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Abstract—With the rapid growth of Internet of Things (IoT)
applications in recent years, there is a strong need for wireless
uplink scheduling algorithms that determine when and which
subset of a large number of users should transmit to the
central controller. Different from the downlink case, the central
controller in the uplink scenario typically has very limited
information about the users. On the other hand, collecting all
such information from a large number of users typically incurs
a prohibitively high communication overhead. This motivates
us to investigate the development of an efficient and low-
overhead uplink scheduling algorithm that is suitable for large-
scale IoT applications with limited amount of coordination from
the central controller. Specifically, we first characterize a capacity
outer bound subject to the sampling constraint where only a
small subset of users are allowed to use control channels for
system state reporting and wireless channel probing. Next, we
relax the sampling constraint and propose a joint sampling
and transmission algorithm, which utilizes full knowledge of
channel state distributions and instantaneous queue lengths to
achieve the capacity outer bound. The insights obtained from this
capacity-achieving algorithm allow us to develop an efficient and
low-overhead scheduling algorithm that can strictly satisfy the
sampling constraint with asymptotically diminishing throughput
loss. Moreover, the throughput performance of our proposed
algorithm is independent of the number of users, a highly
desirable property in large-scale IoT systems. Finally, we perform
extensive simulations to validate our theoretical results.

I. INTRODUCTION

Internet of Things (IoT) refers to the internetworking of
a large number of heterogenous smart devices (e.g., smart
phones, tablets, sensors and actuators) to meet the demands
of the ever-increasing applications in personalized health care,
smart home, ubiquitous environmental monitoring, smart man-
ufacturing, etc. It is estimated that the global market for
IoT will reach 20.4 billion devices by 2020 [1]. However,
unlike traditional data communication networks where the
predominant amount of data is transmitted in the downlink, a
distinct feature of IoT applications is that a significant portion
of the IoT data traffic is carried in the uplink (i.e., from user
devices to the central controller). In most IoT applications,
each device generates sparse or intermittent data traffic and
transmits them to a central controller or access point (AP)
for data processing, typically through wireless connections
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(referred to as wireless IoT uplink systems in this paper). As
a result, to support the enormous amount of devices given
limited spectral resources, there is a compelling need for
efficient and low-overhead wireless IoT uplink scheduling
algorithms that determine when and which devices (referred
to as users in the rest of the paper) are allowed to transmit,
with the goal of supporting as many users as possible, or
equivalently, throughput-optimal scheduling.

Over the years, throughput-optimal scheduling has been
extensively studied in the networking research community
and many results are available. However, due to its unique
features and applications, IoT uplink scheduling design is far
more challenging compared to its counterparts in traditional
wireless networks (see Section II for a detailed discussion).
In particular, due to the sheer size of IoT systems, a well-
designed uplink scheduling policy not only has to be near
throughput-optimal, it also needs to be low-overhead. To this
end, in this paper, we propose an efficient and simple design
based on the key idea termed “pick and compare (PC)” (e.g.,
[22], [13], [4], [20]). Simply speaking, a PC scheme always
stores the most congested user and compares its queue-length
with a randomly selected user. It has been shown that the
class of PC algorithms achieves the maximum throughput
through gradually improved quality of transmission decisions
over time. The simplicity, low-complexity, and scalability of
PC algorithms motivate us to consider their deployments in
large-scale IoT uplink systems, where extensive coordination
from the AP is typically infeasible.

However, due to several technical challenges, developing
a PC-based scheduling scheme for IoT uplink systems and
conducting rigorous performance analysis is highly non-trivial.
Traditionally, PC algorithms were developed for systems
where the queue-length evolution processes are smooth. Un-
fortunately, in the presence of wireless channel fading, the
time-varying channel rates could change rather abruptly. Con-
sequently, most of the proof techniques used for establishing
the throughput-optimality of PC-based algorithms fail under
wireless channel fading settings. In fact, it remains an open
question whether it is possible to design an efficient and
low-overhead PC-based scheduling algorithm for IoT uplink
systems with wireless channel fading. A key contribution of
this paper is that we show that the answer is “yes.” Our main
results in this paper are summarized as follows:



« First, we characterize a capacity outer bound for a wireless
IoT uplink system subject to a sampling constraint, i.e.,
we limit the number of users that can use control channels
for reporting system state information and probing uplink
channels. This capacity outer bound lays the foundation for
the performance analysis of our proposed algorithms.

o Next, we consider an efficient and low-overhead uplink
scheduling design. In particular, we relax the sampling con-
straint and propose a two-stage MaxWeight-type scheduling
algorithm that utilizes the full knowledge of channel state
distributions and instantaneous queue lengths to achieve the
capacity outer bound.

« Finally, building upon this capacity-achieving algorithm, we
develop an iterative pick-and-compare (IPC) algorithm that
strictly satisfies the sampling constraint with a vanishing
throughput loss. More precisely, let A(M, K) denote the
capacity outer bound for an N-user M -channel uplink
system with K -user sampling constraint. We show that our
IPC algorithm can stabilize any arrival rates within the
region A(M, K — 1). Further, the gap between A(M, K)
and A(M, K — 1) is vanishing as K 1T N, and thus proving
the asymptotic throughput-optimality of our IPC algorithm.
Moreover, the achievable rate region of our IPC algorithm
is independent of the number of users, a highly desirable
property in large-scale IoT systems.

To our knowledge, our work is the first to offer asymptotic
throughput-optimality for IoT uplink scheduling. The remain-
der of this paper is organized as follows. Section II presents
related work, putting this paper into perspective. Section III
introduces the network model and problem formulation. Sec-
tion IV provides a capacity outer bound characterization.
Section V covers the key elements of our low-overhead uplink
scheduling design. Section VI presents numerical results, and
Section VII concludes this paper.

II. RELATED WORK

In this section, we provide a quick overview of throughput-
optimal scheduling to put our work into perspective. In the
literature, a well-known class of throughput-optimal schedul-
ing algorithms is the family of MaxWeight policies, which date
back to the seminal work by Tassiulas and Ephremides (e.g.,
[23], [24]) and consist of many follow-ups (e.g., [5], [14], [21],
[15], [6]). The basic idea underpinning MaxWeight policies is
to schedule users who have both good channel qualities and
high congestion levels (evaluated by queue lengths or delays,
etc.). However, it is exactly the requirement of both congestion
and channel state information that renders MaxWeight policies
unsuitable for IoT uplink scheduling. In many IoT applica-
tions, due to the large number of devices, congestion and
channel state information is prohibitively expensive to collect.
Exacerbating this problem is the fact that even those reduced
channel-probing-overhead MaxWeight variants designed for
large-size downlink systems (e.g., for energy minimization
[11] or limited channel quality feedback [17]) cannot be
directly applied in IoT uplink systems. The reason is that these

MaxWeight variants still require queue-length information of
all users, while the AP in IoT uplink systems usually has
limited queueing information about their associated users. As a
result, the assumption of accurate congestion level information
for all users, which is usually valid for downlink scheduling,
no longer holds in the uplink counterpart.

To overcome the limitations of MaxWeight policies, one
solution is to adopt the carrier sense multiple access (CSMA)
design (e.g., [8], [18], [16]), where each user judiciously
selects its CSMA parameters to adapt to its congestion levels
(e.g., the queue-lengths). However, most existing CSMA-based
schemes assume that the weight of each user (typically some
function of the queue-length) changes slowly over time, which
makes their extensions to settings with wireless channel fading
quite difficult. Indeed, in the presence of fading, the weight
of each user (determined by the product of the queue-length
and the current feasible service rate) is stochastic and can
change rather abruptly. Although this restriction on slow time-
varying weight has been relaxed in recent works (e.g., [26],
[9]), a more fatal limitation of CSMA-based policies is that the
average time required for successfully acquiring the channel in
the channel contention grows exponentially with the number of
users. This limitation renders CSMA-type schemes impractical
for IoT applications that typically involve a huge number
of users. As will be seen shortly, our proposed PC-based
scheme avoids both the slow time-varying restriction and the
scalability pitfall of CSMA.

III. SYSTEM MODEL

We consider an IoT uplink system with one access point
(AP) and N users, where each user transmits data to the AP
through M orthogonal channels. We assume that the system
operates in slotted time with normalized slots ¢ € {1,2,...}.
We use C[t] = (C;;[t],i =1,2,...,N,j =1,2,....M) to
capture the wireless channel fading, where C; ;[t] denotes the
maximum amount of service available for user ¢ to transmit
packets on channel j in slot t. Due to the finite number of
modulation and coding schemes, we assume that each channel
for each user has R possible channel rates ci,co, ...,cr Wwith
0 = ¢ < ¢cg < ... < CR = Cmax, Which measure the
maximum number of packets that can be delivered in one time
slot. We assume that C|[t] are independently distributed across
both users and channels, and independently and identically
distributed (i.i.d.) over time.

In the IoT uplink system, each user needs to send a control
message to the AP in order for the AP to obtain its state
information (e.g., congestion levels and channel rates). In
particular, the AP fetches the congestion level of a user by
decoding its control message, and obtains its channel rate
by measuring the signal-to-noise ratio of the received control
message. However, due to the restrictive amount of uplink
resources, the AP usually has very limited information about
the state of each user in a large-scale IoT uplink system.
Therefore, we assume that the AP can at most sample K
(K < N) users to acquire their channel states and congestion
levels on each channel at the beginning of each time slot.



We denote the sampling schedule as X[t] = (X;;[t],i =
1,2,...,N,j = 1,2,..., M), where X, ;[t] = 1 if user ¢
is sampled to send a control message on channel j such
that the AP acquires its congestion level and the state of
channel j in time slot ¢, and X; ;[t] = 0 otherwise. Let
X (K) be the collection of all sampling schedules where K
users are sampled to send their control messages on each
channel. To avoid interference, at most one user is allowed
to transmit over each channel in each time slot. We call a
schedule where at most one user is active on each channel
in each time slot as a feasible schedule and denote it as
S[t] = (Si;ltl,: = 1,2,...,N,j = 1,2,..., M), where
S;,j[t] = 1 if user 4 is scheduled on channel j in time slot ¢
and S; ;[t] = 0 otherwise. We use S to denote the collection of
all feasible schedules. Here, we assume that only the sampled
users are allowed to transmit in each time slot.

We assume that each user 7 serves its own data traffic
and maintains packets in a queue with Q;[t] denoting its
queue length at the beginning of time slot ¢, which reflects
its congestion level. The larger the Q;[t], the more congested
the user . Let A;[t] denote the number of packets arriving
at user ¢ in time slot ¢, which is independently distributed
across users and i.i.d. over time with mean \; > 0. We assume
A;t] < Amax, Yt > 0, for some positive constant A,y < 00.
This is a reasonable assumption since, as mentioned earlier,
most IoT data traffic are low-rate and intermittent. Then, the
evolution of user ¢’s queue can be described as follows:

M +
Qi+ 11 = (@i + Al — 3 X 5:,10C 1)

fori=1,2,..., N, where (z)* £ max{x,0}. In this paper,
we are interested in developing an efficient uplink scheduling
algorithm with limited coordination from the AP. In particular,
our goal is to find a joint sampling and transmission schedule
{X[¢],S[t]}+>1 such that, in each time slot and for each
channel, (i) K users are allowed to send their control messages
in order for the AP to acquire their queue-lengths and channel
rates; and (ii) at most one user can be scheduled among
these K sampled users. A key difficulty of this joint sampling
and scheduling problem is that the information available for
making transmission scheduling decision S[t] heavily relies on
the sampling decision X[t].

We consider the class P of stationary sampling and
transmission policies that first decide the sampling schedule
X[t] at slot ¢ based on the available information Q[t] =
(Q1[t],...,QnN][t]) and channel state distributions, and then
determine the transmission schedule S[t] based on (Q[t]®X[t],
C[t] ® X[t]), where ® stands for component-wise multiplica-
tion. In other words, a joint sampling and transmission policy
in P is a two-stage mapping where it first maps from the space
of QJt] to the space of sampling schedules X'(K’) during the
sampling stage and then maps from the space of (Q[t] ® X[¢t],
C[t] ® X]t]) to the space of feasible schedules S during the
transmission stage. Under any policy in P, the queue length
process {Q][t]};>1 forms a Markov Chain.

We say that queue i is strongly stable if limsup;_,
T Zthl E[Q;[t]] < oo. The system is stable if all queues
in the system are strongly stable. We let ©(M, K') denote the
capacity region for an IoT uplink system with M orthogonal
channels and K allowed users in sampling for each channel
in each time slot, which represents the maximum set of arrival
rate vectors A = (X)), for which the system is stable
under some policy. We call an algorithm optimal if it keeps
the system stable for any arrival rate vector that lies strictly
inside ©(M, K). Note that it is in general difficult to directly
characterize ©(M, K). To that end, we first derive an outer
bound for the capacity region in the next section.

IV. CAPACITY OUTER BOUND CHARACTERIZATION

In this section, we characterize an outer bound of the
capacity region ©(M, K) for a wireless IoT uplink system
with M orthogonal channels under the sampling constraint
that K users are allowed to send their control messages on
each channel in order for the AP to acquire their channel rates
and queue-lengths and the scheduling constraint that at most
one user is allowed to transmit on each channel in each time
slot.

Proposition 1 (Capacity Outer Bound): ©(M, K) is con-
tained in the rate region A(M,K) (e, O(M,K) C
A(M, K)), where A(M,K) is defined as the set of arrival
rate vectors A = ();)~, for which there exist non-negative
numbers «(x) and B(x,c;s) such that the following expres-
sions are satisfied:

M
Ai < Z a(x) ZP(C) Zﬁ(xa c;s) Ziﬂi,jci,jsz‘,j,W, (L

xeX (K) c seS j=1
Zﬁ(x,c;s) =1,Vx,c, and Z a(x) =1, 2)

seS xeX(K)

where p(c) = Pr{C[t] = c} denotes the probability that
the channel state is ¢, and «(x) and S(x,c;s) denote the
probabilities of selecting the sampling schedule x € X (K)
and selecting the transmission schedule s € S given the
sampling schedule x and channel state c, respectively.
Remark: In (1), the right-hand-side is the total average
service rate provided for each user, and the left-hand-side is
the user’s average arrival rate. Thus, in order to ensure that
the system is stable under some policy, (1) must be satisfied.
Proof: The proof follows a similar line of analysis as that
in [14] and is omitted due to space limitation. We refer readers
to our technical report [10] for proof details. |
Having established the capacity outer bound A(M, K), we
are now in a position to develop an efficient and low-overhead
uplink scheduling algorithm.

V. LOW-OVERHEAD UPLINK SCHEDULING DESIGN

In this section, we consider an efficient and low-overhead
uplink scheduling design based on the idea of pick-and-
compare (PC). In particular, we first develop an iterative
sampling and transmission algorithm with full information to
achieve the capacity outer bound A(M, K), which motivates



the development of an efficient and low-overhead uplink
scheduling design. Then, we discuss the throughput deficiency
of a natural variant of the proposed algorithm in the single-
channel system under the stringent constraint that K users are
allowed to send their control messages. Finally, we propose
a PC-based efficient low-complexity iterative sampling and
transmission algorithms under the strict sampling constraint.

A. Iterative Sampling and Transmission Algorithm Design

In this subsection, we develop an efficient joint sampling
and transmission algorithm that can achieve the capacity outer
bound A(M, K). Although this algorithm requires full knowl-
edge of channel state distributions and instantaneous queue
lengths of all users, it provides a guideline for our design with
the desired sampling constraint. We consider M + 1 rounds
in each time slot. By slightly abusing the notations, we use
Qi.;[t] to denote the (virtual) queue-length of user ¢ at the end
of round j, where j =0,1,2,..., M, and Q; o[t] = Q;[t].

Iterative Joint Sampling and Transmission (IJST) Algo-
rithm: In each time slot ¢, all users report their queue-lengths,
i.e., Q[t] = (Q;[t])Y.,. Then, for each round j = 1,2,..., M,
perform the following:

(1) Sampling Decision: Set the sampling vector X7 [t] as:

X;k [t] € argmax E [max Qi,jfl[ﬂXi,jCi,j [t]:| R 3)
X;eX;(K) ¢

where X; is the j-th column of a N x M matrix X and X (K)
denotes the collection of sampling schedules on channel j
under the constraint that /& users send their control messages
on channel j. Users with X7 ,[t] = 1 are also required to send
their control messages on channel j.
(2) Transmission Scheduling Decision: Schedule the transmis-
sion of user i} [t] on channel j that satisfies:

Z}k [t] € arg max Qi,jfl[t]Xi*,j [t]CiJ [t] @)
(3) (Virtual) Queue-length Update:

+
Qi;[t],j[t+ 1] = (Qi;[t],j—l[ﬂ - Ci;[t],j[t]) . )

After M-round decision making, users {i*[¢]}}, transmit

on their corresponding channels in the rest of time slot .

Here, the IJST Algorithm uses the idea of iterative schedul-
ing that is similar to that of [3], [7] in order to improve delay
performance. This is due to the fact that users with the larger
queue-lengths may have priority over multiple channels, and
thus users with slightly smaller queue-lengths suffer from poor
delay performance (see [2], [7]), especially when the number
of channels is large. In the IJST Algorithm, all users need to
report their queue-length information at the beginning of each
time slot. Then, in the j-th round of the IJST Algorithm, (i)
we first solve the optimization problem (3) to get the optimal
sampling schedule X7[t]; (ii) users with X/ [t] = 1 send
their control message in order for the AP to acquire their

channel state information; (iii) After collecting both queue-
length and channel state information from users, user with
the maximum product of queue-length and channel rate is
selected for data transmission on channel j, and then the AP
virtually updates the queue-length of the selected user. After
M-round decision making, the selected users {i;[t]};Z; are
allowed for data transmission in the rest of the time slot ¢. The
next proposition shows that the proposed IJST Algorithm can
stabilize the system for any arrival rate vector strictly within
the capacity outer bound A(M, K).

Proposition 2: The IJST Algorithm achieves the capacity
outer bound A(M, K), i.e., for any arrival rate vector A that
is strictly inside A(M, K), the IJST Algorithm stabilizes the
system subject to the constraints of K allowed sampling users
on each channel.

Proof: Select the Lyapunov function V(Q) = 1 S | @?
and follows the standard Lyapunov arguments. The details can
be found in our technical report [10]. |

Note that the IJST Algorithm incurs a large amount of
communication overhead that is linearly increasing with the
number of users N before each data transmission. This is
because the AP needs to know queue-length information of
all N users to solve the optimization problem in (3) to obtain
the optimal sampling schedule X*[t]. This motivates us to
investigate whether there exist efficient policies that only allow
K users to send their control messages on each channel, which
significantly reduces the amount of communication overhead.
Next, we provide an example to illustrate a non-trivial design
of such policies starting from the single channel setting for
the ease of exposition.

B. A Motivating Example of Low-Overhead Uplink Schedul-
ing: From “Power-of-K-Choices” to “Pick-and-Compare”

One way to reduce the amount of coordination by the AP in
a single-channel wireless IoT uplink system works as follows:
the AP randomly samples K users and asks them to send their
control messages at the beginning of each time slot, and then
selects the user with the maximum product of queue-length
and channel rate for data transmission in the rest of the time
slot. This algorithm is called Power-of-K-Choices. Similar
ideas have been explored in the context of load-balancing
algorithms (e.g., [25], [12]) in data centers that distribute
arriving jobs across servers with the goal of minimizing job
waiting time. However, this algorithm suffers from a large
throughput performance loss in wireless IoT uplink systems
even in the single-channel setting.

To see the throughput inefficiency of the Power-of-K-
Choices policy, we consider a single-channel uplink example
with two groups of users without channel fading, where the
first group has [¢N'| users with the same mean arrival rate of
0.5/[¢N7] and the other has N — [¢N] users with the same
mean arrival rate of A, where ¢ € (0,1) and [x] denotes
the minimum integer no smaller than x. Here, it is easy to
see that the capacity region is {\ : (N — [¢N])A < 0.5}
For the Power-of-Two-Choices policy (i.e., when K = 2),



the probability that at least one user sampled from the sec-
ond group is 1 — (1?N1) /(5). Therefore, the Power-of-Two-
Choices policy can at most support the throughput region:
{/\ (N —=[oNDA< 1 — (W?N])/(g)} Thus, the second
group of users suffer throughput loss by at least:

05— (1= (")/(3))
0.5

which amounts to 61.82% when N = 100 and ¢ = 0.9. This
simple example shows that the Power-of- K -Choices policy
suffers from large throughput degradation even in the single-
channel and non-fading case, let alone in general settings
with multiple channels and wireless channel fading. This is
because the congested or heavily loaded users may not have
an opportunity to be sampled and hence are not able to obtain
service under the Power-of- K -Choices policy.

Interestingly, in the single-channel non-fading case, there
is a variant of the Power-of-Two-Choices policy, known as
the Pick-and-Compare (PC) algorithm (e.g., [22], [13], [4],
[20]), which is known to be throughput-optimal. A PC-based
scheme keeps track of the most congested user in the memory
and compares its weight with a randomly selected user. The
PC algorithm achieves the maximum throughput by gradually
improving the scheduling decisions over time. However, we
note that the PC algorithm in the literature only works under
non-fading setting, while fading is the one of the key features
in wireless communication channels. So far, it remains unclear
how to generalize the PC algorithm to the fading settings
and still achieve throughput performance guarantee. The main
challenge in developing the PC algorithm for fading settings
lies in the fact that the channel rates are time-varying and
can change abruptly. This is very different from the smooth
evolution of the queue-length process. In the next subsection,
we will address this challenge and propose an efficient and
low-overhead uplink scheduling algorithm. Moreover, this al-
gorithm works for general multi-channel settings with fading.

x 100%, (6)

C. Iterative Pick-and-Compare Algorithm Design

In this subsection, we focus on the efficient uplink schedul-
ing design under the stringent constraints that /K users are al-
lowed to transmit their control messages on each channel. The
key element in our approach is to decouple the optimization
problem (3) such that it can be solved by only considering a
small subset of users. To that end, we assume that the wireless
fading channels satisfy the following assumption.

Assumption 1: For any given non-negative numbers
ni, na,...,ny, there exists a stochastic order among random
variables n1C j,n2C5 j,...,nnCh,j, i.e., there exists a per-
mutation (my,ma,...,my) of (1,2,..., N) such that

Tim,y le,j >t nm207n2,j St oo st nmNCmN,jy @)

where j = 1,2,..., M. Here, Z1 >4 Z5 means that random
variable Z; is stochastically greater than random variable Z5
(see [19]), i.e., Pr{Z; > z} > Pr{Zy > z},Vz € R.

Remark: If channel states are i.i.d., then (7) trivially holds.

Assumption 1 provides an opportunity for decoupling the
optimization problem (3) by only allowing a small portion
of users to be sampled in order for the AP to obtain system
state information of sampled users. Indeed, if Assumption 1
does not hold, it is almost impossible to obtain the optimal
value of (3) by only collecting information from a small
subset of users due to the abrupt changes of channel rates.
Next, we incorporate wireless channel fading to generalize
the traditional PC algorithmic design in the general multi-
channel systems. Similar to the IJST Algorithm, we use Q; ;[¢]
to denote the queue-length of user ¢ at the end of round j,
j=0,1,2,..., M, and Q;[t] = Q;[t]. Also, we use C; ;|t]
to denote the j-th channel rate of user ¢ in time slot ¢, while
C; ; without time index ¢ denotes a random variable with the
same distribution as the j-th channel rate of user .

Iterative Pick and Compare (IPC) Algorithm: In each time
slot ¢, given users (%k',j[t -1,k = 1,2,...,. K —1,j =
1,2,..., M) selected by the IPC Algorithm in time slot ¢t — 1,
perform the following: For each channel j =1,2,..., M,

(1) Pick Phase: Randomly pick one user r;[t], and ask it
to report its current queue-length Q.. 4 [t] and channel state
Cy,111,5[t] on channel j to the AP.

(2) Report Phase: Ask users (i, ;[t — 1)7! to report their
queue-lengths and channel states of channel j to the AP.

(3) Compare Phase (Transmission Scheduling): Determine
the transmission schedule of user ¢ on channel j that satisfies:

’Lj[t] S argmax{Qi7j_1[t}Xi7j[t]C’7;7j[t]}, (8)

where X; ;[t]=1ifi¢c {ri[t],in;[t-1), Yk = 1,2, ...
and X ;[t] = 0 otherwise.

(4) Update Phase: Select users (i k.j [t]),{(:_l1 that achieve the
K — 1 largest Q;[t]C; ; among users (ix ;[t — 1])%"" and the
newly reporting user 7;[t] in the stochastic ordering sense, i.e.,

(ik g [ty € {QutCrs}, 9

7K_1}9

arg max
1e{ (i, [t=1D)527,m5 (D)}

where le,j[t] [t]cgl,y[t]’j Zst oo Zst QiK—l,j (] [t]cik—l,j[t]d"
(5) (Virtual) Queue-length Update:

+
Qi 4t +1 = (Qi_-f[t],j—l[t] ~ O [t])

After M-round decision making, users {ZJ [t] }Jle transmit
on their corresponding channels in the rest of the time slot .

(10)

In the IPC Algorithm, the AP exactly requires K sampling
users { (ix[t—1])5_,",7(t) } on each channel. This significantly
reduces the amount of coordination from the AP compared
to the IJST Algorithm. Next, we will show that the IPC
Algorithm still possesses excellent throughput performance.

Proposition 3: Suppose that the channel state C; =
(Ci;)N., on each channel j satisfies Assumption 1. Then,
for any arrival rate vector A = (X\;)~; that is strictly inside
the rate region A(M, K — 1), the IPC Algorithm stabilizes the



system subject to the constraints that K users are allowed to
send control messages on each channel.

Proof: The key step is to establish that the IPC Algorithm
performs similarly as its centralized counterpart (i.e., the IJST
Algorithm) does, i.e.,

o {E L_l,%?i‘.‘.’fxl @135 0

]

Q|

h=12 1 Qi 105 MC% 0.

Zl_Vavj:1a2a"'aMa

Q[t]] - Gw‘}
(11)

holds for any v € (0,1), where G, ; > 0 is some constant.
The rest of the proof follows a Lyapunov analysis for which
the detailed proof can be found in Appendix A. [ ]

Note that under the constraint of KX sampling users for each
channel, the maximum throughput region that can be achieved
by any feasible algorithm is at most A(M, K), while our IPC
Algorithm can achieve the throughput region A(M, K — 1)
with the same amount of communication overhead. Here, it is
worth pointing out that the throughput region A(M, K —1) is
independent of the number of users in the system. This yields
a significant advantage over the IJST Algorithm especially for
a large number of users, which is the typical case in most [oT
applications.

Moreover, the achieved throughput region A(M, K — 1)
is close to the capacity outer bound A(M,K) even for a
small K when the number of channels M is small. For
example, in a single-channel case of /N users with i.i.d. ON-
OFF fading with p = Pr{C[t] = 1}, then A(1, K — 1) =
A:NA<1-(1-pE1}and A(K) = {)\: N\ <
1 — (1 — p)X}. Thus, the throughput performance loss is at
most (1 — (1 —(1—p)*=1) /(1= (1-p)¥)) x 100%. Fig.
1 shows the throughput performance loss percentage under
the IPC Algorithm when p = 0.8. We can observe from Fig.
1 that the throughput loss decays exponentially fast with the
increase of the number of allowed sampling users K, and is
at most 3.23% even when K = 3. Therefore, the throughput
performance loss under the IPC Algorithm is small.

16.67%

Throughput Loss (%)

Fig. 1: Throughput loss in a single-channel system

VI. NUMERICAL RESULTS

In this section, we perform simulations for our proposed
low-overhead IPC Algorithm and compare it to the IJST

Algorithm in both single-channel and multi-channel cases. In
the simulations, we consider N = 20 users. We assume that
the number of arrivals occurring at each user in each time
slot follows a Bernoulli distribution with mean A. In order to
capture the burstiness feature of IoT traffic, we assume that
each incoming arrival brings F' packets, where F' is equal to 20
with probability 4/19 and 1 otherwise. Therefore, the expected
number of packets that each arrival carries is equal to 5, i.e.,
E[F] = 5. We consider ON-OFF channel fading models that
are independently distributed over users and i.i.d. over time,
where the first ten users have channel availability probability
of 0.9 and all others have probability of 0.5. We assume that
all M channels have the same channel fading model.
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Fig. 3: Performance comparison: single channel case

Fig. 2 shows the impact of the number of sampling users
K on the system performance of the IJST Algorithm and the
IPC Algorithm in the single-channel case. From Figs. 2a and
2b, we can observe that as K increases, both throughput and
delay performance of these algorithms improve. Especially,
we can see that K = 4 sampling users are sufficient for
both algorithms to almost achieve the maximum throughput
(i.e., when K = 20). Moreover, the delay performance under
the IPC Algorithm is only slightly worse than that under
the IJST Algorithm, and their gap becomes smaller as K
increases, as shown in Fig. 3b. This indicates that in the single
channel case, the IPC Algorithm with only four sampling
users can achieve almost the same throughput and delay
performance as the IJST Algorithm, which requires all queue-
length information available before each data transmission and
thus requires a significant amount of communication overhead.
Hence, our proposed IPC Algorithm dramatically reduces the
communication overhead with a negligible performance loss.

In Fig. 4, we study the performance of our proposed IPC
Algorithm in a multi-channel case and compare it to the IJST



Algorithm. From Figs. 4a and 4b, we can observe that our
proposed IPC Algorithm still performs well in both three and
five channel cases compared to the IJST Algorithm when the
number of allowable sampling users is four. This indicates that
the IPC Algorithm is quite robust to the number of channels,
which is significantly more advantageous in large-scale multi-
channel IoT uplink systems.
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Fig. 4: Performance comparison: multi-channel case

VII. CONCLUSIONS

In this paper, we considered the design of efficient and
low-overhead uplink scheduling algorithms for large-scale IoT
applications, where the central controller has a limited amount
of information about the users. We first derived a capacity
outer bound under the sampling constraint, where only a small
subset of users are allowed to use control channels for system
state reporting and channel probing. Then, we proposed a joint
sampling and transmission algorithm with full information
before each transmission and show that it achieves the capacity
outer bound. However, this algorithm incurs a huge amount
of communication overhead before each data transmission.
To that end, we developed an efficient and low-overhead
uplink scheduling algorithm that is suitable for large-scale
IoT applications. Finally, we validated our theoretical results
through extensive simulations.

APPENDIX A
PROOF OF PROPOSITION 3

Since the channel states on each channel satisfy Assumption
1, the IJST Algorithm selects the K largest Q; ;[t|C; ; among
N users on channel j+1 (5 = 0,1,..., M —1) in the stochastic

order sense given Q[t] = (Q;[t])Y,, i.e.,
Qis 0.5 181Cs 1.5 Zst - 2t Qi 11,5 [HCiy 1015
>5:Qi,[t]Ci 4, (12)

where {4}, ;[t]}/_, are the users selected by the 1JST Algo-
rithm for reporting their channel states and i ¢ {i}, ; [t .

Since the IPC Algorithm independently picks a user at
uniformly random on each channel in each time slot, for any
given v > 0, there exists a D, ; > 0 such that

Pr{r;[m] = iy, ;[t] for some 7, € {t — D j,...,t — 1},
VE=1,2...,K -1} >1-~. (13)

Under the IPC Algorithm, we have

k:l,IQI,lia.'.),(Kfl Q;kj [t].J [1] C'zk,j[t]vj

(@)
> st max
k=1.2,...K—1

Qi ie-15 0G5 o114

(Qik,j[t—l]g' [t - ]-] - Cmax) Cgk,j[t—l],j
Q%k-,j[tfl] [t o I]O%k,j[tfl]g’ - Ct2nax7 (14)

(;)
max
=t 10 K—1
> max
=S 12 K1
where step (a) follows the definition of the IPC Algorithm,
and (b) uses the fact that at most ¢,,.x packets can be served

on each channel in each time slot.

Without loss of generality, we assume that 7,,,, > 7, >
oo > Tge_,» Where (mq,ma, ..., my_1) is a permutation of
(1,2,..., K — 1). Hence, we have

max QUG

k=1,2,....K—1
(;) c 9
= st k:l,gnéi(Kfl Q%k»j[TMJJ [Tml] ik,j[Tml]vj - (t - Tml)cmax
(®)

> 4 max max 5 ST 1CH )
> st e ax @i, gl G e

QTJ' [Tmy]d [Tml}orj [Tml]wj} - (t - Tml)crznax
©)
> 5 Max mI?X Q%kd["’ml_l]vj[Tml - 1] — Cmax Cgk,j[Tml—l],j’
R
2
>4 Max { max Q%k,j[ml 1] [Ty — 1]6';}60_[%1 _1],j — Cmaxs

QT]’ [Tml]vj [Tml}CTj [Tml]»j} - (t = Tm, )Cr2nax

max

—1]C;
k=1,2,... K—2

o max { Qi 7y —11 [T s [Py — 11,57

QT'j[Tml]aj [Tml]CTj[Tml]vj} - (t = Tmy + ]')Cr2nax7 (15)

where step (a) iteratively uses (14); (b) follows the definition
of the TPC Algorithm; (c) uses the fact that at most cimax
packets can be delivered on each channel in each time slot.

By using the similar argument in deriving (15), we can show

m.

ax = T —11C- .
k:1,2,...,K—zQlk,j[mﬁl]d[ m ]Olk,j[TmﬁlLJ

=5 Max {QTJ‘ [Ty gq 15 [Tmz+1}c?”j [Ty )20

max 5 T, —1|C% )
fe 1, K (141) szvj[TmlJrl —1],][ mi41 ]C“»'vj[‘rmul —1],]}

Vi=1,2,...,K—2. (16

- (Tml - Tml+1)612naxv

By using (15) and (16), we have

k:l,IQI}%}fK—l Q;k,j [t].d [t] C%k,j [t],J
2
st k:l,IZI,l.a..),(K—l er 7517 [Tk]crj [Tr]d — (t — Tmg_1 T l)cmax
@ ¢ max Qi 11.i[mk]Cir 1 — =T +1)c2
m1,2 i1 O ealthd RN K-t max



S ma (@l (- ) Anas) O
—(t = Tmp, F 1),
(gst g L @iz, 10,511C 1.5
= (t = Tmg_y + 1) (Amax + Cmax) Cmax
Zat,max Qi 10,1HC% 10— G an
where step (a) uses the definition of 74, Vk = 1,2,..., K —1;

(b) follows the fact that at most A, packets arrives at
each queue in each time slot; (b) is true since the maxi-
mum channel rate is cpax; (¢) is true for G, ; = (D, ; +
]-) (Amax + Cmax) Cmax-

According to the property of the stochastic ordering, (17)
implies that

E [mKQH (10, 0,0

maX

= L (B, Qi s 1Cs

Q[t]] — G, (18)

By combining (18) and (13), we have

o {E L_l,%,l?f‘xl @iy, 0C5 4

Qi

>E |:k112na sz FIGE j[] ir [t Q[t]] - G’Y-j}
>1-=7, 19)
which implies that
SB[, mes, @000
=
-7) Z;E [k ax, 1Qi,*c,j[t],j[t]ci;j[t],j Q[t]} — B
® M B
21 =) Y B [max Qusl0X7, QU] - B,
j=1

where step (a) is true for By = (1 —7) Z] 1G+,; and

follows from the fact that IE [maxk sz 1. [t]C’,k 1. ’Q }

is a fixed value; (b) is true since X, = 1if i € {z
1,2,..., K —1}. This indicates that the selected Welght by the
IPC Algonthm is very close to the IJST Algorithm. The rest
of the proof follows the standard Lyapunov arguments. The
detailed proof is available in our technical report [10].
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