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Abstract—The Age-of-Information (AoI) has recently been
proposed as an important metric for investigating the timeliness
performance in information-update systems. Prior studies on AoI
optimization often consider a Push model, which is concerned
about when and how to “push” (i.e., generate and transmit)
the updated information to the user. In stark contrast, in this
paper we introduce a new Pull model, which is more relevant for
certain applications (such as the real-time stock quotes service),
where a user sends requests to the servers to proactively “pull”
the information of interest. Moreover, we propose to employ
request replication to reduce the AoI. Interestingly, we find
that under this new Pull model, replication schemes capture a
novel tradeoff between different levels of information freshness
and different response times across the servers, which can be
exploited to minimize the expected AoI at the user’s side.
Specifically, assuming Poisson updating process at the servers
and exponentially distributed response time, we derive a closed-
form formula for computing the expected AoI and obtain the
optimal number of responses to wait for to minimize the expected
AoI. Finally, we conduct numerical simulations to elucidate our
theoretical results. Our findings show that waiting for more than
one response can significantly reduce the AoI in most scenarios.

I. INTRODUCTION

The last decades have witnessed the prevalence of smart

devices and significant advances in ubiquitous computing and

the Internet of things. This trend is forecasted to continue

in the years to come [1]. The development of this trend

has spawned a plethora of real-time services that require

timely information/status updates. One practically important

example of such services is vehicular networks and intel-

ligent transportation systems [2], [3], where accurate status

information (position, speed, acceleration, tire pressure, etc.)

of a vehicle needs to be shared with other nearby vehicles

and road-side facilities in a timely manner in order to avoid

collisions and ensure substantially improved road safety. More

such examples include sensor networks for environment/health

monitoring [4], [5], wireless channel feedback [6], news feeds,

weather updates, online social networks, fare aggregating sites

(e.g., Google Shopping), and stock quotes service.

For systems providing such real-time services, those com-

monly used performance metrics, such as throughput and

delay, exhibit significant limitations in measuring the system
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performance [7]. Instead, the timeliness of information updates

becomes a major concern. To that end, a new metric called the

Age-of-Information (AoI) has been proposed as an important

metric for studying the timeliness performance [2]. The AoI

is defined as the time elapsed since the most recent update

occurred (see Eq. (1) for a formal definition). Using the AoI

metric introduced in [2] for vehicular networks, the work of [7]

employs a simple system model to analyze and optimize the

timeliness performance of an information-update system. This

seminal work has recently aroused dramatic interests from the

research community and has inspired a series of interesting

studies on the AoI analysis and optimization (see [8] and

references therein).

While all prior studies consider a Push model, which is

concerned about when and how to “push” (i.e., generate and

transmit) the updated information to the user, in this paper

we introduce a new Pull model, under which a user sends

requests to the servers to proactively “pull” the information of

interest. This Pull model is more relevant for many important

applications where the user’s interest is in the freshness of

information at the point when the user requests it rather

than in continuously monitoring the freshness of information.

One application of the Pull model is in the real-time stock

quotes service, where a customer (i.e., user) submits a query

to multiple stock quotes providers (i.e., servers) and each

provider responds with the most up-to-date information it has.

To the best of our knowledge, however, none of the existing

work on the timeliness optimization has considered such a

Pull model. In stark contrast, we focus on the Pull model

and propose to employ request replication to minimize the

expected AoI at the user’s side. Although a similar Pull

model is considered for data synchronization in [9], [10],

the problems are quite different and request replication is

not exploited. Note that the concept of replication is not

new and has been extensively studied for various applications

(e.g., cloud computing and datacenters [11], [12], storage

clouds [13], parallel computing [14], [15], and databases [16],

[17]). However, for the AoI minimization problem under the

Pull model, replication schemes exhibit a unique property and

capture a novel tradeoff between different levels of information

freshness and different response times across the servers.

This tradeoff reveals the power of waiting for more than one

response and can be exploited to minimize the expected AoI

at the user’s side.

Next, we explain the above key tradeoff through a com-

parison with cloud computing systems. It has been observed

that in a cloud or a datacenter, the processing time of a same
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Note that the updating process at each server is a Poisson pro-

cess with rate λ and is i.i.d. across the servers. Hence, the inter-

update time for each server is exponentially distributed with

mean 1/λ. Due to the memoryless property of the exponential

distribution, the AoI at each server has the same distribution

as the inter-update time, i.e., random variable ∆i(s) is also

exponentially distributed with mean 1/λ and is i.i.d. across

the servers [19]. Therefore, random variable mini∈K ∆i(s) is

the minimum of k i.i.d. exponential random variables with

mean 1/λ, which is also exponentially distributed with mean
1
kλ

. This implies Eq. (8).

Combining Eqs. (7) and (8), we complete the proof.

Remark. The above analysis indeed agrees with our intu-

ition: while the expected total waiting time for receiving the

first k responses (i.e., Eq. (7)) is a monotonically increasing

function of k, the expected AoI of the freshest information

among these k responses (i.e., Eq. (8)) is a monotonically

decreasing function of k.

IV. OPTIMAL REPLICATION SCHEME

In this section, we will exploit the aforementioned tradeoff

and focus on answering the second question we discussed at

the end of Section II. Specifically, we aim to find the optimal

number of responses to wait for in order to minimize the

expected AoI at the user’s side.

Using the analytical result of Theorem 1, we rewrite the

optimization problem in Eq. (3) as:

min
k∈{1,2,...,n}

E[∆(k)] =
1

µ
(H(n)−H(n− k)) +

1

kλ
. (9)

Let k∗ be an optimal solution to Eq. (9). We state the main

result of this section in Theorem 2.

Theorem 2. An optimal solution k∗ can be computed as:

k∗ = min

{⌈

2µn
√

(λ+ µ)2 + 4λµn+ λ+ µ

⌉

, n

}

. (10)

Proof. We first define D(k) as the difference of the expected

AoI between the (n, k + 1) and (n, k) replication schemes,

i.e., D(k) , ∆(k + 1)−∆(k) for any k ∈ {1, 2, . . . , n− 1}.

From Eq. (6), we have that for any k ∈ {1, 2, . . . , n− 1},

D(k) =
1

(n− k)µ
− 1

k(k + 1)λ
. (11)

It is easy to see that D(k) is a monotonically increasing

function of k.

We now extend the domain of D(k) to the set of positive

real numbers and want to find k′ such that D(k′) = 0. With

some standard calculations and dropping the negative solution,

we derive the following:

k′ =
2µn

√

(λ+ µ)2 + 4λµn+ λ+ µ
. (12)

Next, we discuss two cases: (i) k′ > n and (ii) 0 < k′ ≤ n.

In Case (i), we have k′ > n. This implies that D(k) =
∆i(k + 1) − ∆i(k) < 0 for all k ∈ {1, 2, . . . , n} due to

the fact that D(k) is monotonically increasing. Hence, the

expected AoI ∆(k) is a monotonically decreasing function

for k ∈ {1, 2, . . . , n}. Therefore, k∗ = n must be an optimal

solution.

In Case (ii), we have 0 < k′ ≤ n. We consider two subcases:

k′ is an integer in {1, 2, . . . , n} and k′ is not an integer.

If k′ is an integer in {1, 2, . . . , n}, we have D(k) = ∆(k+
1)−∆(k) < 0 for k ∈ {1, 2, . . . , k′ − 1} and D(k) = ∆(k+
1) −∆(k) > 0 for k ∈ {k′ + 1, . . . , n}. Hence, the expected

AoI ∆(k) is first decreasing (for k ∈ {1, 2, . . . , k′ − 1}) and

then increasing (for k ∈ {k′ + 1, . . . , n}). Therefore, there

are two optimal solutions: k∗ = k′ and k∗ = k′ + 1 since

∆(k′ + 1) = ∆(k′) (due to D(k′) = 0).

If k′ is not an integer, we have D(k) = ∆(k+1)−∆(k) < 0
for k ∈ {1, 2, . . . , bk′c} and D(k) = ∆(k + 1) − ∆(k) > 0
for k ∈ {dk′e, . . . , n}. Hence, the expected AoI ∆(k) is first

decreasing (for k ∈ {1, 2, . . . , bk′c}) and then increasing (for

k ∈ {dk′e, . . . , n}). Therefore, k∗ = dk′e must be an optimal

solution.

Combining two subcases, we have k∗ = dk′e in Case

(ii). Then, combining Cases (i) and (ii), we have k∗ =

min{dk′e, n} = min

{⌈

2µn√
(λ+µ)2+4λµn+λ+µ

⌉

, n

}

.

Remark. There are two special cases that are of particular

interest: waiting for the first response only (i.e., k∗ = 1) and

waiting for all the responses (i.e., k∗ = n). In Corollary 1, we

provide a sufficient and necessary condition for each of these

two special cases.

Corollary 1. (i) k∗ = 1 is an optimal solution if and only if

λ ≥ µ(n−1)
2 ; (ii) k∗ = n is an optimal solution if and only if

λ ≤ µ
n(n−1) .

Proof. The proof follows straightforwardly from Theorem 2.

A little thought gives the following: k∗ = 1 is an optimal

solution if and only if D(1) ≥ 0. Solving D(1) = 1
(n−1)µ −

1
2λ ≥ 0 gives λ ≥ µ(n−1)

2 . Similarly, k∗ = n is an optimal

solution if and only if D(n − 1) ≤ 0. Solving D(n − 1) =
1
µ
− 1

n(n−1)λ ≤ 0 gives λ ≤ µ
n(n−1) .

Remark. The above results agree well with the intuition. For

a given number of servers, if the mean inter-update time is

much smaller than the mean response time (i.e., λ � µ), then

all the servers have frequent updates and thus, the difference

of the freshness levels among the servers is small. In this case,

it is not beneficial to wait for more responses. On the other

hand, if the mean inter-update time is much larger than the

mean response time (i.e., λ � µ), then one server may possess

fresher information than another server. In this case, it is worth

waiting for more responses, which leads to a significant gain

in the AoI reduction.

V. EXTENSIONS

In this section, we discuss some extensions of our work.

Replication scheme. So far, we have only considered the

(n, k) replication scheme. One limitation of this scheme is

that it requires the user to send a replicated request to every
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Fig. 4: Simulation results of average AoI vs. the number of responses k for three different types of response time distributions.

server, which may incur a large overhead when there are a

large number of servers (i.e., when n is large). Instead, a more

practical scheme would be to send the replicated requests to a

subset of servers. Hence, we consider the (n,m, k) replication

schemes, under which the user sends a replicated request to

each of the m servers that are randomly and uniformly chosen

from the n servers, and waits for the first k responses, where

m ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,m}. Making the same

assumptions as in Section II, we can derive the expected AoI

at the user’s side in a similar manner. Specifically, reusing the

proof of Theorem 1 and replacing n with m in the proof, we

can show the following:

E[∆(k)] =
1

µ
(H(m)−H(m− k)) +

1

kλ
. (13)

Uniformly distributed response time. Note that our current

analysis requires the memoryless property of the Poisson

updating process. However, the analysis can be extended to

the uniformly distributed response time. We make the same

assumptions as in Section II, except that the response time is

now uniformly distributed in the range of [a, a+h] with a ≥ 0
and h ≥ 0. In this case, we have E[R(k)] =

kh
n+1 + a [18].

Since Eq. (8) still holds, from Eq. (5) we have

E[∆(k)] =
kh

n+ 1
+ a+

1

kλ
. (14)

Following a similar line of analysis to that in the proof of

Theorem 2, we can show that an optimal solution k∗ can be

computed as:

k∗ = min

{⌈

2(n+ 1)
√

h2λ2 + 4hλ(n+ 1) + hλ

⌉

, n

}

. (15)

VI. NUMERICAL RESULTS

In this section, we perform extensive simulations to evaluate

the AoI performance in an information-update system with 20
servers under the (n, k) replication scheme. We first describe

our simulation settings. Throughout the simulations, the up-

dating process at each server is assumed to be Poisson with

rate λ and is i.i.d. across the servers. The user’s request for the

information is generated at time s, which is uniformly selected

from the time interval [0, T ], where we set T = 106/λ. This

implies that each server has a total of 106 updates on average.

Next, we evaluate the AoI performance through simulations

for three types of response time distribution: exponential, uni-

form, and Gamma. First, we assume that the response time is

exponentially distributed with mean 1/µ. Fig. 4a presents how

the average AoI changes as the number of responses k varies

in three representative setups, where each point represents an

average of 103 simulation runs. We also include plots of our

theoretical results (i.e., Eq. (6)) for comparison. A crucial

observation from Fig. 4a is that the simulation results match

perfectly with our theoretical results. In addition, we observe

three different behaviors of the average AoI performance: (i)

If the inter-update time is much smaller than the response

time (i.e., λ = 100, µ = 2), then the average AoI increases

as k increases and thus, it is not beneficial to wait for more

than one response. (ii) In contrast, if the inter-update time is

much larger than the response time (i.e., λ = 1, µ = 200),

then the average AoI decreases as k increases and thus, it is

worth waiting for all the responses so as to achieve a smaller

average AoI. (iii) When the inter-update time is comparable

to the response time (i.e., λ = 1, µ = 5), then as k increases,

the AoI would first decrease and then increase. On the one

hand, when k is small, the freshness of the data at the servers

dominates and thus, waiting for more responses helps reduce

the average AoI. On the other hand, when k becomes large,

the total waiting time becomes dominant and thus, the average

AoI increases as k further increases.

In Section V, we discussed the extension of our theoretical

results to the case of uniformly distributed response time.

Hence, we also perform simulations for the response time

uniformly distributed in the range of [ 1
2µ ,

3
2µ ] with mean 1/µ.

Fig. 4b presents the average AoI as the number of responses

k changes. In this scenario, the simulation results also match

perfectly with the theoretical results (i.e., Eq. (14)). Also,

we observe a very similar phenomenon to that in Fig. 4a on

how the average AoI varies as k increases in three different

simulation setups.

In addition, Fig. 4c presents the simulation results for the

response time with Gamma distribution, which can be used to

model the response time in relay networks [20]. Specifically,

we consider a special class of the Gamma(r, θ) distribution

that is the sum of r i.i.d. exponential random variables with

mean θ (which is also called the Erlang distribution). Then,

the mean response time 1/µ is equal to rθ. We fix r = 5 in
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(c) Impact of total number of servers n.

Fig. 5: Impact of the system parameters on the optimal k∗ and the corresponding improvement ratio. We consider the exponential

distribution for the response time. In (a), we fix µ = 1, n = 20; in (b), we fix λ = 1, n = 20; in (c), we fix λ = 1, µ = 10.

the simulations. Although we are unable to derive analytical

results in this case, the observations are similar to that under

the exponential and uniform distributions.

Finally, we investigate the impact of the system parameters

(the updating rate, the mean response time, and the total

number of servers) on the optimal number of responses k∗ and

the improvement ratio, defined as ρ , E[∆(1)]/E[∆(k∗)]. The

improvement ratio captures the gain in the AoI reduction under

the optimal scheme compared to a naive scheme of waiting

for the first response only.

Fig. 5a shows the impact of the updating rate λ. We observe

that the optimal number of responses k∗ decreases as λ
increases. This is because when the updating rate is large,

the AoI diversity at the servers is small. In this case, waiting

for more responses is unlikely to receive a response with much

fresher information. Therefore, the optimal scheme will simply

be a naive scheme that waits only for the first response when

the updating rate is relatively large (e.g., λ = 2). Fig. 5b shows

the impact of the mean response time 1/µ. We observe that the

optimal number of responses k∗ increases as µ increases. This

is because when µ is large (i.e., when the mean response time

is small), the cost of waiting for additional responses becomes

marginal and thus, waiting for more responses is likely to

lead to the reception of a response with fresher information.

Fig. 5c shows the impact of the total number of servers n.

We observe that both the optimal number of responses k∗

and the improvement ratio increase with n. This is because

an increased number of servers leads to more diversity gains

both in the AoI at the servers and in the response time.

VII. CONCLUSION

In this paper, we introduced a new Pull model for studying

the AoI minimization problem under the replication schemes.

Assuming Poisson updating process and exponentially dis-

tributed response time, we derived the closed-form expression

of the expected AoI at the user’s side and provided a formula

for computing the optimal solution. Not only did our work

reveal a novel tradeoff between different levels of information

freshness and different response times across the servers, but

we also demonstrated the power of waiting for more than one

response in minimizing the expected AoI at the user’s side.

An interesting direction for future work would be to develop

dynamic replication schemes that do not require the knowledge

of the updating process and the response time distribution.
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[17] J. Pereira and M. Araújo, “Evaluating data freshness in large scale
replicated databases,” INForum 2010-II Simpósio de Informática, pp.
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