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ABSTRACT. Binary Parseval frames share many structural properties with real and complex ones.
On the other hand, there are subtle differences, for example that the Gramian of a binary Parseval
frame is characterized as a symmetric idempotent whose range contains at least one odd vector.
Here, we study binary Parseval frames obtained from the orbit of a vector under a group repre-
sentation, in short, binary Parseval group frames. In this case, the Gramian of the frame is in
the algebra generated by the right regular representation. We identify equivalence classes of such
Parseval frames with binary functions on the group that satisfy a convolution identity. This allows
us to find structural constraints for such frames. We use these constraints to catalogue equivalence
classes of binary Parseval frames obtained from group representations. As an application, we study
the performance of binary Parseval frames generated with abelian groups for purposes of error cor-
rection. We show that if p is an odd prime, then the group Z] is always preferable to Z,« when
searching for best performing codes associated with binary Parseval group frames.

1. INTRODUCTION

A binary frame is, in short, a finite, spanning family in a vector space over the Galois field
with two elements. Binary frames share many properties with finite real or complex frames, which
have been studied extensively in mathematics and engineering [16, 17, 6]. Because of the spanning
property, frames can serve to expand any given vector in a linear combination of the frame vectors.
In contrast to bases of a vector space, the frame vectors can include linear dependencies. If this is
the case, then the expansion of a vector is no longer uniquely determined. However, for Parseval
frames, there is a standard choice of coefficients appearing in the expansion of a vector that can be
calculated efficiently. When the appropriate definition of a Parseval frame is made, then this holds
in the binary as well as the real and complex setting [5]. In the case of real or complex frames, the
expansion coefficients are computed by taking inner products with the frame vectors. The same
property for binary frames requires replacing the inner product with the less restrictive concept of
a bilinear form [14], which can be taken to be the standard dot product.

Equivalence classes are useful to classify frames and to study essential properties. In the real
or complex case, a number of equivalence relations have been used, ranging from similarity for
frames to unitary equivalence [11], projective unitary equivalence [8], and switching equivalence
[10, 4] for Parseval frames. As for real and complex frames, each set of unitarily equivalent binary
Parseval frames can be identified with a corresponding Gramian [5, Proposition 4.8]. Even with this
reduction up to unitary equivalence, the number of (inequivalent) binary Parseval frames appears
to grow quickly as the dimension of the vector space and the number of frame vectors increase, see
exhaustive lists for lowest dimensions in [5] and [1].

Next to similarities, binary frames exhibit differences with the theory of real and complex frames.
One of the more striking ways in which they differ is when considering the Gram matrices. The
Gram matrices of real or complex Parseval frames are characterized as symmetric or Hermitian
idempotent matrices. In the binary case, these properties have to be augmented with the condition
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of at least one non-zero diagonal entry of the Gram matrix [1]. Equivalently, one of its column
vectors must be odd, meaning it contains an odd number of 1’s. The underlying reason is the
range of the Gram matrix of a Parseval frame consists precisely of its eigenspace corresponding to
eigenvalue one, which necessarily contains only odd vectors. If none of the column vectors were
odd, then the span could not satisfy this requirement.

In this paper, we continue comparing the structure of binary Parseval frames with their real or
complex counterparts. We specialize to frames obtained from the orbit of a vector under a group
representation. There is already a substantial amount of literature on real and complex group
frames [11, 27, 12, 28, 7, 29]. Here, we study binary Parseval group frames, with special emphasis
on the structure of the Gramians associated with them. Our first main result is that a binary
Parseval frame is obtained from the action of a group if and only if its Gramian is in the group
algebra.

For such group frames, the Gram matrix is shown to be a binary linear combination of elements
of the right regular representation, thus associated with a binary function on the group. This
function provides a concise characterization of binary Parseval group frames, allowing us to find
structural constraints for such frames. We use these constraints to catalogue coarser equivalence
classes of binary Parseval frames obtained from group representations. We specialize further to
abelian groups and deduce more specific design constraints.

The results on the structure of binary Parseval frames have significance for the design of error-
correcting codes [19]. There has already been a number of works on real or complex frames as codes
[20, 21, 10, 24, 25, 13, 4, 15]. We continue efforts of an earlier paper [2] to develop results on binary
codes from a frame-theoretic perspective. In that paper, methods from graph theory produced
results for the design of such codes. Here, we show that when a frame is obtained from the orbit
of a vector under a group action, then the choice of the group can have a significant impact on the
coding performance of the resulting frame: Each binary Parseval Z,q-frame is switching equivalent
to a Z}-frame. Thus, when searching for best performers, the group Z} is a better choice. We
investigate group representations of Z} and Zyq for small values of p and ¢ and explicitly determine
the best performance for p = ¢ =3 and p =5, ¢ = 3.

We leave the study and applications of non-abelian groups and their associated binary group
frames for future work. In addition, one may use finite fields other than the Galois field with two
elements. Here, the motivation for code design was a natural reason to restrict the discussion to
binary numbers.

This paper is organized as follows:

Throughout Section 2, we introduce the relevant definitions of binary group frames, accompanied
by illustrating examples. Fundamental to the theory of real and complex frames is the fact that
every group representation that generates a Parseval group frame is unitary. Section 2 concludes
with the corresponding binary result, along with an explicit formulation of such representations in
terms of the frame vectors and the group algebra.

Section 3 is dedicated to the properties of the Gramians of binary Parseval group frames. Corol-
lary 3.3 summarizes our first main result, that a binary Parseval frame is a group frame if and only
if the Gramian is in the group algebra. We follow this with Theorem 3.4, a characterization of
the Gramians of binary Parseval group frames in terms of properties of the Gram matrices. This
provides the foundation for a characterization of such Gramians in terms of binary functions on the
group, Theorem 3.9. We devote the remainder of Section 3 to developing design constraints specific
to binary Parseval group frames induced by abelian groups, leading to a refined characterization of
the associated class of functions on the group. This characterization is used in an algorithm that
performs an exhaustive search of all binary Parseval group frames for abelian groups of odd order.
We walk through an application of this theory in Example 3.24 in order to motivate the ensuing
practical guide to classifying binary Parseval frames for such groups.
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In Section 4, we apply the structural insights on binary Parseval group frames to the problem of
code design. We draw from the results of the exhaustive search for abelian groups of odd order. We
compare the performance of binary Parseval frames generated by the two groups Zj and Zyq. The
remaining examples in the section demonstrate application of these methods, offering comparisons
between Zg and Zo7 and between Zg and Zs5.

Acknowledgment. All authors would like to thank the anonymous referee for thoughtful com-
ments and suggestions.

2. PRELIMINARIES

Unless otherwise noted, the vectors and matrices in this paper are over the field Zy containing
the two elements 0 and 1. We write I to indicate the k x k identity matrix over Zs, occasionally
suppressing the subscript when the dimension would not otherwise be noted. We shall refer to the
number of nonzero entries of a vector x € Zj as the weight of x (sometimes written ||z[|,), and we
say that = is odd or even if it has an odd or even number of entries equal to 1, respectively. These
labels extend naturally to the columns and rows of a matrix viewed as column and row vectors (for
example, we may refer to an odd or even column of a matrix). In keeping with the notation of real
or complex frames, we denote the transpose of a binary matrix T as T™*.

Additionally, we may suppress the range of indices on sums and sets for simplicity of notation, as
in writing >, ¢; fj for 3.y ¢j fj or {f;} for {f;};es when the index set J is clear from the context.

2.1. Binary Frames. Although the dot product as defined below has the appearance of an inner
product, it is not positive definite because taking the dot product of a non-zero even vector with
itself gives zero.

2.1. Definition ((,-), the dot product on Z%). We define the bilinear map (-,-) : Z§ x Z§ — Za,

called the dot product on Z5, by
ai b1 n
< | > = Z aibia
i=1

an by,

compactly expressed as (a,b) = b*a for vectors a = [a;]]_;,b = [b;]"_,. Consistent with the language
of inner products, we say that two vectors in Z3 are orthogonal if their dot product is equal to zero.

The absence of an inner product motivated the definition of binary frames in terms of a charac-
terizing feature of finite real and complex frames, that they are a spanning set for the vector space
in which they reside [5].

2.2. Definition (Binary frame, binary Parseval frame). Let F = {f;},cs be a family of vectors
in Z%, indexed by a finite set J. If F spans Zj, we call F a (binary) frame; if F satisfies the
reconstruction identity

(1) x=> (x,f;) f; forall xeZj,

JjeJ
we say that F is a binary Parseval frame.

For other choices of indefinite bilinear form on vector spaces over Zo and associated frames,
see [14]. Here, we restrict ourselves to the canonical choice, the dot product.

Since any family of vectors satisfying (1) necessarily spans Z3, each Parseval frame {f;};c for
Z% is in fact a frame, and the index set necessarily has the size |J| > n. For classification purposes
it is useful to introduce equivalence relations among Parseval frames as in [5].
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2.3. Definition (Unitary binary matrices, unitary equivalence, switching equivalence). We say that
a binary n x n matrix U is unitary if UU* = U*U = I,,. Given vector families F := {f;};c; and
F = {fJ’ }ies in Z, we say that F is unitarily equivalent to F' if there exists a unitary U € M,,(Zs)
such that f; = Uf; for all j € J; we say that F is switching equivalent to F' (written F =, F') if
there exists a unitary U € M,,(Z2) and a permutation ¢ on J such that fJ’- =Ufo() forall j € J.

By definition, unitary equivalence is a refinement of switching equivalence. The nature of unitary
and permutation matrices makes verifying that these are both equivalence relations a straightfor-
ward exercise. Hereafter, we focus on frames indexed by elements of a group. In this context, a
restricted version of switching equivalence is useful, which limits the permutations to the subset
preserving the group-structure, that is, group automorphisms.

2.4. Definition (Automorphic switching equivalence). Let I' be a group, we denote the automor-
phisms of T by Aut(T). Given vector families F := {fy}ger and F' := {f;}ser indexed by I, we
say that F and F' are automorphically switching equivalent (written F =, F') if there exist a
unitary U € My(Z2) and an automorphism o € Aut(I') such that f, = Ufé'(g) forall g e T.

2.2. Operators associated with a frame. The following four operators are defined in the same
manner as for finite frames over the fields R and C. In each definition, 7 = {f;}es is assumed
only to be a frame for Zj.

2.5. Definition (O, the analysis operator,©%, the synthesis operator). We denote the space of
Zp-valued functions on a set J by Zj. The analysis operator for F is the map Or : Z% — Zj
given by (©rx)(j) = (, f;). The adjoint of O, also called synthesis operator, maps h € Zj to

@;‘h = ZjeJ h(j)fj'
2.6. Definition (Sz, the frame operator). The frame operator for F is the n x n matrix

Sr = 0%0r.

2.7. Remark. We note that the reconstruction identity (equation (1)) may be written as x =
©%0 rx. The reconstruction property of a Parseval frame F for Zj is equivalent to Sr = I,.

2.8. Definition (Gr, the Gramian). The Gramian for F, usually called the Gram matriz if J =
{1,2,...,k}, is the linear map G : ZJ — Z3
Gr:=0rO%.

Taking 0;(k) = 1 if k = j and §;(k) = 0 otherwise, {J;};cs is the standard basis for ZJ, and
we use matrix notation to write (Gr);; = (©70%6;,8;) = (f;, fi). It follows from the symmetry
of (-,-) that (Gr)i; = (GF);, and thus G is symmetric (Gr = G%). Further, if F is a binary
Parseval frame, then the Gramian is idempotent:

@) G} = (070%)(050%) = O (0305) O = 00% = G |
———
=Sr=I,

For each of these matrices, we may suppress the subscript if doing so does not cause ambiguity,

simply writing © ,0*, S, and G.

2.3. Group frames for Z3. Recall that, given a finite group I' and a vector space V, a represen-
tation of I" on V is a group homomorphism

p:T'— GL(V).

In such a case, we say that I' acts on V by p, and for any group element g we may interchangeably
write p(g) as pg. We shall refer to the elements of {pg}ger as the matrices of the representation
p, or simply as representation matrices. Further, if each of the matrices p, is unitary, then we call
the representation itself unitary.
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In the context of complex Hilbert spaces, given a finite group I', a group frame generated by I'
is any frame {f,}4er that satisfies pyfr, = fgn for all g,h € T', for some representation p of I'. If
that representation is unitary, the frame is the orbit of a single vector [29]; it is this idea of a group
generating a frame from a single vector that provides the basis of our definition.

2.9. Definition (Binary Parseval group frame, I'-frame). Given a natural number n and a group
I' acting on the vector space Zy by a representation p, let F := {p,f}ser denote the orbit of a
vector f € Zy under p. If F spans Z, then it is a frame which we call a binary group frame. If
F is a Parseval frame, we say that it is a binary Parseval group frame. For a given group I', we
abbreviate the description “group frame generated by I'” as I-frame [28]. We shall index frame
vectors by their inducing group elements, so that f. := f and f, := p(g9)f = pgf for g €T

We begin with examples of frames generated with groups of size 27 acting on ZJ. These examples
show that depending on the choice of f., a unitary group representation may lead to an orbit that
is a Parseval frame or just a frame.

2.10. Ezamples (Two binary cyclic frames). Let I' = Zg7 be the group of integers {0,1,...,26}
with addition modulo 27. Let Sg be the cyclic shift on Z9, so for each canonical basis vector e;
with i < 8, Sge; = e;+1 and Sgeg = e;. Since Sy is a permutation matrix, the map p : i +— S§ is
a homomorphism from I' to GL(ZJ). Choosing f = [101111110] gives that {f;};er spans Z3,
but ©%0F # Iy, so F is a frame but not Parseval.

Moreover, choosing fo = e; shows that {f;}ier with fi = Sie; = €1t+i(mod9) and ep = eg
repeats the sequence of canonical basis vectors three times. Consequently, the synthesis operator
is ©% = [Ig Iy Iy] and ©%OF = Iy, so F is Parseval.

An exhaustive search of all Parseval frames obtained from group orbits under the action of Zo7
on Zg reveals that up to unitary equivalence, the second example is the only case of a Parseval Zo7-
frame for Z3. Such an exhaustive search is made feasible by methods developed in Section 3.4. In
a preceding paper, the linear dependence among repeated frame vectors, as exhibited in the frame
having synthesis operator [Ig Ig Iy], has been called trivial redundancy [5]; In the next example, we
show that another group of the same size generates frames as well as Parseval frames without the
occurrence of repeated vectors in either case.

2.11. Ezample (Two binary Gabor frames). Let a,b € GL(Z3) and the suggestively named p,, p, €

where Q is the 3 x 3 matrix of zeros, X = g%é}, and Y = X2,

The group generated by a and b under matrix multiplication is the nonabelian finite Heisenberg-
Weyl group modulo 3, denoted HW3. From the fact that products of powers of a and b give all
upper triangular ternary matrices whose diagonal entries are fixed at 1, one can deduce that this
group has order 27, see also [26]. The matrices p, and p; generate a group isomorphic to HWj3
and have been chosen such that setting p(a) := p, and p(b) := pp extends to an isomorphism
p : HW3 — GL(Z3). For compactness of notation, we designate a third group element® ¢ and
corresponding p. € GL(Z3)

|

INote that {e, ¢, ?} is the center of HWs.

cos&
O=O

OO
—_O
[SYers
OO
el

g] and pc:zp(C)Z[
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and order the elements of HWj in the sequence
e, a, a?, b, ab, a®b, b2, ab?, a?b?,
¢, ac, a’c, be, abe, a’be, b2e, abc, a®b3c,
2, ac?, a®c?, b2, abc?, a®bc?, b2e?, ab’c?, a?bicl.

Choosing fo = [110100000]* and f, = [110110100]* induces HWs-frames {f.} and {f/}
whose synthesis operators O7 := [fe| fal|fa2| - - - | fazp2c2] and ©3 := [fl|folfl2| - - - | fl2p2,.2] are given in
Figure 1. One may verify that { f;}ge Hw; is the only Parseval frame of the pair by calculating the
corresponding frame operators.

111111000000000000111000000 111111111000000000111111000
111000000111111000000000000 111111000111111111000000000
000000000111000000111111000 ooooooo0oo0o0111111000111111111
100000101001000011010000110 101100101011001011110010110
010000110100000101001000011 110010110101100101011001011
001000011010000110100000101 011001011110010110101100101
000110100000011010000101001 100110110010011011001101101
000101001000110100000011010 001101101100110110010011011
000011010000101001000110100 010011011001101101100110110

@* @*

1 2

FIGURE 1. Synthesis operators of two binary Gabor frames (see Ex. 2.11)

2.4. Regular representations and group frames. Constructing a faithful unitary representa-
tion of a finite group I' is always possible; if I' has order k£ and given a k-dimensional vector space
V, one can find a collection of k x k permutation matrices {Py}ger C GL(V) that form a group
isomorphic to I'. This is just a result of Cayley’s theorem for groups based on the left or right
regular representation, as given below. The challenge is to find vector spaces of smaller dimension
carrying a unitary representation and vectors whose orbits under the group action form a Parseval
frame.

With this in mind, we recall that the reqular representations of a finite group I' over a field K act
on KT, the vector space of K-valued functions on T'; the left regular representation A = {Ay},er
and right regular representation R = {R,}ger act on ¢ : I' = K according to

Ay : h— ©(g'h) and Ryp : h— ¢(hg)

and hence define group isomorphisms. By associativity, AyRpe and RpAgp are well defined, and
commutativity among operators of the regular representations follows from the chain of equalities

(AgRup) (x) = (Rup) (9" x) = @(g~"xh) = (Agp) (zh) = (Ruhyp) (z)
which holds for all g,h,z € T and ¢ € KT,

2.12. Remark. For future use, we note that for each g € I', the nonzero entries of the permutation
matrix associated with A, and the canonical basis are indexed by the set {(gh,h): h € T'}, and R,
is nonzero exactly on index set {(hg~!,h): h € I'}. Written in terms of the Kronecker delta,

lifi=j
0ifi#£j

We close the section by showing that, as in the real or complex case [29], the group representations
which generate binary Parseval group frames are unitary.

(Ag)ag = 5§5,1 and  (Rg)ap = 52,15, where 55 =

2.13. Proposition (Binary Parseval group frames are generated by unitary representations). Given
a finite group T, let F be a binary I'-frame generated by a group representation p. If F is Parseval

with analysis operator ©, then p is a unitary representation with matrices explicitly given by py, =
©*Ay40© for each g € T'.
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Proof. Let I', F and © be as in the hypothesis. For g,h € I' and x € Z7,
(Ag@x)(h) = @x(gilh) = <'r7pg*1fh> = <p;_1$,fh> = (@p;_lx)(h),

so the following diagram commutes:

Zo[T] —2- Z,T]

o] le
(pg—1)"

Ly —— 7

By the Parseval property and the intertwining relationship, pz,l = @*@pz,l = 0"A,0. Replac-

ing g with g~ and taking the transpose, we then get Py = @*A;,1®. Next, the unitarity of Ay
gives the claimed expression p, = ©*A,0. It follows that
pz,l = O"A,0
= (0"A,10)"
— (0})" = g
We conclude that each p, is unitary. O
2.14. Ezample (A binary Parseval Z%-frame). The family of vectors and matrix
100101110
010110011
) 191 87 97 781 91 141 [41 [b tege it
F = o, (1|, 10],1],]1f,]0],[0f,|1],][1 and G= 011010110
0 0 1 0 1 1 1 0 1 101001011
A R e i
(OO I OO IO IR GO 011101001

are a binary Parseval Z2 frame and its Gramian. Denoting the left regular representation of Zz as
. 001 . .

p' with p} = [ 10 8}’ the left regular representation matrices of Z3 are defined by the Kronecker

products A(;) = p} ® pjj, with p} = (p})? for i € Zy. The corresponding matrices p (;) = @*A(§)®

provide a representation of the group Z% on the vector space Z3.

(59000 50090 [50900]
) j )

0y 0y _ 0y _
=100100 =101000 = 100010
P o) 000101|’ p(Q) 001001’ P 01000’
L0000 14 L0000 14 L0001
T N HH

1) _ 1) _ 1\ _
=111100 =|11010 =110110
P (o) 10110/’ p@) 11100|° p@) 11010|°
01110 01110 01110
01109 01ty 00110

2 _ 2 _ 2 _
=]00111 =lo1101 =]l01011
P @) 01011’ P () 00111/’ PG 01101
L100004 100004 100004

One may verify that the induced map p : Z3 — GL(Z3) is a unitary representation and that F
is in fact the orbit of f(()) under p.
0

3. THE STRUCTURE OF THE GRAMIAN OF A BINARY PARSEVAL GROUP FRAME

The Gramian captures geometric information about the structure of the associated frame, since
it records every pairwise dot product among frame vectors. If the frame is a group frame, then it
also reflects the group structure. As shown below, the Gramian of a binary Parseval group frame
is an element of the algebra generated by the right regular representation.
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3.1. Theorem (Gramians of binary Parseval group frames as elements of the group algebra). Let
' be a finite group with right reqular representation { Ry }ger and associated group algebra Zs[{ Ry},
and suppose G is the Gramian of a binary Parseval I'-frame F := {fq}qecr, then the Gram matriz
is in the group algebra. More explicitly, G is given by

(3) G =Y nl9)R,

gel
where the function n: T — Zsy is defined by n(g) = (fq, fe)-

Proof. Let p be the frame-generating group representation, which by Proposition 2.13 is a unitary
representation of I'. Consider H = - . 7(g)Ry with 1 as in the statement of the theorem. We
compute for a,b € I' the value

Hap =Y n(9)(Rg)ap

gel

= n(g)d?_1, = n(a"'b)

ger

= (fa-16: fe)
= (pofe, Py-1fe)
= (f, fa) = Gap-
In the last identity, we have used the unitarity, p,-1 = pj. O

3.2. Theorem (Gramians of binary Parseval frames in a group algebra imply group frame struc-
ture). Let I' be a finite group with regular representations A and R, and suppose F = {fq}ger
is a binary Parseval frame with Gramian G and analysis operator ©. If G is in the group alge-
bra Zs[{Ry}], then py :== ©*Ay O defines a unitary representation of I' and { fy}ger is a I'-frame
obtained from the orbit of f. under the representation {pg}ger.

Proof. Assume that G = ©0* € Zy[{Ry}]. Since Ay and Ry commute for each g,¢' € ', so do A,
and G. From ©*©0* = ©*, then, we have O*A;00*A;,© = ©*A,,0 for each g,h € I', and since
(O*Ay0)" = ©*A;10, it follows that p, = ©*A/O defines a unitary representation of I'. Using
these properties for p, then shows that

pgfe = O*A00%0, = O*OO*A 0. = O%y = f,,
so the frame vectors are obtained from the orbit under the unitaries {pg4}ger. u
We summarize the preceding two theorems in a characterization of binary Parseval group frames.

3.3. Corollary (Characterization of binary Parseval group frames in terms of Gramians). Let T be
a finite group with right reqular representation {Rg}ger. A binary Parseval frame F indexed by I'
is a I'-frame if and only if its Gramian is in the algebra Zo[{Ry}ger].

3.1. Characterizing the structure of the Gramian. In order to facilitate a catalogue of binary
Parseval group frames, we identify necessary and sufficient conditions for their Gramians.

In the real or complex case, each symmetric idempotent matrix is the Gram matrix of a Parse-
val frame. In the binary case, [1, Theorem 4.1] characterizes Parseval frames with the additional
requirement that at least one row or column vector is odd. This condition is equivalent to the
condition that the Gramian has at least one odd vector in its range, since the span of the col-
umn vectors of a matrix forms the range of the matrix; we use these statements interchangeably
throughout this paper. This condition is also equivalent to that of having at least one nonzero
entry on the diagonal, since the idempotence and symmetry of a Gramian G induce the identity
between the dot product of a vector G, with itself and the corresponding diagonal entry of the
Gramian, (Gé4,Gdg) = G4, for all g € T
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We next combine the results we obtained so far with the characterization of the Gramians of
binary Parseval frames to characterize Gramians that belong to binary Parseval group frames.

3.4. Theorem (The structure of Gramians of binary Parseval group frames). Given a finite group
I with right reqular representation R, a map G : Z — 7Y is the Gramian of binary Parseval
I-frame if and only if G is symmetric and idempotent, G € Zo[{Ry}| and the range of G contains
an odd vector.

Proof. As noted above, [1, Theorem 4.1] characterizes the Gram matrices of binary Parseval frames
as symmetric, idempotent matrices having at least one odd column. Thus, given a finite group I,
the characterization in the current theorem reduces to Corollary 3.3, and is thereby proven. g

In short, this last theorem states that we can move back and forth between elements in the
unitary equivalence class of a frame and the Gramian. Since we focus on the construction of
Gramians hereafter, we summarize how to obtain a group frame from the corresponding Gramian
more explicitly. To this end, we recall that if G is the Gramian of a binary Parseval frame, then
it factors into G = ©0* where the columns of © are orthonormal with respect to the dot product
and form a basis for the range of G. This means, the columns of ©* are in the space whose
dimension is the rank of GG, as expected. Moreover, for any such factorization of G, the columns
of ©* form a binary Parseval frame in the unitary equivalence class associated with G. Factoring
G can be achieved by performing a version of a Gram-Schmidt algorithm, as demonstrated in [1].
We summarize the most practically relevant consequences of these observations and the preceding
theorems.

3.5. Corollary. Let I' be a finite group with left and right regular representations {Ag}ger and
{Rg}ger, respectively. If a map G € Zo[{Ry}ger] is symmetric, idempotent and its range contains
an odd vector, then it can be factored in the form G = ©O* where f, = ©%6, defines a binary
Parseval frame {fq}ger for ZE, and k is the rank of G. Moreover, pg = O*A,O defines a unitary
representation of I' and the vectors { fq}qer are a binary Parseval I'-frame obtained from the orbit
of fe under the representation {pg}ger.

3.2. Additional properties of the Gramian. Since regular representation matrices are permu-
tation matrices, a consequence of Theorem 3.1 is that each of the rows of the Gramian of a binary
Parseval group frame has the same weight. Thus, if a Gramian is assumed to be that of a binary
Parseval group frame, the condition that one column is odd is equivalent to the condition that every
column is odd, which equates to the condition that every diagonal entry is a 1, or even simply that
n(e) = 1. Continuing under the assumption that the Gramian may be written as G = 3yn(g) Ry,
the quantity of 1’s in a column is the quantity of elements g € T" such that n(g) = 1; it follows that
G has an odd column if and only if the sum ¥,7(g) = 1.

Now, suppose I' is a finite group of order k and that we wish to exhaustively search for I'-frames.
The characterization in Theorem 3.4 tells us that the candidate set of Gramians is a subset of

n(e) =1
(4) H="> n(g)Re| n(g) =nlg™") forallg €T
ger > gn(g) =1

From a computational standpoint, the three necessary criteria are easy to check as properties of
the coefficient function 7; in fact, no matrix multiplication is required until we wish to check
idempotence. The following proposition reduces the idempotence condition to a property of n as
well.

3.6. Proposition (Idempotence in group algebra characterized by convolution identity). Given a
finite group I' with right reqular representation {Ry}ser and a binary function n : I' — Za, the
matric Zg n(g)Ry is idempotent if and only if n is invariant under convolution with itself; that is,

if and only if n(h) =n*n(h) =3, n(g)n(g=th) for each h € T.
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Proof. Let I' and {Rg}ger be as given above and n : I' — Zy be a binary function. We note that

(5) (Zn(g)Rg )2 = > nlg)n(g2)Reigs = Y nlg)n(g~ k) Ru;

ger 91,92€l’ g,hel’

it follows that > n(g)Ry = (Zn(g)Rg)2 implies n(h) = 3_, n(g)n(gth) for each h € T. On the
other hand, suppose n : I' — Zy is convolution invariant. Then

> nh)Ry=> [Zn(g)n(g‘lh) ] Ry=Y_ nlg)nlg~"h)Rn,

her hel ~ gel’ g,hel
which by equation (5) is equal to (Z n(g)Rg)Z, and the proof is complete. O

3.7. Example. Consider D3, the dihedral group of order 6, described (a,b: a® = 1,b> = 1,b"tab =
a~!); ordering the elements 1, a, a?, b, ab, ab, then the right regular representation matrices of D3
are given by
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A quick check for convolution invariance among the twelve coefficient functions satisfying the con-
ditions in (4) shows that only Ig and G; := Ry + R, + R,2 give suitable Gramians. Synthesis

matrices for the two classes are given by ©f, = [§ 4477 ¢] and O] = I.

It follows from Proposition 3.6 that the coefficient function of the Gramian of a binary Parseval
group frame is always convolution invariant, but convolution invariance of such a function does not
ensure matrix symmetry:

3.8. Example. Let {Rj}?:o be the right regular representation matrices for the group Zr7, noting
that R} = R;l = R_;. Consider the coefficient function given by

1 ifze{0,1,2,4
n@) =4} Tredd 24y
0 ifxe (3,56

which is easily verified to satisfy n = n*n. It is clear, however, that the matrix G = > 7_n(j) R,
is not symmetric (since n(1) # 7(6), for example), so G is not the Gramian of any frame.

Adding idempotence under convolution to the conditions in (4) removes the need to require that
the coefficient function sums to 1, which is then implicit in n(e) = 1. We conclude a characterization
of the coefficient functions of binary Parseval group frames.

3.9. Theorem (Gramians of binary Parseval I'-frames characterized by 7). Given a finite group T’
with right reqular representation matrices {Rg}g4er and G = Zg n(g) Ry, then G is the Gramian of
a binary Parseval I'-frame if and only if n(e) = 1, n is symmetric under inversion of its argument
and idempotent under convolution.

Proof. Since G =3 n(g)Ry and Ry = R, for all g € I, it follows that G is symmetric if and
only if 7 is. Further, Proposition 3.6 equates the idempotence of G with that of n. Now, n(e) =1
if and only if n(g) =1 for all g € T, if and only if G has at least one odd column.

Theorem 3.4 provides four conditions which characterize the Gramians of binary Parseval group
frames, three of which we have just demonstrated are equivalent to conditions on 7. Since G
automatically satisfies the remaining condition as an element of the group algebra Zs[{R,}], it
follows that G = > n(g)Ry is the Gramian of a binary Parseval I-frame if and only if n(e) = 1,

n=mnx*n, and n(g) =n(g~") for all g € T. O
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In light of the last theorem, we can replace the necessary conditions (4) with necessary and
sufficient conditions for G being the Gramian of a binary Parseval I'-frame F,

n(e) =1
(6) Ge> nlg)Ry| nlg) =n(g") forallgeT ;.
geT n=mn%n

where 7 is assumed to be a Zo-valued function on I'.

3.3. Binary Parseval frames from orbits of abelian groups. Next, we focus on the special
case of abelian groups.

3.10. Lemma (Idempotence from square root condition for abelian groups). Given a finite abelian
group I' and function n: ' — Za, 1 is idempotent under convolution if and only if

n(g) = Z n(h) forall geT.

h2=g

Proof. Fix g € T and partition I' into K, :== {h € ' : h? = g} and B := I'\K,. Since T is
abelian and by the definition of B, we have that for each element z € B there is a unique element
7 lg = gz~ € B, and = # 2~ 'g. We refine our partition on I' by separating B into disjoint sets
By and Bs such that no two elements x,y € B; multiply to g, arbitrarily assigning one element
from each pair {x,2 g} to By and the other to Bs.

The idempotence under convolution is thus expressed

)=> n(h)n(hg)

hel’
= > nhnd g+ > n@mg) + > nwn(yg)
hEKg —h (EGBl yEBQ
-1 -1
= > nhnh)+ Y [n@)n"g) + 0= g)n(e)]
heK, r€B; =(z"1g) g
=Y nh)+2 > nlama!
heK, rEB1
= n(h),
heK,
where the last two identities follow from noting z? = z and 2z = 0 for all z € Zo. g

3.11. Example (Binary Parseval group frames of Zg). We use the preceding lemma to classify
the binary Parseval group frames generated by the (abelian) additive group I' := Zg. Suppose

= > n(g9)Ry is the Gramian of a binary Parseval Zg-frame F; in the notation of the proof
of Lemma 3.10, we have K1 = K3 = K5 = (), for which the “square root condition” asserts
n(1l) = n(3) = n(5) = 0. By the coefficient function characterization of the Gramian, n(0) = 1,
and since 2 + 2 = 4, we have that either n(2) = n(4) = 1 or G is the identity matrix. It follows,
noting that both options induce idempotent matrices, that any binary Parseval Zg-frame has a
Gram matrix that is either I or G := Ry + R + Ry,
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To complete the classification, we note that G and Ig represent distinct classes, since the Gramians
of switching equivalent binary Parseval frames have the same number of nonzero entries. Synthesis
matrices for the two classes are given by O :=[§9§9§9] and ©F = I¢.

In the special case that every element in a group has exactly one square root, an even stronger
consequence holds for 7. This “unique square root” property is determined solely by the parity of a
group’s order (see, for example, Proposition 2.1 in [18]), and we recall part of this characterization
in the following lemma.

3.12. Lemma. A finite group of odd order has unique square Toots.

Proof. Let T be a group such that || = 2n — 1 for some integer n > 2, and suppose a? = b? for

some a,b €. Then a®» ! =¢,s0a=a-a*" ! =a>" =1>" = 0. ]

3.13. Theorem (Odd-ordered abelian groups and n). Let I' be a finite abelian group of odd order.
Then the map g~ {g’' € T : g*" = ¢’ for some m € N} partitions T', and a function n: T — Zs is
idempotent under convolution if and only if n is constant on these sets.

Proof. Since I' has odd order, the unique square root property reduces the condition

n(g) = Z n(h) forall geTl
h?2=g

to

n(g*) =n(g) forall geT;
thus, it remains only to show that the map defined in the hypothesis partitions I'. Let g € I', and
for j € N, define v; := ¢g¥. Since T finite, we may take N to be the least positive integer such
that yn4+1 € {vj}?’:l. By I'’s unique square roots, it follows that yn41 = 71, or ¢ = g2 . Now,
let h € I' be distinct from g, and similarly define a sequence by 4; := h? | with minimal M such

that h = h2"". Tt follows that either {7i}jen = {7 }jen or {vj}jen N {7;}jen = 0, and the claim is
shown. O

3.14. Ezample (Classes of Zir-frames). Suppose G = > n(9)Ry € Z»[Zy7] is the Gramian of a
binary Parseval Zir-frame. Z7 satisfies the conditions of Theorem 3.13, so we know that 7 is
constant on each of the sets Ay :={1,2,4,8,16,15,13,9} and As := {3,6,12,7,14,11,5,10}, which
are closed under inversion. Thus, G is one of exactly four operators, given by

17, Il7+ZjeA1Rj’ Il7+ZjGA3Rj7 and ZjEZnRJ"

In illustrating an application of Theorem 3.13, this example also motivates us to introduce some
additional notation.

3.15. Definition (Symmetric doubling orbit, symmetric doubling orbit partition, Rj,). Let T' be
a finite abelian group having unique square roots. For any element g € I, the symmetric doubling
orbit of g is the set

lg9 ={h el :¢*" =hforsomemeNYU{heTl:(¢g71)?" = h for some m € N}.

Ry, = Z Ry,

helg]

We define

and say that the collection I'' = {[g]} 4 is the symmetric doubling orbit partition of I' (indexed by

representatives J C I') if (J,¢; [9] = I and for distinct g, h € J we have [g] # [h].
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3.16. Remark. We comment on our terminology. Since I' is abelian, let us momentarily consider
it as an additive group and express it as [' = @le Zp,. Modifying the notation in Definition 3.15
accordingly, we have

[g] : ={h €T :2™g=h for some m € NfU{h €I :2"(—g) = h for some m € N},

which is equivalent to {pmg}ﬁl:1 U {pm(—g)}ﬁb:1 for some L € N, where p,, := 2™I}.

It is easy to verify that the matrices {2™ 1} }L _, are representation matrices for the multiplicative
subgroup generated by 2 in Zy,, which motivates the “doubling orbit” part of the name symmetric
doubling orbit: {pmg}i:1 is, in fact, the orbit of ¢ under the action of <2)2L.

We proceed with two results making use of the new notation. The first may be considered a
corollary of Theorems 3.9 and 3.13, and the second uses the symmetric doubling orbit partitioning
to provide a count of the binary Parseval I'-frame unitary equivalence classes for our specified
groups I'.

3.17. Theorem (Characterization of binary Parseval I'-frames for odd order, abelian T'). Let T’
be an odd-ordered abelian group with right regular representation R and symmetric doubling orbit
partition {{g]}ses. Let G be a linear map G : Z% — 75, then G is the Gramian of a binary Parseval
D-frame if and only if G =3_  ;v([g]) Ry for some v : 1" — Zy with v(le]) = 1.

Proof. Assume G is the Gramian of a binary Parseval I'-frame, and let G = ) ger n(g)Rg; then n is
idempotent under convolution (by Theorem 3.9) and thus constant on symmetric doubling orbits
(by Theorem 3.13). It follows that v([g]) := n(g) is well defined and satisfies G = 3, ; v([g]) Ry
and v([e]) = 1.

Conversely, assume G = > ; v([g]) Rl for some v such that v([e]) = 1, and define 1 : I' — Z
by assigning 7(g) = v([g]), then the conditions of Theorem 3.13 are met and 7 is idempotent under
convolution. Noting that n(e) = 1, the conditions of Theorem 3.9 hold as well, and G is thereby
the Gramian of a binary Parseval I'-frame. O

3.18. Corollary (Enumerating unitary equivalence classes of binary Parseval I'-frames). Let the
group T' and the set T be as above and define k := |T'|, k' := |I"/|, then the number of Gramians of

unitarily inequivalent binary Parseval T-frames is 28 ~1 < 93 (k=1)

Proof. The value 2I""1=1 is the number of functions v : I — Zy having the property that v([e]) = 1,
thus enumerating the functions delineated in Theorem 3.17. The quantity 23(k=1) ig achieved if
I' = 72, as well as any other case such that |[g]| = 2 for all g € I'\{e}. Exceeding this bound implies
the existence of h € I'\{e} such that |[h]| = 1, which implies h = h?. Since the only idempotent

element of a group is the identity element, such an h does not exist. ]

Results in [2] justify the use of Gramians as class representatives of binary Parseval frames. For
a group of size k, the naive upper bound of ok? binary matrices thereby drops to 93 (k*-1) symmetric
binary matrices with at least one odd column. Theorem 3.1 in this paper puts our Gramians in
Zs[{Ry}], a set of order 2*. In the case of abelian I' with unique square roots, Corollary 3.18 gives
the number of distinct Gramians of binary Parseval I-frames exactly as 2/'"|=1, where |I7| < 3 (k+1)
is the quantity of symmetric doubling orbits of I'. Thus, for a given abelian group I' of odd order
k, the unitary equivalence classes of binary Parseval frames are classified by computing the ranks
of 2I"I-1 < 2%("3_1) Gramians.

Writing the elements of Zj as vectors suggests plotting subsets of the group for visualization
purposes. Noting that inverse elements are obtained by multiplying by —1 mod p, the fact that
each symmetric doubling orbit is a collection of scalar multiples of a single element puts each of
the points of a given symmetric doubling orbit on a line in Z} containing the origin.
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For many odd-prime/natural-number pairs p, ¢, in fact, the nontrivial symmetric doubling orbits
of Z, are each identical to that line, minus the origin; this property holds any time the multiplicative
subgroup of Z, generated by 2 is Z;,\{0}, as in the cases of p € {3,5,11,13}. It also occurs when

‘<2>2p‘ =i(p—1)and (-1) ¢ <2>2p, since the symmetric part completes the set; the smallest p for
which this occurs is 7.

The work in this paper shows that any Gramian in the group algebra of the regular representa-
tions yields a binary Parseval Z}-frame for ¢ € N and odd prime p if the group elements represented
in the sum are the union of a collection of these linear subspaces. However, the converse of this
statement is not true, as each Mersenne prime (that is, having the form 2™ — 1) greater than 7
provides a counter example, as does every Fermat prime (i.e., of the form 2" + 1) greater than 5.
We illustrate this in Figure 2 with plots of the symmetric doubling orbits of ZZ for the smallest
value that demonstrates this behavior, p = 17. Each plot shows a pair of orbits (one in red, one in
black) that partition a line into two subsets. Any of the 23¢ linear combinations of coefficients that
are constant on these symmetric doubling orbits represents a distinct Gramian of a binary Parseval
Z%rframe.

15 = 15 157 = 157 15 = 15
H A i H i A A A
= 3 3 =
10 10 L] 10 10 10 10
i H i -
i i H
) boom
" ] " : n n "
5 5 5 51 = 5 5
= = }
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FI1GURE 2. Symmetric doubling orbits of Z%% plotted in pairs that are complements
in one-dimensional subspaces of Z?..

3.4. An algorithm for classifying binary Parseval I'-frames for abelian I' of odd order.
For groups of smallest order, the unitary equivalence classes are manageable. However, even for
Z% the enumeration of Parseval frames becomes too tedious to do by hand. One reason is that
group automorphisms may lead to different Gramians. The resulting set could be reduced to one
representative without losing structural information. We recall that switching offers a coarser
equivalence relation that is suitable for removing copies obtained by group automorphisms.

3.19. Proposition (Automorphisms on I' and automorphic switching equivalence). Let T" be a finite
group with right regular repesentation matrices {Rg}ger, and let F := {fy}q4er be a binary Parseval
I'-frame with Gramian G = Zg n(g) Ry, then an operator H is the Gramian of a binary Parseval
I-frame that is automorphically switching equivalent to F if and only if H = Zg n(o(g))Ry for
some o € Aut(I).
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Proof. Let p be the group representation that induces F; we first show that the composition of the
coefficent function n with an automorphism induces the Gramian of an automorphically switching
equivalent frame.

Let o € Aut(I') and define H := 3 n(c(g))Ry. From po o being a group homomorphism, it
follows that {pa(g) fe}ger is a binary Parseval I-frame that is automorphically switching equivalent
to F. By Corollary 3.3, the Gramian G’ of {Po(g) fe}ger admits a coefficient function v such that
G' =3, v(g)Ry. It remains only to prove that v =no o, so that G' = H.

Recall from the proof of Theorem 3.1 that for a,b € T, G, = n(a™1b) and G ap = v(a” 1p). We
conclude

( 71b) <pa b)feapa(a fe>

GU(@),U(b)
=1 (c(a) "o (b))
= (c(a”'b)),

this last identity following from the fact that ¢ is an automorphism.

Conversely, suppose F' := { f;]}ger‘ is a I'-frame that is automorphically switching equivalent to
a frame F induced by a representation p. Let the unitary U and o € Aut(T") give f, = U fo(g) =
Upg(g)fe for all g € I'. Let the Gramians of F and 7' be G = > n(g9)Ry and H = 3 v(g) Ry,
respectively. We equate

(a™'b) = (£} fa)
= (Upo) fer Upo(ayfe)
= <Pa(b)fe, Po(a)fe)
=1 (o(a”'b)),
and we see that H =3 n(c(g)) Ry has the claimed form. O

Next, we study how symmetric doubling orbits behave under automorphisms. Let g,h € I' and
a € N such that g = h**. Under an automorphism o € Aut(T"), we identify o(g) = o(h®") = o(h)>".
Consequently, if g € [h], then o(g) € [o(h)]. This means the action of o on I' passes to an action
on the symmetric doubling orbits.

3.20. Definition. For a finite abelian group I' partitioned into symmetric doubling orbits I =
{[9]}ges and an automorphism o, we let & be the associated bijection on T such that &([g]) =

[o(9)]-

3.21. Corollary (Automorphisms on I' and symmetric doubling orbits). LetT', {Ry}, F, G andn be
as above, and suppose I is abelian of odd order. LetT" be the symmetric doubling orbit partition of T,
and G = Z[g]er' 7([g9]) Rjg) with i : T" — Zg, then an operator H is the Gramian of a binary Parseval
I'-frame that is automorphically switching equivalent to F if and only if H = E[g}erf (5 ([9]) Ry
for some o € Aut(T).

Proof. Let o € Aut(T"), and & the associated bijection on I". Let n(g) = 7([g]), for any g € T.
Consequently, > cr n(5([9])) Ry = >yer n(o(g))Rg. Applying Proposition 3.19 completes the
proof. O

By identifying Gramians in the group algebra with functions on the group, Corollary 3.3 reduces
the search for Gram matrices associated with a given I' to a search over a subset of Zs-valued
coefficient functions on I'; Theorem 3.9 specifies that subset. Proposition 3.19 allows a classification
of the valid coefficient functions in terms of the automorphism group on I'. Specialized results for
abelian groups summarized in Corollary 3.21 provide us with a concrete method for obtaining
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all binary Parseval group frames for abelian, odd-ordered groups. The following result provides
theoretical justification for an algorithm guaranteed to produce a list of Gram matrices that contains
exactly one representative from each automorphic switching equivalence class.

3.22. Theorem. Given an odd-ordered abelian group I' and a set M which generates the automor-
phism group of I, the algorithm described in the Practitioner’s Guide below partitions the Gramians
of binary Parseval I'-frames under automorphic switching equivalence.

Proof. Let I be the symmetric doubling orbit partitioning of I". Corollary 3.21 reduces the theo-
rem’s partitioning to the comparison of symmetric doubling orbit coefficient functions. In particular,
two binary Parseval I'-frames are automorphically switching equivalent if and only if their Grami-
ans Y roep 1([9]) Rg) and 3 v([9]) Rjg) have the property that 1([g]) = v(5([g])) for all g € T
and & determined by the action of some o € Aut(I') on the symmetric doubling orbits. Given a
coefficient function 7, the algorithm does one of two things each time it accesses the multiplication
table: it either identifies another coefficient function belonging to the same partition as 7, or it
terminates the search for coefficient functions in that partition. It thus remains to show that the
algorithm exhausts the partition for any such 7.

Let n: T' — Zy be constant on symmetric doubling orbits. Enumerate M = {M;}Y, and define
My := Id € Aut(T), and let Qg := {S,}, where S,, :== n~1(1). For j € N, define the set collection

Qj = {MZ(S) :i=1,2,...,Nand S € Qj—l}-

Note that ;1 € Q; for all j € N, since S € Q;_; implies that My(S) € ;. The algorithm
produces each (), sequentially and terminates the search for elements in 7’s partition at the end
of identifying the elements of Q; if Q; = Q;_1. Now, if v(g9) = n(o(g)) for all g € " and some
o € Aut(I'), then there is a finite sequence [y, 1o, ..., [; such that o = M;, M;,_, --- M;,. It follows
that the partition reprepresented by 7 is the set 2 for some L € N; thus, the algorithm produces
the partition of 7 if and only if there is an integer j, such that

(7) 04 - Qo c---C an = an+i for all i € N.

Let jo € N be such that ;,_1 = ;,; existence follows from the finiteness of Zy[I']. To prove that
such j, exists, it is enough to show that the equality Q;, = ;1 implies Q;; = Q; 4, for all i € N.

Let S’ € Qj,4+1. By the inclusion Q;, C Q;,41, it is left to show that S’ € ;. By the definition of
Qjy+1, we have S’ = M;(S) for some i € {0,1,..., N} and some S € Q;; = Q;,_1. Since S € Qj,_1,
it follows that S" = M;(S) € Q;,, and the proof is complete. O

A Practitioner’s Guide to Generating Gramians of Binary Parseval I'-Frames
for abelian I' of Odd Order
(1) Produce a set J so that {e} U J indexes the symmetric doubling orbit partition IV of T.
(2) Select M C Aut(I") to seed a multiplication table. If M generates Aut(I"), this algorithm
provides a partition of I-frames into automorphic switching equivalence classes. (See
Remark 3.23)
(3) Produce the automorphism multiplication table containing a row for each M; € M, with
entry (i, ) giving M;([g;])-
(4) For each m < % ITY|, apply the method described in Example 3.24 to partition subsets
of the collection {Uyep [g] : K C J,|K| = m}. For m > ||, use the fact that for
given indexing sets K, K, the sets | cx [g] and U e [g] represent the same class if

and only if Uge i [9] and Uge g [9] do.

3.23. Remark (Sampling Aut(I')). Choosing M = Aut(I') guarantees accurate partitioning, al-
though Aut(I") may be difficult to calculate. Theorem 3.22 tells us that we can obtain this parti-
tioning as long as M is a generating set for Aut(I'). If M is not known to generate Aut(I'), the
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potential undersampling of the automorphism group may simply lead to the case that some classes
are represented multiple times; the number of Gramians is still smaller than 2T -1,

The following example demonstrates how the algorithm works.

3.24. Ezample (Classifying binary Parseval Z3-frames). Let the symmetric doubling orbit partition
of Z3 given by set I" = {[g] : g € {e} U J} with J := {({),(}),(}),(3)}. We shall classify binary
Parseval Z3-frames up to automorphic switching equivalence by identifying suitable Gramian rep-
resentatives for each class. These Gramians have the form I+ ", Ry, for some m € {0,1,2,3,4}
and distinct g;’s, and we proceed by considering one value of m at a time. We make use of the fact
that for any finite vector space V, Aut(V) = GL(V).

m = 0 : The cases of m = 0 and m = 4 are trivial and listed in the summary.

m = 1: The matrix [{ }] € GL(Z3) gives

1ol @1 ={0161© . [16] @} ={G). B} =D
applying the preceding corollary, I + R[(l)] and I + R[(l)] are thus Gramians of automorphically
0 1

switching equivalent binary Parseval Z3-frames. With this in mind, consider the multiplication
table given in Table 1. The first row shows that for g,h € J, [g] = [1§]" [h] for some integer a.

@) D] 1G] 1]
ol [ IO QI D] (O
[Fol ] ) [ (D] O
il 11O (@I (D] D]

TABLE 1. Multiplication table for selected M € GL(Z3)

It follows that the four operators I + R}y represent the same automorphic switching equivalence
class.
m = 2 : Similarly, the first two entries in the first row give

(161 A@TVIDD = [1 6] @IV 1] D) = (DI VIG]
implying
R (YT (9] e (O IR (€3]
are representatives of the same equivalence class. Proceeding down the first two columns, we find
that Gramians I + R;/1\1 + R0y and I + Ry + Rp/1y7 represent that same class.
()] 7 HE)] (@] "))

Reentering the table with the index pair (1), (}), we find the sets [(?)] U [(})] and [(})] U [(})]; it
follows that each of the six distinct Gramians I + Z?Zl Ry, represent the same class. Note: If this
step had not exhausted the “m = 27 case, we would continue to reenter the multiplication table with
each new equivalent | J g; until the class stops growing.

m = 3 : We make use of set complements. Fixing g, h € J, let a satisfy [g] = [1 §]* [h]. It follows
that U, ., [9'] = [1 31 Uprz [1'], since each M € GL(Z3) is a bijection on Uges[9']: We conclude
that each of the sums I + 2?21 Ryy,) represents the same equivalence class, since g and h were
chosen arbitrarily.

Summary: The binary Parseval Z3-frames partition into five automorphic switching equivalence
classes, with representative Gramians given by the identity operator, the 9 x 9 matrix of 1’s, and
three more representatives

T4 By T+ Byt By, and T Ryt By Ry
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Hence, the nontrivial Gramians turn out to have ranks 3 (m = 1), 5 (m = 2), and 7 (m = 3). The
Gram matrices belonging to a given rank are equivalent, so we partitioned the fourteen nontrivial
Gramians I + Y " Ry into three equivalence classes.

4. BINARY PARSEVAL GROUP FRAMES AS CODES

One motivating application of binary Parseval group frames is their use as codes. The range of
the analysis operator © is the so-called code book in Z5. Each codeword y in this codebook is the
image of a unique vector x € Z3 which is obtained by z = ©*y.

When k£ > n, the redundancy introduced by the embedding © makes it possible to accurately
recover x from a corrupted codeword 3 := E©x + ¢, provided the diagonal error matrix £ and error
vector € are known to meet certain specified conditions.

For our binary case, we consider two types of errors: erasures (§ = EOz, E;; € {0,1}) and
bit-flips (§ = Ox +¢, € € Z3). We say that a binary Parseval frame F is robust to m erasures if for
every diagonal binary matrix E having at most m zeros on the diagonal, the operator £© admits
a left inverse. This is equivalent to the condition that the Hamming distance between any two
vectors in the image of © (or, equivalently, of the Gramian of F) is at least m + 1, since any pair
of vectors that differ in only m entries are indistinguishable if those entries are “erased.” By the
linearity of ©, this is also equivalent to the condition that each nonzero vector in ©Z% has weight
exceeding m.

On the other hand, we say that F is robust to m bit-flips if ||©Ox1 — ©x2l|, > 2m + 1 for all
x1,T2 € ZYy, v1 # x2. This notion of “robustness to error” implies the ability to identify each
vector in the set B := {Ox + € : x € Z3, ||¢||, < m} as the (corrupted) image of a unique vector in
Zy. Note that if |©z1 — O3, = 2m for some pair z1,x2 € Z7, then there exist m-weighted error
vectors €1 and ez such that Oz + €; = Oxy + €2. Now suppose that for any distinct y;,y2 € ©Z3,
we have |ly1 — y2||, > 2m + 1, and let § € B; by the triangle inequality, there is exactly one point
y € ©Zy such that ||y — 7|/, < m. Thus, we may recover the intended signal y by identifying the
nearest point in ©Z% to y, and recovery of x = ©*y follows.

Again appealing to the linearity of ©, both robustness conditions are expressed in terms of the
minimum weight among nonzero vectors in the range of ©. For Parseval frames, the range of the
analysis operator coincides with that of the Gramian, so it can be stated equivalently in terms of
the range of the Gramian.

4.1. Definition (Code weight of a Gramian or frame). Given an operator G : Zg — Zj, the code
weight of G is the value min, ¢z (0} llyllo-

In the following section, we compare Z}-frames with Z,s-frames. The final major result in this
paper is a proof that every binary Parseval Z,s-frame is switching equivalent to a Z-frame. We
also include a number of examples in which the classes of Zpq«-frames are mapped to their switching
equivalent Z7 frames for select p’s and ¢’s and show that in addition to subsuming binary Parseval
Zyo-frames, there are examples of Z}-frames that outperform them as codes.

4.1. Comparing frames generated with Z,s vs. Z}. Fix m € N, and let 7; and F, be switching
equivalent binary Parseval frames. Theorem 4.9 in [2] establishes that this equivalence implies that
Fi is robust to m erasures if and only if F5 is. By the Gramian code weight characterization
of robustness to each type of error, it follows that Fj is robust to m bit-flips if and only if F>
is. Theorem 4.11 in [5] characterizes switching equivalence between binary Parseval frames as
permutation equivalence between their Gramians G and Ga:

F1 S Fo  if and only if G; = P*GoP for some permutation matrix P.

Hence, for the purposes of evaluating binary Parseval group frames as codes, whether we are
concerned about erasures or bit-flips, we may restrict our attention to permutation equivalence
classes of the Gramians of such frames.
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Applying the techniques in this paper, we have classified binary Parseval group frames for each of
the groups below, using Gramians as class representatives. Recalling that the quantity of vectors in
a group frame is given by the size of the group, and that the rank of the Gramian is the dimension of
the inducing frame, we can directly compare the performance of several frames as error-correcting
codes. To facilitate comparing Zy. and Z} for a given pair p,q, we combine details for the two
groups in a single table; in each of the comparisons below, Z-frames perform at least as well as
Zpa-frames, and they often outperform their Z,« counterparts. In fact, the exhaustive search of
best performing codes associated with binary Parseval frames generated with Zj is guaranteed to
be at least as good as the best codes generated with Z,q, as shown in Theorem 4.6 below.

We now provide a sequence of results which culmintate in the proof of Theorem 4.6, which
states that, given an odd prime p and ¢ € N, any binary Parseval Zpq-frame is switching equivalent
a binary Parseval Zj-frame. Practically, this reduces to showing that the Gramian of a binary
Parseval Zyqs-frame satisfies the Gram characterization for a Zj-frame for some reindexing. We
accomplish this by showing that the symmetric doubling orbits of Z,q partition those of Z, in the
sense that for each n € Zyq, the matrix Rj,) can be written as the sum of matrices in {R;} /7.

The map which produces this reindexing is the inverse of the function ¢ : Z} — Z, given by

(8) é9) =Y _p' g
i=1

where the arithmetic is carried out in Zjpq; this mapping is akin to converting from numbers written
in base p. It is worth noting that for a given i € {1,2,...,¢ — 1} and g € Z}, we have that p’
divides ¢(g) if and only if the first 4 entries of g are zero; if p’ divides ¢(g) and p'*! does not, then
the j-th entry of g, denoted g;, is nonzero.

We recall a few fundamental properties of finite multiplicative groups in the context of this work.
For a given n € N, we may consider Z,, as the ring (Z,, -, +), in which case the subset of elements
having multiplicative inverses forms the multiplicative group Z) := (Z/nZ)*. The elements of Z,
that provide elements in Z, are those coprime with n.

Here we shall denote the multiplicative subgroup of Z,; generated by element k as (k) := (k); .

4.2. Proposition. Let p,q,k € N with p prime and 1 < k < p. Then ‘<k>;‘1| = pa~! ‘(k);;‘ and

x € (k)yq if and only if x(modp) € (k).

Proof. Note that Z; = Z, 1, since each nonzero element of Z, is coprime with p. Recalling that a
finite cyclic group of order mn is isomorphic to Z,, x Z, if m and n are coprime, we have that

X ~

~ ~ ~ X
pl — qul(pfl) = qufl X Zp,1 = qufl X Zp .

It follows that ‘Z;‘ =p—1 and ‘Z;q‘ = p?!(p —1). We consider now the subgroups (k) < 7%

and (k)% < 2%
Note that x € (k),, implies that z(mod p) € (k),’, so that each element in (k) ; may be written in

the form mp +t for some m € {0,1,...,p9 ' —1} and some ¢ € (k), considered as an element of Z.

It follows that | (k) o? | < p?7t|(k) ” |. We shall show equality holds by demonstrating that the reverse
inequality holds; the resulting equality will imply that every element of Z;q of the form mp + ¢ as

X

above is an element of (k) ,

Let

completing the characterization (k) = {x(modp) | z € (k) }.

Vg : (k);q = Lpa—1 % (k)

K — § x K,
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where we consider Zp,—1 X (k) as a group in the natural way, inheriting its group operation

componentwise. For i,j € N, we have
Ya(K'K) = 7 (K7) = (i + 4, k7) = (6, k) (4, k) = 7 (K')7q (),

and thus v, is a group homomorphism. Since the orders of the cyclic groups Z,.-1 and (k)

p
coprime, it follows that v, exhausts its range and that "yq(<k>;q)| = |Zyo—1| |(k);¢|. This implies

|(k)ju| > p?=t|(k))|. We conclude that |(k),| = p?~*|(k)X| and that € (k), if and only if

r(modp) € (k). O]

are

4.3. Corollary. Let p,q,k € N with p prime and 1 < k < p. Then for each y € Z;q,
(k)] = p* " |k
and x € y(k’);q if and only if z(mod p) € y(k), (modp).

Proof. Fix y € Z;q. Since the cosets of a subgroup partition a group into equal sized sets, the
preceding proposition yields |y(k).| = (k)| = p?~1 | (k))]-
Now, if € y(k), then z(mod p) € y(k)). Since {z € Z), : x(modp) € y(k)X}| = pT~ |(k))],
It follows that
Uk = o € 25 : w(modyp) € y(k) ),

and the proof is complete. ]

4.4. Theorem. Given p,q,k € N with p prime and 1 < k <p, let x,y € Zpa and define nonnegative
integers «',y', ju, jy such that v = 2'p’=, y = y'p’v, and p divides neither ¥’ nory'. Then x € y(k) q
if and only if j. = j, and z'(mod p) € y'(k),  (mod p).

X

Proof. Suppose x € y(k)pq, so that a/p/* = kly/pv for some | € N. Then j, = Jy, since k and p are
coprime and p is coprime with each of 2’ and y'. Next, set r := j, = j, and write

(9) 2'p” = Ky'p’ (mod p?).
Since 2 and y may be seen as elements in p"Zy» = Z,—», we may also identify =" and 3’ as elements
of Z;q,r < Z,e-- and note that congruence (9) implies

2’ = kly/ (mod p?™").
Then, using 3’ € Z;q,r, Corollary 4.3 yields z’(mod p) € ¢/ (k), (mod p).

Conversely, assume j, = j, =: r and 2’(mod p) € y'(k),; (modp). Then the conditions of Corol-
lary 4.3 are met for x,y € Z; and 2/ = k'y/ (mod p?~") for some I’ € N. Embedding y/<k>;q_r

q—Tr

into Zye by g — p'g for g € y’(k)}fq,r, we have that = = 2/p” = 2"'y/p" (mod p?) = 2'y. O

The following lemma makes precise the claim that the map ¢ given by (8) maps the doubling
orbits of Z} into those of Zya.

4.5. Lemma. Given p,q € N with p an odd prime, let x € Zyq. If g € ¢~ (x(2).5,), then for h € Zj,
we have that ¢(g(2); +h) C z(2)) + ¢(h). As a consequence, ¢(¢~(x(2),5) +h) = z(2)) + ¢(h).

Proof. We begin by proving the lemma for the case that h = 0. Let z, p and ¢ be as in the

hypothesis, and let g = ¢! (z). Since (2), is cyclic, it suffices to show that for each g’ € ¢~ (z(2).5)

there exists k € N such that ¢(2¢') = 2¥x; since (2),q is cyclic, it suffices to demonstrate this for
the case ¢’ = g.

If z = 0 then g = (0)__;, and the claim is shown; assume, then, that z # 0 and define nonnegative
integers 2’ and r such that z = z'p" and p does not divide 2’. Note that r gives the quantity of

leading zeros in the sequence (g;)7_;.
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Expressing this equality in terms of the definition of ¢,

q

> " (2gi (mod p)) = 2"z (mod p?),

i=1
where 2g; (mod p) is considered as an element of Z. For each i € {1,2,...,q}, we may express
2¢g; (mod p) as 2g; — d;p for some §; € {0, 1}, since the value is either 2g; or 2¢g; — p. Since i < r
implies ¢g; = 0, it follows that §; = 0 for such 7. Thus

q
=> p"(29: — dip) (modp?)
q . q .
=2 Zpl_lgi - Z dip*  (mod p?)
i=1 i=1

q
S (amodph)
i=r+1
It follows that 2¢(g) — >.f_, . dip" = 2¢(g) (modp”). The conditions given in Theorem 4.4 are
thus satisfied for = and ¢(2g), implying ¢(29) € 2¢(9)(2),: = 22(2),0 = 2(2),,. We conclude that
$(27g) € x(2),, for all j € N.
We now consider the general case, letting h € Z]. Again, since (2) and <2>;q are cyclic, we may

: p
assume that ¢ = ¢~1(x). We must show that ¢(g + h) = 29z + ¢(h) for some j. Similar to the

h = 0 case, we define ¢} so that g; + h; — djp € {0,1,...,p— 1} for each i € {1,2,...,¢}. Recalling
that the value r gives the number of leading zeros of g, we note that §; = §; = 0 for ¢ < r. Then

q
¢lg+h)=>_ P (gi+hi—5ip) (modp?)
=1

= 0lo)+ (1) = 38 (mod )

= — Z Sip' + ¢(h)  (mod p?)
i=r+1
€ 2(2) 50 + o(h),
by Theorem 4.4, since x—Y_7_ .| §ip" = 2 (mod p"). We conclude that ¢(g(2)X +h) C x(2);,+¢(h)
for all g € ¢~ (x(2),4) and h € Zj.

It follows that gb(gf)_l(;v@);q) +h) € x(2), + ¢(h). Set equality follows from the fact that ¢ is a
bijection, since both sides of the inclusion have the same number of elements. O

We are ready to prove the section’s main result. We wish to show that for each Gramian
of a binary Parseval Zyq-frame, the corresponding Gramian indexed by Zj, as obtained from the
reindexing given by ¢!, is in the group algebra Zs[Z}]; this is sufficient to show that the underlying
frame is a binary Parseval Z}-frame, since the Gramian retains idempotence, symmetry and the
weights of range vectors under switching.

4.6. Theorem. Let p,q € N with p an odd prime and define ¢ : Z — Zpa by ¢(g) == >4, p" g,
carrying out the arithmetic in Zpa. If F = {fz}xezpq is a binary Parseval Zya-frame for Zy, then
F'i={fy-1(2) Yeez,q i5 a binary Parseval Zj-frame.

Proof. Let F = {fi}sez,, be a binary Parseval Zys-frame for Z3. Denote the frame’s analysis
matrix and Gramian by © 7 and G, respectively, and let © 7 and G’ denote those of F'. Since G
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and G’ are switching equivalent, G’ inherits symmetry, idempotence and column weights from G.
By the characterization of binary Parseval group frames given by Theorem 3.4, it is then left to
show that G’ is a element of the group algebra of the right regular representation of Zj}, denoted
Z[{R,}].

Let R := {Rx}xezpq be the right regular representation of Zy. and let n be the binary coefficient
function such that G = erzpq n(xz)R,, as guaranteed by Theorem 3.9. Since Zpq is an odd-
ordered abelian group and 7 is idempotent under convolution, Theorem 3.13 provides that n is
constant on cosets of the the multiplicative subgroup <2>;q. We shall demonstrate that ¢ induces

an isomorphism between the sets {Zy€x<2>:q Ry}uez,, and {Zy€x<2>;<q R;,—1(y)}zezpq7

q
Let & : ZQZ” — ZQZPQ be defined on standard basis elements by @eg = eg(g), Where we use the !
(prime) to distinguish basis elements of the domain from those in the range. We wish to show that
for each x, z € Zy4, the following holds:

(10) > Ry€z=¢’< > Rﬁb—l(weﬁb—l(z))-

yes(2)%, yes()%,

As described in Section 2.4, we may explicitly express the image a function ¢ under R, by Ry :
z — p(y + z), and equation (10) becomes

Z ey+z:‘1’< Z 6%—1(y>+¢—1<z>>

yes()% yes()%,

/
= Z €o(¢—1(y)+o~1(2))"

yEz(Q):q

Thus, we are left to show that x(2)% + z = ¢(¢~(x(2),) + ¢~ (2)) for any x,z € Zy. Taking
h := ¢~ 1(z), this is exactly the content of Lemma 4.5, and the proof is complete. U

We illustrate this statement with some examples. It is worth noting ahead of the examples that
there is an important distinction between the symmetric doubling orbit partitionings of Z} and
Zpa. For an odd prime p, it is a simple exercise to show that each [z] in Z} that is not [e] has
the same order as the symmetric doubling orbit of 1 in Z,. In contrast, according to Theorem 4.4,
Zpa partitions into kg nontrivial orbits for some £ € N, k of each of ¢ different sizes. Since
automorphisms preserve symmetric doubling orbits (Proposition 3.19), they also preserve orbit
size; it follows that the computational savings offered by applying Corollary 3.21 as in Example
3.24 do not apply or are significantly reduced when the group under consideration is Zyq. In fact,
for the values of p and g we explore here, the 29 binary Parseval Zyq¢-frame unitary equivalence
classes promised by Corollary 3.18 coincide with automorphic switching equivalence classes. As we
note in our closing remarks regarding Zi7q, this does not hold in general. Of course, the number of
symmetric doubling orbits of Z,« grows linearly in ¢ and may be considered as subsets of symmetric
doubling orbits of Z (Theorem 4.6), whose number grows exponentially as (p? — 1)/ |[g]| for any
9 € Zy\{e}.

The next step is to compute the code weight of each of the Gramians. We pause to reflect on the
computational savings made available by the methods developed thus far. Results in [2] justify the
use of Gramians as class representatives of binary Parseval frames as codes; for a group of size k,
the naive upper bound of ok? binary matrices thereby drops to Z%k(k_l)@k — 1) symmetric binary
matrices with at least one odd column. Theorem 3.1 in this paper puts our Gramians in Zs[{R,}],
a set whose size is of order 2. In the case of abelian T’ with unique square roots, Corollary 3.18
gives the number of Gramians of binary Parseval [-frames exactly as 2/T'1=1, where |[I"] < %(k +1)
is the quantity of symmetric doubling orbits of I'. Thus, for a given abelian group I' of odd order
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k, we must process no more than oll"I-1 < 25*=1) Gramians to determine code weights, and these
matrices can be computed directly. We may process even fewer Gramians if we reduce the set to
representatives of automorphic switching equivalence classes. Note that in determining the code
weight of a k x k Gramian G, the 2'2"K(G) vectors in the operator’s range may be obtained by
taking all linear combinations of up to rank(G) columns of G, for a total Zrank(c (¥) operations;
comparing this combinatorial problem with the algorithm above, it is evident that computational
savings result from any reduction in the quantity of Gramians we are to process.
Let us first consider the work for Zg and Z% to illustrate this.

4.7. Example. The nontrivial Gramians in Example 3.24 turn out to have ranks 3 (m = 1), 5 (m =
2), and 7 (m = 3), and thus require (%), (2), and (2) computations to exhaust linear combinations
of columns as described. For the cost of producing a 3 x 4 multiplication table and a computing
a handful of table look-ups and comparisons, we partitioned the fourteen nontrivial Gramians
I+ 37" Ry, into three classes; the return on that cost in the form of having fewer Gramians to
weight-check was the reduction from 4-(3)+6-(2)+4-(2) = 1236 computations to (3)+(2)+(2) = 246.

The group Z3 has 14 symmetric doubling orbits, including [e]. The characterization of automor-
phic switching equivalence classes given by Corollary 3.21, provides that the 23 unique Gramians
of binary Parseval Zg—frames reduce to only thirty representatives. The resulting computational
savings are substantial even before taking into account the cost of finding code weights, which has

grown to Z;inlk(G) (%7) operations per Gramian.

4.1.1. Format of comparison tables. Each comparison table contains representatives of switching
equivalence classes of binary Parseval I'-frames for each of the groups we compare. For each such
class, we provide the rank and code weight of the representing Gramian. After the first table, we
exclude the trivial Gramians given by the identity and the matrix of all ones; the Gramians them-
selves are encoded as indexing elements of their symmetric doubling orbit summands. Whenever a
class in Z,s matches the performance of a class in Z}, the two classes are described in the same row
of the associated table. In many such cases, the two classes represent switching equivalent frames.
In the comparison of Z% and Zg, for example, the Gramians given by G1 = ) ger Bigl with
J={Q).@). D), D} c Z3 and G, = > ges, Rig with Jo = {0,1} C Zy each have rank 7 and
code weight 2, and thus are listed in the same row.
4.8. Example (Zg vs. 7Z3). The symmetric doubling orbit partitioning of Zg consists of [0], [3] =
{3,6}, and [1] = {1,2,4,5,7,8}. In this case, each of the four binary Parseval Zg-frames is switching

equivalent to one of the five binary Parseval Z3-frames delineated in Example 3.24. Apart from the
trivial cases of the Gramian being the identity matrix or the matrix of all 1’s, this correspondence

A = and Ry B gy =

assumes an appropriate identification of group elements. Table 2 provides the implications for the
performance of codes.

Cane | weraht J C Z J C Zg
1 1 H{©),@),0), 1), )} [{0,1,3}
3 3 {©®), ()} {0,3}
5 3 {(©), (o), (D} -

7 2 {©),.0).®,.®r | {0,1}
9 1 {©3 {0}

TABLE 2. Comparing Parseval frames with Gramians G = ) . ; R, obtained from

ged
groups Z3 and Zg, together with their code weights. See Example 4.8 for details.
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| frames with Gramians G = }_ . ; R|, obtained from
de weights. See Example 4.9

groups Z3 and Za7, together with their code weights. See Example

3. Comparing Parseva

TABLE
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|[JI|1(2(3|4|5]6| 7|8 |9 |10 11 | 12 | 13 | 14 | 15 | 16
Ny |[1[1]1]2]3[5]12]22]42]92| 174|296 | 476 | 669 | 832 | 948

[J] | 17 | 18 | 19 | 20 | 21 | 22 |23 |24 | 25|26 |27 |28|29 |30 31|32
Nij [ 948 | 832 1669 | 476 | 296 | 174 |92 |42 |22 |12 |5 [ 3 [ 2 |1 |1 |17

TABLE 4. Number of nonzero terms |J| summed in deJ Ry and number N); of
resulting automorphic switching equivalence classes.

4.9. Ezample (Za7 vs. Z3, see Table 3). The symmetric doubling orbit partitioning of Zg7 consists
of [0], [9] = {9,18}, [3] = {3,6,12,15,21,24}, and [1] = Z27\([0] U [9] U [3]). The eight resulting
Gramians each represent a distinct automorphic switching equivalence class of binary Parseval Zo7-
frames. The group Zg, as mentioned in Example 4.7, has 13 nontrivial symmetric doubling orbits
and generates 30 automorphic switching equivalence classes of binary Parseval group frames.

4.10. Example (Z125 vs. Zg, see Table 5). The symmetric doubling orbit partitioning of Z25 consists
of [0] and three orbits, having orders |[25]| = 4, |[5]| = 20, |[1]| = 100. As with with the other Zq
cases thus far, the symmetric doubling orbits of Z195 are invariant under automorphism on Zigs. It
follows that the eight distinct Gramians induced by the three nontrivial symmetric doubling orbits
represent eight distinct classes of binary Parseval Zjs5-frames.

The symmetric doubling orbit partitioning of Z2 consists of [e] and 31 orbits of order 4. The
231 distinct Gramians, each representing a distinct unitary equivalence class of binary Parseval
Zg—frames, reduce to 7152 automorphic switching equivalence classes. Obtained by applying the
algorithm described in this paper implemented in Matlab [22], Table 4 gives a breakdown of the

these classes by the size of J: The entry corresponds to the identity matrix; the bottom

row, which gives the total number of automorphically switching equivalent classes per quantity of
nontrivial symmetric doubling orbit summands, sums to 7152.

For obvious reasons, we do not list representatives from each of the 7152 automorphism equiv-
alence classes. Instead, the comparisons in Table 5 place each of the six nontrivial Gramians of
binary Parseval Zj25-frames next to a Zg representative of the same rank and having maximal code
weight among binary Parseval Z3-frames of the same dimension.
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