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ABSTRACT

Leaky windows and doors, open refrigerators, unattended appli-
ances, left-on lights, and other sources subtly leak energy account-
ing for a large portion of waste. Formal energy audits are expensive
and time consuming and do not capture many sources of leakage
and waste. In this short paper, we present a hybrid IR/RGB imaging
system for an end-user to deploy to perform longitudinal detection
of energy waste. The system uses a low resolution, 16 X 4 IR camera
and a low cost digital camera mounted on a steerable platform
to automatically scan a room, periodically taking low resolution
IR and RGB images. The system uses image stitching to create an
IR/RGB hybrid panoramic image and segmentation to determine
temperature extrema in the scanned room. Finally, this data is com-
bined with thermostat set-point information to highlight hot-spots
or cold-spots which likely indicate energy leakage or wastage. The
system obviates the need for expensive, time-consuming waste
detection methods, for professional setup, and for more intrusive
instrumentation of the home.
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1 INTRODUCTION

Estimates say 75,000 US homes in one year waste an amount of
energy equivalent to the energy loss due to the British Petroleum
oil spill calamity [1]. A portion of this energy wastage can be at-
tributed to callous use of appliances—open refrigerator doors, open
microwave doors, televisions and computers switched on when
there is no one in the room, and open doors and windows. The
other portion can be attributed to poor wall insulation as well as
drafty doors and windows. While poor insulation can be detected
using energy audits, it is more challenging to determine wastage

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

BuildSys '17, November 2017, Delft, The Netherlands

© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06...$15.00

https://doi.org/10.475/123_4

due to careless usage of appliances and opening or closing of win-
dows/door. Continuous monitoring using a sensing system that
is low-cost and stays out of a user’s way is an ideal method for
discovering this waste.

1.1 Related Work

Direct energy metering is a plausible seeming solution to the prob-
lem of waste detection. Every appliance could be instrumented
with an energy meter, and analytics on the energy consumption
data could determine appliance (mis-)use. However, blanketing a
home with such energy meters can be prohibitively expensive and
highly intrusive [15]. Energy disaggregation [4] on data from a
single point measurement system is another plausible solution, but
its accuracy is limited if the number of appliances is large and the
sampling rate is low. To address this problem, we present the design
and preliminary evaluation of a low-cost thermal imaging system
that uses a single low resolution IR and RGB camera to determine
energy consumption hot-spots in a room, motivated by techniques
mentioned in [3, 7].

Energy disaggregation with data fusion from indirect sensing has
shown to improve accuracy and convey more knowledge regarding
user behavior. Acoustic sensing has been used to improve appliance
identification in [12]. The applicability of using user WiFi data to
localize appliance usages is discussed in [13]. In a similar vein
location and activity has been used in [14] to reduce the search
space of disaggregation from contextual information.

The authors of [8] approach the problem by using a steerable
camera system superficially similar to ours, but which requires the
users to create or obtain a 3D CAD model of his home’s interior
space. Our approach is distinguished from this and from the above
approaches to waste detection by our typically lower cost, lower
intrusiveness, and lower amounts of user-facing complexity.

1.2 Contributions

This project is part of an overall effort to reduce the number of
people who require a full, time-consuming, expensive, professional
energy audit. In particular, this project seeks to detect energy leak-
age at a coarser level than the detailed professional service while
providing the additional benefit of scanning for behavioral, rather
than structural, energy waste.

Our system employs an IR and a RGB camera mounted on a
steerable base. The system periodically scans a room, each scan
panning the cameras through a complete revolution while taking
images at regular intervals. The system then uses a combination
of image stitching and segmentation to discover temperature hot-
spots and cold-spots in the room. By overlaying and correlating
panoramic views of the thermal and visual images, the system
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Figure 1: (a) Block diagram of the energy waste detection
system. (b) Camera module prototype viewed from the front.
One can see the battery on top, the pair of cameras in the
middle, and the tripod base below.

provides a visualizations of the hot-/cold-spots. Using multiple
scans, the system could correlate these hot-spots over time, and
so reveal consistent patterns of wastage. Through a preliminary
evaluation using an experimental setup in the lab and in a home,
we show that the system can accurately find these hot-spots.

The design, implementation, and evaluation of this system presents
the following research contributions:

e A user-deployed energy audit system. We present ther-
mal imaging system that can discover likely sources of a
user’s energy waste. It obviates the need to instrument appli-
ances with individual energy meters. We develop an image
processing algorithm that can reliably detect temperature
hot-spots in the room. This provides the ability to collect
longitudinal data on energy wastage of homes.

e Functional prototype and evaluation. We have devel-
oped a prototype system and present preliminary evaluation
showing that we can detect likely sources of energy waste
in a home environment.

2 SYSTEM DESCRIPTION

Figure la gives an overview of the system’s organization. The
system has two major components—Camera Module and the Server
component. The Camera Module consists of the IR camera, RGB
camera, and the stepper motor and is pictured in Figure 1b. The
three tools are controlled by a Raspberry Pi. The motor rotates the
module by a set number of steps. Then the two cameras collect
simultaneous images. The rotate-and-image loop continues until
the module has panned one full rotation. After the set of images is
collected, the Raspberry Pi uploads them to the server and waits
until time for another scan. Once on the server, the images are pre-
processed, stitched into panoramas, and segmented. The server then
examines each segment looking for hot-/cold-spots and produces
an isolated image of any such spot found.

2.1 Camera Module

The first component of our system is the hybrid IR/RGB Cam-
era Module for longitudinal thermal scanning of an entire room
which helps to find the potential sources of energy leak or waste.
While commercially available systems to perform the scanning exist,
they are expensive and warrant professionals to operate. Motivated
by this, we integrate a relatively low-cost, low-power IR camera

(MLX90621) [6] with a Raspberry Pi to build a simple prototype
which can be deployed at ease by the home owners, residential
and commercial occupants at their own comfort. The total BoM
for the prototype costs $125 placing it well within the range of
current smarthome products. While one camera module can only
assess one room at a time, it is less expensive than many consumer
smarthome solutions that would provide similar functionality for
that one room and is far simpler to move to another room.

The IR camera measures the ambient temperature with a range of
—40°C to 85°C with a resolution of 0.02°C and object temperatures
in a range of —50°C to 300°C. These measurements are the bases
for our thermal maps of a room. We simultaneously use a visible-
spectrum camera to collect RGB images of the scanned area, which
images are correlated with the IR data to produce the thermal
maps of the room. The two cameras are kept in constant relative
alignment by a 3D printed housing.

To achieve a 360° pan for generating panoramas, we integrate a
stepper motor into the camera module. The 3D printed housing—
containing the controller, battery, and both cameras—sits atop the
stepper motor. A standard camera tripod holds the motor and hous-
ing steady. Previously, we had used a simpler analog DC motor,
but the stepper motor allows us to precisely control the angle of
rotation between each simultaneous IR and RGB image. In each
scanning period, the device gathers 64 simultaneous IR/RGB image
pairs, rotating 360° in 5.625° increments. Once a scanning period
is complete, the device uploads the collected images to the server
for processing.

2.2 Image Processing

Once uploaded to the server, the image data goes through six dif-
ferent steps:

Preprocessing. The first step turns the raw data into useful infor-
mation. The RGB camera captures images in portrait orientation to
maximize the vertical resolution of the horizontal panorama, so the
server corrects this orientation. The IR camera captures readings
as a flat array of raw byte values, which the server combines with
values collected from that camera’s EEPROM to create a 16 X 4
matrix of temperature readings in °F. We then map the range of
temperatures in the 64-image set to the range of whole numbers
from 0 to 255, producing a set of low-resolution, greyscale thermal
images.

Because the 3D-printed housing maintains the relation between
the two cameras, we were able to experimentally determine a con-
sistent homography between the two kinds of images. Using this,
we project each thermal image on to the space of the corresponding
RGB image. This warping is imperfect, because the cameras do have
different fields of view, requiring us to crop out all areas where
the images do not overlap. The high number of images we collect
results in sufficient overlap to mitigate the potential information
loss.

Panorama Stitching. The panorama stitching procedure is based
on [9, 10]. We first perform a cylindrical warp on all the images.
Then, because we use a stepper motor, we know the relative angular
distance from each image to the next. Trigonometry converts this
into a pixel distance between each image. Finally, we use a pyramid
blending procedure to create smooth thermal and visual panoramas.
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Image Segmentation. Once we have panoramas, we adapt [11]
to take a hybrid approach to the segmentation task. Unlike typical
segmentation through watershedding, we incorporate data from
both the IR panorama and the RGB panorama. Watershedding is a
way of separating an image into non-overlapping segments based
on gradients between pixel values. The process depends heavily
on the number and locations of the markers, or starting points.
We first find the markers for our watershed starting points in the
thermal panorama, effectively basing the locations on detected
thermal zones. Taking these starting points, we then perform the
watershedding on the visual image. This allows us to fuse the two
different kinds of sensor data and account for both in the detection
process.

Hot-Spot Detection. Each of these segments is then evaluated
based on its temperature. Recall in the preprocessing step, the
temperature scale was remapped to byte values. Taking the thermal
panorama, we can do the reverse procedure and get a good-enough
approximation of the real temperatures. We then take the mean and
standard deviation of the temperatures as seen in the panorama.
For each segment, we calculate the segment’s mean temperature.
If segment’s mean temperature is different from the overall mean
by more than one standard deviation, we mark the segment as a
hot-spot or a cold spot. Our process then filters these segments
in two ways. First, we ignore segments below a minimum size,
these are invariably noise and not useful detections. Second, if the
room’s thermostat target is known, we can optionally filter a class
of detections. This second filter allows the system to avoid alerting
on cold AC vents in the summer, or hot vents in the winter.

Hot-Spot Isolation. The next step in image processing is to isolate
the detected hot-/cold-spots. We produce for the user a panorama
overlaying the color blue on cold spots and red on hot spots. Further,
we create cropped images isolating the segment of the panorama
containing the potential source of waste.

Image Matching. The final step in the image processing uses
longitudinal data to confirm sources of energy leakage and waste.
The visualization step creates cropped images isolating potential
leaks. If these are meaningful sources of waste, they will appear
multiple times in the record as the system collects longitudinal data.
By using computer vision to match keypoints in these images, we
can detect when the same hot-/cold-spot appears too frequently
in the record and bring that specific source to the user’s attention.
As a longitudinal component, this depends on multiple scans of
the same room, and the system must be retrained if moved to a
different room.

Alert Delivery. As more alert images match to previous alert im-
ages over time, the probability increases that these images have all
detected the same device wasting energy. The system should then
select one of these images and present it to the user as an indica-
tion that the object pictured is likely wasting energy, having been
left on—as a heat-generating appliance—or open—as a defective
refrigerator door—or allowed to leak—as a drafty window. The user
will then know where she can look for energy savings.

3 EVALUATION

To begin our evaluation, we asked a volunteer to test the camera
at his home. We deployed it, setting the module to collect and

BuildSys *17, November 2017, Delft, The Netherlands

(a) Example visual panorama.

(b) Example panorama with thermal data overlayed.

(c) Example panorama with detected hot-spot segments colored in red.

Figure 2: A generated panaorama of the system success-
fully detecting a bright window and an unattended com-
puter keeping the room at 90°F while the thermostat is set
to 77°F.

Figure 3: Two separate examples of the longitudinal detec-
tion system detecting an unattended computer. The top two
images were isolated from their visual panoramas and iden-
tified as images of the same object via 125 matched key-
points shown in green.
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Figure 4: Longitudinal temperature of window, compared to
outdoor and mean room temperature.

upload image data every 15 minutes the device was active. Data
was collected for approximately 25 total hours over the course of
a few days. We wanted to see if our data collection and image
processing pipeline could detect potential energy leaks in an actual
residential environment. While this is only a preliminary evaluation,
the results are promising.
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Figure 5: Preliminary appliance and object recognition ap-
plied to a refrigerator (a, b), a coffee maker and a monitor (c,
d), and humans with an open refrigerator (e, f).

Figure 2 shows examples of the image panoramas our system
creates. On top is the visual panorama created from only the RGB im-
ages. In the middle we present that same visual panorama overlayed
with a colorized version of the thermal panorama. Temperatures
in the thermal image range from 80°F to over 100°F with warmer
colors representing warmer measured temperatures. These two
panoramas were produced by Panorama stitching and are used in
Image Segmentation as described in 2.2. In the third panorama, the
system has completed Image Segmentation drawn a red mark over
each segment found during Hot-Spot Detection. One sees the system
alerted on a window that may need resealing or better shade and on
the computer which appears to have been left on and unattended.

This was not the only time our subject left the computer on,
unattended, wasting energy, and heating up his already hot room.
Figure 3 shows two Hot-Spot Isolation images created from pro-
cessing different scans of the room. That image processing step,
described in 2.2, isolated and stored a record of the unattended
computer in two separate scans. By Image Matching those alerts,
our matching system identified 125 visual keypoint matches, high-
lighted in green in the third image of Figure 3, between the two
images. The high number of keypoint matches indicates that both
alerts are for the same appliance. Altogether, this longitudinal in-
formation suggests the user’s unattended computer is a source of
energy waste.

Longitudinal data can likewise rule-out things that would appear
from a single scan to be leakages. Figure 4 plots the measured
temperature over time of the window on which the system alerted
in Figure 2, comparing this temperature to the mean temperature
of the room and the outdoor temperature. The window alert in
Figure 2 was generated upon that first sweep where the window
temperature is especially high. Subsequent data shows that alert to
likely be atypical, ruling out the Window as a source of waste or
leakage.

4 NEXT STEPS

Though the capability was not ready by time of publication, we
have begun work on a presence detection and object recognition
stage in processing, which will allow us to determine room occu-
pancy and content. Visualized in Figure 5, the method is based on

comparing the thermal measurements to known surface tempera-
tures of various appliances and pets. Once complete, this will give
the system access to semantics about the objects it recognizes and
allow it to pass that information to the user.

A 98.6°F human body is a particularly challenging object to
detect as it is both a thermal outlier in a typical room, causing false
positive alerts, and it comes in varieties of morphology and apparel
that can blend its parts into the background. Our longitudinal ap-
proach to data collection will help as users’ movements relative
to the room help them stand out. Human detection is especially
important as it is primarily humans who interact with appliances
and so will allow us to further filter false positives from our scan
results as humans in a room can be presumed to be interacting
with an appliance. After integrating this process with the system,
we will scale up our system deployments to do a comprehensive
evaluation and system refinement. This refinement should include
doing as much computation on the device as possible, to improve
users’ privacy protection.

5 CONCLUSION

We presented a thermal imaging system prototype, which is capable
of scanning an entire room and identifying potential sources of
energy leakage and waste. The system is relatively user-friendly and
non-intrusive, as it obviates the need to blanket a room with energy
meters. The system is also cost-effective, being less expensive than
a professional energy audit by combining an essential hardware
device with back-end software to extract information from data
through sensor fusion and computer vision. The system’s design to
remain in place and collect data over time should allow it to give
the user unique insights into their energy use or misuse.
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