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Abstract

Warranty data contain valuable information on product �eld reliability and cus-

tomer behaviors. Most previous studies on analysis of warranty data implicitly assume

that all failures within the warranty period are reported and recorded. However, the

failed-but-not-reported (FBNR) phenomenon is quite common for a product whose

price is not very high. Ignorance of the FBNR phenomenon leads to an overestimate

of product reliability based on �eld return data or an overestimate of warranty cost

based on lab data or tracking data. Being an indicator of customer satisfaction, the

FBNR proportion provides valuable managerial insights. In this study, statistical in-

ference for the FBNR phenomenon as well as �eld lifetime distribution is described.

We �rst propose a �exible FBNR function to model the time-dependent FBNR be-

havior. Then, a framework for data analysis is developed. In the framework, both

semiparametric and parametric approaches are used to jointly analyze warranty claim

data and supplementary tracking data from a follow-up of selected customers. The

FBNR problem in the tracking data is minimal and thus the data can be used to e�ec-

tively decouple the FBNR information from the warranty claim data. The proposed

methods are illustrated with an example.

Key Words: Semiparametric estimation; Log-location-scale distribution; Maximum likeli-

hood; Warranty; Field reliability; Reporting behavior.
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1 Introduction

Warranty is an important part of a product. It a�ects purchase decisions of customers

and pro�ts of manufacturers since o�ering warranty causes additional costs (Huang et al.,

2007). These costs include receiving, diagnosing, repairing, replacing, repackaging, restock-

ing and/or reselling returned products. Generally, warranty costs account for 2% to 15%

of the total sales price (Blischke et al., 2011). It is important to estimate the warranty

cost accurately so that the right amount of money can be reserved to meet future warranty

claims. The warranty costs depend on both product �eld reliability and customer reporting

behaviors. A warranty service will be initiated only when (i) a product is sold, (ii) it fails

within the warranty period, and (iii) its user claims the warranty. Therefore, the product

reliability per se, the sales process, as well as the customer reporting behavior contributes

to the overall warranty cost.

The primary reason to provide warranty is due to unreliability of the product. The

probability of a �eld failure within the warranty period can be obtained based on prob-

abilistic models for the failure pattern of the product as well as statistical methods for

warranty data. Some studies proposed probabilistic models to depict the failure pattern

by considering various factors such as di�erent warranty policies (Chukova and Johnston,

2006), quality variations in manufacturing and assembly process (Nair et al., 2001), op-

erating environment like temperature, humidity, vibration and pollution (Ye et al., 2013),

use frequency (Hong and Meeker, 2010), multiple failure modes (Taylor and Peña, 2014),

and recurrent events (Hu and Lawless, 1996). Alternatively, direct analysis of the warranty

data gives a more straightforward estimate of the failure probability (Hsu et al., 2015). For

a comprehensive overview of the warranty data analysis, see Wu (2013). The above work

focuses more on the �eld reliability of a single unit. To forecast the number of warranty

claims over time, the dynamic sales process should be taken into account. The homoge-

neous and non-homogeneous Poisson processes (Ja et al., 2002; Gurgur, 2011; Xie et al.,

2014) are popular models for the sales over time.

In addition to the product reliability and the sales process, customer-reporting behav-

iors are also an important factor a�ecting the number of warranty claims. The behaviors
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include delay reporting (Kalb�eisch and Lawless, 1992; Rai and Singh, 2006), fraudulent

reporting due to such reasons as misuse, and the failed-but-not-reported (FBNR) behavior

(Wu, 2011). The FBNR behavior is a common phenomenon in warranty claims. It reduces

the number of warranty claims and leads to an over-reservation of warranty money. Pos-

sible reasons for the FBNR phenomenon could be as follows. Due to rapid-technological

innovation, products, especially electronic products such as cellphones, cameras, USB �ash

memories, and home entertainment systems, are easily obsolete. Some customers may

shift their a�ection to new designs when their current products are still functioning, or

the products can no longer meet the users' requirements. In these circumstances, a failure

within warranty may not result in a warranty claim. Another possible reason is the di�-

culty in accessing warranty services. Instead of spending time waiting for claim handling

and product repair, customers may simply purchase new ones when their products fail.

In reality, the FBNR phenomenon could happen to most products. For instance, major

mobile phone companies launch a new and improved generation device every six to twelve

months. Impelled by better functions and models, customers tend to change cellphones

more frequently (Wilhelm et al., 2011).

Most studies interpreted a product with no claim as with no failure. They implicitly

assumed that the number of failures within the warranty period is equal to the number of

warranty claims received. This assumption, however, may not hold in reality due to the

FBNR phenomenon argued above. Generally, the number of warranty claims (observed

failures) is smaller than that of actual failures. Warranty studies concerning the FBNR

behavior are quite limited in the literature. Patankar and Mitra (1995) coined the behavior

as the �partial redemption of warranty� or �partial warranty execution�. They proposed

two classes of warranty execution functions, which were essentially one minus the FBNR

proportion, to model the time-dependent reporting behavior. Wu (2011) examined e�ects

of the FBNR phenomenon on warranty reserves for a product having two failure modes. Xie

and Liao (2013) derived the mean and variance of the total warranty and post-warranty

repair demand given a constant FBNR proportion. However, the above studies mainly

focus on probability modeling of the FBNR behavior. Statistical inference for the FBNR
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parameters in these probability models is not found. Obviously, the validity of assumptions

on the FBNR behavior and the values of the FBNR parameters should be inferred from

warranty data.

As the FBNR phenomenon indicates customer's dissatisfaction of the product or the

warranty service, accurate estimation of the FBNR proportion not only helps manufactur-

ers budget for the right warranty reserve, but also helps them better understand target

users' sentiments. In this study, statistical inference on the FBNR behavior is investigated.

The major source of data we can utilize is the warranty claim data from all customers. Nev-

ertheless, the warranty claim data are quite messy. Besides the FBNR behavior, the data

are often contaminated by many factors reviewed above, such as heterogeneous customer

use behaviors. To analyze the warranty claim data, assumptions such as on the lifetime

distribution and on the customer reporting behavior are needed. These assumptions are

extremely di�cult, if not impossible, to verify using the warranty claim data alone. Luckily,

manufacturers often implement tracking studies where a number of customers are selected

randomly and followed up closely. The major purpose is to learn customer experience and

sentiment (Stevens, 2006, pp. 17). By-products of these studies are failure reports from

these customers, called tracking data in our study. An example can be found in Hong

and Meeker (2010). The tracking data provide additional information on product's �eld

reliability. It may be reasonable to believe that there is no FBNR problem in the tracking

data. Assumptions on the lifetime distribution and the FBNR behavior could be veri�ed

by jointly analyzing the tracking data and the warranty claim data. In this study, we �rst

propose a �exible parametric FBNR function. Then a statistical inference framework for

the FBNR phenomenon is developed through joint analysis of the warranty claim data and

the tracking data.

The rest of the paper is organized as follows. Section 2 introduces the data of interest.

A �exible model for the FBNR proportion is also proposed. Based on the setting, a sta-

tistical inference framework is proposed in Section 3. Section 4 develops a semiparametric

approach that jointly analyzes the warranty claim data and the tracking data. Section 5

deals with parametric point and interval estimation. Section 6 discusses hypothesis test
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procedures for selecting an appropriate baseline lifetime distribution and a proper FBNR

function. A simulation study is conducted in Section 7 to assess the performance of the

proposed estimation methodology. Section 8 demonstrates the inference framework with a

real example. Section 9 concludes the paper.

2 Problem Description

2.1 Available data

Two sets of data are used in our analysis. The �rst set is the warranty claim data for

untracked units in the �eld, which is often well-maintained due to the development of

modern technology on database management systems. Let τ be the warranty period. Let

X be the lifetime of a random unit and C be the associated censoring time for the unit.

The value of C depends on τ as well as the sales date of the unit. Suppose that when the

unit fails at age t, t < C, it will be reported to the manufacturer as a warranty claim with

probability 1− q(t), 0 ≤ q(t) ≤ 1. This means that the FBNR probability q(t) is a function

of time. We will propose a �exible parametric form for q(t) in Section 2.2 to capture the

non-decreasing FBNR proportion overtime. Let δ be the failure-report indicator for the

untracked unit. The indicator δ = 1 if the unit fails before the censoring time C and the

failure is reported, and δ = 0 otherwise. Furthermore, let T be the observed service time

for the unit, i.e., T = δX + (1− δ)C. The data observed from the untracked unit is (T, δ).

Suppose that the warranty claim database contains n untracked units in total. Therefore,

there are n realizations of (T, δ), denoted as Dwc = {(ti, δi); i = 1, 2, · · · , n}.

The second one is called the tracking data for a subset of sold units that are placed

under a tracking study. By installing sensors in the units or following-up customers through

email or phone, all failures within the observation period will be recorded and the FBNR

problem is minimal. These failures are not counted into the warranty claim database. Note

that the FBNR phenomenon could still happen when the tracked customers do not respond

to the follow-up. Nevertheless, the proportion of unresponded customers is expected to be

small and they are suggested to be excluded from the tracked group, which will further
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mitigate the FBNR problem within the remaining tracking population. It is assumed that

the tracking sample is representative of the general population. Let δ̃ be the failure-report

indicator for a tracked unit with lifetime X and censoring time C. Then δ̃ = I{X≤C},

where I is the indicator function. This means that we assume no FBNR problem, and

thus δ̃ is equivalent to the censoring indicator. The observed data for the unit is (T, δ̃).

Suppose there are m tracked units in total. Therefore, the observed tracking data are

Dtr = {(tj, δ̃j); j = 1, 2, · · · ,m}.

2.2 Time dependent FBNR behavior

An appropriate form for the FBNR function q(t) requires a good understanding of the

reporting behavior. To model the time-dependent reporting behavior, Patankar and Mitra

(1995) studied two classes of piecewise warranty execution functions, which are 1−q(t). As

discussed in Patankar and Mitra (1995), a customer is more likely to execute a warranty

claim if the product fails at an initial stage of the use. The above observation suggests

that the FBNR proportion may be increasing over time. Moreover, as indicated in their

model, the customer's willingness to report the failure could be relatively constant at the

beginning of usage. Therefore, the FBNR proportion was assumed constant zero from time

zero to a random change point, after which the FBNR proportion was assumed to follow

a linear or an exponential function. Nevertheless, for low-price products such as thumb

drives, the FBNR phenomenon could occur at the very beginning, i.e., q(0) > 0, which

cannot be captured by their models. In addition, the piecewise functions they proposed

are not smooth enough, which poses great di�culties in the statistical inference.

To circumvent the di�culty in estimation, we propose a �exible parametric form for

the non-decreasing FBNR function as

q(t) = 1− r0 exp
[
−(at)b

]
, t ≥ 0, (1)

where r0 ∈ [0, 1] is the initial report proportion at time zero, and a ≥ 0, b > 0 are scale and

shape parameters of the FBNR function.

The function (1) can have di�erent shapes and is able to describe various reporting

behaviors. For example, when the product life cycle is short, the FBNR function may
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Figure 1: FBNR function q(t).

increase slowly at the beginning and increase fast when the life cycle is approaching. If we

let b > 1 in (1), then the function would give the desired property; see the dash-dot line in

Figure 1. When the product is expensive or when it is easy to approach the manufacturer

to claim the warranty, users are more likely to report failed items. In these cases, the

FBNR problem may be rare at the beginning (i.e., r0 = 1) and the FBNR proportion may

be low during the whole warranty period. In some other cases, the FBNR proportion can

be high. For nonrepairable products that are sold with pro-rata warranty policies, refund

decreases with the failure time. Near the end of the warranty period, the refund is near

zero, which may lead to a very high FBNR proportion. The FBNR function can also be

relatively constant for a product that are with a long life cycle and are not expensive. In

this case, we have a = 0. When a = 0 and r0 = 1, we have q(t) = 0, meaning that all

failures within the warranty period are reported. Therefore, the FBNR function is �exible

enough to model a variety of FBNR problems. See Figure 1 for some examples.
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3 A Framework for Data Analysis

In this section, a statistical analysis and inference framework for warranty data in the

presence of the FBNR behavior is developed. Two key elements in the framework are the

product lifetime distribution F (·) and the FBNR function q(·). After warranty claim data

and tracking data are collected, the inference begins with semiparametric estimation that

assumes a nonparametric lifetime model and a parametric FBNR function (1). See Section

4 for the detailed inference procedures. Results of the semiparametric inference are helpful

in identifying an appropriate parametric lifetime distribution for the subsequent parametric

inference. In addition, experience from lab tests, past designs and/or engineering knowledge

is also useful in selecting the lifetime distribution. See Section 6.1 for detailed discussions

about selection of a parametric lifetime model. The semiparametric inference also provides

rough estimates of the three parameters of q(·) in (1). The estimates, together with the

manufacturer's knowledge on the product, would be helpful in determining possible values

of some parameters in q(·). For example, if the rough estimate of r0 is close to 1 and the

manufacturer believes no FBNR at the beginning, we may set r0 = 1 in the subsequent

parametric inference. Alternatively, quantitative methods such as hypothesis tests and the

Akaike information criterion (AIC) can be used to test these possible values. See Section

6.2 for details of the tests. Based on the selected lifetime model and the FBNR function,

both point and interval estimations for the model parameters could be readily done through

joint analysis of the warranty claim data and the tracking data. Point estimators could

be obtained by the maximum-likelihood (ML) method. See Section 5.2. Various methods

such as the large-sample normal approximation and the bootstrap can be used to construct

con�dence intervals for parameters of interest. See Section 5.3.

The inference results provide managerial insights and can be used for decision support.

For example, the lifetime distribution informs the reliability of the product in the �eld. As

an indicator of customer's satisfaction of the product or the related warranty service, the

FBNR function re�ects the customer's sentiment on the product. If the product is still

on sale at the time of analysis, then the results can be used to forecast warranty reserve

for this product by considering both the product reliability and the FBNR behavior. If
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the product is no longer on sale, the results can be useful for products of next generation

or similar products. A �owchart of the inference framework is given in Figure 2 to better

visualize the inference procedures.

Phase 1: Data Collection

Collect relevant data: {Dwc,Dtr}

Phase 2: Semiparametric Estimation

Analyze data with semiparametric approach

Phase 3.1: Parametric Model Formulation

Identify the baseline lifetime distribution

Phase 3.2: Parametric Model Formulation

Determine the form of the FBNR function

Phase 4: Parametric Model Estimation

Obtain point and interval estimates of unknown parameters

Phase 5: Parametric Model Forecasting

Obtain point and interval estimates of quantities of interest

Phase 6: Decision Making

Provide managerial insights for business performance improvement

Figure 2: A framework for the statistical analysis and inference.

4 Semiparametric Estimation

Through joint analysis of tracking data and warranty claim data, this section develops

semiparametric inference techniques by assuming a nonparametric lifetime CDF F (·) and

a parametric FBNR function. We �rst consider a general FBNR function given in (1). A

weighted estimator of F (·) is proposed. We then consider a special case when the FBNR
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proportion is a constant, where the closed-form of the weight that minimizes the variance

of the weighted estimator of F (·) is available.

4.1 General FBNR function

Assume that q(·) takes the parametric form in (1). For n untracked units, suppose that there

are H (H ≤ n) distinct failure times t1 < t2 < · · · < tH . let dh =
∑n

i=1 I(ti = th, δi = 1) be

the number of failures at time th, and nh =
∑n

i=1 I(ti ≥ th) be the number of units at risk

just prior to th. Similarly, for m tracked units, suppose that there are K distinct failure

times t1 < t2 < · · · < tK . let dk =
∑m

j=1 I(tj = tk, δ̃j = 1) be the number of failures at

time tk, and mk =
∑m

j=1 I(tj ≥ tk) be the number of units at risk just prior to tk. Let G(·)

be the failure-report proportion of the untracked units, and F (·) is the product lifetime

distribution. The Kaplan-Meier (KM) estimates of G(·) and F (·) can be readily obtained,

respectively:

Ĝ(t) = 1−
∏
h: th≤t

(
1− dh

nh

)
, (2)

and

F̂ (t) = 1−
∏
k: tk≤t

(
1− dk

mk

)
. (3)

It is easy to know that G(t) =
∫ t
0
f(x)[1− q(x)]dx. Apply integration by parts to get

G(t) = F (t) [1− q(t)] +

∫ t

0

F (x)q′(x)dx. (4)

Replacing G(t) and F (t) with their respective estimates, and noting that F̂ (t) is constant

over [tk−1, tk), we have the following estimating equations for the parameters in q(·):

Ĝ(t) = F̂ (tk(t))
[
1− q(tk(t))

]
+
∑
k:tk≤t

F̂ (tk−1) [q(tk)− q(tk−1)] , (5)

where k(t) = max{k : tk ≤ t} and t0 = 0. Evaluating the above equation at three

separate points and solving the system of equations, we can obtain estimates of the FBNR

parameters (r0, a, b). According to our simulation experience, we suggest evaluating at the
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three time points t = τ/3, τ/2 and τ for simplicity, or the three points 0.15505τ , 0.64495τ

and τ inspired from the Legendre-Gauss Quadrature method (Canuto et al., 1988, sec. 2.3).

The uniform strong consistency of the KM estimator under random censorship ensures

that supt:0≤t≤τ |F̂ (t) − F (t)| → 0 as m → ∞ and supt:0≤t≤τ |Ĝ(t) − G(t)| → 0 as n → ∞

(Stute and Wang, 1993). If (r0, a, b) is the unique solution of the system of equations:

G(τi) = F (τi) [1− q(τi)] +

∫ τi

0

F (x)q′(x)dx, i = 1, 2, 3,

then we may treat (r̂0, â, b̂) as Z-estimators. Therefore, (r̂0, â, b̂) →a.s. (r0, a, b) as n,m →

∞ by using Theorem 5.9 in Van der Vaart (2000) together with a continuous mapping

argument applying to the integral of F (x)q′(x). Based on the standard theory of KM

estimation, both Ĝ(t) and F̂ (t) are asymptotically normal with the respective asymptotic

variance as

σ2
Ĝ

(t) = AVar{
√
n[Ĝ(t)−G(t)]} = [1−G(t)]2

∫ t

0

dG(x)

[1−G(x)]2[1− C(x)]
, (6)

and

σ2
F̂

(t) = AVar{
√
m[F̂ (t)− F (t)]} = [1− F (t)]2

∫ t

0

dF (x)

[1− F (x)]2[1− C(x)]
, (7)

where C(·) is the censoring time distribution that is assumed common for both datasets.

The estimates of σ2
Ĝ

(t) and σ2
F̂

(t) are given by

σ̂2
Ĝ

(t) = n
[
1− Ĝ(t)

]2 ∑
h: th≤t

dh
nh(nh − dh)

, (8)

and

σ̂2
F̂

(t) = m
[
1− F̂ (t)

]2 ∑
k: tk≤t

dk
mk(mk − dk)

, (9)

respectively (Lawless, 2003, pp. 97).

Although the KM estimator F̂ (t) from tracking data has good large sample properties,

the size of the tracking data is usually not large as tracking could be costly. After obtaining

Ĝ(t) and the estimated q̂(t) = 1− r̂0 exp
[
−(ât)b̂

]
, an alternative estimator of F (t) can be
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obtained recursively based on (4), denoted as F̃ (t). Noting that F̃ (t) is constant over

[th−1, th), we have the following equation:

Ĝ(th(t)) = F̃ (th(t))
[
1− q̂(th(t))

]
+
∑
h:th≤t

F̃ (th−1) [q̂(th)− q̂(th−1)] , (10)

where h(t) = max{h : th ≤ t} and t0 = 0. Therefore, we have

F̃ (t) = F̃ (th(t)) =
Ĝ(th(t))−

∑
h:th≤t F̃ (th−1) [q̂(th)− q̂(th−1)]

1− q̂(th(t))
. (11)

For example, when t = t1, we have F̃ (t1) = Ĝ(t1)/[1− q̂(t1)].

To take advantage of both tracking data and warranty claim data, we may pool F̂ (t)

and F̃ (t) to get a weighted estimator of F (t) as

F̂ ∗(t;w) = wF̃ (t) + (1− w)F̂ (t), (12)

where w is a weight parameter. A rule of thumb choice for the weight is w = n/(n+m). We

may also consider a choice of w that minimizes AVar(F̂ ∗(t;w)). The minimization entails

a closed form of AVar(F̂ ∗(t;w)), which is not available when a general FBNR function (1)

is assumed. When the FBNR proportion is constant, nevertheless, a closed form of such a

w is available, as shown in the next subsection.

4.2 Constant FBNR function

When a is zero in (1), the FBNR function is a constant function, i.e., q(t) = 1− r0. As a

result, we will have G(t) = r0F (t). For any t ≤ τ , an estimator of r0 and its corresponding

asymptotic variance can be obtained as

r̂0(t) =
Ĝ(t)

F̂ (t)
, (13)

and

σ2
r̂0

(t) =
σ2
Ĝ

(t)

F (t)2
+
r20σ

2
F̂

(t)

F (t)2
. (14)

The choice of t in r̂0(t) above a�ects the asymptotic variance. We recommend using t = τ ,

i.e., the warranty length, for r̂0(t). To justify this choice, we show that σ2
r̂0

(t) is decreasing
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with t in a special case where censoring times of all units are equal to τ . See Appendix C

of the online supplementary material for more details.

Based on r̂∗0 = Ĝ(τ)/F̂ (τ), the estimator F̃ (t) from the warranty claim data and the

weighted estimator F̂ ∗(t;w) based on all data are then given by

F̃ (t) =
Ĝ(t)F̂ (τ)

Ĝ(τ)
, (15)

and

F̂ ∗(t;w) = w
Ĝ(t)F̂ (τ)

Ĝ(τ)
+ (1− w)F̂ (t), (16)

respectively. The asymptotic variance of F̂ ∗(t;w) is given by

σ2
F̂ ∗(t;w) =

w2 [η1G(τ)2 − 2η2G(τ)G(t) + η3G(t)2]

G(τ)4
− 2η4w

G(τ)
+ η5, (17)

and by solving the equation ∂σ2
F̂ ∗(t;w)/∂w = 0, we can obtain the optimum weight w∗ as

w∗ =
η4G(τ)3

η1G(τ)2 − 2η2G(τ)G(t) + η3G(t)2
,

where η1 = F (τ)2σ2
Ĝ

(t)+G(τ)2σ2
F̂

(t), η2 = F (τ)2σĜ(t, τ)+G(τ)2σF̂ (t, τ), η3 = F (τ)2σ2
Ĝ

(τ)+

G(τ)2σ2
F̂

(τ), η4 = G(τ)σ2
F̂

(t) − G(t)σF̂ (t, τ), η5 = σ2
F̂

(t). Note that σĜ(t, τ) and σF̂ (t, τ)

are the respective covariance functions of the processes {
√
n[Ĝ(t) − G(t)], 0 < t ≤ τ} and

{
√
m[F̂ (t) − F (t)], 0 < t ≤ τ} that converge weekly to zero mean Gaussian processes

(Lawless, 2003, pp. 97). For t ≤ τ , σĜ(t, τ) and σF̂ (t, τ) can be obtained as

σĜ(t, τ) = [1−G(t)][1−G(τ)]

∫ t

0

dG(x)

[1−G(x)]2[1− C(x)]
, (18)

and

σF̂ (t, τ) = [1− F (t)][1− F (τ)]

∫ t

0

dF (x)

[1− F (x)]2[1− C(x)]
. (19)

The respective estimates of σĜ(t, τ) and σF̂ (t, τ) are given by

σ̂Ĝ(t, τ) = n
[
1− Ĝ(t)

] [
1− Ĝ(τ)

] ∑
h: th≤t

dh
nh(nh − dh)

, (20)

and

σ̂F̂ (t, τ) = m
[
1− F̂ (t)

] [
1− F̂ (τ)

] ∑
k: tk≤t

dk
mk(mk − dk)

. (21)

Based on these estimates, an estimate of the optimal weight w∗ can be obtained.
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5 Parametric Inference

The above section has discussed semiparametric inference that assumes a parametric FBNR

function (1) and a nonparametric lifetime distribution F (·). The nonparametric estimate

of F (·) together with a probability plot is helpful to identify an appropriate distribution

in an appropriate parametric distribution, based on which parametric inference can be

conducted.

5.1 Parametric lifetime model

The log-location-scale family of distributions is usually a good model for product lifetime

(Lawless, 2003, chap. 1). Assume that the random lifetime X belongs to the log-location-

scale distribution with a cumulative distribution function (CDF)

F (x) = Φ

[
log(x)− µ

σ

]
, x > 0, (22)

and a probability density function (PDF)

f(x) =
1

σx
φ

[
log(x)− µ

σ

]
, x > 0, (23)

respectively. The distribution has a location parameter µ ∈ R and a scale parameter σ > 0.

Φ(·) and φ(·) are the respective standard CDF and PDF corresponding to µ = 0 and σ = 1.

When φ(·) is replaced by the standard normal PDF φnor(·), the distribution is lognormal

for X. While φsev(z) = exp[z − exp(z)] corresponds to a Weibull distribution for X, and

φlogis(z) = exp(z)/[σz(1 + exp(z))2] leads to a log-logistic distribution.

5.2 ML estimation

By assuming a log-location-scale distribution for the lifetime and a time-varying execution

function q(t) in (1), the parameters to estimate are θ = (µ, σ, r0, a, b)
′. Maximum Likelihood

(ML) estimation is used to estimate the parameters. First, consider the warranty claim

data Dwc. Because the report behavior is independent of the failure pattern, the likelihood

contribution from a reported failure (ti, δi) with δi = 1 is equal to [1 − q(ti)]f(ti). On the
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other hand, a unit is not reported due to two possibilities: (i) its lifetime is larger than

the censoring time, or (ii) it has failed within warranty but the failure is not reported.

Therefore, the likelihood contribution for an unreported record (ti, δi) with δi = 0 is 1 −

F (ti) +
∫ ti
0
q(x)f(x)dx, which is equal to 1−

∫ ti
0

[1− q(x)]f(x)dx.

Based on the above analysis, the log-likelihood function based on the warranty claim

data Dwc is given by

`wc(θ;Dwc) =
n∑
i=1

{
δi log{[1− q(ti)]f(ti)}+ (1− δi) log

{
1−

∫ ti

0

[1− q(x)]f(x)dx

}}
.

(24)

Since we assume no FBNR phenomenon in the tracking data, the tracking data are simply

right-censored and the associated log-likelihood function can be easily speci�ed as:

`tr(θ;Dtr) =
m∑
j=1

{
δ̃j log[f(tj)] + (1− δ̃j) log[1− F (tj)]

}
. (25)

Combining both the warranty claim data and the tracking data, we can get the joint

log-likelihood function of θ, which is the sum of `wc(θ;Dwc) and `tr(θ;Dtr):

`(θ;Dwc,Dtr) =
n∑
i=1

{
δi log{[1− q(ti)]f(ti)}+ (1− δi) log

{
1−

∫ ti

0

[1− q(x)]f(x)dx

}}
+

m∑
j=1

{
δ̃j log[f(tj)] + (1− δ̃j) log[1− F (tj)]

}
. (26)

The ML estimator θ̂ = (µ̂, σ̂, r̂0, â, b̂)
′ can be obtained by numerically maximizing the

log-likelihood function (26).

5.3 Con�dence intervals

In addition to the point estimate, a con�dence interval is commonly used to account for the

uncertainty in the ML estimator. Both asymptotic normal approximation and bootstrap

method will be used for the interval estimation.

Asymptotic normal approximation to the ML estimators θ̂ is often used to construct

con�dence intervals for θ. To use the method, we �rst obtain the ML estimates of θ̂

for θ through maximizing the joint log-likelihood function (26). Given a large sample of
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lifetime observations, the ML estimator θ̂ has a distribution which can be approximated

by a multivariate normal distribution N(θ, I−1(θ)), where I(θ) is the Fisher information

matrix that can be estimated using the observed information matrix I(θ̂), the negative of

the second-order partial derivatives of the joint log-likelihood function `(θ) evaluated at θ̂.

Expressions of I(θ) when the FBNR function is a constant are provided in Appendix A of

the online supplementary material. The method often works well for moderate sample sizes.

The intervals so obtained are called normal approximation con�dence intervals, which are

easy to compute and widely used in many software packages (Jeng and Meeker, 2000). For

a bounded parameter that takes value on a subset of the real line, normal approximation

might generate intervals with endpoints outside the parameter space. Such absurd phe-

nomenon could happen when the number of observed failures is not large enough or when

the parameter value is close to the boundary. For example, the normal approximation

con�dence interval of r0 ∈ [0, 1] may have endpoints lying outside the parameter space

when r0 is close to zero or one. Consequently, a suitable reparameterization that trans-

forms the parameter to a new scale may be needed to remove the range constraint on a

bounded parameter. The logarithm transformation is chosen for non-negative parameters,

e.g., the scale parameter σ. Two popular choices for r0 ∈ [0, 1] are the �probit� transforma-

tion Φ−1nor(r0) and the �logit� transformation Φ−1logis(r0) = log[r0/(1− r0)]. According to our

simulation studies, performances of these two transformations are almost the same.

Field data often have small number of observed failures and heavy censoring. In this

case, the coverage probabilities of con�dence intervals produced by the normal approxi-

mation method may not be close to nominal values (Jeng and Meeker, 2000). A carefully

designed bootstrap procedure may be able to produce better con�dence intervals. For our

problem with random and heavy censoring, the parametric bootstrap may not be applica-

ble because of the di�culties in specifying the censoring process. See Meeker and Escobar

(1998, chap. 9) for more details. The nonparametric bootstrap can also be problematic as

there is a high chance to get a bootstrap sample with no failures (Hong et al., 2009). In

this paper, Newton and Raftery's weighted likelihood bootstrap is adopted (Newton and

Raftery, 1994). The method uses a random weight to the log-likelihood of each observation
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and thus it is free of the resampling problems above. Given the warranty claim data Dwc

and the tracking data Dtr, the algorithm is as follows.

1. Simulate two sets of i.i.d. weight samples {wi, i = 1, · · · , n} and {wj, j = 1, · · · ,m}

from a probability distribution FW (·).

2. Use the weights and two data sets to obtain a weighted log-likelihood function as

˜̀(θ;Dwc,Dtr) = ˜̀
wc(θ;Dwc) + ˜̀tr(θ;Dtr), (27)

where

˜̀
wc(θ;Dwc) =

n∑
i=1

wi

{
δi log{[1− q(ti)]f(ti)}+ (1− δi) log

{
1−

∫ ti

0

[1− q(x)]f(x)dx

}}
,

and

˜̀
tr(θ;Dtr) =

m∑
j=1

wj

{
δ̃j log[f(tj)] + (1− δ̃j) log[1− F (tj)]

}
.

Maximize the weighted log-likelihood to get an estimate θ̂
∗
.

3. Repeat the above steps for B times to obtain a collection of bootstrap estimates θ̂
∗(b)
, b =

1, 2, · · · , B.

In the weighted bootstrap, the randomness of ˜̀ is induced by the random weights. For

a weight distribution FW (·) having the property E(W ) = [Var(W )]1/2, Jin et al. (2001)

showed that the conditional distribution of
√
n(θ̂

∗
− θ̂) given the data can provide a good

approximation to the distribution of
√
n(θ̂ − θ). They also showed that the method is

robust for di�erent weight distributions, e.g, Gamma(1,1), Gamma(1,0.5), Beta(
√

2−1, 1).

Based on the bootstrap estimates θ̂
∗(b)
i , b = 1, 2, · · · , B of the ith element of θ, the weighted

bootstrap percentile con�dence interval at a 100(1− α)% con�dence level is given by

[θ̂∗i,α/2, θ̂
∗
i,1−α/2],

where θ̂∗i,α/2 and θ̂
∗
i,1−α/2 are the 100(α/2)th and the 100(1−α/2)th quantile of the bootstrap

estimates.
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6 Goodness-of-Fit Test and Hypothesis Test

Before parameter estimation, goodness-of-�t tests and hypothesis tests in this section help

identify appropriate parametric models for product's lifetime and customer's FBNR be-

havior. Statistically, models that provide best �ts to the observed data will be chosen.

6.1 Select a baseline lifetime distribution

Prior knowledge is helpful in identifying a lifetime model. An appropriate lifetime model

could be determined based on engineering knowledge and experience of experts. If the prod-

uct is an upgraded version of an existing model, such as laptops and washing machines, then

the lifetime distribution of the product may be the same as the old version. Alternatively,

knowledge about the lifetime distribution may accumulate during the product development

and lab testing. In these cases, the distribution assumption can be validated based on �eld

data. On the other hand, it is common that the distribution is unclear to the manufac-

turer, due to a lack of knowledge. The �eld data can then help to select a baseline lifetime

distribution. Qualitatively, the model selection can be done using a probability plot. A

probability plot for a log-location-scale distribution compares the transformed nonpara-

metric estimates of F (·) (using the transformation Φ−1(·) in (22)) with the logarithm of

time. The KM estimates F̂ (·) in (3) from right-censored tracking data might be used for

the plot. While we suggest using the weighted estimates F̂ ∗(·) in (12), which are pooled

estimates based on the tracking data and the warranty claim data, for the probability plot.

Quantitatively, the Akaike information criterion (AIC), a statistic trading o� a model's

likelihood against its complexity, can be used for lifetime model selection. The AIC is

de�ned as AIC = −2`(θ̂) + 2dim(θ), where dim(θ) is the number of model parameters.

A model with a minimum AIC will be selected. The above qualitative and quantitative

methods are demonstrated in Section 8.
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Table 1: Discussion of hypothesis results.

H0 : a = 0 Reject Reject Not reject Not reject

H0 : r0 = 1 Reject Not reject Reject Not reject

q(t)= 1− r0 exp
[
−(at)b

]
1− exp

[
−(at)b

]
1− r0 0

6.2 Choose an appropriate FBNR function

After a parametric lifetime distribution is chosen, hypothesis testing can be used to de-

termine a proper form of the FBNR function q(t) based on the warranty claim data and

the tracking data. A �exible FBNR model q(t) = 1− r0 exp
[
−(at)b

]
has been proposed in

Section 2.2. It is possible that some parameters take values at the boundary. To identify

a suitable form for the function, we can test whether a = 0, or whether r0 = 1. The two

hypothesis tests can be constructed as follows:

H0 : a = 0 versus H1 : a > 0,

and

H0 : r0 = 1 versus H1 : r0 < 1.

The likelihood ratio test is used since the null model under H0 could be viewed as a

nested model of the alternative model under H1. It should be noted that the parameter of

interest is on the boundary of the parameter space, i.e., a = 0 or r0 = 1. In this case, the

asymptotic distribution of the likelihood ratio statistic is a 50 : 50 mixture of χ2
0 and χ2

1

(Self and Liang, 1987). This fact can be used to test the hypothesis.

As shown in the Table 1, if both H0 : a = 0 and H0 : r0 = 1 are rejected, the FBNR

function is of the form q(t) = 1 − r0 exp
[
−(at)b

]
, indicating a time-dependent increasing

FBNR function. The parameter estimation is based on the log-likelihood function (26).

If H0 : a0 = 0 is rejected but H0 : r0 = 1 is not, it indicates that there is no FBNR

phenomenon at the beginning and an increasing FBNR proportion thereafter, i.e., q(t) =

1 − exp
[
−(at)b

]
. If H0 : r0 = 1 is reject but there is no su�cient evidence to reject H0 :

a = 0, we will conclude that the FBNR proportion is constant over time, i.e., q(t) = 1− r0.

19



If both H0 : a = 0 and H0 : r0 = 1 are not rejected, we may accept the fact that all failures

of untracked units will be reported, i.e., there is no FBNR phenomenon. Then both the

tracking data and the warranty claim data are simply right censored.

7 Simulation Study

A simulation experiment is conducted to evaluate the performance of the proposed methods.

In the simulation, the lifetime distribution is assumed lognormal with µ = 8.5 and σ = 1.5,

while the FBNR function is q(t) = 1 − exp
[
−(at)b

]
with a = 0.0013 and b = 10. Both

the warranty length τ and the end-of-study date are set to be 730. As 1000 tracked units

are enough to achieve satisfactory performance according to our simulation experience, the

tracking sample size is simply set to be 1000. Several untracked sample sizes are used, i.e.,

n = 5000, 50000.

Six distributions of the entry time, which is the time between shipment to a dealer

and sale to a customer, were used to cover a variety of possible observational situations.

Speci�cally, we generated entry times for both untracked sample and tracked sample from

each of the uniform distribution on (0, 30], (0, 365], (0, 730] and the exponential distribution

with rate 1/15, 2/365, 1/365. The uniform distribution on (0, 30] determines a staggered

entry distribution with a mean of 15 days and a standard deviation of 8.7 days. The

exponential distribution with rate 1/15 re�ects a similar situation that most units are sold

within one month. Other distributions of the entry time can be interpreted in similar ways.

For each combination of n and entry types, we generate 5000 Monte Carlo samples. Table

2 shows the estimated relative biases (bias divided by true value) and relative RMSEs

(RMSE divided by true value) of parameter estimators given di�erent sizes of warranty

claim data and types of entry. When there are 5000 untracked units in total, both relative

biases and RMSEs increase when the mean time of entry increases. This is because the

missing data rate increase greatly as the observation window for a unit sold late is much

shorter than a unit sold early. Another similar observation is that given the same mean

time to entry, the relative biases and RMSEs are smaller with exponentially distributed

entry times compared with that with entry times from a uniform distribution. A possible
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explanation is that the exponential distribution is skewed right so that more units will

enter early with longer observation periods. For all entry types, nevertheless, the biases

and RMSEs can be reduced signi�cantly if the untracked sample size increases to 50000.

As can be seen, with 50000 untracked units, the ML estimators have negligible biases and

the RMSEs are reasonably small.

Besides staggered entry patterns, we also examined e�ects of warranty length and FBNR

proportion. Without loss of generality, we considered the situation that all units are sold at

time zero. In this case, the data are singly censored at the end of warranty. Table 3 shows

the relative biases and relative RMSEs of parameter estimates with di�erent warranty

lengths. Note that the end-of-study date is equal to the warranty length for each case.

As can be seen, the relative biases are reasonably small and the relative RMSEs decrease

with longer warranty since missing data rate decreases. Di�erent FBNR proportions are

achieved by varying b. As we �xed a as 0.0013 and warranty length as well as end-of-

study date as 730. Higher value of b results in lower FBNR proportion. Table 4 shows the

estimated relative biases and relative RMSEs of parameter estimators with di�erent values

of b. As can be seen, the RMSEs decrease with the increase of b as the overall missing data

rate decreases.

As shown in the simulation, the inference accuracy of estimators of FBNR parameters

is greatly a�ected by the size of the warranty data. The missing data proportion, which

is essentially determined by staggered entry types, length of warranty, end-of-study date,

and the FBNR function, also has great impacts on the estimation accuracy and e�ciency.

In reality, the warranty sample is usually very large. Together with relatively small num-

ber of tracking units, we are able to decouple FBNR information by joint analyzing the

warranty data and the tracking data. With more warranty claim data, estimates will be

more accurate and useful. The simulation results provide useful insights on warranty data

collection.

21



Table 2: Estimated relative biases and relative RMSEs of parameter estimators with dif-

ferent warranty claim data sizes and di�erent staggered entry types.

n Parameter
Unif(0,30) Unif(0,365) Unif(0,730)

Biases(%) RMSEs(%) Biases(%) RMSEs(%) Biases(%) RMSEs(%)

5000 µ -0.03 1.11 -0.05 1.29 -0.15 1.61

σ -0.14 3.89 -0.21 4.27 -0.41 5.00

a -1.37 10.40 -7.75 27.51 -10.33 32.67

b 5.41 37.97 5.50 63.78 6.01 85.35

50000 µ 0.02 0.39 0.01 0.44 0.00 0.56

σ 0.02 1.35 0.01 1.46 0.01 1.74

a 0.32 1.54 -0.15 6.24 -1.97 12.92

b 3.19 5.65 4.03 6.23 4.33 6.82

n Parameter
Exp(1/15) Exp(2/365) Exp(1/365)

Biases(%) RMSEs(%) Biases(%) RMSEs(%) Biases(%) RMSEs(%)

5000 µ -0.02 1.11 -0.07 1.27 -0.08 1.47

σ -0.06 3.89 -0.30 4.24 -0.22 4.76

a -1.15 10.08 -6.21 23.38 -8.67 28.80

b 4.61 22.73 4.55 30.03 5.34 54.22

50000 µ 0.03 0.39 0.02 0.44 0.01 0.50

σ 0.06 1.35 0.06 1.48 0.03 1.64

a 0.26 1.51 0.16 3.20 -0.37 6.74

b 3.17 5.61 3.96 6.40 4.12 6.37
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Table 3: Estimated relative biases and relative RMSEs of parameter estimators with dif-

ferent warranty lengths.

n Parameter
τ = 730 τ = 800 τ = 900

Biases(%) RMSEs(%) Biases(%) RMSEs(%) Biases(%) RMSEs(%)

5000 µ 0.00 1.11 -0.03 1.05 0.03 0.97

σ -0.02 3.90 -0.11 3.76 0.03 3.53

a -0.59 7.42 0.13 2.16 0.05 1.43

b 4.29 18.46 3.97 15.83 3.28 11.76

50000 µ 0.02 0.39 0.05 0.34 0.04 0.33

σ 0.06 1.34 0.15 1.24 0.13 1.20

a 0.24 1.31 0.04 0.67 -0.07 0.42

b 3.26 5.91 2.91 5.72 1.58 3.99

Table 4: Estimated relative biases and relative RMSEs of parameter estimators with dif-

ferent values of b.

n Parameter
b = 8 b = 10 b = 12

Biases(%) RMSEs(%) Biases(%) RMSEs(%) Biases(%) RMSEs(%)

5000 µ -0.03 1.17 0.00 1.11 -0.03 1.05

σ -0.09 4.02 -0.02 3.90 -0.13 3.75

a -0.32 6.11 -0.59 7.42 -0.82 8.28

b 5.30 35.40 4.29 18.46 4.39 11.50

50000 µ 0.03 0.41 0.02 0.39 0.02 0.37

σ 0.08 1.41 0.06 1.34 0.04 1.30

a 0.19 1.51 0.24 1.31 0.23 1.21

b 2.80 7.49 3.26 5.91 3.41 5.78
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8 Illustrative Example

Our example concerns an appliance that is used in residences and o�ces. The appliance,

referred to as Product D in an early study (Hong and Meeker, 2010), had multiple fail-

ure modes and a two-year warranty. Some product units are installed with sensors and

connected to the Internet. Their failure information is well tracked. For untracked units,

the failure time information is available for those failed and returned to the manufacturer.

They may su�er from the FBNR problem. The data were multiply censored due to the

staggered entry of a product into the �eld over one month. To protect sensitive and pro-

prietary information of the product, we simulate data based on the results from analysis

of the real data. Without loss of generality, we focus on one speci�c failure mode of the

Product D.

There are 1105 tracked units and 5126 untracked units in total. In the tracked group,

115 failures are observed. In the untracked group, 490 failures are reported and the other

4636 units do not claim a warranty. The respective KM estimates Ĝ(t) and F̂ (t) of the

report fractions for the untracked and the tracked units as well as the weighted estimates

F̂ ∗(t) based on all data are shown in Figure 3. As we can see, Ĝ(t) for the untracked units

are lower compared to F̂ (t) for the tracked units as well as F̂ ∗(t), and the di�erence between

the two proportions becomes larger over time. The observation indicates the existence of

the FBNR behavior.

The lognormal, Weibull and loglogistic models were used to �t the tracking data and the

resulting AIC values are 2233.5, 2242.1 and 2240.9 respectively. The lognormal distribution

is selected for the data as it has the smallest AIC value. Figure 4 shows the lognormal

probability plot based on F̂ ∗(t). The linear pattern in the plot shows that the lognormal

model provides a good �t to the data. To select an appropriate FBNR function, we proceed

to test the hypothesis H0 : a = 0 �rst. The likelihood ratio test shows that H0 is rejected

at a signi�cance level of 0.05. While there is no su�cient evidence to reject the hypothesis

H0 : r0 = 1 at a signi�cance level of 0.05. Therefore, we use q(t) = 1− exp
[
−(at)b

]
for the

FBNR function.

After the lifetime model and the FBNR function are determined, the parameter esti-

24



0 200 400 600 800
Time (Days)

0

0.02

0.04

0.06

0.08

0.1

Fr
ac

tio
n 

R
ep

or
tin

g
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Figure 3: The respective KM estimates Ĝ(t) and F̂ (t) of the report fractions for the

untracked and the tracked units as well as the weighted estimates F̂ ∗(t) based on all data.

2 3 4 5 6 7
log(t)

-4

-3.5

-3

-2.5

-2

-1.5

-1

Φ
no

r
-1

[F
(t)

]

Figure 4: Lognormal probability plot based on F̂ ∗(t).
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Table 5: The ML estimates, standard errors and 95% approximate con�dence intervals

constructed by normal approximation (NOR) and weighted bootstrap percentile (WBP)

based on warranty claim and tracking data together.

Parameter Estimate Standard error
95% Con�dence interval

NOR WBP

µ 8.44 0.11 [8.23, 8.65] [8.15, 8.60]

σ 1.47 0.06 [1.35, 1.60] [1.32, 1.57]

a 0.0013 0.00005 [0.0012, 0.0014] [0.0007, 0.0014]

b 9.69 3.96 [1.93, 17.45] [1.41, 14.94]

mates are obtained based on the tracking data and warranty claim data together. Table 5

gives the ML estimates, standard errors and the 95% approximate con�dence intervals for

the model parameters constructed by the normal approximation and the weighted boot-

strap percentile method. As shown in the table, the standard errors of most estimates

are relatively small except for that of b̂. This estimation problem is mainly caused by the

heavy censoring and limited warranty claim data. Note that the multiple censoring causes

further impreciseness of the inference when compared with that of single right censoring.

Figure 5 shows the ML estimates and the corresponding 95% pointwise con�dence bands

for F (t) based on all data Dwc ∪Dtr and based on tracking data Dtr only. The weighted

bootstrap is used to obtain the con�dence bands. As we can see, the con�dence bands

based on all data are narrower than that based on tracking data. Figure 6 shows the ML

estimates and the corresponding 90% pointwise con�dence bands for q(t) using normal

approximation with transformation based on all data. The FBNR proportion is close to

zero and relatively low at the beginning and increases afterwards, which results in lower

return proportion of untracked units than that of tracked units. In reality, manufacturers

are suggested to pay special attention to the existence of the FBNR phenomenon and keep

updating analyses with the accumulation of warranty claim data.
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Figure 5: The ML estimates and corresponding 95% pointwise con�dence bands (CBs) for

F (t) using weighted bootstrap percentile based on all data Dwc ∪Dtr (solid line) and only

based on tracking data Dtr (dash-dot line).
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Figure 6: The ML estimates and corresponding 90% pointwise con�dence bands (CBs) for

q(t) based on all data Dwc ∪Dtr.

27



9 Conclusion

The FBNR behavior is common due to several factors, such as the product price, the

product life cycle, the warranty policy, and the quality of the warranty service. Ignorance of

the FBNR phenomenon leads to an overestimate of product reliability based on �eld return

data or an overestimate of warranty cost based on lab data or tracking data. In this study,

we used both warranty claim data and tracking data for statistical inference in the presence

of the FBNR problem. We proposed a �exible FBNR function (1) to model the time-varying

FBNR behavior. Based on the FBNR function, a statistical framework was proposed to

jointly analyze the warranty claim data and the tracking data. In the framework, we �rst

performed semiparametric data analysis. Such analysis provides insights into the FBNR

behavior and helps to identify an appropriate lifetime distribution for parametric analysis.

After selecting an appropriate lifetime model and a FBNR function through goodness-of-�t

and hypothesis testing, both point and interval estimations of the model parameters can

be performed based on standard likelihood methods. The estimated FBNR proportion can

then be used to predict warranty costs and spare-part provision of the current product. It

can also be used for the prediction of a new version of the current product or a similar

product. More importantly, the FBNR proportion can be used as an important indicator

of customer satisfaction, which helps manufactures understand customer sentiments.

SUPPLEMENTARY MATERIALS

The supplementary materials of this article include the following: (1) details and illustra-

tions of the likelihood inference; (2) proof of the decreasing function (14) in Section 4.2;

(3) R code for evaluating the performance of the proposed method.

ACKNOWLEDGMENTS

We are grateful to the editor, associate editor, and two referees for their insightful comments

and constructive suggestions. Ye Zhi-Sheng is supported by Singapore AcRF Tier 1 funding

(#R-266-000-081-133 and #R-266-000-095-112), and also the Natural Science Foundation

of China (71601138). The work by Hong Yili was partially supported by the National

Science Foundation under Grant CMMI-1634867 to Virginia Tech.

28



References

Blischke, W. R., Karim, M. R., and Murthy, D. N. P. (2011). Warranty Data Collection

and Analysis. Springer.

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral Methods in

Fluid Dynamics. Springer.

Chukova, S. and Johnston, M. (2006). Two-dimensional warranty repair strategy based on

minimal and complete repairs. Mathematical and Computer Modelling, 44(11-12):1133�

1143.

Gurgur, C. Z. (2011). Dynamic cash management of warranty reserves. The Engineering

Economist, 56(1):1�27.

Hong, Y. and Meeker, W. Q. (2010). Field-failure and warranty prediction based on aux-

iliary use-rate information. Technometrics, 52(2):148�159.

Hong, Y., Meeker, W. Q., and McCalley, J. D. (2009). Prediction of remaining life of power

transformers based on left truncated and right censored lifetime data. The Annals of

Applied Statistics, 3(2):857�879.

Hsu, N.-J., Tseng, S.-T., and Chen, M.-W. (2015). Adaptive warranty prediction for highly

reliable products. IEEE Transactions on Reliability, 64(3):1057�1067.

Hu, X. J. and Lawless, J. F. (1996). Estimation from truncated lifetime data with supple-

mentary information on covariates and censoring times. Biometrika, 83(4):747�761.

Huang, H. Z., Liu, Z. J., and Murthy, D. N. P. (2007). Optimal reliability, warranty and

price for new products. IIE Transactions, 39(8):819�827.

Ja, S.-S., Kulkarni, V. G., Mitra, A., and Patankar, J. G. (2002). Warranty reserves for

nonstationary sales processes. Naval Research Logistics, 49(5):499�513.

Jeng, S. L. and Meeker, W. Q. (2000). Comparisons of approximate con�dence interval

procedures for type I censored data. Technometrics, 42(2):135�148.

29



Jin, Z., Ying, Z., and Wei, L. (2001). A simple resampling method by perturbing the

minimand. Biometrika, 88(2):381�390.

Kalb�eisch, J. D. and Lawless, J. F. (1992). Some useful statistical methods for truncated

data. Journal of Quality Technology, 24(3):145�152.

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. John Wiley &

Sons.

Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data. John

Wiley & Sons.

Nair, V. N., Tang, B., and Xu, L.-A. (2001). Bayesian inference for some mixture problems

in quality and reliability. Journal of Quality Technology, 33(1):16�28.

Newton, M. A. and Raftery, A. E. (1994). Approximate bayesian inference with the

weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B (Method-

ological), 56(1):3�48.

Patankar, J. G. and Mitra, A. (1995). E�ects of warranty execution on warranty reserve

costs. Management Science, 41(3):395�400.

Rai, B. and Singh, N. (2006). Customer-rush near warranty expiration limit, and nonpara-

metric hazard rate estimation from known mileage accumulation rates. IEEE Transac-

tions on Reliability, 55(3):480�489.

Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estima-

tors and likelihood ratio tests under nonstandard conditions. Journal of the American

Statistical Association, 82(398):605�610.

Stevens, R. E. (2006). The Marketing Research Guide. Routledge.

Stute, W. and Wang, J.-L. (1993). The strong law under random censorship. The Annals

of Statistics, 21(3):1591�1607.

30



Taylor, L. L. and Peña, E. A. (2014). Nonparametric estimation with recurrent competing

risks data. Lifetime Data Analysis, 20(4):514�537.

Van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press.

Wilhelm, W., Yankov, A., and Magee, P. (2011). Mobile phone consumption behavior and

the need for sustainability innovations. Journal of Strategic Innovation and Sustainabil-

ity, 7(2):20�40.

Wu, S. (2011). Warranty claim analysis considering human factors. Reliability Engineering

& System Safety, 96(1):131�138.

Wu, S. (2013). A review on coarse warranty data and analysis. Reliability Engineering &

System Safety, 114:1�11.

Xie, W. and Liao, H. (2013). Some aspects in estimating warranty and post-warranty repair

demands. Naval Research Logistics, 60(6):499�511.

Xie, W., Liao, H., and Zhu, X. (2014). Estimation of gross pro�t for a new durable product

considering warranty and post-warranty repairs. IIE Transactions, 46(2):87�105.

Ye, Z.-S., Hong, Y., and Xie, Y. (2013). How do heterogeneities in operating environments

a�ect �eld failure predictions and test planning? The Annals of Applied Statistics,

7(4):2249�2271.

31


	Introduction
	Problem Description
	Available data
	Time dependent FBNR behavior

	A Framework for Data Analysis
	Semiparametric Estimation
	General FBNR function
	Constant FBNR function

	Parametric Inference
	Parametric lifetime model
	ML estimation
	Confidence intervals

	Goodness-of-Fit Test and Hypothesis Test
	Select a baseline lifetime distribution
	Choose an appropriate FBNR function

	Simulation Study
	Illustrative Example
	Conclusion

