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Abstract—With the rapid growth of Internet of Things (IoT)
applications in recent years, there is a strong need for wireless
uplink scheduling algorithms that determine when and which
subset of a large number of users should transmit to the
central controller. Different from the downlink case, the central
controller in the uplink scenario typically has very limited
information about the users. On the other hand, collecting all
such information from a large number of users typically incurs
a prohibitively high communication overhead. This motivates
us to investigate the development of an efficient and low-
overhead uplink scheduling algorithm that is suitable for large-
scale IoT applications with limited amount of coordination from
the central controller. Specifically, we first characterize a capacity
outer bound subject to the sampling constraint where only a
small subset of users are allowed to use control channels for
system state reporting and wireless channel probing. Next, we
relax the sampling constraint and propose a joint sampling
and transmission algorithm, which utilizes full knowledge of
channel state distributions and instantaneous queue lengths to
achieve the capacity outer bound. The insights obtained from this
capacity-achieving algorithm allow us to develop an efficient and
low-overhead scheduling algorithm that can strictly satisfy the
sampling constraint with asymptotically diminishing throughput
loss. Moreover, the throughput performance of our proposed
algorithm is independent of the number of users, a highly
desirable property in large-scale IoT systems. Finally, we perform
extensive simulations to validate our theoretical results.

I. INTRODUCTION

Internet of Things (IoT) refers to the internetworking of

a large number of heterogenous smart devices (e.g., smart

phones, tablets, sensors and actuators) to meet the demands

of the ever-increasing applications in personalized health care,

smart home, ubiquitous environmental monitoring, smart man-

ufacturing, etc. It is estimated that the global market for

IoT will reach 20.4 billion devices by 2020 [1]. However,

unlike traditional data communication networks where the

predominant amount of data is transmitted in the downlink, a

distinct feature of IoT applications is that a significant portion

of the IoT data traffic is carried in the uplink (i.e., from user

devices to the central controller). In most IoT applications,

each device generates sparse or intermittent data traffic and

transmits them to a central controller or access point (AP)

for data processing, typically through wireless connections
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(referred to as wireless IoT uplink systems in this paper). As

a result, to support the enormous amount of devices given

limited spectral resources, there is a compelling need for

efficient and low-overhead wireless IoT uplink scheduling

algorithms that determine when and which devices (referred

to as users in the rest of the paper) are allowed to transmit,

with the goal of supporting as many users as possible, or

equivalently, throughput-optimal scheduling.

Over the years, throughput-optimal scheduling has been

extensively studied in the networking research community

and many results are available. However, due to its unique

features and applications, IoT uplink scheduling design is far

more challenging compared to its counterparts in traditional

wireless networks (see Section II for a detailed discussion).

In particular, due to the sheer size of IoT systems, a well-

designed uplink scheduling policy not only has to be near

throughput-optimal, it also needs to be low-overhead. To this

end, in this paper, we propose an efficient and simple design

based on the key idea termed “pick and compare (PC)” (e.g.,

[22], [13], [4], [20]). Simply speaking, a PC scheme always

stores the most congested user and compares its queue-length

with a randomly selected user. It has been shown that the

class of PC algorithms achieves the maximum throughput

through gradually improved quality of transmission decisions

over time. The simplicity, low-complexity, and scalability of

PC algorithms motivate us to consider their deployments in

large-scale IoT uplink systems, where extensive coordination

from the AP is typically infeasible.

However, due to several technical challenges, developing

a PC-based scheduling scheme for IoT uplink systems and

conducting rigorous performance analysis is highly non-trivial.

Traditionally, PC algorithms were developed for systems

where the queue-length evolution processes are smooth. Un-

fortunately, in the presence of wireless channel fading, the

time-varying channel rates could change rather abruptly. Con-

sequently, most of the proof techniques used for establishing

the throughput-optimality of PC-based algorithms fail under

wireless channel fading settings. In fact, it remains an open

question whether it is possible to design an efficient and

low-overhead PC-based scheduling algorithm for IoT uplink

systems with wireless channel fading. A key contribution of

this paper is that we show that the answer is “yes.” Our main

results in this paper are summarized as follows:



• First, we characterize a capacity outer bound for a wireless

IoT uplink system subject to a sampling constraint, i.e.,

we limit the number of users that can use control channels

for reporting system state information and probing uplink

channels. This capacity outer bound lays the foundation for

the performance analysis of our proposed algorithms.

• Next, we consider an efficient and low-overhead uplink

scheduling design. In particular, we relax the sampling con-

straint and propose a two-stage MaxWeight-type scheduling

algorithm that utilizes the full knowledge of channel state

distributions and instantaneous queue lengths to achieve the

capacity outer bound.

• Finally, building upon this capacity-achieving algorithm, we

develop an iterative pick-and-compare (IPC) algorithm that

strictly satisfies the sampling constraint with a vanishing

throughput loss. More precisely, let Λ(M,K) denote the

capacity outer bound for an N -user M -channel uplink

system with K-user sampling constraint. We show that our

IPC algorithm can stabilize any arrival rates within the

region Λ(M,K − 1). Further, the gap between Λ(M,K)
and Λ(M,K − 1) is vanishing as K ↑ N , and thus proving

the asymptotic throughput-optimality of our IPC algorithm.

Moreover, the achievable rate region of our IPC algorithm

is independent of the number of users, a highly desirable

property in large-scale IoT systems.

To our knowledge, our work is the first to offer asymptotic

throughput-optimality for IoT uplink scheduling. The remain-

der of this paper is organized as follows. Section II presents

related work, putting this paper into perspective. Section III

introduces the network model and problem formulation. Sec-

tion IV provides a capacity outer bound characterization.

Section V covers the key elements of our low-overhead uplink

scheduling design. Section VI presents numerical results, and

Section VII concludes this paper.

II. RELATED WORK

In this section, we provide a quick overview of throughput-

optimal scheduling to put our work into perspective. In the

literature, a well-known class of throughput-optimal schedul-

ing algorithms is the family of MaxWeight policies, which date

back to the seminal work by Tassiulas and Ephremides (e.g.,

[23], [24]) and consist of many follow-ups (e.g., [5], [14], [21],

[15], [6]). The basic idea underpinning MaxWeight policies is

to schedule users who have both good channel qualities and

high congestion levels (evaluated by queue lengths or delays,

etc.). However, it is exactly the requirement of both congestion

and channel state information that renders MaxWeight policies

unsuitable for IoT uplink scheduling. In many IoT applica-

tions, due to the large number of devices, congestion and

channel state information is prohibitively expensive to collect.

Exacerbating this problem is the fact that even those reduced

channel-probing-overhead MaxWeight variants designed for

large-size downlink systems (e.g., for energy minimization

[11] or limited channel quality feedback [17]) cannot be

directly applied in IoT uplink systems. The reason is that these

MaxWeight variants still require queue-length information of

all users, while the AP in IoT uplink systems usually has

limited queueing information about their associated users. As a

result, the assumption of accurate congestion level information

for all users, which is usually valid for downlink scheduling,

no longer holds in the uplink counterpart.

To overcome the limitations of MaxWeight policies, one

solution is to adopt the carrier sense multiple access (CSMA)

design (e.g., [8], [18], [16]), where each user judiciously

selects its CSMA parameters to adapt to its congestion levels

(e.g., the queue-lengths). However, most existing CSMA-based

schemes assume that the weight of each user (typically some

function of the queue-length) changes slowly over time, which

makes their extensions to settings with wireless channel fading

quite difficult. Indeed, in the presence of fading, the weight

of each user (determined by the product of the queue-length

and the current feasible service rate) is stochastic and can

change rather abruptly. Although this restriction on slow time-

varying weight has been relaxed in recent works (e.g., [26],

[9]), a more fatal limitation of CSMA-based policies is that the

average time required for successfully acquiring the channel in

the channel contention grows exponentially with the number of

users. This limitation renders CSMA-type schemes impractical

for IoT applications that typically involve a huge number

of users. As will be seen shortly, our proposed PC-based

scheme avoids both the slow time-varying restriction and the

scalability pitfall of CSMA.

III. SYSTEM MODEL

We consider an IoT uplink system with one access point

(AP) and N users, where each user transmits data to the AP

through M orthogonal channels. We assume that the system

operates in slotted time with normalized slots t ∈ {1, 2, . . .}.

We use C[t] = (Ci,j [t], i = 1, 2, . . . , N, j = 1, 2, . . . ,M) to

capture the wireless channel fading, where Ci,j [t] denotes the

maximum amount of service available for user i to transmit

packets on channel j in slot t. Due to the finite number of

modulation and coding schemes, we assume that each channel

for each user has R possible channel rates c1, c2, ..., cR with

0 = c1 < c2 < ... < cR = cmax, which measure the

maximum number of packets that can be delivered in one time

slot. We assume that C[t] are independently distributed across

both users and channels, and independently and identically

distributed (i.i.d.) over time.

In the IoT uplink system, each user needs to send a control

message to the AP in order for the AP to obtain its state

information (e.g., congestion levels and channel rates). In

particular, the AP fetches the congestion level of a user by

decoding its control message, and obtains its channel rate

by measuring the signal-to-noise ratio of the received control

message. However, due to the restrictive amount of uplink

resources, the AP usually has very limited information about

the state of each user in a large-scale IoT uplink system.

Therefore, we assume that the AP can at most sample K
(K � N ) users to acquire their channel states and congestion

levels on each channel at the beginning of each time slot.



We denote the sampling schedule as X[t] = (Xi,j [t], i =
1, 2, . . . , N, j = 1, 2, . . . ,M), where Xi,j [t] = 1 if user i
is sampled to send a control message on channel j such

that the AP acquires its congestion level and the state of

channel j in time slot t, and Xi,j [t] = 0 otherwise. Let

X (K) be the collection of all sampling schedules where K
users are sampled to send their control messages on each

channel. To avoid interference, at most one user is allowed

to transmit over each channel in each time slot. We call a

schedule where at most one user is active on each channel

in each time slot as a feasible schedule and denote it as

S[t] = (Si,j [t], i = 1, 2, . . . , N, j = 1, 2, . . . ,M), where

Si,j [t] = 1 if user i is scheduled on channel j in time slot t
and Si,j [t] = 0 otherwise. We use S to denote the collection of

all feasible schedules. Here, we assume that only the sampled

users are allowed to transmit in each time slot.

We assume that each user i serves its own data traffic

and maintains packets in a queue with Qi[t] denoting its

queue length at the beginning of time slot t, which reflects

its congestion level. The larger the Qi[t], the more congested

the user i. Let Ai[t] denote the number of packets arriving

at user i in time slot t, which is independently distributed

across users and i.i.d. over time with mean λi > 0. We assume

Ai[t] < Amax, ∀t ≥ 0, for some positive constant Amax < ∞.

This is a reasonable assumption since, as mentioned earlier,

most IoT data traffic are low-rate and intermittent. Then, the

evolution of user i’s queue can be described as follows:

Qi[t+ 1] =

(
Qi[t] +Ai[t]−

M∑

j=1

Xi,j [t]Si,j [t]Ci,j [t]

)+

for i = 1, 2, . . . , N , where (x)+ � max{x, 0}. In this paper,

we are interested in developing an efficient uplink scheduling

algorithm with limited coordination from the AP. In particular,

our goal is to find a joint sampling and transmission schedule

{X[t],S[t]}t≥1 such that, in each time slot and for each

channel, (i) K users are allowed to send their control messages

in order for the AP to acquire their queue-lengths and channel

rates; and (ii) at most one user can be scheduled among

these K sampled users. A key difficulty of this joint sampling

and scheduling problem is that the information available for

making transmission scheduling decision S[t] heavily relies on

the sampling decision X[t].

We consider the class P of stationary sampling and

transmission policies that first decide the sampling schedule

X[t] at slot t based on the available information Q[t] =
(Q1[t], . . . , QN [t]) and channel state distributions, and then

determine the transmission schedule S[t] based on (Q[t]⊗X[t],
C[t]⊗X[t]), where ⊗ stands for component-wise multiplica-

tion. In other words, a joint sampling and transmission policy

in P is a two-stage mapping where it first maps from the space

of Q[t] to the space of sampling schedules X (K) during the

sampling stage and then maps from the space of (Q[t]⊗X[t],
C[t] ⊗ X[t]) to the space of feasible schedules S during the

transmission stage. Under any policy in P , the queue length

process {Q[t]}t≥1 forms a Markov Chain.

We say that queue i is strongly stable if limsupT→∞
1
T

∑T

t=1�[Qi[t]] < ∞. The system is stable if all queues

in the system are strongly stable. We let Θ(M,K) denote the

capacity region for an IoT uplink system with M orthogonal

channels and K allowed users in sampling for each channel

in each time slot, which represents the maximum set of arrival

rate vectors λ = (λi)
N
i=1 for which the system is stable

under some policy. We call an algorithm optimal if it keeps

the system stable for any arrival rate vector that lies strictly

inside Θ(M,K). Note that it is in general difficult to directly

characterize Θ(M,K). To that end, we first derive an outer

bound for the capacity region in the next section.

IV. CAPACITY OUTER BOUND CHARACTERIZATION

In this section, we characterize an outer bound of the

capacity region Θ(M,K) for a wireless IoT uplink system

with M orthogonal channels under the sampling constraint

that K users are allowed to send their control messages on

each channel in order for the AP to acquire their channel rates

and queue-lengths and the scheduling constraint that at most

one user is allowed to transmit on each channel in each time

slot.

Proposition 1 (Capacity Outer Bound): Θ(M,K) is con-

tained in the rate region Λ(M,K) (i.e., Θ(M,K) ⊆
Λ(M,K)), where Λ(M,K) is defined as the set of arrival

rate vectors λ = (λi)
N
i=1 for which there exist non-negative

numbers α(x) and β(x, c; s) such that the following expres-

sions are satisfied:

λi≤
∑

x∈X (K)

α(x)
∑

c

p(c)
∑

s∈S

β(x, c; s)

M∑

j=1

xi,jci,jsi,j , ∀i, (1)

∑

s∈S

β(x, c; s) = 1, ∀x, c, and
∑

x∈X (K)

α(x) = 1, (2)

where p(c) � Pr{C[t] = c} denotes the probability that

the channel state is c, and α(x) and β(x, c; s) denote the

probabilities of selecting the sampling schedule x ∈ X (K)
and selecting the transmission schedule s ∈ S given the

sampling schedule x and channel state c, respectively.

Remark: In (1), the right-hand-side is the total average

service rate provided for each user, and the left-hand-side is

the user’s average arrival rate. Thus, in order to ensure that

the system is stable under some policy, (1) must be satisfied.

Proof: The proof follows a similar line of analysis as that

in [14] and is omitted due to space limitation. We refer readers

to our technical report [10] for proof details.

Having established the capacity outer bound Λ(M,K), we

are now in a position to develop an efficient and low-overhead

uplink scheduling algorithm.

V. LOW-OVERHEAD UPLINK SCHEDULING DESIGN

In this section, we consider an efficient and low-overhead

uplink scheduling design based on the idea of pick-and-

compare (PC). In particular, we first develop an iterative

sampling and transmission algorithm with full information to

achieve the capacity outer bound Λ(M,K), which motivates



the development of an efficient and low-overhead uplink

scheduling design. Then, we discuss the throughput deficiency

of a natural variant of the proposed algorithm in the single-

channel system under the stringent constraint that K users are

allowed to send their control messages. Finally, we propose

a PC-based efficient low-complexity iterative sampling and

transmission algorithms under the strict sampling constraint.

A. Iterative Sampling and Transmission Algorithm Design

In this subsection, we develop an efficient joint sampling

and transmission algorithm that can achieve the capacity outer

bound Λ(M,K). Although this algorithm requires full knowl-

edge of channel state distributions and instantaneous queue

lengths of all users, it provides a guideline for our design with

the desired sampling constraint. We consider M + 1 rounds

in each time slot. By slightly abusing the notations, we use

Qi,j [t] to denote the (virtual) queue-length of user i at the end

of round j, where j = 0, 1, 2, . . . ,M , and Qi,0[t] = Qi[t].

Iterative Joint Sampling and Transmission (IJST) Algo-

rithm: In each time slot t, all users report their queue-lengths,

i.e., Q[t] = (Qi[t])
N
i=1. Then, for each round j = 1, 2, . . . ,M ,

perform the following:

(1) Sampling Decision: Set the sampling vector X∗
j [t] as:

X∗
j [t] ∈ argmax

Xj∈Xj(K)

E

[
max

i
Qi,j−1[t]Xi,jCi,j [t]

]
, (3)

where Xj is the j-th column of a N×M matrix X and Xj(K)
denotes the collection of sampling schedules on channel j
under the constraint that K users send their control messages

on channel j. Users with X∗
i,j [t] = 1 are also required to send

their control messages on channel j.

(2) Transmission Scheduling Decision: Schedule the transmis-

sion of user i∗j [t] on channel j that satisfies:

i∗j [t] ∈ argmax
i

Qi,j−1[t]X
∗
i,j [t]Ci,j [t]. (4)

(3) (Virtual) Queue-length Update:

Qi∗
j
[t],j [t+ 1] =

(
Qi∗

j
[t],j−1[t]− Ci∗

j
[t],j [t]

)+

. (5)

After M -round decision making, users {i∗j [t]}
M
j=1 transmit

on their corresponding channels in the rest of time slot t.

Here, the IJST Algorithm uses the idea of iterative schedul-

ing that is similar to that of [3], [7] in order to improve delay

performance. This is due to the fact that users with the larger

queue-lengths may have priority over multiple channels, and

thus users with slightly smaller queue-lengths suffer from poor

delay performance (see [2], [7]), especially when the number

of channels is large. In the IJST Algorithm, all users need to

report their queue-length information at the beginning of each

time slot. Then, in the j-th round of the IJST Algorithm, (i)

we first solve the optimization problem (3) to get the optimal

sampling schedule X∗
j [t]; (ii) users with X∗

i,j [t] = 1 send

their control message in order for the AP to acquire their

channel state information; (iii) After collecting both queue-

length and channel state information from users, user with

the maximum product of queue-length and channel rate is

selected for data transmission on channel j, and then the AP

virtually updates the queue-length of the selected user. After

M -round decision making, the selected users {i∗j [t]}
M
j=1 are

allowed for data transmission in the rest of the time slot t. The

next proposition shows that the proposed IJST Algorithm can

stabilize the system for any arrival rate vector strictly within

the capacity outer bound Λ(M,K).

Proposition 2: The IJST Algorithm achieves the capacity

outer bound Λ(M,K), i.e., for any arrival rate vector λ that

is strictly inside Λ(M,K), the IJST Algorithm stabilizes the

system subject to the constraints of K allowed sampling users

on each channel.

Proof: Select the Lyapunov function V (Q) = 1
2

∑N

i=1 Q
2
i

and follows the standard Lyapunov arguments. The details can

be found in our technical report [10].

Note that the IJST Algorithm incurs a large amount of

communication overhead that is linearly increasing with the

number of users N before each data transmission. This is

because the AP needs to know queue-length information of

all N users to solve the optimization problem in (3) to obtain

the optimal sampling schedule X∗[t]. This motivates us to

investigate whether there exist efficient policies that only allow

K users to send their control messages on each channel, which

significantly reduces the amount of communication overhead.

Next, we provide an example to illustrate a non-trivial design

of such policies starting from the single channel setting for

the ease of exposition.

B. A Motivating Example of Low-Overhead Uplink Schedul-

ing: From “Power-of-K-Choices” to “Pick-and-Compare”

One way to reduce the amount of coordination by the AP in

a single-channel wireless IoT uplink system works as follows:

the AP randomly samples K users and asks them to send their

control messages at the beginning of each time slot, and then

selects the user with the maximum product of queue-length

and channel rate for data transmission in the rest of the time

slot. This algorithm is called Power-of-K-Choices. Similar

ideas have been explored in the context of load-balancing

algorithms (e.g., [25], [12]) in data centers that distribute

arriving jobs across servers with the goal of minimizing job

waiting time. However, this algorithm suffers from a large

throughput performance loss in wireless IoT uplink systems

even in the single-channel setting.

To see the throughput inefficiency of the Power-of-K-

Choices policy, we consider a single-channel uplink example

with two groups of users without channel fading, where the

first group has �φN� users with the same mean arrival rate of

0.5/�φN� and the other has N − �φN� users with the same

mean arrival rate of λ, where φ ∈ (0, 1) and �x� denotes

the minimum integer no smaller than x. Here, it is easy to

see that the capacity region is {λ : (N − �φN�)λ < 0.5}.

For the Power-of-Two-Choices policy (i.e., when K = 2),



the probability that at least one user sampled from the sec-

ond group is 1 −
(
�φN�

2

)
/
(
N
2

)
. Therefore, the Power-of-Two-

Choices policy can at most support the throughput region:{
λ : (N − �φN�)λ < 1−

(
�φN�

2

)
/
(
N
2

)}
. Thus, the second

group of users suffer throughput loss by at least:

0.5−
(
1−

(
�φN�

2

)
/
(
N
2

))

0.5
× 100%, (6)

which amounts to 61.82% when N = 100 and φ = 0.9. This

simple example shows that the Power-of-K-Choices policy

suffers from large throughput degradation even in the single-

channel and non-fading case, let alone in general settings

with multiple channels and wireless channel fading. This is

because the congested or heavily loaded users may not have

an opportunity to be sampled and hence are not able to obtain

service under the Power-of-K-Choices policy.

Interestingly, in the single-channel non-fading case, there

is a variant of the Power-of-Two-Choices policy, known as

the Pick-and-Compare (PC) algorithm (e.g., [22], [13], [4],

[20]), which is known to be throughput-optimal. A PC-based

scheme keeps track of the most congested user in the memory

and compares its weight with a randomly selected user. The

PC algorithm achieves the maximum throughput by gradually

improving the scheduling decisions over time. However, we

note that the PC algorithm in the literature only works under

non-fading setting, while fading is the one of the key features

in wireless communication channels. So far, it remains unclear

how to generalize the PC algorithm to the fading settings

and still achieve throughput performance guarantee. The main

challenge in developing the PC algorithm for fading settings

lies in the fact that the channel rates are time-varying and

can change abruptly. This is very different from the smooth

evolution of the queue-length process. In the next subsection,

we will address this challenge and propose an efficient and

low-overhead uplink scheduling algorithm. Moreover, this al-

gorithm works for general multi-channel settings with fading.

C. Iterative Pick-and-Compare Algorithm Design

In this subsection, we focus on the efficient uplink schedul-

ing design under the stringent constraints that K users are al-

lowed to transmit their control messages on each channel. The

key element in our approach is to decouple the optimization

problem (3) such that it can be solved by only considering a

small subset of users. To that end, we assume that the wireless

fading channels satisfy the following assumption.

Assumption 1: For any given non-negative numbers

n1, n2, . . . , nN , there exists a stochastic order among random

variables n1C1,j , n2C2,j , . . . , nNCN,j , i.e., there exists a per-

mutation (m1,m2, . . . ,mN ) of (1, 2, . . . , N) such that

nm1
Cm1,j ≥st nm2

Cm2,j ≥st . . . ≥st nmN
CmN ,j , (7)

where j = 1, 2, . . . ,M . Here, Z1 ≥st Z2 means that random

variable Z1 is stochastically greater than random variable Z2

(see [19]), i.e., Pr{Z1 > z} ≥ Pr{Z2 > z}, ∀z ∈ R.

Remark: If channel states are i.i.d., then (7) trivially holds.

Assumption 1 provides an opportunity for decoupling the

optimization problem (3) by only allowing a small portion

of users to be sampled in order for the AP to obtain system

state information of sampled users. Indeed, if Assumption 1

does not hold, it is almost impossible to obtain the optimal

value of (3) by only collecting information from a small

subset of users due to the abrupt changes of channel rates.

Next, we incorporate wireless channel fading to generalize

the traditional PC algorithmic design in the general multi-

channel systems. Similar to the IJST Algorithm, we use Qi,j [t]
to denote the queue-length of user i at the end of round j,

j = 0, 1, 2, . . . ,M , and Qi,0[t] = Qi[t]. Also, we use Ci,j [t]
to denote the j-th channel rate of user i in time slot t, while

Ci,j without time index t denotes a random variable with the

same distribution as the j-th channel rate of user i.

Iterative Pick and Compare (IPC) Algorithm: In each time

slot t, given users (̂ik,j [t − 1], k = 1, 2, . . . ,K − 1, j =
1, 2, . . . ,M) selected by the IPC Algorithm in time slot t−1,

perform the following: For each channel j = 1, 2, . . . ,M ,

(1) Pick Phase: Randomly pick one user rj [t], and ask it

to report its current queue-length Qrj [t][t] and channel state

Crj [t],j [t] on channel j to the AP.

(2) Report Phase: Ask users (̂ik,j [t−1])K−1
k=1 to report their

queue-lengths and channel states of channel j to the AP.

(3) Compare Phase (Transmission Scheduling): Determine

the transmission schedule of user i on channel j that satisfies:

ĩj [t] ∈ argmax
i

{
Qi,j−1[t]X̂i,j [t]Ci,j [t]

}
, (8)

where X̂i,j [t]=1 if i∈
{
rj [t], îk,j [t−1], ∀k = 1, 2, . . . , K−1

}
,

and X̂i,j [t] = 0 otherwise.

(4) Update Phase: Select users (̂ik,j [t])
K−1
k=1 that achieve the

K − 1 largest Ql[t]Cl,j among users (̂ik,j [t− 1])K−1
k=1 and the

newly reporting user rj [t] in the stochastic ordering sense, i.e.,

(̂ik,j [t])
K−1
k=1 ∈ argmax

l∈{(̂ik,j [t−1])K−1

k=1
,rj(t)}

{Ql[t]Cl,j}, (9)

where Qî1,j [t]
[t]Cî1,j [t],j

≥st . . . ≥st QîK−1,j [t]
[t]CîK−1,j [t],j

.

(5) (Virtual) Queue-length Update:

Q
ĩj [t],j

[t+ 1] =
(
Q

ĩj [t],j−1[t]− C
ĩj [t],j

[t]
)+

. (10)

After M -round decision making, users {̃ij [t]}
M
j=1 transmit

on their corresponding channels in the rest of the time slot t.

In the IPC Algorithm, the AP exactly requires K sampling

users
{
(̂ik[t−1])K−1

k=1 , r(t)
}

on each channel. This significantly

reduces the amount of coordination from the AP compared

to the IJST Algorithm. Next, we will show that the IPC

Algorithm still possesses excellent throughput performance.

Proposition 3: Suppose that the channel state Cj =
(Ci,j)

N
i=1 on each channel j satisfies Assumption 1. Then,

for any arrival rate vector λ = (λi)
N
i=1 that is strictly inside

the rate region Λ(M,K−1), the IPC Algorithm stabilizes the



system subject to the constraints that K users are allowed to

send control messages on each channel.

Proof: The key step is to establish that the IPC Algorithm

performs similarly as its centralized counterpart (i.e., the IJST

Algorithm) does, i.e.,

Pr

{
�

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]

≥ �

[
max

k=1,2,...,K−1
Qi∗

k,j
[t],j [t]Ci∗

k,j
[t],j

∣∣∣∣Q[t]

]
−Gγ,j

}

≥ 1− γ, ∀j = 1, 2, . . . ,M, (11)

holds for any γ ∈ (0, 1), where Gγ,j > 0 is some constant.

The rest of the proof follows a Lyapunov analysis for which

the detailed proof can be found in Appendix A.

Note that under the constraint of K sampling users for each

channel, the maximum throughput region that can be achieved

by any feasible algorithm is at most Λ(M,K), while our IPC

Algorithm can achieve the throughput region Λ(M,K − 1)
with the same amount of communication overhead. Here, it is

worth pointing out that the throughput region Λ(M,K− 1) is

independent of the number of users in the system. This yields

a significant advantage over the IJST Algorithm especially for

a large number of users, which is the typical case in most IoT

applications.

Moreover, the achieved throughput region Λ(M,K − 1)
is close to the capacity outer bound Λ(M,K) even for a

small K when the number of channels M is small. For

example, in a single-channel case of N users with i.i.d. ON-

OFF fading with p = Pr{C[t] = 1}, then Λ(1,K − 1) =
{λ : Nλ < 1 − (1 − p)K−1} and Λ(1,K) = {λ : Nλ <
1 − (1 − p)K}. Thus, the throughput performance loss is at

most
(
1−

(
1− (1− p)K−1

)
/
(
1− (1− p)K

))
× 100%. Fig.

1 shows the throughput performance loss percentage under

the IPC Algorithm when p = 0.8. We can observe from Fig.

1 that the throughput loss decays exponentially fast with the

increase of the number of allowed sampling users K, and is

at most 3.23% even when K = 3. Therefore, the throughput

performance loss under the IPC Algorithm is small.
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Fig. 1: Throughput loss in a single-channel system

VI. NUMERICAL RESULTS

In this section, we perform simulations for our proposed

low-overhead IPC Algorithm and compare it to the IJST

Algorithm in both single-channel and multi-channel cases. In

the simulations, we consider N = 20 users. We assume that

the number of arrivals occurring at each user in each time

slot follows a Bernoulli distribution with mean λ. In order to

capture the burstiness feature of IoT traffic, we assume that

each incoming arrival brings F packets, where F is equal to 20
with probability 4/19 and 1 otherwise. Therefore, the expected

number of packets that each arrival carries is equal to 5, i.e.,

�[F ] = 5. We consider ON-OFF channel fading models that

are independently distributed over users and i.i.d. over time,

where the first ten users have channel availability probability

of 0.9 and all others have probability of 0.5. We assume that

all M channels have the same channel fading model.
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Fig. 2: Impact of number of sampling users K: single channel

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Arrival Rate 

0

50

100

150

200

250

300

350

400

450

500

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

IPC Algorithm
IJST Algorithm

(a) K = 2

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Arrival Rate 

0

50

100

150

200

250

300

350

400

450

500

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

IPC Algorithm
IJST Algorithm

(b) K = 4

Fig. 3: Performance comparison: single channel case
Fig. 2 shows the impact of the number of sampling users

K on the system performance of the IJST Algorithm and the

IPC Algorithm in the single-channel case. From Figs. 2a and

2b, we can observe that as K increases, both throughput and

delay performance of these algorithms improve. Especially,

we can see that K = 4 sampling users are sufficient for

both algorithms to almost achieve the maximum throughput

(i.e., when K = 20). Moreover, the delay performance under

the IPC Algorithm is only slightly worse than that under

the IJST Algorithm, and their gap becomes smaller as K
increases, as shown in Fig. 3b. This indicates that in the single

channel case, the IPC Algorithm with only four sampling

users can achieve almost the same throughput and delay

performance as the IJST Algorithm, which requires all queue-

length information available before each data transmission and

thus requires a significant amount of communication overhead.

Hence, our proposed IPC Algorithm dramatically reduces the

communication overhead with a negligible performance loss.

In Fig. 4, we study the performance of our proposed IPC

Algorithm in a multi-channel case and compare it to the IJST



Algorithm. From Figs. 4a and 4b, we can observe that our

proposed IPC Algorithm still performs well in both three and

five channel cases compared to the IJST Algorithm when the

number of allowable sampling users is four. This indicates that

the IPC Algorithm is quite robust to the number of channels,

which is significantly more advantageous in large-scale multi-

channel IoT uplink systems.
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Fig. 4: Performance comparison: multi-channel case

VII. CONCLUSIONS

In this paper, we considered the design of efficient and

low-overhead uplink scheduling algorithms for large-scale IoT

applications, where the central controller has a limited amount

of information about the users. We first derived a capacity

outer bound under the sampling constraint, where only a small

subset of users are allowed to use control channels for system

state reporting and channel probing. Then, we proposed a joint

sampling and transmission algorithm with full information

before each transmission and show that it achieves the capacity

outer bound. However, this algorithm incurs a huge amount

of communication overhead before each data transmission.

To that end, we developed an efficient and low-overhead

uplink scheduling algorithm that is suitable for large-scale

IoT applications. Finally, we validated our theoretical results

through extensive simulations.

APPENDIX A

PROOF OF PROPOSITION 3

Since the channel states on each channel satisfy Assumption

1, the IJST Algorithm selects the K largest Qi,j [t]Ci,j among

N users on channel j+1 (j = 0, 1, . . . ,M−1) in the stochastic

order sense given Q[t] = (Qi[t])
N
i=1, i.e.,

Qi∗
1,j

[t],j [t]Ci∗
1,j

[t],j ≥st . . . ≥stQi∗
K,j

[t],j [t]Ci∗
K,j

[t],j

≥stQi,j [t]Ci,j , (12)

where {i∗k,j [t]}
K
k=1 are the users selected by the IJST Algo-

rithm for reporting their channel states and i /∈ {i∗k,j [t]}
K
k=1.

Since the IPC Algorithm independently picks a user at

uniformly random on each channel in each time slot, for any

given γ > 0, there exists a Dγ,j > 0 such that

Pr
{
rj [τk] = i∗k,j [t] for some τk ∈ {t−Dγ,j , . . . , t− 1},

∀k = 1, 2 . . . ,K − 1
}
≥ 1− γ. (13)

Under the IPC Algorithm, we have

max
k=1,2,...,K−1

Qîk,j [t],j
[t]Cîk,j [t],j

(a)

≥ st max
k=1,2,...,K−1

Qîk,j [t−1],j [t]Cîk,j [t−1],j

(b)

≥st max
k=1,2,...,K−1

(
Qîk,j [t−1],j [t− 1]− cmax

)
Cîk,j [t−1],j

≥st max
k=1,2,...,K−1

Qîk,j [t−1][t− 1]Cîk,j [t−1],j − c2max, (14)

where step (a) follows the definition of the IPC Algorithm,

and (b) uses the fact that at most cmax packets can be served

on each channel in each time slot.

Without loss of generality, we assume that τm1
> τm2

>
. . . > τmK−1

, where (m1,m2, . . . ,mK−1) is a permutation of

(1, 2, . . . ,K − 1). Hence, we have

max
k=1,2,...,K−1

Qîk,j [t],j
[t]Cîk,j [t],j

(a)

≥ st max
k=1,2,...,K−1

Qîk,j [τm1
],j [τm1

]Cîk,j [τm1
],j − (t− τm1

)c2max

(b)

≥st max

{
max

k=1,2,...,K−2
Qîk,j [τm1

−1],j [τm1
]Cîk,j [τm1

−1],j ,

Qrj [τm1
],j [τm1

]Crj [τm1
],j

}
− (t− τm1

)c2max

(c)

≥st max

{
max

k

(
Qîk,j [τm1

−1],j [τm1
− 1]− cmax

)
Cîk,j [τm1

−1],j ,

Qrj [τm1
],j [τm1

]Crj [τm1
],j

}
− (t− τm1

)c2max

≥st max

{
max

k
Qîk,j [τm1

−1],j [τm1
− 1]Cîk,j [τm1

−1],j − c2max,

Qrj [τm1
],j [τm1

]Crj [τm1
],j

}
− (t− τm1

)c2max

≥st max

{
max

k=1,2,...,K−2
Qîk,j [τm1

−1][τm1
− 1]Cîk,j [τm1

−1],j ,

Qrj [τm1
],j [τm1

]Crj [τm1
],j

}
− (t− τm1

+ 1)c2max, (15)

where step (a) iteratively uses (14); (b) follows the definition

of the IPC Algorithm; (c) uses the fact that at most cmax

packets can be delivered on each channel in each time slot.

By using the similar argument in deriving (15), we can show

max
k=1,2,...,K−l

Qîk,j [τml
−1],j [τml

− 1]Cîk,j [τml
−1],j

≥st max

{
Qrj [τml+1

],j [τml+1
]Crj [τml+1

],j ,

max
k=1,...,K−(l+1)

Qîk,j [τml+1
−1],j [τml+1

− 1]Cîk,j [τml+1
−1],j

}

− (τml
− τml+1

)c2max, ∀l = 1, 2, . . . ,K − 2. (16)

By using (15) and (16), we have

max
k=1,2,...,K−1

Qîk,j [t],j
[t]Cîk,j [t],j

≥st max
k=1,2,...,K−1

Qrj [τk],j [τk]Crj [τk],j − (t− τmK−1
+ 1)c2max

(a)
= st max

k=1,2,...,K−1
Qi∗

k,j
[t],j [τk]Ci∗

k,j
[t],j − (t− τmK−1

+ 1)c2max



(b)

≥st max
k=1,2,...,K−1

(
Qi∗

k,j
[t],j [t]− (t− τk)Amax

)
Ci∗

k,j
[t],j

− (t− τmK−1
+ 1)c2max

(c)

≥st max
k=1,2,...,K−1

Qi∗
k,j

[t],j [t]Ci∗
k,j

[t],j

− (t− τmK−1
+ 1) (Amax + cmax) cmax

≥st max
k=1,2,...,K−1

Qi∗
k,j

[t],j [t]Ci∗
k,j

[t],j −Gγ,j , (17)

where step (a) uses the definition of τk, ∀k = 1, 2, . . . ,K−1;

(b) follows the fact that at most Amax packets arrives at

each queue in each time slot; (b) is true since the maxi-

mum channel rate is cmax; (c) is true for Gγ,j � (Dγ,j +
1) (Amax + cmax) cmax.

According to the property of the stochastic ordering, (17)

implies that

�

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]

≥�

[
max

k=1,2,...,K−1
Qi∗

k,j
[t],j [t]Ci∗

k,j
[t],j

∣∣∣∣Q[t]

]
−Gγ,j . (18)

By combining (18) and (13), we have

Pr

{
�

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]

≥ �

[
max

k=1,2,...,K−1
Qi∗

k,j
[t],j [t]Ci∗

k,j
[t],j

∣∣∣∣Q[t]

]
−Gγ,j

}

≥ 1− γ, (19)

which implies that

M∑

j=1

�

[
max

k=1,2,...,K−1
Qîk,j [t],j

[t]Cîk,j [t],j

∣∣∣∣Q[t]

]

(a)

≥ (1− γ)

M∑

j=1

�

[
max

k=1,2,...,K−1
Qi∗

k,j
[t],j [t]Ci∗

k,j
[t],j

∣∣∣∣Q[t]

]
−B1

(b)
=(1− γ)

M∑

j=1

�

[
max

i
Qi,j [t]X

∗
i,jCi,j

∣∣∣Q[t]
]
−B1,

where step (a) is true for B1 � (1 − γ)
∑M

j=1 Gγ,j and

follows from the fact that �
[
maxk Qi∗

k,j
[t],j [t]Ci∗

k,j
[t],j

∣∣∣Q[t]
]

is a fixed value; (b) is true since X∗
i,j = 1 if i ∈ {i∗k,j , k =

1, 2, . . . ,K−1}. This indicates that the selected weight by the

IPC Algorithm is very close to the IJST Algorithm. The rest

of the proof follows the standard Lyapunov arguments. The

detailed proof is available in our technical report [10].
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