1704.04848v2 [cs.NI] 18 Aug 2017

arxiv

The Power of Waiting for More than One Response
in Minimizing the Age-of-Information

Yu Sang, Bin Li, and Bo Ji

Abstract—The Age-of-Information (Aol) has recently been
proposed as an important metric for investigating the timeliness
performance in information-update systems. Prior studies on Aol
optimization often consider a Push model, which is concerned
about when and how to “push” (i.e., generate and transmit)
the updated information to the user. In stark contrast, in this
paper we introduce a new Pull model, which is more relevant for
certain applications (such as the real-time stock quotes service),
where a user sends requests to the servers to proactively “pull”
the information of interest. Moreover, we propose to employ
request replication to reduce the Aol. Interestingly, we find
that under this new Pull model, replication schemes capture a
novel tradeoff between different levels of information freshness
and different response times across the servers, which can be
exploited to minimize the expected Aol at the user’s side.
Specifically, assuming Poisson updating process at the servers
and exponentially distributed response time, we derive a closed-
form formula for computing the expected Aol and obtain the
optimal number of responses to wait for to minimize the expected
Aol. Finally, we conduct numerical simulations to elucidate our
theoretical results. Our findings show that waiting for more than
one response can significantly reduce the Aol in most scenarios.

I. INTRODUCTION

The last decades have witnessed the prevalence of smart
devices and significant advances in ubiquitous computing and
the Internet of things. This trend is forecasted to continue
in the years to come [1]. The development of this trend
has spawned a plethora of real-time services that require
timely information/status updates. One practically important
example of such services is vehicular networks and intel-
ligent transportation systems [2], [3], where accurate status
information (position, speed, acceleration, tire pressure, etc.)
of a vehicle needs to be shared with other nearby vehicles
and road-side facilities in a timely manner in order to avoid
collisions and ensure substantially improved road safety. More
such examples include sensor networks for environment/health
monitoring [4], [5], wireless channel feedback [6], news feeds,
weather updates, online social networks, fare aggregating sites
(e.g., Google Shopping), and stock quotes service.

For systems providing such real-time services, those com-
monly used performance metrics, such as throughput and
delay, exhibit significant limitations in measuring the system

This work was supported in part by the NSF under Grants CCF-1657162,
CNS-1651947, and CNS-1717108.

Yu Sang (yu.sang@temple.edu) and Bo Ji (boji@temple.edu) are with
the Department of Computer and Information Sciences, Temple University,
Philadelphia, PA, and Bin Li (binli@uri.edu) is with the Department of
Electrical, Computer and Biomedical Engineering, University of Rhode Island,
Kingston, Rhode Island.

performance [7]. Instead, the timeliness of information updates
becomes a major concern. To that end, a new metric called the
Age-of-Information (Aol) has been proposed as an important
metric for studying the timeliness performance [2]. The Aol
is defined as the time elapsed since the most recent update
occurred (see Eq. (1) for a formal definition). Using the Aol
metric introduced in [2] for vehicular networks, the work of [7]
employs a simple system model to analyze and optimize the
timeliness performance of an information-update system. This
seminal work has recently aroused dramatic interests from the
research community and has inspired a series of interesting
studies on the Aol analysis and optimization (see [8] and
references therein).

While all prior studies consider a Push model, which is
concerned about when and how to “push” (i.e., generate and
transmit) the updated information to the user, in this paper
we introduce a new Pull model, under which a user sends
requests to the servers to proactively “pull” the information of
interest. This Pull model is more relevant for many important
applications where the user’s interest is in the freshness of
information at the point when the user requests it rather
than in continuously monitoring the freshness of information.
One application of the Pull model is in the real-time stock
quotes service, where a customer (i.e., user) submits a query
to multiple stock quotes providers (i.e., servers) and each
provider responds with the most up-to-date information it has.

To the best of our knowledge, however, none of the existing
work on the timeliness optimization has considered such a
Pull model. In stark contrast, we focus on the Pull model
and propose to employ request replication to minimize the
expected Aol at the user’s side. Although a similar Pull
model is considered for data synchronization in [9], [10],
the problems are quite different and request replication is
not exploited. Note that the concept of replication is not
new and has been extensively studied for various applications
(e.g., cloud computing and datacenters [11], [12], storage
clouds [13], parallel computing [14], [15], and databases [16],
[17]). However, for the Aol minimization problem under the
Pull model, replication schemes exhibit a unique property and
capture a novel tradeoff between different levels of information
freshness and different response times across the servers.
This tradeoff reveals the power of waiting for more than one
response and can be exploited to minimize the expected Aol
at the user’s side.

Next, we explain the above key tradeoff through a com-
parison with cloud computing systems. It has been observed
that in a cloud or a datacenter, the processing time of a same

job can be highly variable on different servers [12]. Due to
this important fact, replicating a job on multiple servers and
waiting for the first finished copy can help reduce latency
[11], [12]. Apparently, in such a system it is not beneficial
to wait for more copies of the job to finish, as all the copies
would give the same outcome. In contrast, in the information-
update system we consider, although the servers may possess
the same type of information (weather forecast, stock prices,
etc.), they could have different versions of the information
with different levels of freshness due to the random updating
processes. Hence, the first response may come from a server
with stale information; waiting for more than one response has
the potential of receiving fresher information and thus helps
reduce the Aol. Hence, it is no longer the best to stop after
receiving the first response (as in the other aforementioned ap-
plications). On the other hand, waiting for too many responses
will lead to a longer total waiting time and thus, also incurs
a larger Aol at the user’s side. Therefore, it is challenging to
determine the optimal number of responses to wait for in order
to minimize the expected Aol at the user’s side.

In what follows, we summarize the key contributions of
this paper. First, for the first time we introduce the Pull
model for studying the timeliness optimization problem and
propose to employ request replication to reduce the Aol.
Second, assuming Poisson updating process at the servers and
exponentially distributed response time, we derive a closed-
form formula for computing the expected Aol and obtain
the optimal number of responses to wait for to minimize
the expected Aol. Some extensions are also discussed. Third,
we conduct extensive numerical simulations to elucidate our
theoretical results. We also investigate the impact of the system
parameters (the updating rate, the mean response time, and
the total number of servers) on the achieved gain in the Aol
reduction. Simulation results for other types of response time
distribution are also provided. Our findings show that waiting
for more than one response can significantly reduce the Aol
in most scenarios.

The remainder of this paper is organized as follows. We first
describe our new Pull model in Section II. Then, we analyze
the expected Aol under replication schemes in Section III,
obtain the optimal number of responses for minimizing the ex-
pected Aol in Section IV, and briefly discuss some extensions
of our work in Section V. Section VI presents the simulation
results. Finally, we conclude the paper in Section VII.

II. SYSTEM MODEL

We consider an information-update system where a user
pulls time-sensitive information from n servers. These n
servers are connected to a common information source and
update their data asynchronously. We call such a model the
Pull model (see Fig. 1). Let ¢ € {1,2,...,n} be the server
index. We assume that the information updating process at
server ¢ is Poisson with rate A > 0 and is independent and
identically distributed (i.i.d.) across the servers. This implies
that the inter-update time (i.e., the time duration between
two successive updates) at each server follows an exponential

Servers
Replicated

Requests

Information
Source

-

-
=
-~ Responses

Fig. 1: The Pull model of information-update systems. Note
that the arrows in the figure denote logical links rather than
physical connections. The updates, requests, and responses are
all transmitted through (wired or wireless) networks.

S

. L
time

ui(t) t

Fig. 2: An illustration of the Aol evolution at server 1.

distribution with mean 1/\. Here, the inter-update time at a
server can be interpreted as the time required for the server to
receive information updates from the source. Let u;(t) denote
the time when the most recent update at server ¢ occurs, and
let A;(t) denote the Aol at server i, which is defined as the
time elapsed since the most recent update at this server:

Ai(t) &t —uy(t). (1

Therefore, if an update occurs at a server, then the Aol at this
server drops to zero; otherwise, the Aol increases linearly as
time goes by until the next update occurs. Fig. 2 provides an
illustration of the Aol evolution at server .

In this work, we consider the (n,k) replication scheme,
under which the user sends the replicated copies of the request
to all n servers and waits for the first k£ responses. Let R;
denote the response time for server i. Note that each server
may have a different response time, which is the time elapsed
since the request is sent out by the user until the user receives
the response from this server. We assume that the time for the
requests to reach the servers is negligible compared to the time
for the user to download the data from the servers. Hence, the
response time can be interpreted as the downloading time. Let
s denote the downloading start time, which is the same for all
the servers, and let f; denote the downloading finish time for
server ¢. Then, the response time for server ¢ is R; = f; — s.
We assume that the response time is exponentially distributed
with mean 1/4 and is ii.d. across the servers. Note that the
model we consider above is simple, but it suffices to capture
the key aspects and novelty of the problem we study.

Under the (n, k) replication scheme, when the user receives
the first k£ responses, it uses the freshest information among

these k responses to make certain decisions (e.g., stock trading
decisions based on the received stock price information). Let
(j) denote the index of the server corresponding to the j-th re-
sponse received by the user. Then, set K = {(1),(2),...,(k)}
contains the indices of the servers that return the first &
responses, and the following is satisfied: f(l) < f(2) <<
fay and Ry < Rgy < -+ < Ry,). Let server i* be the one
that contains the freshest information (i.e., that has the smallest
Aol) among these k responses when downloading starts at time
s, Le., i* = argmin;c ¢ A;(s) (or +* = argmax;e i u;(s) due
to Eq. (1)). Here, we are interested in the Aol at the user’s side
when it receives the k-th response, denoted by A(k), which is
the time difference between when the k-th response is received
and when the information at server ¢* is updated, i.e.,

A(k) = fry — uin(s). ()

Then, there are two natural questions of interest. First, for a
given k, can one obtain a closed-form formula for computing
the expected Aol at the user’s side, E[A(k)]? Second, how
to determine the optimal number of responses to wait for,
such that E[A(k)] is minimized? The second question can be
formulated as the following optimization problem:

E[A(F)] - 3)

min
ke{1,2,...,n}
We will answer these two questions in the following two
sections, respectively.

III. EXPECTED Aol

In this section, we focus on answering the first question and
derive a closed-form formula for computing the expected Aol
at the user’s side under the (n, k) replication scheme.

We begin with the definition of A(k) and rewrite Eq. (2)
as follows:

A(k) =f) — ui-(s)
=fuy — 5+ 85— ui(s)
(g)R(k) +s — max u;(s) @
=R +min{s —u;(s)}

® n A
=Ry +min Ai(s),

where (a) is from the definition of R; and ¢* and (b) is from
the definition of A;(¢) (i.e., Eq. (1)). As can be seen from
the above expression, under the (n, k) replication scheme the
Aol at the user’s side consists of two terms: (i) R, the
total waiting time for receiving the first k& responses, and (ii)
min;e g Ai(s) (or A« (s)), the Aol of the freshest information
among these k£ responses when downloading starts at time s.
An illustration of these two terms and A(k) is shown in Fig. 3.
Taking the expectation of both sides of Eq. (4), we have

E[A(k)] =E [Rgy] +E {nenlr{l Ai(s)} : 5)
Intuitively, as k increases, i.e., waiting for more responses, the
expected total waiting time (i.e., the first term) increases. On

Amy(s
. () R > Server (1)
u(1)(8) i fo °
! L]
Di-(s)t Rie ver i
L) A > Server ¢*
H .
1]
 A(s) By | > Server (k)
U(k)(é’) i s lf(k) time
A(k)

Fig. 3: An illustration of the Aol at the user’s side and its two
terms under the (n, k) replication scheme.

the other hand, upon receiving more responses, the expected
Aol of the freshest information among these k responses (i.e.,
the second term) decreases. Hence, there is a natural tradeoff
between these two terms, which is a unique property of our
newly introduced Pull model.

Next, we formalize this tradeoff by deriving the closed-form
expressions of the above two terms as well as the expected
Aol. We state the main result of this section in Theorem 1.

Theorem 1. Under the (n, k) replication scheme, the expected
Aol at the user’s side can be expressed as:
1 1

—Hn—-k — 6
o (n— k) + -, (6)
where H(n) = Y"}" | 7 is the n-th partial sum of the diverging
harmonic series.

Proof. We first analyze the the first term of the right-hand side
of Eq. (5) and want to show E[R)] = %(H(n) —H(n —
k)). Note that the response time is exponentially distributed
with mean 1/p and is i.i.d. across the servers. Hence, random
variable Ry is the k-th smallest value of n i.i.d. exponential
random variables with mean 1/u. The order statistics results of
exponential random variables glve that Ry is an exponential
random variable with mean E and that (R;y — R(j_1)) is
an exponential random variable with mean for any

(2,3 followine
J 9)

.,n} [18]. Hence, we have the following:

k
E[Ru] =E | Ry + D _(Ry) — Ri-1)

j=2

k
Z [R(j) — R

—H(n - k)). 7
Next, we analyze the second term of the right-hand side of
Eq. (5) and want to show the following:

~ _ L
E |:ILTEIIII(1 A1(s)] = 3)

Note that the updating process at each server is a Poisson pro-
cess with rate \ and is i.i.d. across the servers. Hence, the inter-
update time for each server is exponentially distributed with
mean 1/)\. Due to the memoryless property of the exponential
distribution, the Aol at each server has the same distribution
as the inter-update time, i.e., random variable A,(s) is also
exponentially distributed with mean 1/X and is i.i.d. across
the servers [19]. Therefore, random variable min;c g A;(s) is
the minimum of % i.i.d. exponential random variables with
mean 1/A, which is also exponentially distributed with mean
2. This implies Eq. (8).

Combining Eqgs. (7) and (8), we complete the proof. O

Remark. The above analysis indeed agrees with our intu-
ition: while the expected total waiting time for receiving the
first k£ responses (i.e., Eq. (7)) is a monotonically increasing
function of k, the expected Aol of the freshest information
among these k responses (i.e., Eq. (8)) is a monotonically
decreasing function of k.

IV. OPTIMAL REPLICATION SCHEME

In this section, we will exploit the aforementioned tradeoff
and focus on answering the second question we discussed at
the end of Section II. Specifically, we aim to find the optimal
number of responses to wait for in order to minimize the
expected Aol at the user’s side.

Using the analytical result of Theorem 1, we rewrite the
optimization problem in Eq. (3) as:

min E[A(k)] = l(H(n) —H(n—-k))+ %

ke{1,2,...,n} 7
Let £* be an optimal solution to Eq. (9). We state the main
result of this section in Theorem 2.

€))

Theorem 2. An optimal solution k* can be computed as:

2un

k* = min ,npe. (10)
VO p)2 4 un + A+ p

Proof. We first define D(k) as the difference of the expected
Aol between the (n,k + 1) and (n, k) replication schemes,
ie, D(k) = A(k+1) — A(k) for any k € {1,2,...,n—1}.
From Eq. (6), we have that for any k € {1,2,...,n — 1},

1 1

D(k) = (n—kp k(k+ DA

It is easy to see that D(k) is a monotonically increasing
function of k.

We now extend the domain of D(k) to the set of positive
real numbers and want to find &’ such that D(k’) = 0. With
some standard calculations and dropping the negative solution,
we derive the following:

Y

B 2un
VOF)2+ 4 un + A+ p
Next, we discuss two cases: (i) k¥’ > n and (ii) 0 < k' < n.

In Case (i), we have k' > n. This implies that D(k) =
Ai(k+1) — Aj(k) < 0 for all £ € {1,2,...,n} due to

12)

the fact that D(k) is monotonically increasing. Hence, the
expected Aol A(k) is a monotonically decreasing function
for k € {1,2,...,n}. Therefore, k* = n must be an optimal
solution.

In Case (ii), we have 0 < k' < n. We consider two subcases:
k' is an integer in {1,2,...,n} and k’ is not an integer.

If &’ is an integer in {1,2,...,n}, we have D(k) = A(k+
1) —A(k) <0for ke {1,2,...,k' =1} and D(k) = A(k +
1) — A(k) > 0 for k € {k' +1,...,n}. Hence, the expected
Aol A(k) is first decreasing (for k € {1,2,...,k" — 1}) and
then increasing (for k € {k’ + 1,...,n}). Therefore, there
are two optimal solutions: k* = k' and k* = k' + 1 since
A(K +1) = A(K') (due to D(K") = 0).

If &’ is not an integer, we have D(k) = A(k+1)—A(k) <0
for k € {1,2,...,[k'|} and D(k) = A(k+1) —A(k) >0
for k € {[k'],...,n}. Hence, the expected Aol A(k) is first
decreasing (for k € {1,2,...,|k’]}) and then increasing (for
k € {[k'],...,n}). Therefore, k* = [k’] must be an optimal
solution.

Combining two subcases, we have k* = [k’] in Case
(ii). Then, combining Cases (i) and (ii), we have k* =
2pun |

. ! _ :
mln{ I_k —|7TL} = min \/()\+#)2+4)\yn+>\+u e

Remark. There are two special cases that are of particular
interest: waiting for the first response only (i.e., £* = 1) and
waiting for all the responses (i.e., £* = n). In Corollary 1, we
provide a sufficient and necessary condition for each of these
two special cases.

Corollary 1. (i) k* = 1 is an optimal solution if and only if
A > @ (ii) k* = n is an optimal solution if and only if

A<

B
= n(n—1)"
Proof. The proof follows straightforwardly from Theorem 2.

A little thought gives the following: k* = 1 is an optimal

solution if and only if D(1) > 0. Solving D(1) = ﬁ -

A >0 gives A > 41 Similarly, k* = 7 is an optimal
solution if and only if D(n — 1) < 0. Solving D(n — 1) =
L L <0 gives A < O

1 _n
o n(n—1)A n(n—1)"

Remark. The above results agree well with the intuition. For
a given number of servers, if the mean inter-update time is
much smaller than the mean response time (i.e., A >), then
all the servers have frequent updates and thus, the difference
of the freshness levels among the servers is small. In this case,
it is not beneficial to wait for more responses. On the other
hand, if the mean inter-update time is much larger than the
mean response time (i.e., A < p), then one server may possess
fresher information than another server. In this case, it is worth
waiting for more responses, which leads to a significant gain
in the Aol reduction.

V. EXTENSIONS

In this section, we discuss some extensions of our work.

Replication scheme. So far, we have only considered the
(n, k) replication scheme. One limitation of this scheme is
that it requires the user to send a replicated request to every

15 " " " T 1.5 " i " 1.5
O A =1, =200 (simulation) { O A=1,1 =200 (simulation) o A =1, =200 (simulation)
A= 1,11 = 200 (theoretical) b4 —— A= 1,5 = 200 (theoretical) O A= lj=>5 (simulation)
o A=1,u=>5 (simulation) / L O A =1, =3 (simulation) o : o .
— 1tg |- A =1,p =5 (theoretical) 9 - 1 3 |----- A =1, =3 (theoretical) — 1o ¢ A =100, 4 = 3 (simulation)
g ¢ A =100, = 2 (simulation) & g ¢ A =20, =2 (simulation) g
N -==== X = 100, o = 2 (theoretical) Q’l i N - X = 20, u = 2 (theoretical) oA Y
g ’ 2 5§ o9 d ,Q,QO' o 2 ° 4
<. <05 o E#&ﬁgg-}giﬂ,nn g-a-BET 05 o 0090 i
be ST TE SRR
000 868 ¢ o
0 D ©0oo0o0o000000
0 20 0 20 00 5 10 15 20

5 10 15
Number of responses k

(a) Exponential response time

5 10 15
Number of responses k

(b) Uniform response time

Number of responses k

(c) Gamma response time

Fig. 4: Simulation results of average Aol vs. the number of responses k for three different types of response time distributions.

server, which may incur a large overhead when there are a
large number of servers (i.e., when n is large). Instead, a more
practical scheme would be to send the replicated requests to a
subset of servers. Hence, we consider the (n, m, k) replication
schemes, under which the user sends a replicated request to
each of the m servers that are randomly and uniformly chosen
from the n servers, and waits for the first k responses, where
m € {1,2,...,n} and k € {1,2,...,m}. Making the same
assumptions as in Section II, we can derive the expected Aol
at the user’s side in a similar manner. Specifically, reusing the
proof of Theorem 1 and replacing n with m in the proof, we
can show the following:

1

E(H(m) —H(m—k)) +

E[A(K)] (13)

kX

Uniformly distributed response time. Note that our current
analysis requires the memoryless property of the Poisson
updating process. However, the analysis can be extended to
the uniformly distributed response time. We make the same
assumptions as in Section II, except that the response time is

now uniformly distributed in the range of [a, a+h] with a > 0
kh

and h > 0. In this case, we have E[R)] = o ta [18].
Since Eq. (8) still holds, from Eq. (5) we have
kh 1
E[A(R)] = —— —. 14
AR =~ +at (14)

Following a similar line of analysis to that in the proof of
Theorem 2, we can show that an optimal solution k* can be
computed as:

2(n+1)
VE2A2 + 4hA(n + 1) + hA

k* = min

ny. (15

VI. NUMERICAL RESULTS

In this section, we perform extensive simulations to evaluate
the Aol performance in an information-update system with 20
servers under the (n, k) replication scheme. We first describe
our simulation settings. Throughout the simulations, the up-
dating process at each server is assumed to be Poisson with
rate A and is i.i.d. across the servers. The user’s request for the
information is generated at time s, which is uniformly selected
from the time interval [0, 7], where we set 7' = 10°/\. This
implies that each server has a total of 10 updates on average.

Next, we evaluate the Aol performance through simulations
for three types of response time distribution: exponential, uni-
form, and Gamma. First, we assume that the response time is
exponentially distributed with mean 1/p. Fig. 4a presents how
the average Aol changes as the number of responses k varies
in three representative setups, where each point represents an
average of 103 simulation runs. We also include plots of our
theoretical results (i.e., Eq. (6)) for comparison. A crucial
observation from Fig. 4a is that the simulation results match
perfectly with our theoretical results. In addition, we observe
three different behaviors of the average Aol performance: (i)
If the inter-update time is much smaller than the response
time (i.e., A = 100, u = 2), then the average Aol increases
as k increases and thus, it is not beneficial to wait for more
than one response. (ii) In contrast, if the inter-update time is
much larger than the response time (i.e., A = 1, p = 200),
then the average Aol decreases as k increases and thus, it is
worth waiting for all the responses so as to achieve a smaller
average Aol. (iii) When the inter-update time is comparable
to the response time (i.e., A = 1, © = 5), then as k increases,
the Aol would first decrease and then increase. On the one
hand, when k is small, the freshness of the data at the servers
dominates and thus, waiting for more responses helps reduce
the average Aol. On the other hand, when k becomes large,
the total waiting time becomes dominant and thus, the average
Aol increases as k further increases.

In Section V, we discussed the extension of our theoretical
results to the case of uniformly distributed response time.
Hence, we also perform simulations for the response time
uniformly distributed in the range of [5, 5.] with mean 1/4.
Fig. 4b presents the average Aol as the number of responses
k changes. In this scenario, the simulation results also match
perfectly with the theoretical results (i.e., Eq. (14)). Also,
we observe a very similar phenomenon to that in Fig. 4a on
how the average Aol varies as k increases in three different
simulation setups.

In addition, Fig. 4c presents the simulation results for the
response time with Gamma distribution, which can be used to
model the response time in relay networks [20]. Specifically,
we consider a special class of the Gamma(r, #) distribution
that is the sum of r i.i.d. exponential random variables with
mean 6 (which is also called the Erlang distribution). Then,
the mean response time 1/u is equal to r6. We fix r = 5 in

20 20 20 20 10 104
— Optimalk’ e | T ---q o o
| ; 5 L o150 7 .77 15© [
‘e - - Improvement Ratio p|| ~ - o x o
= = 3 Lo = b= I
£10 08 Etoff 108 Es 5§
< T f : s - :
o 3 O5 — Optimal k 5 3 i PN— 3
=1 - - Improvement Ratio S o plima =3
£ P Pl E 0 - - Improvement Ratio p 0 E

- 0 0

0 0 100 200 300 400 0 5 10 15 20
n

(a) Impact of updating rate .

(b) Impact of mean response time 1/pu.

(c) Impact of total number of servers n.

Fig. 5: Impact of the system parameters on the optimal £* and the corresponding improvement ratio. We consider the exponential
distribution for the response time. In (a), we fix u = 1,n = 20; in (b), we fix A = 1,n = 20; in (c), we fix A =1, u = 10.

the simulations. Although we are unable to derive analytical
results in this case, the observations are similar to that under
the exponential and uniform distributions.

Finally, we investigate the impact of the system parameters
(the updating rate, the mean response time, and the total
number of servers) on the optimal number of responses k£* and
the improvement ratio, defined as p = E[A(1)]/TE[A(k*)]. The
improvement ratio captures the gain in the Aol reduction under
the optimal scheme compared to a naive scheme of waiting
for the first response only.

Fig. 5a shows the impact of the updating rate . We observe
that the optimal number of responses k* decreases as A
increases. This is because when the updating rate is large,
the Aol diversity at the servers is small. In this case, waiting
for more responses is unlikely to receive a response with much
fresher information. Therefore, the optimal scheme will simply
be a naive scheme that waits only for the first response when
the updating rate is relatively large (e.g., A = 2). Fig. 5b shows
the impact of the mean response time 1/p.. We observe that the
optimal number of responses k* increases as yu increases. This
is because when p is large (i.e., when the mean response time
is small), the cost of waiting for additional responses becomes
marginal and thus, waiting for more responses is likely to
lead to the reception of a response with fresher information.
Fig. 5c shows the impact of the total number of servers n.
We observe that both the optimal number of responses k*
and the improvement ratio increase with n. This is because
an increased number of servers leads to more diversity gains
both in the Aol at the servers and in the response time.

VII. CONCLUSION

In this paper, we introduced a new Pull model for studying
the Aol minimization problem under the replication schemes.
Assuming Poisson updating process and exponentially dis-
tributed response time, we derived the closed-form expression
of the expected Aol at the user’s side and provided a formula
for computing the optimal solution. Not only did our work
reveal a novel tradeoff between different levels of information
freshness and different response times across the servers, but
we also demonstrated the power of waiting for more than one
response in minimizing the expected Aol at the user’s side.
An interesting direction for future work would be to develop
dynamic replication schemes that do not require the knowledge
of the updating process and the response time distribution.

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

“Cisco visual networking index: Global mobile data traffic forecast
update, 2015-2020,” February 2016, http://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index- vni/
mobile-white-paper-c11-520862.pdf.

S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proceedings of IEEE SECON,
2011, pp. 350-358.

S. Kaul, R. Yates, and M. Gruteser, “On piggybacking in vehicular
networks,” in Proceedings of IEEE GLOBECOM, 2011, pp. 1-5.

J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh,
“Wireless sensor networks for healthcare,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1947-1960, 2010.

P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore,
“Environmental wireless sensor networks,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1903-1917, 2010.

M. Costa, S. Valentin, and A. Ephremides, “On the age of channel state
information for non-reciprocal wireless links,” in Proceedings of IEEE
ISIT, 2015, pp. 2356-2360.

S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proceedings of IEEE INFOCOM, 2012, pp. 2731-2735.
Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, in press, 2017.

L. Bright, A. Gal, and L. Raschid, “Adaptive pull-based data freshness
policies for diverse update patterns,” University of Maryland, Tech. Rep.,
2004. [Online]. Available: http://drum.lib.umd.edu/handle/1903/1334
——, “Adaptive pull-based policies for wide area data delivery,” ACM
Transactions on Database Systems, vol. 31, no. 2, pp. 631-671, 2006.
K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” ACM SIG-
METRICS Performance Evaluation Review, 2015.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Why let
resources idle? Aggressive cloning of jobs with dolly,” in The 4th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2012.

B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field-analysis of coding
versus replication in cloud storage systems,” in Proceedings of IEEE
INFOCOM, 2016, pp. 1-9.

D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for
fast response times in parallel computation,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 42, no. 1, 2014, pp. 599-600.
——, “Using straggler replication to reduce latency in large-scale par-
allel computing,” ACM SIGMETRICS Performance Evaluation Review,
vol. 43, no. 3, pp. 7-11, 2015.

E. Pacitti, “Improving data freshness in replicated databases,” Ph.D.
dissertation, INRIA, 1999.

J. Pereira and M. Aratjo, “Evaluating data freshness in large scale
replicated databases,” INForum 2010-11 Simpdsio de Informdtica, pp.
231-242, 2010.

B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A first course in
order statistics. SIAM, 2008.

R. Nelson, Probability, stochastic processes, and queueing theory: the
mathematics of computer performance modeling. Springer Science &
Business Media, 2013.

E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in Proceedings of IEEE ISIT, 2016.

	I Introduction
	II System Model
	III Expected AoI
	IV Optimal Replication Scheme
	V Extensions
	VI Numerical Results
	VII Conclusion
	References

