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Abstract

Warranty data contain valuable information on product field reliability and cus-
tomer behaviors. Most previous studies on analysis of warranty data implicitly assume
that all failures within the warranty period are reported and recorded. However, the
failed-but-not-reported (FBNR) phenomenon is quite common for a product whose
price is not very high. Ignorance of the FBNR phenomenon leads to an overestimate
of product reliability based on field return data or an overestimate of warranty cost
based on lab data or tracking data. Being an indicator of customer satisfaction, the
FBNR proportion provides valuable managerial insights. In this study, statistical in-
ference for the FBNR phenomenon as well as field lifetime distribution is described.
We first propose a flexible FBNR function to model the time-dependent FBNR be-
havior. Then, a framework for data analysis is developed. In the framework, both
semiparametric and parametric approaches are used to jointly analyze warranty claim
data and supplementary tracking data from a follow-up of selected customers. The
FBNR problem in the tracking data is minimal and thus the data can be used to effec-
tively decouple the FBNR information from the warranty claim data. The proposed

methods are illustrated with an example.

Key Words: Semiparametric estimation; Log-location-scale distribution; Maximum likeli-
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1 Introduction

Warranty is an important part of a product. It affects purchase decisions of customers
and profits of manufacturers since offering warranty causes additional costs (Huang et al.,
2007). These costs include receiving, diagnosing, repairing, replacing, repackaging, restock-
ing and/or reselling returned products. Generally, warranty costs account for 2% to 15%
of the total sales price (Blischke et al., 2011). It is important to estimate the warranty
cost accurately so that the right amount of money can be reserved to meet future warranty
claims. The warranty costs depend on both product field reliability and customer reporting
behaviors. A warranty service will be initiated only when (i) a product is sold, (ii) it fails
within the warranty period, and (iii) its user claims the warranty. Therefore, the product
reliability per se, the sales process, as well as the customer reporting behavior contributes
to the overall warranty cost.

The primary reason to provide warranty is due to unreliability of the product. The
probability of a field failure within the warranty period can be obtained based on prob-
abilistic models for the failure pattern of the product as well as statistical methods for
warranty data. Some studies proposed probabilistic models to depict the failure pattern
by considering various factors such as different warranty policies (Chukova and Johnston,
2006), quality variations in manufacturing and assembly process (Nair et al., 2001), op-
erating environment like temperature, humidity, vibration and pollution (Ye et al., 2013),
use frequency (Hong and Meeker, 2010), multiple failure modes (Taylor and Pena, 2014),
and recurrent events (Hu and Lawless, 1996). Alternatively, direct analysis of the warranty
data gives a more straightforward estimate of the failure probability (Hsu et al., 2015). For
a comprehensive overview of the warranty data analysis, see Wu (2013). The above work
focuses more on the field reliability of a single unit. To forecast the number of warranty
claims over time, the dynamic sales process should be taken into account. The homoge-
neous and non-homogeneous Poisson processes (Ja et al., 2002; Gurgur, 2011; Xie et al.,
2014) are popular models for the sales over time.

In addition to the product reliability and the sales process, customer-reporting behav-

iors are also an important factor affecting the number of warranty claims. The behaviors



include delay reporting (Kalbfleisch and Lawless, 1992; Rai and Singh, 2006), fraudulent
reporting due to such reasons as misuse, and the failed-but-not-reported (FBNR) behavior
(Wu, 2011). The FBNR behavior is a common phenomenon in warranty claims. It reduces
the number of warranty claims and leads to an over-reservation of warranty money. Pos-
sible reasons for the FBNR phenomenon could be as follows. Due to rapid-technological
innovation, products, especially electronic products such as cellphones, cameras, USB flash
memories, and home entertainment systems, are easily obsolete. Some customers may
shift their affection to new designs when their current products are still functioning, or
the products can no longer meet the users’ requirements. In these circumstances, a failure
within warranty may not result in a warranty claim. Another possible reason is the diffi-
culty in accessing warranty services. Instead of spending time waiting for claim handling
and product repair, customers may simply purchase new ones when their products fail.
In reality, the FBNR phenomenon could happen to most products. For instance, major
mobile phone companies launch a new and improved generation device every six to twelve
months. Impelled by better functions and models, customers tend to change cellphones
more frequently (Wilhelm et al., 2011).

Most studies interpreted a product with no claim as with no failure. They implicitly
assumed that the number of failures within the warranty period is equal to the number of
warranty claims received. This assumption, however, may not hold in reality due to the
FBNR phenomenon argued above. Generally, the number of warranty claims (observed
failures) is smaller than that of actual failures. Warranty studies concerning the FBNR
behavior are quite limited in the literature. Patankar and Mitra (1995) coined the behavior
as the “partial redemption of warranty” or “partial warranty execution”. They proposed
two classes of warranty execution functions, which were essentially one minus the FBNR
proportion, to model the time-dependent reporting behavior. Wu (2011) examined effects
of the FBNR phenomenon on warranty reserves for a product having two failure modes. Xie
and Liao (2013) derived the mean and variance of the total warranty and post-warranty
repair demand given a constant FBNR proportion. However, the above studies mainly

focus on probability modeling of the FBNR behavior. Statistical inference for the FBNR



parameters in these probability models is not found. Obviously, the validity of assumptions
on the FBNR behavior and the values of the FBNR parameters should be inferred from
warranty data.

As the FBNR phenomenon indicates customer’s dissatisfaction of the product or the
warranty service, accurate estimation of the FBNR proportion not only helps manufactur-
ers budget for the right warranty reserve, but also helps them better understand target
users’ sentiments. In this study, statistical inference on the FBNR behavior is investigated.
The major source of data we can utilize is the warranty claim data from all customers. Nev-
ertheless, the warranty claim data are quite messy. Besides the FBNR behavior, the data
are often contaminated by many factors reviewed above, such as heterogeneous customer
use behaviors. To analyze the warranty claim data, assumptions such as on the lifetime
distribution and on the customer reporting behavior are needed. These assumptions are
extremely difficult, if not impossible, to verify using the warranty claim data alone. Luckily,
manufacturers often implement tracking studies where a number of customers are selected
randomly and followed up closely. The major purpose is to learn customer experience and
sentiment (Stevens, 2006, pp. 17). By-products of these studies are failure reports from
these customers, called tracking data in our study. An example can be found in Hong
and Meeker (2010). The tracking data provide additional information on product’s field
reliability. It may be reasonable to believe that there is no FBNR problem in the tracking
data. Assumptions on the lifetime distribution and the FBNR, behavior could be verified
by jointly analyzing the tracking data and the warranty claim data. In this study, we first
propose a flexible parametric FBNR function. Then a statistical inference framework for
the FBNR phenomenon is developed through joint analysis of the warranty claim data and
the tracking data.

The rest of the paper is organized as follows. Section 2 introduces the data of interest.
A flexible model for the FBNR proportion is also proposed. Based on the setting, a sta-
tistical inference framework is proposed in Section 3. Section 4 develops a semiparametric
approach that jointly analyzes the warranty claim data and the tracking data. Section 5

deals with parametric point and interval estimation. Section 6 discusses hypothesis test



procedures for selecting an appropriate baseline lifetime distribution and a proper FBNR
function. A simulation study is conducted in Section 7 to assess the performance of the
proposed estimation methodology. Section 8 demonstrates the inference framework with a

real example. Section 9 concludes the paper.

2 Problem Description

2.1 Awvailable data

Two sets of data are used in our analysis. The first set is the warranty claim data for
untracked units in the field, which is often well-maintained due to the development of
modern technology on database management systems. Let 7 be the warranty period. Let
X be the lifetime of a random unit and C' be the associated censoring time for the unit.
The value of C' depends on 7 as well as the sales date of the unit. Suppose that when the
unit fails at age ¢,¢ < C, it will be reported to the manufacturer as a warranty claim with
probability 1 —q(t),0 < ¢(t) < 1. This means that the FBNR probability ¢(t) is a function
of time. We will propose a flexible parametric form for ¢(¢) in Section 2.2 to capture the
non-decreasing FBNR, proportion overtime. Let 0 be the failure-report indicator for the
untracked unit. The indicator 6 = 1 if the unit fails before the censoring time C and the
failure is reported, and 6 = 0 otherwise. Furthermore, let T be the observed service time
for the unit, i.e., 7= 60X 4 (1 — 0)C. The data observed from the untracked unit is (7', ¢).
Suppose that the warranty claim database contains n untracked units in total. Therefore,
there are n realizations of (7',0), denoted as Dy, = {(t;,0;);i =1,2,--- ,n}.

The second one is called the tracking data for a subset of sold units that are placed
under a tracking study. By installing sensors in the units or following-up customers through
email or phone, all failures within the observation period will be recorded and the FBNR
problem is minimal. These failures are not counted into the warranty claim database. Note
that the FBNR phenomenon could still happen when the tracked customers do not respond
to the follow-up. Nevertheless, the proportion of unresponded customers is expected to be

small and they are suggested to be excluded from the tracked group, which will further



mitigate the FBNR problem within the remaining tracking population. It is assumed that
the tracking sample is representative of the general population. Let § be the failure-report
indicator for a tracked unit with lifetime X and censoring time C. Then 6 = Iix<cy,
where [ is the indicator function. This means that we assume no FBNR problem, and
thus 0 is equivalent to the censoring indicator. The observed data for the unit is (7 5)

Suppose there are m tracked units in total. Therefore, the observed tracking data are

Dt'r - {(tj75])7j = 1727 e 7m}'

2.2 Time dependent FBNR behavior

An appropriate form for the FBNR function ¢(¢) requires a good understanding of the
reporting behavior. To model the time-dependent reporting behavior, Patankar and Mitra
(1995) studied two classes of piecewise warranty execution functions, which are 1 —gq(¢). As
discussed in Patankar and Mitra (1995), a customer is more likely to execute a warranty
claim if the product fails at an initial stage of the use. The above observation suggests
that the FBNR proportion may be increasing over time. Moreover, as indicated in their
model, the customer’s willingness to report the failure could be relatively constant at the
beginning of usage. Therefore, the FBNR proportion was assumed constant zero from time
zero to a random change point, after which the FBNR proportion was assumed to follow
a linear or an exponential function. Nevertheless, for low-price products such as thumb
drives, the FBNR phenomenon could occur at the very beginning, i.e., ¢(0) > 0, which
cannot be captured by their models. In addition, the piecewise functions they proposed
are not smooth enough, which poses great difficulties in the statistical inference.

To circumvent the difficulty in estimation, we propose a flexible parametric form for

the non-decreasing FBNR function as
q(t) =1—rgexp [—(at)b} , t>0, (1)

where 7 € [0, 1] is the initial report proportion at time zero, and a > 0,b > 0 are scale and
shape parameters of the FBNR function.
The function (1) can have different shapes and is able to describe various reporting

behaviors. For example, when the product life cycle is short, the FBNR function may
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Figure 1: FBNR function ¢(t).

increase slowly at the beginning and increase fast when the life cycle is approaching. If we
let b > 1in (1), then the function would give the desired property; see the dash-dot line in
Figure 1. When the product is expensive or when it is easy to approach the manufacturer
to claim the warranty, users are more likely to report failed items. In these cases, the
FBNR problem may be rare at the beginning (i.e., ro = 1) and the FBNR proportion may
be low during the whole warranty period. In some other cases, the FBNR proportion can
be high. For nonrepairable products that are sold with pro-rata warranty policies, refund
decreases with the failure time. Near the end of the warranty period, the refund is near
zero, which may lead to a very high FBNR proportion. The FBNR function can also be
relatively constant for a product that are with a long life cycle and are not expensive. In
this case, we have a = 0. When a = 0 and rq = 1, we have ¢(¢) = 0, meaning that all
failures within the warranty period are reported. Therefore, the FBNR function is flexible

enough to model a variety of FBNR problems. See Figure 1 for some examples.



3 A Framework for Data Analysis

In this section, a statistical analysis and inference framework for warranty data in the
presence of the FBNR behavior is developed. Two key elements in the framework are the
product lifetime distribution F'(-) and the FBNR function ¢(-). After warranty claim data
and tracking data are collected, the inference begins with semiparametric estimation that
assumes a nonparametric lifetime model and a parametric FBNR function (1). See Section
4 for the detailed inference procedures. Results of the semiparametric inference are helpful
in identifying an appropriate parametric lifetime distribution for the subsequent parametric
inference. In addition, experience from lab tests, past designs and/or engineering knowledge
is also useful in selecting the lifetime distribution. See Section 6.1 for detailed discussions
about selection of a parametric lifetime model. The semiparametric inference also provides
rough estimates of the three parameters of ¢(-) in (1). The estimates, together with the
manufacturer’s knowledge on the product, would be helpful in determining possible values
of some parameters in ¢(-). For example, if the rough estimate of r¢ is close to 1 and the
manufacturer believes no FBNR at the beginning, we may set 1o = 1 in the subsequent
parametric inference. Alternatively, quantitative methods such as hypothesis tests and the
Akaike information criterion (AIC) can be used to test these possible values. See Section
6.2 for details of the tests. Based on the selected lifetime model and the FBNR function,
both point and interval estimations for the model parameters could be readily done through
joint analysis of the warranty claim data and the tracking data. Point estimators could
be obtained by the maximum-likelihood (ML) method. See Section 5.2. Various methods
such as the large-sample normal approximation and the bootstrap can be used to construct
confidence intervals for parameters of interest. See Section 5.3.

The inference results provide managerial insights and can be used for decision support.
For example, the lifetime distribution informs the reliability of the product in the field. As
an indicator of customer’s satisfaction of the product or the related warranty service, the
FBNR function reflects the customer’s sentiment on the product. If the product is still
on sale at the time of analysis, then the results can be used to forecast warranty reserve

for this product by considering both the product reliability and the FBNR behavior. If



the product is no longer on sale, the results can be useful for products of next generation
or similar products. A flowchart of the inference framework is given in Figure 2 to better

visualize the inference procedures.

( Phase 1: Data Collection
L Collect relevant data: {Dy., D¢}

-1 J

Phase 2: Semiparametric Estimation

Analyze data with semiparametric approach

Phase 3.1: Parametric Model Formulation

Identify the baseline lifetime distribution

Phase 3.2: Parametric Model Formulation
Determine the form of the FBNR function

Phase 4: Parametric Model Estimation

Obtain point and interval estimates of unknown parameters

Phase 5: Parametric Model Forecasting

Obtain point and interval estimates of quantities of interest

Phase 6: Decision Making

Provide managerial insights for business performance improvement
J

=

Figure 2: A framework for the statistical analysis and inference.

4 Semiparametric Estimation

Through joint analysis of tracking data and warranty claim data, this section develops
semiparametric inference techniques by assuming a nonparametric lifetime CDF F(-) and
a parametric FBNR function. We first consider a general FBNR function given in (1). A
weighted estimator of F(-) is proposed. We then consider a special case when the FBNR

9



proportion is a constant, where the closed-form of the weight that minimizes the variance

of the weighted estimator of F'(-) is available.

4.1 General FBNR function

Assume that ¢(-) takes the parametric form in (1). For n untracked units, suppose that there
are H (H < n) distinct failure times t; <ty < --- <ty. let dj, = > | I(t; = tp,0; = 1) be
the number of failures at time ¢, and nj, = Y, I(t; > t5,) be the number of units at risk
just prior to t,. Similarly, for m tracked units, suppose that there are K distinct failure
times t; < tg < --- < tg. let d, = Z;n:l I(t; = tk,gj = 1) be the number of failures at
time ¢4, and my = Y 7", I(t; > t;) be the number of units at risk just prior to ¢;. Let G(-)
be the failure-report proportion of the untracked units, and F(-) is the product lifetime

distribution. The Kaplan-Meier (KM) estimates of G(-) and F(-) can be readily obtained,

respectively:
Gy=1- ] (1—%), (2)
hitn<t h
and
ﬁ(t):1—H(1—jT’“). (3)
ki by <t k
It is easy to know that G(¢ fo )[1 — q(z)]dz. Apply integration by parts to get
6= FO - ao) + [ P ()

Replacing G(t) and F(t) with their respective estimates, and noting that F(¢) is constant

over [tr_1,1), we have the following estimating equations for the parameters in ¢(-):
G(t) = Flta) [1 = alte)] + D Fltsoa) falt) — ate)] (5)
kit <t

where k(t) = max{k : t; < t} and to = 0. Evaluating the above equation at three
separate points and solving the system of equations, we can obtain estimates of the FBNR

parameters (79, a,b). According to our simulation experience, we suggest evaluating at the
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three time points ¢t = 7/3, 7/2 and 7 for simplicity, or the three points 0.155057, 0.644957
and 7 inspired from the Legendre-Gauss Quadrature method (Canuto et al., 1988, sec. 2.3).

The uniform strong consistency of the KM estimator under random censorship ensures
that sup,gc,<, |[F() = F()] = 0 as m — oo and sup,g<,<, |G(t) — G(t)| = 0 as n — oo

(Stute and Wang, 1993). If (ro, a,b) is the unique solution of the system of equations:

G(r) = F(r)[1 - q(r)] + / " F(a)(@)de,i = 1,2.3,

~ ~

then we may treat (79, a,b) as Z-estimators. Therefore, (7o, a,b) —45. (10,a,b) as n,m —
oo by using Theorem 5.9 in Van der Vaart (2000) together with a continuous mapping
argument applying to the integral of F(x)¢(x). Based on the standard theory of KM
estimation, both G (t) and F (t) are asymptotically normal with the respective asymptotic

variance as

H0) = NarlVlG() ~ 60} = 1= GOF [ gty ©

and

74l0) = War{yilF() ~ Fly = (- FOP [ o S @

0

where C(-) is the censoring time distribution that is assumed common for both datasets.

The estimates of 0%(t) and o%(t) are given by

2(t) = n [1 - @(t)] > (8)

and
72t =m 1~ ﬁ(t)r 3 # (9)

respectively (Lawless, 2003, pp. 97).
Although the KM estimator ﬁ(t) from tracking data has good large sample properties,
the size of the tracking data is usually not large as tracking could be costly. After obtaining

G(t) and the estimated §(t) = 1 — 7 exp [—(atﬂ, an alternative estimator of F'(t) can be
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obtained recursively based on (4), denoted as F(t). Noting that F(t) is constant over

[th—1,tn), we have the following equation:

G(tnw) = Fltuw) [1 = Qltwe)] + Y F(tar) [@tn) — qlta-1)], (10)

h:ty, <t

where h(t) = max{h : t, <t} and ty = 0. Therefore, we have

Ft) = ﬁ(th(t)) _ Gthw) — Zh:th;tfa(\?tl;(;))[a\(th) - a\(th—l)]. (11)

For example, when ¢ = t;, we have F(t;) = @(tl)/[l —q(t1)]
To take advantage of both tracking data and warranty claim data, we may pool F (t)

and F(t) to get a weighted estimator of F(t) as
F*(t;w) = wF(t) + (1 — w)F(t), (12)

where w is a weight parameter. A rule of thumb choice for the weight is w = n/(n+m). We
may also consider a choice of w that minimizes AVar(F*(¢;w)). The minimization entails
a closed form of AVar(F*(t;w)), which is not available when a general FBNR function (1)
is assumed. When the FBNR proportion is constant, nevertheless, a closed form of such a

w is available, as shown in the next subsection.

4.2 Constant FBNR function

When a is zero in (1), the FBNR function is a constant function, i.e., ¢(t) =1 —ro. As a
result, we will have G(t) = roF'(t). For any ¢ < 7, an estimator of 4 and its corresponding

asymptotic variance can be obtained as

ro(t) = =—, (13)

and

(t)  rgoa(t)
NERNIOLE

The choice of t in 7y(t) above affects the asymptotic variance. We recommend using ¢ = 7,

(14)

To

o (1) = ‘;fz

i.e., the warranty length, for 7(¢). To justify this choice, we show that 0%0 (t) is decreasing

12



with ¢ in a special case where censoring times of all units are equal to 7. See Appendix C
of the online supplementary material for more details.
Based on 75 = G(7)/F(7), the estimator F(t) from the warranty claim data and the

weighted estimator ﬁ*(t; w) based on all data are then given by

~ G(t)F
Fr) = SOEO (15)
G(7)
and
G(t)F -
F*(t;w) = wGQ (7) + (1 —w)F(t), (16)
G(7)
respectively. The asymptotic variance of ﬁ*(t; w) is given by
2 2 2
2 w? [mG(7)° = 2pG(T)G(t) + nsG()°]  2maw
2 (t:w) = — 17
UF*( 71,U) G<T>4 G(T) +7757 ( )
and by solving the equation 80%* (t;w)/Ow = 0, we can obtain the optimum weight w* as
* ?74G(T)3

U G - 2mGE)G0) + mG

where 1, = F(T)Qaé(t>+G(T)20'%(t), 2 = F(1)%05(t,7)+G(1)205(t,7), 13 = F(T)20'26<7')—|-
G(1)?0%(T), ma = G()o%(t) — G(t)op(t, 7), 15 = 04(t). Note that og(t,7) and oz(t,7)
are the respective covariance functions of the processes {y/n[G(t) — G(t)],0 < t < 7} and
{Vm[F(t) — F(t)],0 < t < 7} that converge weekly to zero mean Gaussian processes

(Lawless, 2003, pp. 97). For t < 7, 04(t,7) and oz(t,7) can be obtained as

ooltr) =t =Gl -6 [ e S (15
and
opttor) == ol - ) [ i (19
The respective estimates of o4 (f,7) and o a(t, 7) are given by
Galt,r) =n [1-G(1)| |1 - G(7)] h;t m, (20)
and
Ga(t,T) =m [1 - ﬁ(t)} [1 - ﬁ(T)] 3 mk(#‘“_dk). (21)

kit <t

Based on these estimates, an estimate of the optimal weight w* can be obtained.
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5 Parametric Inference

The above section has discussed semiparametric inference that assumes a parametric FBNR
function (1) and a nonparametric lifetime distribution F'(-). The nonparametric estimate
of F(-) together with a probability plot is helpful to identify an appropriate distribution
in an appropriate parametric distribution, based on which parametric inference can be

conducted.

5.1 Parametric lifetime model

The log-location-scale family of distributions is usually a good model for product lifetime
(Lawless, 2003, chap. 1). Assume that the random lifetime X belongs to the log-location-
scale distribution with a cumulative distribution function (CDF)

log(z) — p
g

F(@:cp[ ] x>0, (22)

and a probability density function (PDF)

fla) = [%} a0, (23)

respectively. The distribution has a location parameter ;1 € R and a scale parameter o > 0.
®(-) and ¢(-) are the respective standard CDF and PDF corresponding to = 0 and o = 1.
When ¢(-) is replaced by the standard normal PDF ¢, (+), the distribution is lognormal
for X. While ¢gey(2) = exp[z — exp(z)] corresponds to a Weibull distribution for X, and

Progis(2) = exp(2)/[0z(1 + exp(z))?] leads to a log-logistic distribution.

5.2 ML estimation

By assuming a log-location-scale distribution for the lifetime and a time-varying execution
function ¢(t) in (1), the parameters to estimate are @ = (u, o, ro, a,b)’. Maximum Likelihood
(ML) estimation is used to estimate the parameters. First, consider the warranty claim
data D,.. Because the report behavior is independent of the failure pattern, the likelihood
contribution from a reported failure (¢;,6;) with §; = 1 is equal to [1 — ¢(¢;)]f(¢;). On the

14



other hand, a unit is not reported due to two possibilities: (i) its lifetime is larger than
the censoring time, or (ii) it has failed within warranty but the failure is not reported.
Therefore, the likelihood contribution for an unreported record (t;,d;) with ¢; = 01is 1 —
)+ fo x)dz, which is equal to 1 — fo 1 —q(2)]f(x)dz.
Based on the above analysis, the log-likelihood function based on the warranty claim

data Dy, is given by

n

0D = Y- {1 - w00} + = aos {1 = [T = gtaswra | )

=1

(24)

Since we assume no FBNR phenomenon in the tracking data, the tracking data are simply

right-censored and the associated log-likelihood function can be easily specified as:

gtr 0 Dtr

Ms

{5 log[f(t;)] + (1 — 8;) log[1 — F(tj)]} . (25)

7=1
Combining both the warranty claim data and the tracking data, we can get the joint

log-likelihood function of @, which is the sum of £,,.(60; D) and ¢;,.(6;Dy,):

-

(0D, Du) = 3 {artoe(1 — a6} + (1= aos {1 - [ 11— ol |

1

1

+

M-

{81081 (45)] + (1= &) log[1 - F(t,)]} . (26)

1

J

The ML estimator = (11,0,70,a,b) can be obtained by numerically maximizing the

log-likelihood function (26).

5.3 Confidence intervals

In addition to the point estimate, a confidence interval is commonly used to account for the
uncertainty in the ML estimator. Both asymptotic normal approximation and bootstrap
method will be used for the interval estimation.

Asymptotic normal approximation to the ML estimators 0 is often used to construct
confidence intervals for @. To use the method, we first obtain the ML estimates of 0

for @ through maximizing the joint log-likelihood function (26). Given a large sample of
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lifetime observations, the ML estimator 0 has a distribution which can be approximated
by a multivariate normal distribution N(6,Z7'(0)), where Z(0) is the Fisher information
matrix that can be estimated using the observed information matrix / (5), the negative of
the second-order partial derivatives of the joint log-likelihood function ¢(@) evaluated at 6.
Expressions of 1(0) when the FBNR function is a constant are provided in Appendix A of
the online supplementary material. The method often works well for moderate sample sizes.
The intervals so obtained are called normal approximation confidence intervals, which are
easy to compute and widely used in many software packages (Jeng and Meeker, 2000). For
a bounded parameter that takes value on a subset of the real line, normal approximation
might generate intervals with endpoints outside the parameter space. Such absurd phe-
nomenon could happen when the number of observed failures is not large enough or when
the parameter value is close to the boundary. For example, the normal approximation
confidence interval of 1y € [0,1] may have endpoints lying outside the parameter space
when 7 is close to zero or one. Consequently, a suitable reparameterization that trans-
forms the parameter to a new scale may be needed to remove the range constraint on a
bounded parameter. The logarithm transformation is chosen for non-negative parameters,
e.g., the scale parameter 0. Two popular choices for ry € [0, 1] are the “probit” transforma-

tion ®_! (ry) and the “logit” transformation ®_ L (7o) = log[ro/(1 — r¢)]. According to our

nor logis
simulation studies, performances of these two transformations are almost the same.

Field data often have small number of observed failures and heavy censoring. In this
case, the coverage probabilities of confidence intervals produced by the normal approxi-
mation method may not be close to nominal values (Jeng and Meeker, 2000). A carefully
designed bootstrap procedure may be able to produce better confidence intervals. For our
problem with random and heavy censoring, the parametric bootstrap may not be applica-
ble because of the difficulties in specifying the censoring process. See Meeker and Escobar
(1998, chap. 9) for more details. The nonparametric bootstrap can also be problematic as
there is a high chance to get a bootstrap sample with no failures (Hong et al., 2009). In
this paper, Newton and Raftery’s weighted likelihood bootstrap is adopted (Newton and

Raftery, 1994). The method uses a random weight to the log-likelihood of each observation
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and thus it is free of the resampling problems above. Given the warranty claim data D,

and the tracking data Dy, the algorithm is as follows.

1. Simulate two sets of i.i.d. weight samples {w;,i = 1,--- ,n} and {w;,j = 1,--- ,m}

from a probability distribution Fy ().

2. Use the weights and two data sets to obtain a weighted log-likelihood function as
Z(ea cha Dtr) = ch(o; ch) + Zfr(ev Dtr)v (27)

where
lye(0;Dye) = ng{é log{[1 —q(t:)]f(t:)} + (1 — 0;) log {1 — /Oti[l — q(a:)]f(:c)d:c} },
and

[p(6:Dy) = 3 w; {8108l (t;)] + (1 — &) log[1 - F(t,)]}

Jj=1

Maximize the weighted log-likelihood to get an estimate 0.

~x(b
3. Repeat the above steps for B times to obtain a collection of bootstrap estimates 6 ( ), b=

1,2,---,B.

In the weighted bootstrap, the randomness of 7 is induced by the random weights. For
a weight distribution Fyy(-) having the property E(W) = [Var(W)]/2, Jin et al. (2001)
showed that the conditional distribution of \/ﬁ(/O\* — 5) given the data can provide a good
approximation to the distribution of \/ﬁ(é — 0). They also showed that the method is
robust for different weight distributions, e.g, Gamma(1,1), Gamma(1,0.5), Beta(v/2 —1,1).
Based on the bootstrap estimates é\:(b), b=1,2,---, B of the ith element of 8, the weighted

bootstrap percentile confidence interval at a 100(1 — «)% confidence level is given by

~

[ Za/Q? ')L'k,lfa/2]7

where /Q\ZQ/Z and 5;,1—04/2 are the 100(a/2)th and the 100(1—«/2)th quantile of the bootstrap

estimates.

17



6 Goodness-of-Fit Test and Hypothesis Test

Before parameter estimation, goodness-of-fit tests and hypothesis tests in this section help
identify appropriate parametric models for product’s lifetime and customer’s FBNR be-

havior. Statistically, models that provide best fits to the observed data will be chosen.

6.1 Select a baseline lifetime distribution

Prior knowledge is helpful in identifying a lifetime model. An appropriate lifetime model
could be determined based on engineering knowledge and experience of experts. If the prod-
uct is an upgraded version of an existing model, such as laptops and washing machines, then
the lifetime distribution of the product may be the same as the old version. Alternatively,
knowledge about the lifetime distribution may accumulate during the product development
and lab testing. In these cases, the distribution assumption can be validated based on field
data. On the other hand, it is common that the distribution is unclear to the manufac-
turer, due to a lack of knowledge. The field data can then help to select a baseline lifetime
distribution. Qualitatively, the model selection can be done using a probability plot. A
probability plot for a log-location-scale distribution compares the transformed nonpara-
metric estimates of F(-) (using the transformation ®7'(-) in (22)) with the logarithm of
time. The KM estimates F(-) in (3) from right-censored tracking data might be used for
the plot. While we suggest using the weighted estimates ﬁ*() in (12), which are pooled
estimates based on the tracking data and the warranty claim data, for the probability plot.
Quantitatively, the Akaike information criterion (AIC), a statistic trading off a model’s
likelihood against its complexity, can be used for lifetime model selection. The AIC is
defined as AIC = —2((8) + 2dim(6), where dim(6) is the number of model parameters.

A model with a minimum AIC will be selected. The above qualitative and quantitative

methods are demonstrated in Section &.
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Table 1: Discussion of hypothesis results.

Hy:a=0 Reject Reject Not reject Not reject
Hy:rg=1 Reject Not reject Reject Not reject
q(t)= 1 —rgexp [—(at)b} 1 —exp [—(at)b] 11— 0

6.2 Choose an appropriate FBNR function

After a parametric lifetime distribution is chosen, hypothesis testing can be used to de-
termine a proper form of the FBNR function ¢(t) based on the warranty claim data and
the tracking data. A flexible FBNR model ¢(t) = 1 —rgexp [—(at)’] has been proposed in
Section 2.2. It is possible that some parameters take values at the boundary. To identify
a suitable form for the function, we can test whether a = 0, or whether ry = 1. The two

hypothesis tests can be constructed as follows:

Hy:a=0 versus H;:a >0,
and

Hy:rg=1 versus Hy :ry < 1.

The likelihood ratio test is used since the null model under Hy could be viewed as a
nested model of the alternative model under H;. It should be noted that the parameter of
interest is on the boundary of the parameter space, i.e., a = 0 or ry = 1. In this case, the
asymptotic distribution of the likelihood ratio statistic is a 50 : 50 mixture of xZ and x?
(Self and Liang, 1987). This fact can be used to test the hypothesis.

As shown in the Table 1, if both Hy : @ = 0 and Hy : g = 1 are rejected, the FBNR
function is of the form ¢(t) = 1 — roexp [—(at)’], indicating a time-dependent increasing
FBNR function. The parameter estimation is based on the log-likelihood function (26).
If Hy : ap = 0 is rejected but Hy : 79 = 1 is not, it indicates that there is no FBNR
phenomenon at the beginning and an increasing FBNR proportion thereafter, i.e., ¢(t) =
1 —exp [—(at)b]. If Hy : 7o = 1 is reject but there is no sufficient evidence to reject Hy :

a = 0, we will conclude that the FBNR proportion is constant over time, i.e., ¢(t) = 1 —ro.
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If both Hy : a = 0 and Hy : rg = 1 are not rejected, we may accept the fact that all failures
of untracked units will be reported, i.e., there is no FBNR phenomenon. Then both the

tracking data and the warranty claim data are simply right censored.

7 Simulation Study

A simulation experiment is conducted to evaluate the performance of the proposed methods.
In the simulation, the lifetime distribution is assumed lognormal with p = 8.5 and ¢ = 1.5,
while the FBNR function is ¢(t) = 1 — exp [—(at)’] with @ = 0.0013 and b = 10. Both
the warranty length 7 and the end-of-study date are set to be 730. As 1000 tracked units
are enough to achieve satisfactory performance according to our simulation experience, the
tracking sample size is simply set to be 1000. Several untracked sample sizes are used, i.e.,
n = 5000, 50000.

Six distributions of the entry time, which is the time between shipment to a dealer
and sale to a customer, were used to cover a variety of possible observational situations.
Specifically, we generated entry times for both untracked sample and tracked sample from
each of the uniform distribution on (0, 30], (0, 365], (0, 730] and the exponential distribution
with rate 1/15, 2/365, 1/365. The uniform distribution on (0,30] determines a staggered
entry distribution with a mean of 15 days and a standard deviation of 8.7 days. The
exponential distribution with rate 1/15 reflects a similar situation that most units are sold
within one month. Other distributions of the entry time can be interpreted in similar ways.
For each combination of n and entry types, we generate 5000 Monte Carlo samples. Table
2 shows the estimated relative biases (bias divided by true value) and relative RMSEs
(RMSE divided by true value) of parameter estimators given different sizes of warranty
claim data and types of entry. When there are 5000 untracked units in total, both relative
biases and RMSEs increase when the mean time of entry increases. This is because the
missing data rate increase greatly as the observation window for a unit sold late is much
shorter than a unit sold early. Another similar observation is that given the same mean
time to entry, the relative biases and RMSEs are smaller with exponentially distributed

entry times compared with that with entry times from a uniform distribution. A possible

20



explanation is that the exponential distribution is skewed right so that more units will
enter early with longer observation periods. For all entry types, nevertheless, the biases
and RMSEs can be reduced significantly if the untracked sample size increases to 50000.
As can be seen, with 50000 untracked units, the ML estimators have negligible biases and
the RMSEs are reasonably small.

Besides staggered entry patterns, we also examined effects of warranty length and FBNR
proportion. Without loss of generality, we considered the situation that all units are sold at
time zero. In this case, the data are singly censored at the end of warranty. Table 3 shows
the relative biases and relative RMSEs of parameter estimates with different warranty
lengths. Note that the end-of-study date is equal to the warranty length for each case.
As can be seen, the relative biases are reasonably small and the relative RMSEs decrease
with longer warranty since missing data rate decreases. Different FBNR proportions are
achieved by varying b. As we fixed a as 0.0013 and warranty length as well as end-of-
study date as 730. Higher value of b results in lower FBNR proportion. Table 4 shows the
estimated relative biases and relative RMSEs of parameter estimators with different values
of b. As can be seen, the RMSEs decrease with the increase of b as the overall missing data
rate decreases.

As shown in the simulation, the inference accuracy of estimators of FBNR parameters
is greatly affected by the size of the warranty data. The missing data proportion, which
is essentially determined by staggered entry types, length of warranty, end-of-study date,
and the FBNR function, also has great impacts on the estimation accuracy and efficiency.
In reality, the warranty sample is usually very large. Together with relatively small num-
ber of tracking units, we are able to decouple FBNR information by joint analyzing the
warranty data and the tracking data. With more warranty claim data, estimates will be
more accurate and useful. The simulation results provide useful insights on warranty data

collection.
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Table 2: Estimated relative biases and relative RMSEs of parameter estimators with dif-

ferent warranty claim data sizes and different staggered entry types.

n Parameter

Unif(0,30)

Unif(0,365)

Unif(0,730)

Biases(%) RMSEs(%) Biases(%) RMSEs(%)

Biases(%) RMSEs(%)

5000 w -0.03 1.11 -0.05 1.29 -0.15 1.61
o -0.14 3.89 -0.21 4.27 -0.41 5.00
a -1.37 10.40 -7.75 27.51 -10.33 32.67
b 5.41 37.97 5.50 63.78 6.01 85.35

50000  pw 0.02 0.39 0.01 0.44 0.00 0.56
o 0.02 1.35 0.01 1.46 0.01 1.74
a 0.32 1.54 -0.15 6.24 -1.97 12.92
b 3.19 5.65 4.03 6.23 4.33 6.82

Exp(1/15) Exp(2/365) Exp(1/365)
n  Parameter
Biases(%) RMSEs(%) Biases(%) RMSEs(%) Biases(%) RMSEs(%)

5000 W -0.02 1.11 -0.07 1.27 -0.08 1.47
o -0.06 3.89 -0.30 4.24 -0.22 4.76
a -1.15 10.08 -6.21 23.38 -8.67 28.80
b 4.61 22.73 4.55 30.03 5.34 04.22

50000  p 0.03 0.39 0.02 0.44 0.01 0.50
o 0.06 1.35 0.06 1.48 0.03 1.64
a 0.26 1.51 0.16 3.20 -0.37 6.74
b 3.17 5.61 3.96 6.40 4.12 6.37
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Table 3: Estimated relative biases and relative RMSEs of parameter estimators with dif-

ferent warranty lengths.

n Parameter

T =730

7 = 800

7 =900

Biases(%) RMSEs(%) Biases(%) RMSEs(%) Biases(%) RMSEs(%)

5000 7 0.00 1.11 -0.03 1.05 0.03 0.97
o -0.02 3.90 -0.11 3.76 0.03 3.53
a -0.59 7.42 0.13 2.16 0.05 1.43
b 4.29 18.46 3.97 15.83 3.28 11.76
20000 0.02 0.39 0.05 0.34 0.04 0.33
o 0.06 1.34 0.15 1.24 0.13 1.20
a 0.24 1.31 0.04 0.67 -0.07 0.42
b 3.26 5.91 291 5.72 1.58 3.99

Table 4: Estimated relative biases and relative RMSEs of parameter estimators with dif-

ferent values of b.

n Parameter

b=38

b=10

b=12

Biases(%) RMSEs(%) Biases(%) RMSEs(%) Biases(%) RMSEs(%)

2000 I -0.03 1.17 0.00 1.11 -0.03 1.05
o -0.09 4.02 -0.02 3.90 -0.13 3.75
a -0.32 6.11 -0.59 7.42 -0.82 8.28
b 5.30 35.40 4.29 18.46 4.39 11.50
20000  p 0.03 0.41 0.02 0.39 0.02 0.37
o 0.08 1.41 0.06 1.34 0.04 1.30
a 0.19 1.51 0.24 1.31 0.23 1.21
b 2.80 7.49 3.26 5.91 3.41 5.78
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8 Illustrative Example

Our example concerns an appliance that is used in residences and offices. The appliance,
referred to as Product D in an early study (Hong and Meeker, 2010), had multiple fail-
ure modes and a two-year warranty. Some product units are installed with sensors and
connected to the Internet. Their failure information is well tracked. For untracked units,
the failure time information is available for those failed and returned to the manufacturer.
They may suffer from the FBNR problem. The data were multiply censored due to the
staggered entry of a product into the field over one month. To protect sensitive and pro-
prietary information of the product, we simulate data based on the results from analysis
of the real data. Without loss of generality, we focus on one specific failure mode of the
Product D.

There are 1105 tracked units and 5126 untracked units in total. In the tracked group,
115 failures are observed. In the untracked group, 490 failures are reported and the other
4636 units do not claim a warranty. The respective KM estimates G(t) and F(t) of the
report fractions for the untracked and the tracked units as well as the weighted estimates
F*(t) based on all data are shown in Figure 3. As we can see, G(t) for the untracked units
are lower compared to F (t) for the tracked units as well as ﬁ*(t), and the difference between
the two proportions becomes larger over time. The observation indicates the existence of
the FBNR behavior.

The lognormal, Weibull and loglogistic models were used to fit the tracking data and the
resulting AIC values are 2233.5, 2242.1 and 2240.9 respectively. The lognormal distribution
is selected for the data as it has the smallest AIC value. Figure 4 shows the lognormal
probability plot based on ﬁ*(t) The linear pattern in the plot shows that the lognormal
model provides a good fit to the data. To select an appropriate FBNR function, we proceed
to test the hypothesis Hy : a = 0 first. The likelihood ratio test shows that Hj is rejected
at a significance level of 0.05. While there is no sufficient evidence to reject the hypothesis
Hy : 1o =1 at a significance level of 0.05. Therefore, we use ¢(t) = 1 — exp [—(at)"] for the
FBNR function.

After the lifetime model and the FBNR function are determined, the parameter esti-
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Figure 3: The respective KM estimates G(t) and F(t) of the report fractions for the

untracked and the tracked units as well as the weighted estimates F* (t) based on all data.
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Figure 4: Lognormal probability plot based on ﬁ*(t)
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Table 5: The ML estimates, standard errors and 95% approximate confidence intervals
constructed by normal approximation (NOR) and weighted bootstrap percentile (WBP)

based on warranty claim and tracking data together.

95% Confidence interval

Parameter FEstimate Standard error

NOR WBP
[ 8.44 0.11 8.23, 8.65] 8.15, 8.60]
o 1.47 0.06 [1.35, 1.60] [1.32, 1.57]
a 0.0013 0.00005 0.0012, 0.0014] [0.0007, 0.0014]
b 9.69 3.96 [1.93, 17.45] [1.41, 14.94]

mates are obtained based on the tracking data and warranty claim data together. Table 5
gives the ML estimates, standard errors and the 95% approximate confidence intervals for
the model parameters constructed by the normal approximation and the weighted boot-
strap percentile method. As shown in the table, the standard errors of most estimates
are relatively small except for that of b. This estimation problem is mainly caused by the
heavy censoring and limited warranty claim data. Note that the multiple censoring causes
further impreciseness of the inference when compared with that of single right censoring.
Figure 5 shows the ML estimates and the corresponding 95% pointwise confidence bands
for F(t) based on all data D,,. U Dy, and based on tracking data Dy, only. The weighted
bootstrap is used to obtain the confidence bands. As we can see, the confidence bands
based on all data are narrower than that based on tracking data. Figure 6 shows the ML
estimates and the corresponding 90% pointwise confidence bands for ¢(¢) using normal
approximation with transformation based on all data. The FBNR proportion is close to
zero and relatively low at the beginning and increases afterwards, which results in lower
return proportion of untracked units than that of tracked units. In reality, manufacturers
are suggested to pay special attention to the existence of the FBNR phenomenon and keep

updating analyses with the accumulation of warranty claim data.
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Figure 5: The ML estimates and corresponding 95% pointwise confidence bands (CBs) for
F(t) using weighted bootstrap percentile based on all data D, UDy, (solid line) and only
based on tracking data Dy, (dash-dot line).

o
®

Point Estimates
""""" 90% CBs

o
3
T
L

I
o
T
.

I
3
T

FBNR Proportion
[=} o
w N

o
N
T

©
N
T

0 200 400 600 800
Time (Days)

Figure 6: The ML estimates and corresponding 90% pointwise confidence bands (CBs) for
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9 Conclusion

The FBNR behavior is common due to several factors, such as the product price, the
product life cycle, the warranty policy, and the quality of the warranty service. Ignorance of
the FBNR phenomenon leads to an overestimate of product reliability based on field return
data or an overestimate of warranty cost based on lab data or tracking data. In this study,
we used both warranty claim data and tracking data for statistical inference in the presence
of the FBNR problem. We proposed a flexible FBNR function (1) to model the time-varying
FBNR behavior. Based on the FBNR function, a statistical framework was proposed to
jointly analyze the warranty claim data and the tracking data. In the framework, we first
performed semiparametric data analysis. Such analysis provides insights into the FBNR
behavior and helps to identify an appropriate lifetime distribution for parametric analysis.
After selecting an appropriate lifetime model and a FBNR function through goodness-of-fit
and hypothesis testing, both point and interval estimations of the model parameters can
be performed based on standard likelihood methods. The estimated FBNR proportion can
then be used to predict warranty costs and spare-part provision of the current product. It
can also be used for the prediction of a new version of the current product or a similar
product. More importantly, the FBNR proportion can be used as an important indicator

of customer satisfaction, which helps manufactures understand customer sentiments.

SUPPLEMENTARY MATERIALS
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(3) R code for evaluating the performance of the proposed method.
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