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Abstract—There is a rich theory and plethora of algorithms
in the literature aiming at the efficient scheduling of stochastic
networks. These solutions are predominantly designed under the
assumption of traffic demands that are independently generated
at network nodes, without any requirement for synchronization
among their received services. In this work, we note that many
applications, including cloud computing, virtual reality, gaming,
autonomous vehicular networks and collaborative design, gen-
erate traffic simultaneously at multiple nodes when they arrive,
with possibly non-uniform file sizes, whose performance relies
on the synchronous completion of the traffic across the network.
This calls for the design of new scheduling algorithms that aims
to coordinate the service of packets of the same traffic across
the network. Towards this end, we propose a novel scheduling
algorithm that not only accounts for the heterogeneity of the
file size distributions, but also works towards synchronizing the
completion time of the same traffic stream across the network.
This is achieved by employing two insights that emanate from key
motivating examples we develop: (1) the normalization of traffic
load with respect to the non-uniform file sizes; and (2) the incor-
poration of deviation of normalized loads across network nodes
that serve synchronized traffic. After establishing the throughput-
optimality of our algorithm in general stochastic networks, we
perform extensive simulations under various (spanning both
wired and wireless) settings to reveal the potential completion
time gains that it yields over other throughput-optimal strategies
designed under the assumption of independent traffic generation.

I. INTRODUCTION

In this paper, we focus on the efficient scheduling design
that determines when and which nodes should be scheduled
in stochastic networks with synchronized traffic demands
generated at multiple network nodes. This differs from many
prior works on network scheduling (e.g., [25], [24], [10], [18],
[15], [23], [3] and [21] for an overview) that assume indepen-
dent traffic streams being served by the restrictive network
resources. Our model of synchronized demand is motivated
by recent and emerging applications such as cloud computing,
virtual reality, gaming, autonomous vehicular networks, col-
laborative design, and distributed network computation (e.g.,
[7]). For example, parallel-data computation paradigms (e.g.,
MapReduce [6], Hadoop [1], [20], and Spark [28]) are widely
used in data centers to accelerate big data processing, where
each big data application is generally divided into many differ-
ent tasks that are simultaneously distributed across computers
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in a data center and its computation is completed only when all
its parallel tasks are processed. Another representative example
is the wireless interactive gaming, where multiple players are
required to collaboratively perform a certain task. A key char-
acteristic among all these applications is that each application
contains a certain number of parallel tasks, and its satisfactory
completion relies on whether its last task has received all
its service. This implies that it does not really speed up the
completion of a service request if some of its intermediate
tasks are served much earlier than the last. Much of prior
work on scheduling design in stochastic networks assumes that
each network node independently generates traffic demands
and thus does not apply in our considered scenario.

The most related group of works to our setting concerns the
efficient scheduling design for parallel jobs in data centers. In
[5], the authors first introduced coflow abstraction to capture
a group of parallel tasks, and developed a smallest bottleneck
first heuristic to minimize average job completion time. Ref-
erences [19], [16] developed deterministic algorithms with a
constant approximation ratio for multiple coflow scheduling
given the information of all coflows at the beginning. Subse-
quent works took either flow utility (e.g., [12], [2]) or routing
(e.g., [13]) into account. Some recent work (e.g., [4], [8], [17],
[271, [29], [16], [13]) focused on practical aspects of coflow
scheduling design. All these works either developed heuristic
coflow scheduling algorithms or studied the efficient coflow
scheduling design in the deterministic context, where all
parallel jobs are available at the beginning and the main goal
is to develop an efficient scheduling algorithm to minimize
the time required for finishing all these jobs. However, their
performance is quite unclear in the presence of dynamic job
arrivals and changing network states, where the later feature
is predominant in wireless networks. In our work, we develop
an adaptive algorithm that is well-geared towards managing
changing and random dynamics of the synchronized traffic as
well as the network resources.

Another interesting work [14] developed a delay-optimal-
scaling scheduler for homogeneous parallel jobs with optimal
delay scaling in input-queued switches in the presence of
stochastic job arrivals, and pointed out that the MaxWeight
algorithm exhibits excellent delay performance for parallel
jobs in the symmetric traffic case, where all tasks of a parallel
job have the same task size distribution. However, it can suffer
from substantial performance degradation (see our motivat-



ing examples in Section III) in heterogeneous traffic cases,
which might be possible in many scenarios with synchronized
traffic demands. In contrast, we design a network scheduler
for synchronized traffic demand under heterogeneous traffic
characteristics and time-varying network conditions.

Our novel design is motivated by the observation that
the completion time of a parallel job is determined by the
processing time of its last task, and hence it is preferable to
allocate limited resources evenly across tasks of parallel jobs.
That is, an efficient algorithm should balance workload across
network nodes processing tasks belonging to the same parallel
job. To that end, we consider a fixed number of types of
parallel jobs with different statistics and each node maintains
a separate queue for each type of jobs. We need to balance
queues at different nodes processing the same type of jobs
across the network. This requires each node to intelligently
determine how to process different types of jobs. On one
hand, each node needs to serve queues with the maximum
number of pending tasks in order to minimize their delay.
On the other hand, nodes need to balance workload across
queues associated with the same type of jobs, since it does
not speed up the job processing if some of its tasks finish
earlier. These observations form the basis of our work, whose
main contributions can be listed as follows:

e In Section III, we present two motivating examples
showing the performance deficiency of the queue-length-based
MaxWeight policy and the necessity of balancing workload
across nodes processing the same type of parallel jobs.

e Based on the observations from Section III, in Section IV,
we develop a novel MaxWeight-type algorithm, where the link
weights are composed of a combination of normalized queue-
lengths and their deviation away from the average normalized
queue-length of tasks belonging to the same type of parallel
jobs as well as its network state. We further show in Section
IV-B that the proposed algorithm achieves the maximum
system throughput through a novel Lyapunov function, which
may be interesting in its own right.

e We support our analytical results with extensive simula-
tion results, which not only confirm its throughput-optimality,
but also reveal excellent delay performance of our proposed
algorithm under various settings, encompassing data centers
and wireless networks.

II. SYSTEM MODEL

We consider a generic stochastic network composed of N
nodes with possibly time-varying and heterogeneous service
rates. We assume that there are M types of jobs (referred as
parallel jobs in the rest of the paper) that are required to be
completed collaboratively by N nodes, where tasks of each
type of jobs have different service requirements. A parallel
job completes its service request once all its parallel tasks are
served at different nodes, and thus its completion time is the
maximum service time of all its parallel tasks. We assume that
the system operates in a time-slotted manner, where correlated
jobs arrive randomly across the network at the beginning of
each time slot and service decisions are made by the central

controller at the end of each time slot. We maintain a Queue
(i,4) for type j jobs at node i, where Queue (4, j) holds type
7 jobs of node ¢ awaiting for transmission. Fig. 1 shows an
example of our system model.

“Purple” Job “Red” Job “Blue” Job

Node 3

Fig. 1: A stochastic network with five nodes and the link
between two nodes denoting that they interfere with each other
and cannot be served at the same time. There are three types
of jobs with “purple” jobs associated with nodes 1 2 and 3,
“red” jobs associated with nodes 2, 3 and 4, and “blue” jobs
associated with nodes 4 and 5. Each node maintains a queue
for each type of jobs.

The load (we call task size) of the same job need not
be the same at all nodes, since the same job may generate
different amount of service demands at different nodes in many
applications. Accordingly, we let F;;[t] denote the number of
packets of type j jobs of node ¢ that need to be transmitted
in time slot ¢t and thus measures the amount of service
requirement of tasks of type j jobs at node i. We assume
that F[t] & (Fi;[t]))nxar is independently and identically
distributed (i.i.d.) over time with mean 1 = (7;;) nxn and
E [(Fij [t])Z] < 00, Vi, j. Also, A;[t] and F[t] 2 (Fy;[t])nxar
are assumed to be independent from each other. We use A, ]
to denote the number of type j jobs arriving at the system in
time slot ¢ that is i.i.d. Bernoulli distributed' over time with
mean \; > 0. Let p;; = \;n;; be the traffic intensity at Queue
(i, ).

Let S[t] £ (Sij[t]) Nxar be a feasible service rate matrix
in time slot ¢, where S;;[t] denotes the service rate allocated
to Queue (i,7) in time slot t. We assume that S;;[t] <
Smax, Vi, j, t, where Sy, .« i some positive constant. The feasi-
ble service rate matrix depends on both network system state at
each time and interference constraints amongst network nodes.
Using H to denote the set of global system states (with finite
cardinality), we let S (h) denote the set of all feasible service
rate matrices when the system state is in A € H. We assume
that the system state is i.i.d. over time with ¢; denoting the
probability of the system state being in state h. The capacity
region A is defined as ), _,, én ¥ ConvexHull(S™™), which
gives the upper bound on the system throughput that can be
supported by some scheduler that determines a feasible service
rate matrix S[t] in each time slot ¢.

11t can also be extended to the case with general distribution at the cost of
additional notation.



We use @;;[t] to denote the queue length (in packets) of
Queue (i, j) in time slot t. Let U;;[t] = max{S;;[t] — Qi;[t] —
A;;[t],0} denote the unused service for Queue (4, j) in time
slot ¢t. Then, the evolution of Queue (7, j) can be described as
follows:

Qijt + 1] = Qiz[t] + A [t] Fyj[t] — S [t] + Uiy t],

fort=1,2,...,N,and j =1,2,..., M.

We say that Queue (i,5) is  stable if
limsupy_, o 7 S EB[Qi[t]] < oo. The system is stable if
all its queues are stable. Accordingly, we say that a scheduler
is throughput-optimal if it achieves the stability of the system
for any arrival traffic intensity matrix p = (p;;)nxas that
lies strictly inside the capacity region A. In this work, we are
interested in developing a throughput-optimal (aka efficient)
scheduling algorithm for parallel jobs in stochastic networks
that not only achieves throughput optimality, but also exhibits
desirable performance in the completion time of parallel
jobs. Next, we provide two examples and discuss the delay
performance deficiency of the queue-length-based MaxWeight
algorithm, which will guide our design.

III. MOTIVATING EXAMPLES

The design of throughput-optimal schedulers over networks
is a mature area with many existing solutions starting with
the seminal work [25], which exhibits excellent packet-level
delay performance. However, in this work, we are interested
in throughput-optimal schedulers with low job completion
time characteristics for parallel jobs instead of packet-level
delay. In this section, we will present two important examples
that reveal the need for a new design with such features. In
particular, the first example illustrates the delay performance
deficiency of the queue-length-based MaxWeight policy (e.g.,
[25]), which motivates us to take the normalized queue-length
as the weight. The second example inspires us to balance the
workloads across tasks belonging to the same type of jobs.

A. Benefits of Normalization in Serving Parallel Jobs

The well-known queue-length-based MaxWeight algorithm
always prioritizes a queue with the large number of packets,
and has been shown to not only achieve maximum throughput
but also exhibit excellent packet-level delay performance (e.g.,
minimizes mean delay of packets in some special cases [26]
and in heavy-traffic regimes [22], [9]). However, they can fail
in providing good delay performance in the presence of jobs
containing parallel tasks. To see this, we consider two different
type of parallel jobs containing two tasks generated at two
different nodes, as shown in Fig. 2.

The first task of type 1 job and the second task of type

otherwise. Hence, the mean of task size F'is equal to 9. Both
the second task of type 1 job and the first task of type 2 job
always have the constant task size of 1. Both two types of jobs
arrive at the system according to a Bernoulli distribution with
mean A. Each node can independently serve one packet in each
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distribution: it is equal to 20 with probability 8/19, and 1= -

Mean task size 9
Type 1 Job

Type 2 Job

Node 2
Fig. 2: Two types of jobs with both tasks generated at two
different nodes. The number above the line corresponds to the
mean task size.

time slot. Therefore, the capacity region is {\ : 10A < 1}. To
that end, we consider the arrival rate A\ = 0.1 x 6, where
0 € (0,1) represents the arrival load factor.

In this setup, we study the job delay performance of the tra-
ditional queue-length-based MaxWeight policy, and compare
it to the normalized-queue-length-based policy. In particular,
the normalized-queue-length-based policy serves a queue with
the larger ratio of queue-length and its mean task size. Fig.
3a shows the mean job delay performance of the traditional
queue-length-based policy and the normalized-queue-length-
based policy with respect to the arrival load factor 6 € (0, 1).

We can observe from Fig. 3a that the normalized-queue-
length-based policy outperforms the traditional queue-length-
based policy. Fig. 3b shows the delay improvement percentage
by the normalized-queue-length-based policy compared with
the traditional queue-length-based policy. We can see from
Fig. 3b that the delay improvement increases as the arrival
load factor increases, and can reach as high as 70% when the
arrival load factor 6 is equal to 0.99. The reason lies in the
fact that a parallel job is completed only when both of its
tasks finish their service, and thus the delay of a parallel job
is the maximum of delay experienced by its tasks. Traditional
queue-length-based policy always serves the queue with the
larger queue-length at each node with the goal of minimizing
packet-level delay, and thus each node prefers to serve the
heavily-loaded tasks of each type of jobs. This leads to the
case that parallel jobs are rarely completed and thus experience
high job delay. In contrast, the normalized-queue-length-based
policy tries to balance the number of tasks of each type of
jobs at each node and thus makes sure that tasks belonging to
the same type of jobs finish their service almost at the same
time, which yields much better job delay performance. This
indicates the importance of incorporating normalized-queue-
length into the scheduling design.
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(a) Delay performance comparison (b) Delay improvement

Fig. 3: Delay performance in the symmetric setup



B. Benefits of Prioritization in Serving Parallel Jobs

In this subsection, we will reveal the advantage of balancing
workloads across nodes generating tasks belonging to the same
type of parallel jobs. Note that the job delay is determined
by the maximum delay of all tasks of a parallel job. On one
hand, it does not improve job delay performance if we just
accelerate the service of some of tasks belonging to the same
type of jobs. On the other hand, the extra service capacity can
be utilized to serve jobs that are going to be completed soon,
and thus the job delay performance can be improved.

To check this observation more clearly, we consider a
variant of the example in the last subsection, as shown in Fig.
4. In particular, the second type of jobs are instead served only
at the second node. To facilitate our quantitative analysis, we
assume that both types of jobs arrive at the system according
to the Poisson process with the same arrival rate of A. Jobs
are served at nodes 1 and 2 with the exponential service time
with mean 1/4 and 1/(2pu), respectively.

Type 1Job Node 1

Type 2 job

Node 2

Fig. 4: Two types of jobs: type 1 jobs are processed at both
nodes while the type 2 jobs are served by the second node.

Therefore, the first node is an M/M/1 queue with the arrival
rate of A\ and service rate of u, and thus its mean waiting time
in the queue (see [11]) is

Dy = M
w—A
Both types of jobs have the same arrival rate, and thus they

experience almost the same waiting time under the MaxWeight

algorithm. Thus, we can approximate the mean waiting time of
both jobs at the second node under the MaxWeight algorithm
to that of an M/M/1 queue with arrival rate of 2\ and service

rate of 2y, i.e.,

D

D = p@ — A

= — 2
TR )

where Dg) denotes the mean waiting time of type ¢ jobs at
the second node for 7 = 1,2. Fig. 5a shows that the mean
waiting time of type 1 jobs at two different nodes are quite
different, which potentially deteriorates its job delay. Indeed,
even though the second tasks of type 1 jobs finish earlier at
the second node, it does not help speed up the completion of
type 1 job whose delay is dominated by that of its first tasks.

An ideal solution will be to keep the delay of type 1 jobs
the same at two different nodes. In such a case, the second
node can allocate more service capacity to serve the second
type of jobs and improve its job delay performance without
sacrificing the performance of the first type jobs. Consider

the non-preemptive priority-based policy that gives the second
type jobs higher priority at the second node, and thus their
mean delay (see [11]) can be expressed as follows:

A A
(2= —A) 2p =N

where ZNDgL) represents the mean waiting time of type ¢ job at
the second node for ¢ = 1, 2. We can observe from Fig. 5a that
the waiting time of the first type jobs are very close at both
nodes under the priority-based policy while the second type
jobs have the significant delay improvement especially in high
arrival load factor. This indicates the advantage of balancing
workload across nodes that generate tasks belonging to the
same type of jobs.

Similar to the simulation setup in the last subsection, we
assume that both types of job arrivals follow Bernoulli distri-
bution with mean A\. We consider the arrival rate A = 0.5 x 0,
where 6 € (0, 1) is the arrival load factor. Each node can only
serve one packet in each time slot. In our setting, the queue-
length-based MaxWeight and the normalized-queue-length-
based MaxWeight are equivalent since the task sizes of all
jobs in the second node are equal to 1. The blue line in Fig.
5b shows the delay improvement by the priority-based policy
that gives higher priority to type 2 jobs compared with the
normalized-queue-length-based MaxWeight algorithm. We can
see from Fig. 5b that the delay improvement percentage can
be as high as 21% when the arrival load factor 6 is equal
to 0.7. This is because the first node is heavily-loaded and
thus the first tasks of type 1 jobs experience high delay at
node 1. Therefore, it is not beneficial at all if the second tasks
of type 1 jobs are served fast at the second node. Instead,
the second node can give a lower priority for type 1 jobs and
higher priority for type 2 jobs without sacrificing the job delay
performance of type 1 jobs too much.
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(a) Delay performance comparison (b) Delay improvement

Fig. 5: Delay performance in the asymmetric setup

However, if we give higher priority to type 1 jobs at the
second node, then the delay performance would be worse
than the queue-length-based MaxWeight, especially when the
arrival load factor is high as shown in the red line in Fig.
5b. This indicates the importance of assigning appropriate
priority for parallel jobs. This may require the structure of
parallel jobs as well as arrival load conditions, which is not
feasible in practical stochastic networks. This demonstrates
the importance of assigning appropriate priority to different
types of jobs, and motivates us to develop an algorithm that



can intelligently adapt the parallel job structure and traffic
and exhibit excellent capability in balancing workloads across
tasks belonging to the same type of jobs.

IV. EFFICIENT JOB-SYNCHRONIZED SCHEDULER DESIGN

The two examples from the last section motivate us to
develop a novel scheduler for synchronized traffic that pos-
sesses the following characteristics: (1) normalizing the queue-
lengths with task sizes in order to keep the task completion
time of the same job close to each other; and (2) balancing
the task workload of the same type jobs. In this section, we
use these insights to develop a new scheduling algorithm, and
show that it achieves maximum system throughput.

A. Job-Synchronized Scheduler Design

In order to characterize the task-level dynamics, we intro-
duce the following notations. We use W;;[t] = Qy;[t]/ni; to
denote the normalized queue-length at Queue (7,j) in time
slot ¢, which captures the average number of tasks at Queue
(4,7) in time slot ¢. Similarly, let v;;[t] £ A;[t]F;[t]/nij,
Hij [t} 4 Sij [t}/nij and Usj [t] £ Uij [t]/n” be the normahzed
arrivals, service and unused service at Queue (7, j) in time slot
t, respectively. Then, the normalized queue-length of Queue
(i,4) evolves as follows:

Wijlt + 1] = Wi[t] + vig[t] — pas[t] + wis[t]. 4)

An effective and systematic way to balance the task work-
load of the same type jobs is through incorporating its
deviation away from the average task workload into the
scheduling decisions. To that end, we define the average task
workload of type Jj jobs in time slot ¢ denoted by W,[t] a
Wl = + Zl 1 Wij[t]. According to (4), the dynamic of
the average task workload can be described as follows:

Wilt + 1) = W[t + 75[t] — 75 [t] + 35 [1], ()

where 7;[t], 7i;[t] and ;[t] denotes the average normalized
arrivals of type j jobs, the average normalized service rate
provided for type j jobs, and the average normalized unused
. . . . —_ A1 N

service in time slot ¢, respectively, and T; = + > ;_; x4; for
any N x M matrix x = (2i;) Nx M-

Next, we propose the following job-synchronized schedul-
ing algorithm.

Job-Synchronized Scheduling (JSS) Algorithm: In each
time slot, given the normalized queue-length matrix W t],
select a normalized schedule fit] £ (fi;;[t])nxas such that

N M

22 (7 Wislt] -

where v is some non-negative parameter, h[t] is the system
state in time slot ¢, and U ("' £ {S/n : S € S} denotes?
the collection of normalized feasible schedules in system state
h[t] in time slot .

ft] € max

e W;t])) mis,

2The matrix division operator is coordinate-wise.

The JSS Algorithm incorporates both the normalized queue-
length of each task queue of parallel jobs and its deviation
away from the average normalized queue-length of all tasks of
parallel jobs into the scheduling decisions. Note that the nor-
malized queue-length captures the congestion level of tasks,
while its deviation characterizes the different task congestion
levels of the same type of parallel jobs. Therefore, on one
hand, the JSS Algorithm tries to serve the task queue that is
heavily loaded in order to minimize the task delay. On the
other hand, it also gives higher priority to the task queue that
is far away from its average congestion level and attempts to
balance the workloads of tasks belonging to the same type
of jobs. Next, we show that our proposed JSS Algorithm can
achieve maximum throughput.

B. Analysis of our Job-Synchronized Scheduler

In this subsection, we prove the throughput-optimality of
the proposed JSS algorithm using a novel Lyapunov function.

Proposition 1: The JSS Algorithm is throughput-optimal,
i.e., it stabilizes the system for any arrival traffic intensity
matrix p that is strictly within the capacity region A.

Proof: Choose Lyapunov function

V(W) = Vi(W) + V2(W), (6)
where V1 (W) and V5(W) are defined as follows:
N M oy )
) —
Vi(W lezlw and Vo(W 5;;(14@—%)

In the rest of the proof, we use _, ; to denote Zfil Z;Vil
for conciseness and omit time 1ndex without causing any
confusion. Next, we will consider the conditional expected
drift of V1(W) and Vo(W), which are defined as follows:

AV(WIt]) & Vi(WIt +1]) = Vi(W[t]),Vi = 1,2.
We first focus on the conditional expected AV; (Wt]).
E[AVI(W[H])[ W] = W]
=E[Vi(W[t +1]) - Vi(W[t])| W]
1 A N2
<3 ZE {(Wij +vij = fuij)” = W5 W}
< Z]E VU ﬂij)|W] + By
b .
(:)ZWZ]/\J - ZWijuij W +Bl, (7)
.9 ]
where  step (a) is true for B =
%Z” E[(A3F%:+1) /n%] < oo; (b) follows from

the fact that the arrivals are independently from the current
queue-lengths and the fact that |E [v;;] = A;.

consider the
[t]) given W[t] = W.

Next, we conditional

AVa(W

expectation of



E [AVa(W[t])|[W ]
=E[Va(Wt + 1)) — Va(W

’YZE

— W]
)W

Wlt +1))°

=W

(Wilt+1) -

(%) Bz+’YZE[(Ww —W;) (vij — ;)| W]
—WZE (Wi — W) (fu “J>|W]
Wj) (us; EJ)’W]

() _
< By *’YZE [(W —
%,
+'yZIE (W,
]

where step (a) is true for By £ 537, ' [((yij —7;) — (fiij —

i)+ (uij —
the boundedness of the service rates and unused services as
well as the fact that E[FZZJ] < 00; (b) uses the fact that

))2]W} and can be shown that By < oo since

E [(Wi; —W;) (vij —

N
— 1
i=1

7;)|W]

Realizing the fact that 35, (Wi —W;)p, =
> (N;W; —=NjpW;) = 0, and the fact that
> (Wi =Wj)u; = 0 using similar argument, (8)
becomes

E[AVy (W)Wt = W]

<By =B | Y (Wiy = W;) iy |[W | +7 > Wijuy

63 i
<By+ B3 —E Z (Wij — W) fuis|W | )
]

where the last step is true for By = ~S2,. >, - 1/n7; follows

from the fact that Wiu;; = Q45U /nfj and the fact that
Uij = 0if Qi > Smax, and Uj; < Shax otherwise. Here,
we recall that S,,,, is the maximum service rate that can be
allocated to each queue in each time slot.

Hence, we have
E[AV(W[t])[W[i] = W]
=E[V(WI[t +1]) - V(W[)[W[t] = W]
=E[AV1(W)|W] + E[AVy(W)[W]
< Z Wij )\j + B
1,
—E (Y (Wi +y (Wy = W;)) hg[W|, (10)
i,J
where the last step is true for B £ Bi+B, + B3, and combines
inequalities (7) and (9).
Since the traffic intensity matrix p = (p;;) strictly lies in

the capacity region A, there exists an € > 0 and («x(s))scs
with Y s an(s) = 1,Vh € H, such that

pij = Ajnij < Z Pn Z an(s)sij — €enij, Vi, j. - (11)
heH — sesth
This implies that
A< —etminddn D an(wuig Vi, (12)

heH pneEUh)

where >, ) an(p) =1 and we recall that uh 2 1s/n:
Seshy.
Therefore, we have

ZWZ‘J‘)\j S _EZWU
] ,J
+Z mmZd)h Z o () tir ZWW (13)

heH  peu®

Next, we consider the second term on the right-hand-side
of (13).

(mln Z bn
(@Z (

( ij +’Y W’Lj

(H)Nz"j) Z Wi;

uez,{(h)

-W;))

min » ° én w()pirg | > (Wi +~ (Wi
Heu(h)

heH [

W) D on 3. «a

heH “eu(h>

_Z¢h > an(w)d (Wi +v (Wiy = W;)) pa

heH pey(h) %)

n (1) i g

(b) _
<E Z (Wij + v (Wij — Wj)) i

%)

(14)

w},

where step (a) uses the fact that ), Wi; Wi
(b) follows from the definition of f, ie., [ €
Max,, e (i) D 5 (Wij + v (Wi; — W;)) pi; given the sys-



tem state h[t] in time slot ¢.
By combining (13) and (14) and substituting them into (10),
we have

E[AV(W[H])|W[t] = W] < —e Y Wi + B.

i,

5)

Summing over ¢ = 0,1,...,7 — 1, and taking T — oo, we
have the desired result. [ |

V. SIMULATION RESULTS

In the previous section, we established the throughput-
optimality of our Job-Synchronized Scheduler (JSS). However,
our design, as motivated by the examples from Section III, was
not only aimed at efficiency but also achieving good job delay
performance. In this section, we present simulation results for
both switch and wireless scenarios that investigate job delay
performance gains compared to the traditional MaxWeight
policy. In the remaining part, “delay” is referred to as “job
delay” for simplicity, which is different from packet-level
delay as mentioned before. We will observe that under both
scenarios significant delay improvements are achieved through
our JSS algorithm.

A. Switch Scenario

In this subsection we consider the case where two types
of jobs arrive at a 6 x 6 switch with a Bernoulli distribution
with arrival rates of () and A(?) respectively. We assume that
each type of flows generates 36 tasks, and each task is routed
between a unique pair of one input port ¢ and one output port
j. The task size generated by the job at link (4, ) is a random
number that is equal to M;; with the probability ﬂj:ll and 1
otherwise. Accordingly, 7;; is the mean task size at Tlink (i,7)
and M;; measures the task’s burstiness. We assume that for the
first type of jobs the mean task sizes 771(;) at links (1, 1), (2,2)
and (3,3) are 20 while the others are 2. For the second type
of jobs the mean file sizes ng) at links (4,4), (5,5) and (6, 6)
are 20 while the others are 2. In this case, the first type of jobs
dominate the first three input ports while the second type of
jobs dominate the remaining ones. Assuming symmetric arrival
rates A = X2 = X the range of stabilizable arrival rates
of the two types of jobs satisfies A = M%XQ =6 x 0.024,
where § € [0,1). The values of M, ; for each link are equal
to 25 for each job type. Here we define the mean job delay
as the delay averaged over both types of jobs.

First we present the simulation results of delay improvement
percentage versus the arrival load factor € under different ~,
the parameter of JSS, compared with the traditional queue-
length-based MaxWeight algorithm in Fig. 6a. We see from
Fig. 6a that, under different ~, our algorithm can achieve a
better delay performance than the MaxWeight algorithm. In
the meanwhile, too low or too high values of v can deteriorate
the performance when arrival load factor 6 is high enough, and
v = 5 gives the best result for most arrival load factors. The
delay improvement percentage can be as high as 48% when
v = 5. In all these three cases the ratio increases first and
then decreases with respect to the arrival load factor, but they

have different turning points. Obviously, v = 5 has the best
performance in the heavily-loaded condition while v = 0 gives
the best result in light traffic case.

The impact of the algorithm parameter v on the job delay
performance for different arrival load factor is shown in
Fig. 6b. For the low arrival rate, the delay improvement does
not change too much for different choices of . This is because
in the light-traffic case, tasks do not need to wait for service
in most of the time. So the different scheduling algorithm
designs do not have a great impact on the job delay. For the
high arrival rate, however, we can see that the improvement
has a substantial increase when v goes from 0 to 10, and
then decreases slightly afterwards. These results suggest that
choosing values of v at the higher end, although suboptimal,
can yield large gains with nearly 40% improvement.
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Fig. 6: Job delay improvement ratio of JSS algorithm

B. Wireless Scenario

In this subsection, we consider a wireless scenario as shown
in Fig. 7a, which is an extension of the second example
in Section III-B. In particular, there are six types of jobs
arriving at six different nodes. For the first five types of
jobs, each type of jobs generates two tasks arriving at two
different nodes. The last type of jobs generates one task only
arriving at the last node. Each node maintains a queue for
each type of jobs. In the meanwhile, each node can serve
packets simultaneously without any interference (e.g., FDMA).
We assume that each node suffers from i.i.d. channel fading
with a Bernoulli distribution, meaning that one packet can be
successfully served with probability p and cannot be served
with probability 1 — p. Here we set p = 0.9 for all nodes and
constant task sizes. Specifically, the task of the first type of
jobs at the first node has a task size of 2 while the others
have a task size of 1. Obviously in this case, the tradition
MaxWeight algorithm is equivalent to our algorithm with
v = 0. Assuming equal arrival rates for all types of jobs,
the range of stabilizable arrival rates of any job can be written
as 0.4560, where 6 € [0,1). Here we assume that each type of
jobs arrives according to a Bernoulli distribution with mean
0.456.

In Fig. 7b, we show the delay improvement percentage
compared with the traditional MaxWeight algorithm under
different arrival load factors #. When v = 1, our algorithm
can achieve as high as 8% delay improvement ratio, while a
comparable performance with MaxWeight is observed when
v = 4. For v = 100, we can see a large negative gain in
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heavy load. This implies that inappropriate choices of ~ will
deteriorate the job delay performance in this case, especially
in heavy load. We can also observe that in this case the delay
improvement first increases with respect to (w.r.t.) € and then
decreases w.r.t. 6. Neither too light nor too heavy load is good
for the effectiveness of the JSS algorithm, which aligns with
our observations in the switch scenario.

VI. CONCLUSIONS

In this paper, we studied the scheduling design for multiple
types of jobs containing parallel tasks in stochastic networks
with changing system states. We revealed two important
observations via motivating examples: (1) normalizing queue-
length to characterize the task-level delay; (2) balancing
the latency of all tasks belonging to a parallel job. Then,
we proposed a MaxWeight-type algorithm, where its weight
not only considers the normalized queue-length but also its
deviation away from the average normalized queue-length
of tasks belonging to the same type of jobs. We showed
that our proposed algorithm achieves throughput optimality
through a novel Lyapunov function, and exhibits desirable job
delay performance improvements over traditional MaxWeight
strategies through extensive simulations.
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