If ‖xxx‖22 ≤ κ for any xxx ∈ X and λk+1 = λk+1(H), ‖PHm‖ has following
upper bound with probability at least 1− δ,

‖PHm‖ ≤ λk+1 +
2(λk+1 + κ)

3m
ln

2d

δ
+

√
2λk+1κ

m
ln

2d

δ
(21)

Kernel EigenPro. For EigenPro iteration in RKHS space, we can bound ‖P ◦Km‖ with a
similar theorem where Km is the subsample covariance operator and P is the corresponding
EigenPro preconditioner operator. Since d = dim(K) is infinite, we introduce intrinsic
dimension from [Tro15] intdim(A)

def
= tr(A)
‖A‖ where A : H → H is an arbitrary operator. It

can be seen as a measure of the number of dimensions where A has significant spectral
content. Let d

def
= intdim(E[(Km −K) ◦ (Km −K)]). Then by Lemma 4 (Appendix C), we

have

Theorem 4. If k(xxx,xxx) ≤ κ for any xxx ∈ X and λk+1 = λk+1(K), with probability at least
1− δ we have,

‖P ◦Km‖ ≤ λk+1 +
2(λk+1 + κ)

3m
ln

8d

δ
+

√
2λk+1κ

m
ln

8d

δ
(22)

Choice of the step size. In both spectral norm bounds Eq. 21 and Eq. 22, λk+1 is
the dominant term when the mini-batch size m is large. However, in most large-scale

settings, m is small, and
√

2λk+1κ
m becomes the dominant term. This suggests choosing

step size η ∼
√

m
λk+1

leading to acceleration on the order of
√

λ1
λk+1

over the standard

(unpreconditioned) SGD. That choice works well in practice.

5 EigenPro and Related Work

Recall that the setting of large scale machine learning imposes some fairly specific require-
ments on the optimization methods. In particular, the computational budget allocated
to the problem must not significantly exceed O(n2) operations, i.e., a small number of
matrix-vector multiplications. That restriction rules out most direct second order meth-
ods which require O(n3) operations. Approximate second order methods are far more

11 Approximate preconditioner with P̂ instead of P can also be analyzed using results from [HMT11].

14

effective computationally. However, they typically rely on low rank matrix approxima-
tion, a strategy which underperforms in conjunction with smooth kernels as information
along important eigen-directions with small eigenvalues is discarded. Similarly, regulariza-
tion improves conditioning and convergence but also discards information by biasing small
eigen-directions.

While first order methods preserve important information, they, as discussed in this
paper, are too slow to converge along eigenvectors with small eigenvalues. It is clear
that an effective method must thus be a hybrid approach using approximate second order
information in a first order method.

EigenPro is an example of such an approach as the second order information is used in
conjunction with an iterative first order method. The things that make EigenPro effective
are the following:
1. The second order information (eigenvalues and eigenvectors) is computed efficiently
from a subsample of the data. Due to the quadratic loss function, that computation needs
to be conducted only once. Moreover, the step size can be fixed throughout the iteration.
2. Preconditioned Richardson iteration is efficient and has a natural stochastic version.
Preconditioning by a low rank modification of the identity matrix results in low overhead
per iteration. The preconditioned update is computed on the fly without a need to mate-
rialize the full preconditioned covariance.
3. EigenPro iteration converges (mathematically) to the same result independently of the
preconditioning matrix12. That makes EigenPro relatively robust to errors in the second
order preconditioning term P , in contrast to most approximate second order methods.

We will now discuss some related literature and connections.
First order optimization methods. Gradient based methods, such as gradient descent
(GD), stochastic gradient descent (SGD), are classic textbook methods [She94, DJS96,
BV04, Bis07]. Recent renaissance of neural networks had drawn significant attention to
improving and accelerating these methods, especially, the highly scalable mini-batch SGD.
Methods like SAGA [RSB12] and SVRG [JZ13] improve stochastic gradient by periodically
evaluated full gradient to achieve variance reduction. Another set of approaches [DHS11,
TH12, KB14] compute adaptive step size for each gradient coordinate every iteration. The
step size is normally chosen to minimize certain regret bound of the loss function. Most of
these methods introduce affordable O(d) computation and memory overhead.

Remark 5.1. Interpreting EigenPro iteration as a linear “partial whitening" feature map,
followed by Richardson iteration, we see that most of these first order methods are com-
patible with EigenPro. Moreover, many convergence bounds for these methods [BV04,
RSB12, JZ13] involve the condition number λ1(H)/λd(H). EigenPro iteration generically
improves such bounds by (potentially) reducing the condition number to λk+1(H)/λd(H).

Second order/hybrid optimization methods. Second order methods use the inverse
of the Hessian matrix or its approximation to accelerate convergence [SYG07, BBG09,
MNJ16, BHNS16, ABH16]. A limitations of many of these methods is the need to compute
the full gradient instead of the stochastic gradient every iteration [LN89, EM15, ABH16]
making them harder to scale to large data.

We note the work [EM15] which analyzed a hybrid first/second order method for gen-
eral convex optimization with a rescaling term based on the top eigenvectors of the Hes-
sian. That can be viewed as preconditioning the Hessian at every iteration of gradient
descent. A related recent work [GOSS16] analyses a hybrid method designed to accelerate
SGD convergence for linear regression with ridge regularization. The data are precondi-
tioned by preprocessing (rescaling) all data points along the top singular vectors of the

12We note, however, that convergence will be slow if P is poorly approximated.

15

data matrix. The authors provide a detailed analysis of the algorithm depending on the
regularization parameter. Another recent second order method PCG [ACW16] acceler-
ates the convergence of conjugate gradient on large kernel ridge regression using a novel
preconditioner. The preconditioner is the inverse of an approximate covariance gener-
ated with random Fourier features. By controlling the number of random features, this
method strikes a balance between preconditioning effect and computational cost. [TRVR16]
achieves similar preconditioning effects by solving a linear system involving a subsampled
kernel matrix every iteration. While not strictly a preconditioner Nyström with gradi-
ent descent(NYTRO) [CARR16] also improves the condition number. Compared to many
of these methods EigenPro directly addresses the underlying issues of slow convergence
without introducing a bias in directions with small eigenvalues and incurring only a small
overhead per iteration both in memory and computation.

Finally, limited memory BFGS (L-BFGS) [LN89] and its variants [SYG07, MNJ16,
BHNS16] are among the most effective second order methods for unconstrained nonlin-
ear optimization problems. Unfortunately, they can introduce prohibitive memory and
computation overhead for large multi-class problems.
Scalable kernel methods. There is a significant literature on scalable kernel methods
including [KSW04, HCL+08, SSSSC11, TBRS13, DXH+14]. Most of these are first order
optimization methods. To avoid the O(n2) computation and memory requirement typically
involved in constructing the kernel matrix, they often adopt approximations like RBF
feature [WS01, QB16, TRVR16] or random Fourier features [RR07, DXH+14, TRVR16],
which reduces such requirement to O(nd). Exploiting properties of random matrices and
the Hadamard transform, [LSS13] further reduces the O(nd) requirement to O(n log d)
computation and O(n) memory, respectively.

Remark 5.2 (Fourier and other feature maps). As discussed above, most scalable kernel
methods suffer from limited computational reach when used with Gaussian and other
smooth kernels. Feature maps, such as Random Fourier Features [RR07], are non-linear
transformations and are agnostic with respect to the optimization methods. Still they
can be viewed as approximations of smooth kernels and thus suffer from the fast decay of
eigenvalues.

Preconditioned linear systems. There is a vast literature on preconditioned linear
systems with a number of recent papers focusing on preconditioning kernel matrices, such as
for low-rank approximation [FM12, CARR16] and faster convergence [COCF16, ACW16].
In particular, we note [FM12] which suggests approximations using top eigenvectors of the
kernel matrix as a preconditioner, an idea closely related to EigenPro.

6 Experimental Results

In this section, we will present a number of experimental results to evaluate EigenPro
iteration on a range of datasets.

Name n d Label
CIFAR-10 5× 104 1024 {0,...,9}
MNIST 6× 104 784 {0,...,9}
SVHN 7× 104 1024 {1,...,10}
HINT-S 2× 105 425 {0, 1}64

TIMIT 1.1× 106 440 {0,...,143}
SUSY 5× 106 18 {0, 1}
HINT-M 7× 106 246 [0, 1]64

MNIST-8M 8× 106 784 {0,...,9}

Computing Resource. All experiments were
run on a single workstation equipped with
128GB main memory, two Intel Xeon(R) E5-
2620 processors, and one Nvidia GTX Titan X
(Maxwell) GPU.
Datasets. The table on the right summarizes
the datasets used in experiments. For image
datasets (MNIST [LBBH98], CIFAR-10 [KH09],
and SVHN [NWC+11]), color images are first

16

transformed to grayscale images. We then rescale the range of each feature to [0, 1]. For
other datasets (HINT-S, HINT-M [HYWW13], TIMIT [GLF+93], SUSY [BSW14]), we
normalize each feature by z-score. In addition, all multiclass labels are mapped to multiple
binary labels.
Metrics. For datasets with multiclass or binary labels, we measure the training result
by classification error (c-error), the percentage of predicted labels that are incorrect; for
datasets with real valued labels, we adopt the mean squared error (mse).
Kernel methods. For smaller datasets exact solution of kernel regularized least squares
(KRLS) gives the error close to optimal for kernel methods with the specific kernel pa-
rameters. To handle large dataset, we adopt primal space method, Pegasos [SSSSC11]
using the square loss and stochastic gradient. For even larger dataset, we combine SGD
and Random Fourier Features [RR07] (RF, see Appendix B) as in [DXH+14, TRVR16].
The results of these two methods are presented as the baseline. Then we apply EigenPro
to Pegasos and RF as described in Section 3. In addition, we compare the state-of-the-art
results of other kernel methods to that of EigenPro in this section.
Hyperparameters. For consistent comparison, all iterative methods use mini-batch of
size m = 256. EigenPro preconditioner is constructed using the top k = 160 eigenvectors
of a subsampled dataset of size M = 4800. For EigenPro iteration with random features,
we set the damping factor τ = 1

4 . For primal EigenPro τ = 1.
Overhead of EigenPro iteration. The
right side figure shows that the computa-
tional overhead of EigenPro iteration over
the standard SGD ranged between 10% and
50%. For k = 160 which is the default
setting in all other experiments, EigenPro
overhead is approximately 20%.
Convergence acceleration by Eigen-
Pro for different kernels. Table 3
presents the number of epochs needed by
EigenPro and Pegasos to reach the error of the optimal kernel classifier (computed by a
direct method on these smaller datasets). The actual error can be found in Appendix E.
We see that EigenPro provides acceleration of 6 to 35 times in terms of the number of
epochs required without any loss of accuracy. The actual acceleration is about 20% less
due to the overhead of maintaining and applying a preconditioner.

Table 3: Number of epochs to reach the optimal classification error (by KRLS)

Dataset Size Gaussian Kernel Laplace Kernel Cauchy Kernel
EigenPro Pegasos EigenPro Pegasos EigenPro Pegasos

MNIST 6× 104 7 77 4 143 7 78
CIFAR-10 5× 104 5 56 13 136 6 107
SVHN 7× 104 8 54 14 297 17 191
HINT-S 5× 104 19 164 15 308 13 126

Kernel bandwidth selection. We have investigated the impact of kernel bandwidth se-
lection over convergence and performance for Gaussian kernel. As expected, kernel matrix
with smaller bandwidth has slower eigenvalue decay, which in turn accelerates convergence
of gradient descent. However, selecting smaller bandwidth also decreases test set perfor-
mance. When the bandwidth is very small, the Gaussian classifier converges to 1-nearest
neighbor method, something which we observe in practice. While 1-NN classifier provides
reasonable performance, it has up to twice the error of the optimal Bayes classifier in theory
and far from the carefully selected Gaussian kernel classifier in practice. See Appendix H

17

for detailed results.
Comparisons on large datasets. On datasets involving up to a few million points,
EigenPro consistently outperforms Pegasos/SGD-RF by a large margin when training with
the same number of epochs (Table 4).

Table 4: Error rate after 10 epochs / GPU hours (with Gaussian kernel)

Dataset Size Metric EigenPro Pegasos EigenPro-RF† SGD-RF†

result hours result hours result hours result hours
HINT-S 2× 105

c-error

10.0% 0.1 11.7% 0.1 10.3% 0.2 11.5% 0.1
TIMIT 1× 106 31.7% 3.2 33.0% 2.2 32.6% 1.5 33.3% 1.0

MNIST-8M 1× 106 0.8% 3.0 1.1% 2.7 0.8% 0.8 1.0% 0.7
8× 106 - - 0.7% 7.2 0.8% 6.0

HINT-M 1× 106

mse 2.3e-2 1.9 2.7e-2 1.5 2.4e-2 0.8 2.7e-2 0.6
7× 106 - - 2.1e-2 5.8 2.4e-2 4.1

† We adopt D = 2× 105 random Fourier features.

Comparisons to the state-of-the-art. In Table 5 we provide a comparison to state-of-
the-art results for large datasets recently reported in the kernel literature. All of them use
significant computational resources and sometimes complex training procedures. We see
that EigenPro improves or matches performance performance on each dataset typically at a
small fraction of the computational budget. We notice that the very recent work [MGL+17]
achieves a better 30.9% error rate on TIMIT (using an AWS cluster). It is not directly
comparable to our result as it employs kernel features generated using a new supervised
feature selection method. EigenPro can plausibly further improve the training error or
decrease computational requirements using this new feature set.

Table 5: Comparison to large scale kernel results (Gaussian kernel)

Dataset Size EigenPro (use 1 GTX Titan X) Reported results
error GPU hours epochs source error description

MNIST 1× 106 0.70% 4.8 16 PCG [ACW16] 0.72% 1.1 hours (189 epochs)
on 1344 AWS vCPUs

6.7× 106 0.80%† 0.8 10 [LML+14] 0.85% less than 37.5 hours
on 1 Tesla K20m

TIMIT 2× 106 31.7%
(32.5%)‡ 3.2 10 Ensemble [HAS+14] 33.5% 512 IBM

BlueGene/Q cores

BCD [TRVR16] 33.5% 7.5 hours on
1024 AWS vCPUs

SUSY 4× 106 19.8% 0.1 0.6 Hierarchical [CAS16] ≈ 20%
0.6 hours on

IBM POWER8
† This result is produced by EigenPro-RF using 1× 106 data points.
‡ Our TIMIT training set (1× 106 data points) was generated following a standard practice in the speech
community [PGB+11] by taking 10ms frames and dropping the glottal stop ’q’ labeled frames in core test
set (1.2% of total test set). [HAS+14] adopts 5ms frames, resulting in 2 × 106 data points, and keeping
the glottal stop ’q’. Taking the worst case scenario for our setting, if we mislabel all glottal stops, the
corresponding frame-level error will increase from 31.7% to 32.5%.

7 Conclusion and perspective

In this paper we have considered a subtle trade-off between smoothness and computation
for gradient-descent based method. While smooth output functions, such as those produced
by kernel algorithms with smooth kernels, are often desirable and help generalization (as,
for example, encoded in the notion of algorithmic stability [BE02]) there appears to be
a hidden but very significant computational cost when the smoothness of the kernel is
mismatched with that of the target function. We argue and provide experimental evidence

18

that these mismatches are common in standard classification problems. In particular, we
view effectiveness of EigenPro as another piece of supporting evidence.

An important direction of future work is to understand whether this is a universal phe-
nomenon encompassing a range of learning methods or something pertaining to the kernel
setting. Specifically, the implications of this idea for deep neural networks need to be ex-
plored. Indeed, there is a body of evidence indicating that training neural networks results
in highly non-smooth functions. For one thing, they can easily fit data even when the la-
bels are randomly assigned [ZBH+16]. Moreover, the pervasiveness of adversarial [SZS+13]
and even universal adversarial examples common to different networks [MDFFF16] sug-
gests that there are many directions non-smoothness in the neighborhood of nearly any
data point. Why neural networks show generalization despite this evident non-smoothness,
remains a key open question.

Finally, we have seen that training of kernel methods on large data can be significantly
improved by simple algorithmic modifications of first order iterative algorithms using lim-
ited second order information. It appears that purely second order methods cannot provide
major improvements as low-rank approximations needed for dealing large data discard in-
formation corresponding to the higher frequency components present in the data. Better
understanding of the computational and statistical issues and the trade-offs inherent in
training, would no doubt result in even better shallow algorithms making them more com-
petitive with deep networks on a given computational budget.

Acknowledgements

We thank Adam Stiff and Eric Fosler-Lussier for preprocessing and providing the TIMIT
dataset. We are also grateful to Jitong Chen and Deliang Wang for providing the HINT
dataset. We thank the National Science Foundation for financial support (IIS 1550757 and
CCF 1422830) Part of this work was completed while the second author visited the Simons
Institute at Berkeley.

19

References

[ABH16] N. Agarwal, B. Bullins, and E. Hazan. Second order stochastic optimization
in linear time. arXiv preprint arXiv:1602.03943, 2016.

[ACW16] H. Avron, K. Clarkson, and D. Woodruff. Faster kernel ridge regression using
sketching and preconditioning. arXiv preprint arXiv:1611.03220, 2016.

[Aro50] N. Aronszajn. Theory of reproducing kernels. Transactions of the American
mathematical society, 68(3):337–404, 1950.

[B+05] M. L. Braun et al. Spectral properties of the kernel matrix and their relation
to kernel methods in machine learning. PhD thesis, University of Bonn, 2005.

[B+15] S. Bubeck et al. Convex optimization: Algorithms and complexity. Founda-
tions and Trends in Machine Learning, 8(3-4):231–357, 2015.

[BBG09] A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-newton
stochastic gradient descent. JMLR, 10:1737–1754, 2009.

[BE02] O. Bousquet and A. Elisseeff. Stability and generalization. JMLR, 2:499–526,
2002.

[BHNS16] R. H. Byrd, S. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-
newton method for large-scale optimization. SIAM Journal on Optimization,
26(2):1008–1031, 2016.

[Bis07] C. Bishop. Pattern recognition and machine learning. Springer, New York,
2007.

[BSW14] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in
high-energy physics with deep learning. Nature communications, 5, 2014.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[CARR16] R. Camoriano, T. Angles, A. Rudi, and L. Rosasco. NYTRO: When subsam-
pling meets early stopping. In AISTATS, pages 1403–1411, 2016.

[CAS16] J. Chen, H. Avron, and V. Sindhwani. Hierarchically compositional kernels
for scalable nonparametric learning. arXiv preprint arXiv:1608.00860, 2016.

[CK11] C.-C. Cheng and B. Kingsbury. Arccosine kernels: Acoustic modeling with
infinite neural networks. In ICASSP, pages 5200–5203. IEEE, 2011.

[COCF16] K. Cutajar, M. Osborne, J. Cunningham, and M. Filippone. Preconditioning
kernel matrices. In ICML, pages 2529–2538, 2016.

[DHS11] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. JMLR, 12:2121–2159, 2011.

[DJS96] J. E. Dennis Jr and R. B. Schnabel. Numerical methods for unconstrained
optimization and nonlinear equations. SIAM, 1996.

[DXH+14] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M. Balcan, and L. Song. Scalable
kernel methods via doubly stochastic gradients. In NIPS, pages 3041–3049,
2014.

20

[EM15] M. A. Erdogdu and A. Montanari. Convergence rates of sub-sampled newton
methods. In NIPS, pages 3052–3060, 2015.

[FM12] G. Fasshauer and M. McCourt. Stable evaluation of gaussian radial basis
function interpolants. SIAM Journal on Scientific Computing, 34(2):A737–
A762, 2012.

[GLF+93] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett.
Darpa timit acoustic-phonetic continous speech corpus cd-rom. NIST speech
disc, 1-1.1, 1993.

[GOSS16] A. Gonen, F. Orabona, and S. Shalev-Shwartz. Solving ridge regression using
sketched preconditioned svrg. In ICML, pages 1397–1405, 2016.

[HAS+14] P.-S. Huang, H. Avron, T. N. Sainath, V. Sindhwani, and B. Ramabhadran.
Kernel methods match deep neural networks on timit. In ICASSP, pages
205–209. IEEE, 2014.

[HCL+08] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A
dual coordinate descent method for large-scale linear svm. In ICML, pages
408–415, 2008.

[HMT11] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix de-
compositions. SIAM review, 53(2):217–288, 2011.

[HYWW13] E. W. Healy, S. E. Yoho, Y. Wang, and D. Wang. An algorithm to improve
speech recognition in noise for hearing-impaired listeners. The Journal of the
Acoustical Society of America, 134(4):3029–3038, 2013.

[JZ13] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In NIPS, pages 315–323, 2013.

[KB14] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[KH09] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny
images. Master’s thesis, University of Toronto, 2009.

[KSW04] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.
Signal Processing, IEEE Transactions on, 52(8):2165–2176, 2004.

[Küh87] T. Kühn. Eigenvalues of integral operators with smooth positive definite
kernels. Archiv der Mathematik, 49(6):525–534, 1987.

[LBBH98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, volume 86,
pages 2278–2324, 1998.

[LML+14] Z. Lu, A. May, K. Liu, A. B. Garakani, D. Guo, A. Bellet, L. Fan, M. Collins,
B. Kingsbury, M. Picheny, and F. Sha. How to scale up kernel methods to be
as good as deep neural nets. arXiv preprint arXiv:1411.4000, 2014.

[LN89] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1-3):503–528, 1989.

[LSS13] Q. Le, T. Sarlós, and A. Smola. Fastfood-approximating kernel expansions in
loglinear time. In ICML, 2013.

21

[MDFFF16] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal ad-
versarial perturbations. arXiv preprint arXiv:1610.08401, 2016.

[MGL+17] A. May, A. B. Garakani, Z. Lu, D. Guo, K. Liu, A. Bellet, L. Fan, M. Collins,
D. Hsu, B. Kingsbury, et al. Kernel approximation methods for speech recog-
nition. arXiv preprint arXiv:1701.03577, 2017.

[Min17] S. Minsker. On some extensions of bernstein’s inequality for self-adjoint op-
erators. Statistics & Probability Letters, 2017.

[MNJ16] P. Moritz, R. Nishihara, and M. Jordan. A linearly-convergent stochastic
l-bfgs algorithm. In AISTATS, pages 249–258, 2016.

[Mur98] N. Murata. A statistical study of on-line learning. Online Learning and Neural
Networks. Cambridge University Press, Cambridge, UK, pages 63–92, 1998.

[NWC+11] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits
in natural images with unsupervised feature learning. In NIPS workshop,
volume 2011, page 4, 2011.

[PGB+11] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.
Hannemann, P. Motlicek, Y. Qian, P. Schwarz, et al. The kaldi speech recog-
nition toolkit. In ASRU, 2011.

[QB16] Q. Que and M. Belkin. Back to the future: Radial basis function networks
revisited. In AISTATS, pages 1375–1383, 2016.

[RBV10] L. Rosasco, M. Belkin, and E. D. Vito. On learning with integral operators.
JMLR, 11(Feb):905–934, 2010.

[Ric11] L. F. Richardson. The approximate arithmetical solution by finite differences
of physical problems involving differential equations, with an application to
the stresses in a masonry dam. Philosophical Transactions of the Royal Society
of London. Series A, 210:307–357, 1911.

[Ros97] S. Rosenberg. The Laplacian on a Riemannian manifold: an introduction to
analysis on manifolds. Cambridge University Press, 1997.

[RR07] A. Rahimi and B. Recht. Random features for large-scale kernel machines.
In NIPS, pages 1177–1184, 2007.

[RSB12] N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with
an exponential convergence _rate for finite training sets. In NIPS, pages
2663–2671, 2012.

[RWY14] G. Raskutti, M. Wainwright, and B. Yu. Early stopping and non-parametric
regression: an optimal data-dependent stopping rule. JMLR, 15(1):335–366,
2014.

[SC08] I. Steinwart and A. Christmann. Support vector machines. Springer Science
& Business Media, 2008.

[She94] J. R. Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. Technical report, Pittsburgh, PA, USA, 1994.

[SNB05] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from
transductive to semi-supervised learning. In ICML, pages 824–831, 2005.

22

[SS16] G. Santin and R. Schaback. Approximation of eigenfunctions in kernel-based
spaces. Advances in Computational Mathematics, 42(4):973–993, 2016.

[SSSSC11] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal
estimated sub-gradient solver for SVM. Mathematical programming, 127(1):3–
30, 2011.

[STC04] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.
Cambridge university press, 2004.

[SYG07] N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-newton method
for online convex optimization. In AISTATS, pages 436–443, 2007.

[SZS+13] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[TBRS13] M. Takác, A. S. Bijral, P. Richtárik, and N. Srebro. Mini-batch primal and
dual methods for SVMs. In ICML (3), pages 1022–1030, 2013.

[TH12] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 4:2, 2012.

[Tro15] J. A. Tropp. An introduction to matrix concentration inequalities. arXiv
preprint arXiv:1501.01571, 2015.

[TRVR16] S. Tu, R. Roelofs, S. Venkataraman, and B. Recht. Large scale kernel learning
using block coordinate descent. arXiv preprint arXiv:1602.05310, 2016.

[Tsy04] A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning.
Annals of Statistics, pages 135–166, 2004.

[WS01] C. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. In NIPS, pages 682–688, 2001.

[YRC07] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent
learning. Constructive Approximation, 26(2):289–315, 2007.

[ZBH+16] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530,
2016.

23

Appendices

A Scalable truncated SVD

Algorithm: RSVD(X, k,M), adapted
from [HMT11]

input n × d matrix X, number of eigen-
directions k, subsample size M

output (eee1(HM), . . . , eeek(HM)),
diag(λ1(HM), . . . , λk(HM)), λk+1(HM)

1: XM ← M rows sampled from X with-
out replacement

2: [λ1(XM), . . . , λk+1(XM)],
[vvv1(XM), . . . , vvvk(XM)]
← rsvd(XM , k + 1), non-Hermitian
version of Algorithm 5.6 in [HMT11]
(vvvi(X)

def
= i-th right singular vector)

3: λi(HM)←
√

n
M λi(XM),

eeei(HM)← vvvi(XM) for i = 1, . . . , k

Algorithm: NSVD(X, k,M), adapted
from [WS01]

input n × d matrix X, number of eigen-
directions k, subsample size M

output (eee1(HM), . . . , eeek(HM)),
diag(λ1(HM), . . . , λk(HM)), λk+1(HM)

1: XM ← M rows sampled from X with-
out replacement

2: W ← n
MXMX

T
M

3: [λ1(W), . . . , λk+1(W)],
[vvv1(W), . . . , vvvk(W)] ← svd(W,k + 1)

4: λi(HM)← λi(W),
ẽeei ← n

MX
T
Mvvvi(W) for i = 1, . . . , k

5: (eee1(HM), . . . , eeek(HM))←
orthogonalize(ẽee1, . . . , ẽeek)

Given data matrix X, Algorithm RSVD computes its approximate top eigensystem
using corresponding subsample covariance matrix HM

def
= 1

MX
T
MXM . The algorithm has

time complexity O(Md log k + (M + d)k2) according to [HMT11].
The selection of subsample size M depends on the eigenvalue decay rate of the covari-

ance. Specifically, we choose M = 4800, which is much smaller than the size of training
sets in our experiments. Thus, when k = 160, RSVD only takes a few minuets computation
to complete even that the data (or kernel matrix) dimension d exceeds 106.

When computing the approximate top-eigensystem of the covariance for the Eigen-
Pro preconditioner, Nyström method based SVD (NSVD) is an alternative method with
theoretical time complexity O(Mdk + M3) worse than that of RSVD. However, its GPU
implementation often outrun the corresponding RSVD implementation (due to applying
SVD upon an M ×M matrix instead of an M × d matrix). In practice, NSVD is able to
obtain the approximate top-160 eigensystem of a kernel matrix with dimension 7 · 106 in
less than 2.5 minuets using a single GTX Titan X (Maxwell).

Note that the results returned by NSVD normally involve larger approximation error
than that by RSVD (using the sameM). While in our experiments, this increase of the ap-
proximation error has negligible impact on the final regression/classification performance,
as well as the convergence rate.

B Kernel-related feature maps

Random Fourier features (RFF) [RR07]. The random Fourier feature map RN → R
is defined by

φrff(xxx)
def
=
√

2d−1(cos(ωωωT1 xxx+ b1), . . . , cos(ωωωTdxxx+ bd))
T

Here ωωω1, . . . ,ωωωd are sampled from the distribution 1
2π

∫
exp(−jωωωT δ) k(δ)d∆ and b1, . . . , bd

from uniform distribution on [0, 2π]. It can be shown that the inner product in the feature
space approximates a Gaussian kernel k(·, ·), i.e., limD→∞ φrff(xxx)T φrff(yyy) = k(xxx,yyy).
Radial basis function network (RBF) features.This setting involves feature map

24

related to kernel k(·, ·), defined as

φrbf(xxx)
def
= (k(xxx,zzz1), . . . , k(xxx,zzzd))

T

where {zi}di=1are network centers. Note there are various strategies for selecting centers,
e.g., randomly sampling from X [CARR16] or by computing K-means centers leading to
different interpretations in terms of data-dependent kernels [QB16].

C Concentration bounds

Spectral norm of subsample covariance matrix. With subsample size m, Hm
def
=

1
mX

T
mXm is the subsample covariance matrix corresponding to covariance H defined in

Eq. 3. To bound its approximation error, ‖Hm −H‖, we need the following concentration
theorem,

Theorem (Matrix Bernstein [Tro15]). Let S1, . . . , Sm be independent random Hermitian
matrices with dimension d× d. Assume that each matrix satisfies

E[Si] = 0 and ‖Si‖ ≤ L for i = 1, . . . ,m (23)

Then for any t > 0, random matrix Z def
=
∑m

i=1 Si has bound

P{‖Z‖ ≥ t} ≤ 2d · exp

(
−t2/2

v(Z) + Lt/3

)
(24)

where v(Z)
def
=
∥∥E[ZTZ]

∥∥.
Applying Matrix Bernstein theorem to the subsample covariance Hm leads to the fol-

lowing Lemma,

Lemma 1. If ‖xxx‖22 ≤ κ for any xxx ∈ X and λ1 = ‖H‖, ‖Hm −H‖ has following upper
bound with probability at least 1− δ,

‖Hm −H‖ ≤

√(
λ1 + κ

3m
ln

2d

δ

)2

+
2λ1κ

m
ln

2d

δ
+
λ1 + κ

3m
ln

2d

δ
(25)

Proof. Consider subsample covariance matrix Hm = 1
m

∑m
i=1xxxixxx

T
i using xxx1, . . . ,xxxm ran-

domly sampled from dataset X. For each sampled point xxxi, . . . ,xxxm, let

Si
def
=

1

m
(xxxixxx

T
i −H) (26)

Clearly, S1, . . . , Sm are independent random Hermitian matrices. Since E[xxxixxx
T
i] = E[Hm] =

H and ‖xxxi‖22 ≤ κ for i = 1, . . . ,m, we have

E[Si] = 0 and ‖Si‖ ≤
λ1 + κ

m
for i = 1, . . . ,m (27)

Furthermore, notice that for any i = 1, . . . ,m, we have

E[S2
i] =

1

m2
E[xxxixxx

T
i xxxixxx

T
i − xxxixxxTi H −HxxxixxxTi +H2]

=
1

m2
(E[‖xxxi‖2xxxixxxTi])−H2)

� 1

m2
(κH −H2) � κ

m2
H

(28)

25

Hence the spectral norm has the following upper bound,∥∥E[S2
i]
∥∥ ≤ λ1κ

m2
(29)

The sum of the random matrices, Hm −H =
∑m

i=1 Si, can be bounded as follows:

v(Hm −H) =
∥∥E[(Hm −H)T (Hm −H)]

∥∥
=

∥∥∥∥∥
m∑
i=1

E[S2
i]

∥∥∥∥∥ ≤
m∑
i=1

∥∥E[S2
i]
∥∥ ≤ λ1κ

m

(30)

Now applying Matrix Bernstein Theorem yields

P{‖Hm −H‖ ≥ t} ≤ 2d · exp

(
−t2/2

v(Hm −H) + (λ1+κ)t
3m

)
(31)

Let the right side of Eq. 31 be δ, we obtain that

t =

√(
λ1 + κ

3m
ln

2d

δ

)2

+
2λ1κ

m
ln

2d

δ
+
λ1 + κ

3m
ln

2d

δ
(32)

Therefore, with probability at least 1− δ, we have

‖Hm −H‖ ≤ t (33)

Spectral norm of subsample covariance operator. For EigenPro iteration in RKHS,
its step size selection is related to covariance operator K defined in Eq. 13. Similarly, under
the SGD setting, we need to bound ‖Km −K‖ where Kmf(x)

def
= 1

m

∑m
i=1 k(x, xi)f(xi) is the

corresponding subsample covariance operator. Thus we introduce the following Bernstein
inequality for random operators. This inequality differs from its vector space version
(Matrix Bernstein) by replacing the space dimension with the intrinsic dimension, defined
as

d(V)
def
=
tr(V)

‖V‖
(34)

Theorem (Operator Bernstein, adapted from [Min17, Tro15]). Let Si : H → H, i =
1, . . . ,m be independent random Hermitian operators. Assume that each operator satisfies

E[Si] = 0 and ‖Si‖ ≤ L for i = 1, . . . ,m (35)

Consider random Hermitian operator Z
def
=
∑m

i=1 Si. Its variance V def
= E[Z2] is also an

operator on H. For convenience, let the intrinsic dimension (Eq. 34) and the spectral
norm of the variance operator be

d
def
= d(V) and v

def
= ‖V ‖

Then for any t ≥
√
v + L/3, we have

P{‖Z‖ ≥ t} ≤ 8d · exp

(
−t2/2
v + Lt/3

)
(36)

This theorem can be applied to bound ‖Km −K‖,

26

Lemma 2. If k(xxx,xxx) ≤ κ for any xxx ∈ X and λ1 = ‖K‖, ‖Km −K‖ has following upper
bound with probability at least 1− δ,

‖Km −K‖ ≤

√(
λ1 + κ

3m
ln

8d

δ

)2

+
2λ1κ

m
ln

8d

δ
+
λ1 + κ

3m
ln

8d

δ
(37)

Proof. Consider subsample covariance operator Kmf(xxx)
def
= 1

m

∑m
i=1 k(xxx,xxxi)f(xxxi) defined

by xxx1, . . . ,xxxm randomly sampled from dataset X. For each sampled point xxxi, . . . ,xxxm, let

Si f(xxx)
def
=

1

m
(k(xxx,xxxi)f(xxxi)−Kf(xxx)) (38)

Clearly, S1, . . . ,Sm are independent random Hermitian operators. Since E[k(xxx,xxxi)f(xxxi)] =
Kf(xxx) and ‖k(xi, ·)‖H = k(xxxi,xxxi) ≤ κ for i = 1, . . . ,m, we have

E[Si] = 0 and ‖Si‖ ≤
λ1 + κ

m
for i = 1, . . . ,m (39)

Furthermore, for any f ∈ H, the variance operator of Si equals

E[S2
i]f(xxx) =

1

m2
(E[k(xxxi,xxxi)k(xxx,xxxi)f(xxxi)]−K2f(xxx))

=
1

m2
(k(xxxi,xxxi)Kf(xxx)−K2f(xxx))

(40)

As k(xxxi,xxxi) ≤ κ and K is positive semi-definite, this variance operator is bounded by

E[S2
i] �

1

m2
(κK −K2) � κ

m2
K

Hence its spectral norm has upper bound,∥∥E[S2
i]
∥∥ ≤ λ1κ

m2
(41)

Since Si and Sj are independent for i 6= j, E[Si Sj]f(x) ≡ 0 almost everywhere. Then the
sum of the random operators, Km −K =

∑m
i=1 Si, can be bounded as follows:

v(Km −K) =

∥∥∥∥∥
m∑
i=1

E[S2
i]

∥∥∥∥∥ ≤
m∑
i=1

∥∥E[S2
i]
∥∥ ≤ λ1κ

m
(42)

Now we can apply the Operator Bernstein on Km −K which yields concentration bound,

P{‖Km −K‖ ≥ t} ≤ 8d · exp

(
−t2/2

v(Km −K) + (λ1+κ)t
3m

)
(43)

for any t ≥
√
v(Km −K) + (λ1+κ)

3m . Let the right side of Eq. 43 be δ, we obtain that

t =

√(
λ1 + κ

3m
ln

8d

δ

)2

+
2λ1κ

m
ln

8d

δ
+
λ1 + κ

3m
ln

8d

δ
(44)

Therefore, for any δ ≤ 8d · e, with probability at least 1− δ, we have

‖Km −K‖ ≤ t (45)

According to the definition of the intrinsic dimension, d ≥ 1. Thus δ ≤ 8d · e is true for
any δ ∈ [0, 1].

27

Upper bound on the spectral norm of subsample covariance. Applying Lemma 1
to ‖Hm −H‖ and using the inequality ‖Hm‖ ≤ ‖H‖ + ‖Hm −H‖, one can obtain the
following

Lemma 3. If ‖xxx‖22 ≤ κ for any xxx ∈ X, then with probability at least 1− δ,

‖Hm‖ ≤ λ1 +
2(λ1 + κ)

3m
ln

2d

δ
+

√
2λ1κ

m
ln

2d

δ
(46)

Similarly, we can bound the spectral norm of the subsample covariance operator Km
by using Lemma 2.

Lemma 4. If k(xxx,xxx) ≤ κ for any xxx ∈ X, then with probability at least 1− δ,

‖Km‖ ≤ λ1 +
2(λ1 + κ)

3m
ln

8d

δ
+

√
2λ1κ

m
ln

8d

δ
(47)

D ‖ααα‖2 during the training of (primal) kernel method

Figure 2: Change of ‖α‖2 during graident descent training (Pegasos) on subsample datasets
(10000 points)

Here ααα = (α1, . . . , αn)T is the representation of the solution f under basis {k(xxxi, ·)}ni=1

such that f =
∑n

i=1 αik(xxxi, ·). Therefore, ‖ααα‖2 = ‖f‖L2 .

E Kernel selection

Best classification error (for KRLS)
Dataset Size Gaussian Laplace Cauchy
MNIST 6× 104 1.3% 1.6% 1.5%

CIFAR-10 5× 104 49.5% 48.9% 48.4%
SVHN 7× 104 18.0% 18.5% 18.0%
HINT-S 5× 104 11.3% 11.4% 11.3%

The table on the right side compares op-
timal performance for three different ker-
nels: the Gaussian kernel k1(x, y)

def
=

exp(−‖x−y‖
2

2σ2), the Laplace kernel k2(x, y)
def
=

exp(−‖x−y‖σ), and the Cauchy kernel

k3(x, y)
def
= (1+ ‖x−y‖

2

σ2)−1. With bandwidth
σ selected by cross validation, the perfor-
mance of the Gaussian kernel is generally comparable to that of the Cauchy kernel. The
Laplace kernel performs worst possibly due to its non-smoothness.

F Kernel selection on convergence and performance

Table 7 and Table 8 presents detailed results on MNIST with the kernel bandwidth σ se-
lected by cross validation. Results with all kernels generally show comparable convergence

28

Table 7: Classification error on MNIST with different kernels

NEpoch

Gaussian Kernel (σ2 = 25) Laplace Kernel (σ = 10) Cauchy Kernel (σ2 = 40)
EigenPro Pegasos EigenPro Pegasos EigenPro Pegasos

train test train test train test train test train test train test
1 0.92% 2.03% 5.12% 5.21% 0.16% 2.06% 7.39% 7.21% 0.41% 1.91% 6.05% 5.96%
5 0.10% 1.44% 2.36% 2.84% 0.0% 1.62% 3.42% 4.26% 0.0% 1.31% 2.76% 3.44%
10 0.01% 1.23% 1.58% 2.32% 0.0% 1.58% 2.18% 3.39% 0.0% 1.32% 1.76% 2.57%
20 0.0% 1.20% 0.90% 1.93% 0.0% 1.57% 1.09% 2.57% 0.0% 1.30% 0.91% 2.12%
40 0.0% 1.20% 0.39% 1.65% 0.0% 1.57% 0.32% 2.14% 0.0% 1.30% 0.30% 1.78%
80 0.0% 1.23% 0.14% 1.41% 0.0% 1.57% 0.03% 1.85% 0.0% 1.29% 0.06% 1.56%
160 0.0% 1.21% 0.03% 1.24% 0.0% 1.57% 0.0% 1.71% 0.0% 1.29% 0.01% 1.36%

Table 8: L2 loss on MNIST with different kernels

NEpoch

Gaussian Kernel (σ2 = 25) Laplace Kernel (σ = 10) Cauchy Kernel (σ2 = 40)
EigenPro Pegasos EigenPro Pegasos EigenPro Pegasos

train test train test train test train test train test train test
1 2.4e-2 3.2e-2 6.9e-2 6.8e-2 2.4e-2 3.5e-2 9.4e-2 9.3e-2 1.8e-2 3.0e-2 7.9e-2 7.8e-2
5 8.6e-3 2.4e-2 4.0e-2 4.3e-2 1.7e-3 2.5e-2 5.3e-2 5.6e-2 3.0e-3 2.2e-2 4.4e-2 4.7e-2
10 4.3e-3 2.2e-2 3.1e-2 3.6e-2 1.0e-4 2.4e-2 4.0e-2 4.6e-2 8.0e-4 2.1e-2 3.3e-2 3.9e-2
20 1.8e-3 2.1e-2 2.3e-2 3.1e-2 0 2.4e-2 2.8e-2 3.9e-2 1.0e-4 2.0e-2 2.3e-2 3.2e-2
40 6.1e-4 2.1e-2 1.6e-2 2.7e-2 0 2.4e-2 1.7e-2 3.2e-2 0 2.0e-2 1.5e-2 2.7e-2
80 2.2e-4 2.1e-2 9.7e-3 2.4e-2 0 2.4e-2 8.3e-3 2.8e-2 0 2.0e-2 7.8e-3 2.4e-2
160 8.0e-5 2.1e-2 5.1e-3 2.2e-2 0 2.4e-2 2.6e-3 2.6e-2 0 2.0e-2 3.1e-3 2.2e-2

rate and performance. However, the performance of Gaussian kernel is better overall, a
pattern we observed on other datasets as well.

(a) Different datasets, subsample size N = 2 · 104 (b) Same data set, subsets of different sizes (N)
Figure 3: Eigenspectrum of the kernel matrices

G Eigenvalues of (Gaussian) kernel matrices

Eigenvalue ratio of kernel matrices
Ratio CIFAR MNIST SVHN TIMIT HINT-S
λ1/λ41 68 69 39 45 128
λ1/λ81 128 135 72 84 200
λ1/λ161 245 280 138 166 338
λ1/λ321 464 567 270 290 800

For each dataset, the eigenspec-
trum of the corresponding kernel
matrix directly determines the im-
pact of EigenPro on convergence.
Figure 3a shows the normalized
eigenspectra (λi/λ1) of these ker-
nel matrices. We see that the spectrum of each dataset drops sharply for the 200 eigenval-
ues, making EigenPro highly effective. Table above lists the eigenvalue ratios corresponding
to different k. For example, with k = 160, EigenPro for RF can in theory increase the step
accelerate training by a factor of 338 for training on HINT-S. Actual acceleration is not
as large but still significant. Note that given small subsample size we expect that lower
eigenvalues are probably not reflective of the full large kernel matrix. Still, even lower
eigenvalues match closely when computed from subsamples of different size (Figure 3b).

29

H Kernel bandwidth selection

Here we investigate the impact of kernel bandwidth selection over convergence and per-
formance. Table 9 compares Pegasos and EigenPro iteration using Gaussian kernel with
three different bandwidths σ2. When σ2 = 25, EigenPro reaches best error rate 1.20%
on testing data after 20 epochs training. Using a smaller bandwidth σ2 = 5, EigenPro
reaches its optimal in only 5 epochs. But its error rate 1.83% is significantly worse than
that of σ2 = 25. In sum, using smaller kernel bandwidth leads to slower eigenvalue decay,
which in turn improves convergence of gradient-based methods. While selecting bandwidth
for faster convergence does not guarantee better generalization performance (as shown in
Table 9).

Table 9: Impact of kernel bandwidth on classification error and L2 loss (MNIST)

σ2 NEpoch

EigenPro Pegasos
c-error L2 loss c-error L2 loss

train test train test train test train test

50

1 1.58% 2.39% 3.4e-2 4.0e-2 7.29% 6.86% 9.0e-2 8.8e-2
5 0.41% 1.66% 1.7e-2 2.9e-2 3.96% 4.17% 5.7e-2 5.7e-2
10 0.15% 1.48% 1.1e-2 2.6e-2 2.92% 3.36% 4.7e-2 4.9e-2
20 0.06% 1.41% 6.6e-3 2.4e-2 2.12% 2.66% 3.8e-2 4.2e-2
40 0.01% 1.25% 3.3e-3 2.4e-2 1.45% 2.18% 3.0e-2 3.6e-2

25

1 0.92% 2.03% 2.4e-2 3.2e-2 5.12% 5.21% 6.9e-2 6.8e-2
5 0.10% 1.44% 8.6e-3 2.4e-2 2.36% 2.84% 4.0e-2 4.3e-2
10 0.01% 1.23% 4.3e-3 2.2e-2 1.58% 2.32% 3.1e-2 3.6e-2
20 0.0% 1.20% 1.8e-3 2.1e-2 0.90% 1.93% 2.3e-2 3.1e-2
40 0.0% 1.20% 6.1e-4 2.1e-2 0.39% 1.65% 1.6e-2 2.7e-2

5

1 0.01% 1.85% 2.0e-1 6.9e-2 0.37% 3.42% 1.2e-1 1.9e-1
5 0.01% 1.83% 5.9e-2 9.3e-2 0.0% 2.31% 1.0e-2 1.1e-1
10 0.0% 2.31% 1.3e-2 1.1e-1 0.0% 2.10% 1.1e-3 1.0e-1
20 0.0% 2.11% 6.0e-4 1.0e-1 0.0% 2.06% 1.0e-4 1.0e-1
40 0.0% 2.09% 0 1.0e-1 0.0% 2.07% 0 1.0e-1

30

	1 Introduction
	2 Gradient descent for shallow methods
	2.1 Gradient descent, smoothness, and kernel methods.

	3 EigenPro iteration: extending the reach of gradient descent
	3.1 Linear EigenPro
	3.2 Kernel EigenPro
	3.3 Costs and Benefits

	4 Step Size Selection for EigenPro Preconditioned Methods
	5 EigenPro and Related Work
	6 Experimental Results
	7 Conclusion and perspective
	Appendices
	A Scalable truncated SVD
	B Kernel-related feature maps
	C Concentration bounds
	D during the training of (primal) kernel method
	E Kernel selection
	F Kernel selection on convergence and performance
	G Eigenvalues of (Gaussian) kernel matrices
	H Kernel bandwidth selection

