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Abstract—Deep learning is an important technique for ex-
tracting value from big data. However, the effectiveness of deep
learning requires large volumes of high quality training data.
In many cases, the size of training data is not large enough for
effectively training a deep learning classifier. Data augmentation
is a widely adopted approach for increasing the amount of
training data. But the quality of the augmented data may
be questionable. Therefore, a systematic evaluation of training
data is critical. Furthermore, if the training data is noisy, it is
necessary to separate out the noise data automatically. In this
paper, we propose a deep learning classifier for automatically
separating good training data from noisy data. To effectively
train the deep learning classifier, the original training data need
to be transformed to suit the input format of the classifier.
Moreover, we investigate different data augmentation approaches
to generate sufficient volume of training data from limited size
original training data. We evaluated the quality of the training
data through cross validation of the classification accuracy with
different classification algorithms. We also check the pattern
of each data item and compare the distributions of datasets.
We demonstrate the effectiveness of the proposed approach
through an experimental investigation of automated classification
of massive biomedical images. Our approach is generic and is
easily adaptable to other big data domains.

Keywords-big data; machine learning; neural network; deep
learning; convolutional neural network; support vector machine;
diffraction image

I. INTRODUCTION

Scalable and high performance data processing infrastruc-
ture and analytics tools are needed to extract value from
big data. For example, deep learning algorithms and GPUs
have been widely adopted for analyzing big data [1]. A
challenging factor for effectively extracting value from big
data is its size and quality. Furthermore, the data available
for training algorithms such as a deep learning classifier is
often not large enough. Augmenting data through methods
such as transforming existing data items into new ones is
a widely used practice. However, it is difficult to determine
whether or not the augmented data is valid. It is necessary
to systematically evaluate the quality of the generated data
through transformations. Also, the generated training data may
include noise in the form of, for example, mislabeled data.

Published research has shown that anomalies and noise in
training datasets could significantly decrease the performance

and accuracy of data analysis [2] [3]. To address these prob-
lems, we have two choices: devise robust machine learning
algorithm which can deal with noisy training data, or improve
the quality of the data through filtering [4].

Both general purpose and domain-specific techniques and
tools have been developed for quality assurance of big data.
Gao et al. provides an overview of issues, challenges and
tools for validation and quality assurance of big data [5]. They
define big data quality assurance as the study and application
of quality assurance techniques and tools to ensure the quality
attributes of big data. Web is one primary source of big data,
and work on the evaluation of the veracity of web sources
exists in the literature.

Machine learning algorithms have been used for detecting
duplicates in data that originated from multiple sources [6].
Data filtering is an approach for improving data quality
through noise removal. Data publishers and subscribers can
filter noisy data using domain models and rules [7]. Due to
the massive scale of big data, automated filtering of data is
essential. However, investigations in this direction are just
beginning to appear.

In this paper, we introduce a systematic approach for
separating noisy data from biomedical image datasets to enable
extraction of knowledge from big data. More specifically,
we develop a machine learning approach for separating both
invalid and noisy data from a dataset. Our approach includes
an iterative process for separating noisy data from regular data
using a deep learning classifier. We also discuss an approach
to generating large volume of high quality data for improving
classification accuracy. To ensure the quality of the augmented
data, we evaluate data quality through cross validation of
classification accuracy with different classification algorithms.
We also check the pattern of each data item and compare their
distributions.

We describe the proposed approach and demonstrate its
effectiveness through separating the diffraction images of
biology cells into several categories including noisy class.
Diffraction images of cells are acquired using a polarization
diffraction image flow cytometer (p-DIFC), which is used for
quantifying and profiling 3D morphology of single cells [8].
The 3D morphological features of a cell that are captured in
the diffraction image are used for accurately classifying cell



types. p-DIFC can take the diffraction images of nearly 100
cells per second. Using p-DIFC, we have collected over a
million diffraction images for different types of cells.

II. CELL DIFFRACTION IMAGES

Work on classification of cell diffraction images using
machine learning has been reported in the literature. However,
p-DIFC imaging may include lots of non-cell particles such as
ghost cell body, aggregated spherical particles (aka fractured
cells), and cell debris and small particles (collectively referred
to as debris). We refer to the viable cells with intact structures
as cells. The diffraction images taken from the non-cell
particles are also collected into the diffraction image dataset.
The diffraction images of the non-cell particles comprise the
noise data.

To accurately classify cells, it is necessary to separate
the non-cell diffraction images (i.e., the noise) from the cell
diffraction images. Manually separating the noise images from
cell images is not feasible from a practical standpoint. To
address this issue, we developed a deep learning [1] approach
for automated classification of diffraction images. We classify
the diffraction images into three categories: cells, fractured
cells, and debris. We developed the classifier using a deep
learning architecture based on AlexNet [9] and TensorFlow
frameworks. We trained the classifier using diffraction images
of cells, fractured cells, and debris.

The size of a raw 8-bit gray scale p-DIFC diffraction image
is 640× 480 pixels. Since AlexNet works with images of size
227×227 pixels, we resized the original diffraction images to
227 × 227. AlexNet classifier for diffraction images requires
a large volume of training images. We developed an approach
for generating several small diffraction images (aka augmented
diffraction images) from the original images. The classification
accuracy is cross checked with n-fold cross validation (NFCV)
and a confusion matrix.

To check the quality of the training data, we developed
a support vector machine (SVM) for classifying the three
categories of diffraction images. First, we train the classifier
on the original and the augmented diffraction image datasets
separately. Next, we compare the classification accuracies. We
also investigate whether the small images can capture enough
morphology information as the original images. We require
each small image to be different from its original image.
Furthermore, we desire that all the small images which are
generated from the same original to exhibit different textual
patterns. Lastly, we check the distribution of selected feature
values of the original and the augmented datasets to determine
whether they are consistent.

The remainder of this paper is organized as follows. Section
2 provides the domain background in cell imaging and auto-
mated classification of diffraction images. Section 3 describes
an approach for systematically evaluating the quality of aug-
mented iamge datasets. Related work is discussed in Section
4 and Section 5 concludes the paper.

Fig. 1. (A). Light scattering schema of p-DIFC, (B).Software simulated
diffraction images, and (C). p-DIFC acquired diffraction images.

III. AUTOMATED CLASSIFICATION OF DIFFRACTION
IMAGES

We first discuss morphology based cell classification. Next,
we introduce automated classification of diffraction images
using SVM and deep learning techniques.

A. Morphology Based Cell Classification

Cells exhibit highly varied and convoluted 3-dimensional
(3D) structures through intracellular organelles to sustain
phenotypic variations and functions. Cell classification is im-
portant to biology and life science research. Morphology based
approaches at the single cell-level is attracting intense research
efforts for their direct relations to cellular functions. p-DIFC
is used to rapidly acquire cross-polarized Diffraction Image
(p-DI) pairs from single cells [8]. It adopts Stokes vectors
and Mueller matrices to account for the polarization change
in scattered light as a result of intracellular distribution of
refractive index, n(r, λ), or its 3D morphology. The incident
light and its polarization state is represented by Stokes vector
(I0, Q0, U0, V0), which propagates along the z-axis. Likewise,
the scattered light and its polarization is represented state
vector (Is, Qs, Us, Vs) along (Θs,Φs) direction, as shown
in Fig. 1. Different from images acquired by non-coherent
light, the p-DI pairs present characteristic patterns due to the
coherent light scatter emitted by the intracellular molecular
dipoles induced by an incident laser beam [8]. The p-DI data
thus provide a data source to probe the 3D morphology of the
illuminated cells that requires machine learning techniques for
extracting morphological and molecular information.

During the last decade, Ding et al. have developed different
machine learning approaches, including Support Vector Ma-
chine (SVM) [10] and deep learning, for rapid and accurate
cell morphology analysis of cell diffraction images [3] [11]
[12].

B. Datasets

A collection of diffraction images acquired using p-DIFC
may include images taken from non-regular cells especially
fractured cells and debris in the samples. For some research
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Fig. 2. A p-DIFC acquired diffraction image of (a) a viable cell of intact
structure, (b) a ghost cell body or aggregated spherical particles, and (c) a
cell debris or small particle. The top right corner shows the corresponding
particle of each image.

projects, one needs only normal cell images. For some other
research such as apoptosis study, we need only fractured cell
images. Therefore, it is necessary to build a tool to automate
the separation of the three types of diffraction images.

The three types of cell particles have different morphology
structures that are precisely captured in p-DIFC diffraction
images. Using these textual patterns, a biologist can separate
the three types of images visually. Fig. 2 shows thee sample
p-DIFC diffraction images and their corresponding particles.
The textual pattern of the diffraction image of a viable cell of
intact structure contains many bright normal speckles. On the
other and, a ghost cell body or aggregated spherical particle
includes bright strips. Lastly, a cell debris or small particle
shows many large diffuse speckles.

The difference in textual patterns of the three categories
of diffraction images is good enough to separate the three
categories using machine learning algorithms. We acquired
many diffraction images for the three categories of parti-
cles using p-DIFC and then selected several thousands of
diffraction images as the initial dataset. For the experimental
study, we selected a total of 7519 diffraction images. Each
diffraction image was manually inspected and and its category
was labeled. Normal cells are labeled as cells, fractured cells as
strips, and debris as simply debris. The initial image dataset is
comprised of 2232 normal cells, 1645 fractured cells, and 3642
debris. Each category of the diffraction images is stored in a
separate directory. We note that some of the diffraction images
could have been incorrectly labeled, whereas some others were
difficult to label due to low visual quality.

C. SVM-based Image Classification

An SVM performs binary classification in general [10]. To
implement a multiclass classification, several SVM classifiers
are combined by comparing ’one against the rest’ or ’one
against one’. We have implemented the classifier for diffrac-
tion images using LIBSVM [13], which is an open-source
toolkit for SVM.

The textual pattern of the diffraction images is defined using
a group of Grey Layer Collaborative Matrix (GLCM) features
[14]. We use a total of 20 features – 14 are features from
the original image and 6 features from the extended images.
The definition of each feature can be found in Ding’s previous
work [15]. The procedure of building an SVM classifier for
diffraction images is given below:

TABLE I
CONFUSION MATRIX OF THE CLASSIFICATION OF DIFFRACTION IMAGES

Cells Debris Strips
Cells 74.50% 16.00% 9.50%
Debris 6.50% 81.50% 12.00%
Strips 14.00% 24.00% 62.00%

1) Calculate GLCM features for each diffraction image in
the training and testing datasets.

2) Label each diffraction image with its category such as
its cell type, and build a feature vector consisting of its
GLCM feature values and its label. The feature vectors
of all diffraction images in a dataset form a feature
matrix.

3) Train the SVM classifier using the select kernel and the
feature matrix of the training dataset.

4) Test the classifier with diffraction images in test dataset,
and validate the classification performance using criteria
such as N-fold Cross Validation (NFCV) and confusion
matrix.

We built an SVM classifier using the diffraction image
dataset. We selected 1000 diffraction images for each of
the three classes, and built the feature matrix with GLCM
feature values and the corresponding types. Each feature vector
includes 16 GLCM feature values since the value of one
feature is all 0s and another three features are defined on image
format, which was not accounted for in this study. The average
classification accuracy of 10 fold cross validation (10FCV)
for cells, debris and strips is 74.50%, 81.50% and 62.00%,
respectively. The simplified confusion matrix is shown in Table
I [16].

To improve the classification accuracy of the SVM classifier,
we have experimented with many different techniques such as
pre-selecting the images using image processing and cluster
analysis techniques [3], and feature selection [17]. Our recent
experiments have shown that deep learning approaches greatly
improve the classification accuracy [18].

D. Deep Learning Based Image Classification

Diffraction images are relatively simple due to their low
resolution and absence of background noise. Therefore, we
selected AlexNet model [9] which is implemented in Tensor-
Flow framework to build the deep learning classifier. As deep
learning requires a large number of features, the size of the
training dataset is also large.

AlexNet is trained using about 1.2 million images. We
did not use the pre-trained AlexNet, but used only its net
architecture. We initially made some minor changes of the
architecture of AlexNet such as changing the output of the last
fully connected layer from 1000 categories to 3, and removed
some convolutional layers. These changes neither improved
the training performance or the classification accuracy. To
avoid the potential of introducing bugs, we decided to keep
the original AlexNet architecture in tact. We have collected
only 7519 raw diffraction images, which are not large enough



for training AlexNet. Therefore, we used data augmentation
approaches for producing a larger volume training dataset.

E. Data Augmentation

The size of a raw diffraction image of a cell is 640×490 pix-
els. It is large enough to be divided into several small images
of size 227 × 227 pixels, which is the size of AlexNet input
image. Each small image should contain sufficient information
to represent the original image according to p-DIFC principles
[8]. If we check a diffraction image of a cell, it is not difficult
to find the textual pattern is repeated in the image as shown
in Fig. 2. Since the lens of the camera taking cell diffraction
image of cell has a different angle to each part of the cell,
the textual pattern is not simply repeated in the image. A
carefully chosen sub-image can have enough information to
be a representative of the whole image. A diffraction image
may also include large black background which is useless for
classification. Therefore, a rigorous approach for producing
the small images is necessary. This property can be further
confirmed by the diffraction images shown in Fig. 7, which
are produced by simulating the light scattering of scatterers
using aDDA (a light scattering simulation program) [19].

F. Cropping images

As noted earlier, AlexNet accepts input images of size
227× 227 pixels. Also, the size of original diffraction images
is 640 × 480 pixels. Therefore, a small image is about 1/5 of
the size of the original image. Furthermore, since a diffraction
image may contain significant black area, the center of the
textual pattern such as bright speckles or strips may not be
the center of the image. We need find the center of the
textual pattern area to perform cropping, which is normally
the brightest area in the image.

Given a 5×5 pixel window, cropping program calculates the
average intensity of the window. Then it slides the window by
several pixels in steps to cover the whole image, to determine
a window that has the largest average intensity. For example,
the intensity range of a 8-bit resolution image is from 0 to
255. The window with the largest average intensity is set as
the center for cropping small images. If multiple windows
have the largest average intensity, then the one furthest to the
boundary is selected as the center. A small image is cropped
from the original image around the center first, and then more
small images are cropped through sliding the window from
the center some pixels in any direction as shown in Fig. 3.

Fig. 3. An Illustration of
Image Cropping

In our study, the 227 × 227-pixel
window is moved from the center in
8 different directions and the angle
θ between two adjacent directions is
45o. The sliding window moves d
pixels from last window in a direc-
tion and crops a new small image.
The moving distance d ranges from
7 to 17 pixels. However, other d val-
ues may also work well. The sliding

window can be moved in one direc-
tion several steps to crop multiple
small images in that direction. When
a sliding window is moved to a new position, it is necessary
to ensure that the entire sliding window is still contained in
the original image boundary. If not, the window is discarded
and no further sliding in that direction takes place. Using the
approach, we generated 56 small images from a normal cell
image with a step distance d of 11 pixels (which means sliding
11 pixels 7 times in each direction), 40 images from a debris
image with d as 14, and 72 images from a strips image with
d as 9.

The small image generation via cropping is fully automated
with a python program. Though the multiple small images
cropped from the same image are different from each other,
but they all represent the same original image and are labeled
as the same category as that of the original image. Finally,
105291 small diffraction images of cells, 127733 small diffrac-
tion images of debris, and 92767 small diffraction images of
strips are selected for training the deep learning classifier.

G. Pooling Images

Cropping technique does not work for the case where the
whole image is critical for classification. In such cases, local
features that are extracted from a local area are not enough to
represent the global features extracted from the whole image.
A different technique is needed for producing the training data
from the limited number of original images. We experimented
a pooling technique for producing large volume of training
data. A raw diffraction image is downsampled into a small
image using pooling. Multiple small images can be produced
from a raw image with different pooling configurations. Also,
small images can be produced with different pooling functions
such max pooling or average pooling [20].

To produce multiple small diffraction images from one
original image, we apply different pooling window sizes and
different sliding stride to the same image. Since the size of the
small image is 227 × 227 pixels, and the size of an original
image is 640 × 480 pixels, we resize the original image into
a square one. We cut three different size squares from an
image, which are 455×455, 456×456, and 457×457 pixels.
Next, 3 × 3, 4 × 4, and 5 × 5 pooling windows are applied
to these three squares. The stride distance is set to 2 pixels.
The size of the output image from the pooling is s ∗ s pixels,
s = (x − m)/c + 1, where x × x pixels are the size of the
input image of the pooling, m×m pixels are the size of the
pooling window, and c is the stride distance. For example, if
the input image is 455× 455, pooling window is 3× 3 pixels,
and stride distance is 2, the size of the output image will be
227 × 227 pixels. Fig. 4 shows a comparison of the original
images and their pooling images (the ratio of the images were
changed due to formatting issues). It clearly shows that the
textual patterns of the original image are well preserved in the
pooling image. The pooling steps are:

1) For each diffraction image, select position (10, 10) of
the image as position (0, 0) of the new cropped images
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Fig. 4. Diffraction images and their pooling images (a) a cell, (b) an debris,
(c) a fractured cell, (d) a cell after pooling, (e) a debris after pooling, and (f)
a fractured cell after pooling.

to cropped three square images: 455 × 455, 456 × 456,
and 457 × 457 pixels, respectively.

2) Move the cropping position from (10, 10) to (10+h,
10) to crop another three square images with size at
455 × 455, 456 × 456, and 457 × 457 pixels; where h
is 10 for normal cell images, 20 for debris, and 5 for
strips. Continue the step 16 times for normal cell images,
8 times for debris, and 32 times for strips. Therefore,
each original cell image produces 48 different square
images, each debris image produces 24 square images,
an each strips image produces 96 square images. About
100,000 images can be produced for each category from
the original diffraction images.

3) Pooling window 3 × 3 pixels is applied to 455 × 455
pixels images, 4 × 4 pixels window is applied to
456 × 456 pixels images, and 5 × 5 pixels window is
applied to 457 × 457 pixels images. Each square image
is downsampled into a 227 × 227 pixels small image
after the pooling.

4) Each small image is labeled as the same category as the
original image where the small image is produced from.

We have experimented with three pooling functions includ-
ing average-pooling, max-pooling and min-pooling. However,
a dataset uses only the same pooling function. The experimen-
tal results of the three different datasets will be discussed in
the next section.

H. Experiment Results

All experiments were conducted on the same original cell
diffraction images, fractured cells and debris. The three cate-
gories of images are stored in three different folders, and then
cropping or pooling are applied to each image to produce
and label around 100,000 small images for each category.
The small images were stored in three folders according to
their labels/categories. 8FCV and confusion matrix are used
to validate the classification results. Many experiments have
been conducted for checking and validating the classification
accuracy, but we will describe only the important results in

Fig. 5. Confusion matrix of a classification experiment.

TABLE II
A CONFUSION MATRIX OF AN AVERAGE-POOLING DATA SET

Cells Debris Strips
Cells 0.857 0.098 0.045
Debris 0.006 0.987 0.006
Strips 0.005 0.052 0.943

this section.
1) Experiment results with cropped images: 8FCV shows

the average classification accuracy of normal cells at 99.36%,
debris at 97.74% and fractured cells at 99.81%. Fig. 5 shows
the confusion matrix of 4 groups. From 8FCV results, we note
that the classifier built on AlexNet is effective for classifying
the thee categories of diffraction images. Also, the dataset
produced from the original images is sufficient for training
the classifier.

2) Experiment results with pooled images: The 8FCV result
of the classification based on the dataset generated using
average-pooling shows that the average classification accuracy
for debris and strips is a little bit higher than the dataset built
by cropping. However, the average classification accuracy for
cells is much lower at 85.7% v.s. 94.22%. As shown in Table
II, nearly 10% cells are incorrectly classified as debris, and
only 4.5% are incorrectly classified as strips.

We note that the difference between the textual patterns in
diffraction images of normal cells and debris is the size of
speckles – a debris has larger speckles. The average-pooling
would decrease the difference between the normal cells and
debris, which could be a reason that more normal cells are
classified as debris. The 8FCV result and confusion matrix
further confirm that a deep learning classifier is more effective.
However, the dataset created using average-pooling could be
improved. Therefore, we have also experimented with max-
pooling and min-pooling functions for generating training data.

The 8FCV result of the classification based on the dataset
created using max-pooling is almost identical to the result
shown in Fig. 5. Average classification accuracy of cells
is 87.9%, of debris is 98.5%, and of strips is 94.6%. The
confusion matrix is also the same. However, the 8FCV result
of the classification based on the dataset created using min-
pooling is much better. The min-pooling function chooses the



TABLE III
A CONFUSION MATRIX OF A MIN-POOLING DATA SET

Cells Debris Strips
Cells 0.935 0.036 0.030
Debris 0.024 0.961 0.015
Strips 0.023 0.044 0.933

minimal value of the sliding window to represent the whole
window in the new image. The average classification accuracy
of cells is improved to 93.5%, of debris to 96.1%, and of
fractured cells to 93.3%. The confusion matrix is shown in
Table III. Fig. 6 shows a comparison of the average-pooling
images and their corresponding min-pooling images. We found
that the textual patterns in min-pooling images are clearer,
which might explain the improvement in the classification
accuracy.

I. Discussion

In this section, we discuss how machine learning classifiers
for separating noise data from training data are built. We also
demonstrate its process and effectiveness through classifying
three categories of diffraction images. Through separating
fractured cell images and debris images from the training
data, one can get noise-free cell images that are important
for training a classifier. However, the classification accuracy
of an SVM based classifier is not high enough. Therefore, we
built the deep learning classifier. Training the deep learning
classifier needs a large amount of high quality training data.
Different data augmentation approaches including cropping
and pooling are experimented for producing the needed data.

Our experimental results show that a deep learning classifier
is highly effective, which can be used for automated selection
of data from a large dataset and filtering noise data. The quality
of dataset can be iteratively improved through multiple rounds
of selection, in which the incorrectly classified data items from
previous round of classification were inspected and re-labeled
or removed for next round of training and classification. Since
the quality of the training data is key to the quality the deep
learning classifier, it is important to evaluate the quality of
the augmented dataset in term of representativity, fidelity and
variety. A high quality augmented dataset should have high a
representativity, fidelity, and variety.

IV. EVALUATION OF THE QUALITY OF AUGMENTED DATA

In this section, we discuss how to systematically evaluate the
quality of datasets that are produced from original diffraction
images using cropping or pooling techniques. We evaluate
the dataset using representativity, fidelity, and variety. Rep-
resentativity means that the dataset includes all information in
the original dataset and it can represent the original dataset
to train a machine learning classifier. Fidelity refers to the
fact that a generated data item cannot be distinguished from
the original source. Variety means the augmented dataset
should be normally distributed for non-trivial features. For
the diffraction image case study, we first checked whether the
small size diffraction images can be used for classifying the

TABLE IV
CONFUSION MATRIX OF AN SVM BASED CLASSIFICATION OF

AUGMENTED DATA

Cells Debris Strips
Cells 77.94% 10.97% 11.09%
Debris 7.33% 84.39% 8.28%
Strips 20.25% 18.69% 61.06%

diffraction images based on SVM algorithm to achieve the
similar accuracy as the original images. Then we checked the
textual pattern of the small images to ensure the small image
can capture enough morphology information as its original
image. Finally, we compared the distribution of feature values
of the augmented data set and the original image data set.

A. Checking the classification accuracy of the SVM classifier

Table I shows a confusion matrix of the classification of
diffraction images using an SVM classifier which is trained
using the original diffraction image datasets. We check the
classification accuracy of the classifier based on the generated
diffraction images. We trained the SVM classifier using the
dataset consisting of the small diffraction images produced
by cropping or pooling from the original diffraction images.
These are the images that are also used for training the
classifier shown in Table I. We select 3000 small images
for each category and then conduct an 8FCV. The confusion
matrix of the average result of 8FCV is shown in Table
IV. Comparing the results in Tables I and IV, it is easy to
find the classification accuracy of the two training datasets
are almost identical. We conclude that the augmented dataset
accurately represents the original dataset for training the SVM
classifier. This provides evidence to use the augmented dataset
to represent the original dataset for training deep learning
classifiers.

B. Checking the textual pattern in diffraction images

Program aDDA [19] is an open-source tool for simulating
light scattering of particles using discrete dipole approximation
(DDA) approach. aDDA can be used to calculate a diffraction
image of a scatterer. In theory, the diffraction image of a
scatterer calculated from aDDA is identical to the p-DIFC
acquired diffraction image of the same scatterer. We use aDDA
simulated diffraction images to check replication property of
textual patterns in the image to investigate whether partial of
the image can represent the whole image. At the same time, we
expect each of the small image cuts from the original image
is unique. Fig. 7 shows 6 diffraction images calculated from 6
different scatterers. Fig. 7a is a diffraction image of a sphere
scatterer, where the regular strips repeated in the image. If we
cut a small window of image such as 300 × 300 pixels from
the center of the original image (the size is 640× 480 pixels),
the small image is sufficient to represent the textual pattern of
the whole image.

If we shift the window from the center with small distance,
we can cut more small images to represent the whole image,
but each of the images is different. The same property can be
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Fig. 6. Diffraction images produced with different pooling functions (a) an
average-pooling image of a cell, and (d) the corresponding min-pooling image
of (a); (b) an average-pooling image of a debris, and (e) the corresponding
min-pooling image of (b); (c) an average-pooling image of a strips, and (f)
the corresponding min-pooling image of (c).

observed from other images in 7, and small images can be
cut from each of them, where (b) is a diffraction image of
an ellipsoid scatterer, (c) is a diffraction image of a bisphere
scatterer with two spheres stay side by side. The two spheres
are clearly shown by the repeated strips patterns in the image.
It is easy to see that a small window of the image also can
capture the repeated strips pattern in the images. (d) is a bi-
coated scatterer with one ellipsoid containing a sphere in its
center, (e) is a bi-coated scatterer with one ellipsoid containing
a sphere shifting from its center, and (f) is a scatterer for
modeling a red blood cell with shape like a peanut. It is not
difficult to see, if we properly cut a small image from each one
in Fig. 7, each small image can be easily map to its original
one as shown in Fig. 8.

The ratio of the images shown here is not consistent with
the original images due to formatting issues, but they correctly
explain the idea of how a small part of an image can represent
a whole image. From this observation, we believe that if we
cut small images around the center of the textual pattern in
the image, the small image should have enough information
to represent the original large image.

C. Checking the feature pattern in the data set

Our experiments have shown that any small diffraction
image can accurately represent its original diffraction image
for classification. The deep learning classifier always cate-
gorizes a small image into the same category as its source
diffraction image. This is a good thing, but at the same time,
it is necessary to check the contribution of the small images
towards training effectiveness. If the small images from an
original image have identical feature values, then these images
are redundant to the training. Therefore, it is necessary to
check how close the feature values of these small images area.
Given an image to a trained deep learning classifier, we collect
the output at the last fully-connected layer, which includes
4096 features in AlexNet. Then we compare the feature values
between two input diffraction images. Although it is not

(a) (b) (c)

(d) (e) (f)

Fig. 7. aDDA calculated diffraction images of (a) a sphere, (b) an ellipsoid,
(c) a bi-sphere, (d) a bi-coated with one sphere in the center, (e) a bi-coated
with one sphere shifting from the center, and (f) an RBC.

(a) (b) (c)

(d) (e) (f)

Fig. 8. small diffraction images cropped from images in Fig. 7, (a) a sphere,
(b) an ellipsoid, (c) a bi-sphere, (d) a bi-coated with one sphere in the center,
(e) a bi-coated with one sphere shifting from the center, and (f) an RBC.

difficult to find the difference between two feature vectors,
it is fairly challenging to calculate the difference between
two feature vectors since each feature is not a simple scalar
parameter. Therefore, we use a different way to evaluate the
small diffraction images. Since the textual pattern is essential
to the classification of diffraction images, we can check the
difference of GLCM feature values between two images. If the
GLCM feature values of the small images are different from its
original images, we also need to check the distribution of the
dataset of small images and the distribution of the dataset of
the original images. If the GLCM feature values of the small
diffraction images that produced from the same original image
are different, and the distribution of the GLCM features of the
dataset of the small image is consistent with the distribution of
the GLCM features of the dataset of the original images, we
believe the dataset of the small images represent the original
images well and contributes to the generalization of training.

1) Comparing GLCM feature values of diffraction images:
We first calculated the GLCM feature values for each diffrac-
tion image, and the small images are grouped together with
their original image. Then we compared every GLCM feature



Fig. 9. Compare the distribution of a GLCM feature values of the data set
of the original images and the data set of the small images pooled from the
original images.

for all images in a group. If two images have different values of
at least one GLCM feature, the two images are considered as
different. Table V shows a partial comparison results of pooled
small images and its original image in 6 GLCM features.
Img − 1 to Img − 5 are pooled image from original image
Img−0. We checked every group of images, and did not find
two identical images in each group.

2) Comparing GLCM feature distributions of datasets:
We created a distribution of a GLCM feature for all original
images that belong to the same type. Then we created the same
distribution for a group of small images that were produced
from the original images. We compared the two distribution
to see whether the distributions are consistent. Fig. 9 shows a
comparison of the normal distribution of a GLCM feature of
the original diffraction image data and the one of the small
diffraction images pooled from the original ones.

We created a normal distribution with the normalized feature
values (i.e. min-max normalization), mean of the values and
standard deviation, and the curve was drawn based on the
probability mass function. It is not difficult to see that the
two distributions are not exactly the same. However, both
of them are normally distributed. Different GLCM features
and different groups images are checked using the same
distribution. We found that the distribution pattens between
the dataset of original images and the datasets that are pooled
or cropped images from the original images are consistent.
Therefore, we conclude that both the pooling and cropping
are effective for data augmentation of diffraction images.

V. RELATED WORK

Deep learning researchers are faced with the trade-off
between using better deep learning architectures and better
training data [21]. However, building a deep learning archi-
tecture for small training datasets is a grand challenge. Even
a deep learning architecture is targeted for low-shot clas-
sification requires data augmentation [22]. Therefore, using
large training data is a more feasible approach for building a
high quality deep learning solution. For example, the original
AlexNet was trained with 1.2 million images, and the classifier
for categorizing the three categories of diffraction images
required over 100,000 diffraction images for each category.
However, many domain specific applications cannot produce
enough data for the deep learning. Data augmentation through
producing high quality artificial training data based on original

data is a widely adopted practice for enhancing the training
dataset in deep learning.

Each domain specific application can produce artificial data
according to the domain models such as using aDDA for
producing diffraction images of cells. Sampling from a large
image is also an effective approach for producing image data
[23] [24]. In this paper, we have used cropping and pooling
from original images for producing large volume of training
data. The augmented datasets are systematically evaluated in
terms of representativity, fidelity and variety.

Generative models are proposed recently for producing
artificial data using deep learning techniques [25]. Although
large amount of initial data are required to produce artificial
data using generative models, it is a promising technique for
generating a large amount high quality artificial data. Through
learning the transformation relation from similar datasets to
produce data for low-shot learning is also a promising idea
for data augmentation [22]. However, poor quality data could
cause serious problems such as wrong prediction or low
accuracy of the classification.

Quality attributes of big data such as availability, usability,
and reliability have been well defined in some publications
[26] [7]. Although general techniques and tools are developed
for quality assurance of big data, much more work remains to
be done on the quality assurance of domain specific big data
such as health care management data, social media data, and
finance data.

Machine learning algorithms such as Gradient Boosted
Decision Tree (GBDT) are used for detecting data duplication
[6]. Data filtering is an approach for quality assurance of big
data through removing bad data from data sources. For exam-
ple, Ekambaram et. al recently reported a machine learning
approach for finding label noise in the training data [27].

VI. SUMMARY AND FUTURE WORK

Training a deep learning model normally requires a large
volume of training data as well as high quality training
data. Large volume of training data may include noise data.
Therefore, it is necessary to separate the noise data from
the training data. In this paper, we proposed a deep learning
approach for the automated classification of training data into
different categories of data, one of which is a noise category.

In many cases, the original training data needs to be
transformed to fit the input size requirements of deep learning
models. In other cases, new data is required through data
augmentation as the original data is insufficient in size. We
discussed different data augmentation approaches. We have
also evaluated the quality of the training data through cross
validation of the classification accuracy.

To demonstrate the proposed approaches to data aug-
mentation and their effectiveness, we conducted a thorough
experimental study on automated classification of massive
diffraction images. The proposed approaches and experience
collected from this experimental study can be adopted for data
augmentation and evaluation of big data in other domains.



TABLE V
A COMPARISON OF GLCM FEATURE VALUES AMONG DIFFRACTION IMAGES

ASM CON COR VAR IDM SAV
Img-1 0.069028397 0.300829789 0.978817148 0.164436833 0.597584362 0.231334924
Img-2 0.656232866 0.224157652 0.980417054 0.130393754 0.864684597 0.109085359
Img-3 0.967753732 0.017326016 0.688163634 0.000792628 0.989551474 0.026260393
Img-4 0.026913115 0.159871456 0.99144913 0.166720538 0.621992081 0.292738468
Img-5 0.587408623 0.235948351 0.951577511 0.063657455 0.836049419 0.093207132
Img-0 0.329891354 0.001331282 0.997723423 0.117280715 0.84966343 0.282349741
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[23] D. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Mitosis
detection in breast cancer histology images with deep neural networks,”
in Intl. Conf. on Medical Image Computing and Computer-assisted
Intervention, 2013, pp. 411–418.

[24] B. Dong, L. Shao, M. D. Costa, O. Bandmann, and A. F. Frangi, “Deep
learning for automatic cell detection in wide-field microscopy zebrafish
images,” in 2015 IEEE 12th Intl. Symposium on Biomedical Imaging
(ISBI), April 2015, pp. 772–776.

[25] (2017, Jan.) Open ai: Generative models. [Online]. Available:
https://openai.com/blog/generative-models/

[26] L. Cai and Y. Zhu, “The challenges of data quality and data quality
assessment in the big data era,” Data Science Journal, vol. 14:2, pp.
1–10, 2015.

[27] R. Ekambaram, D. Goldgof, and L. Hall, “Finding label noise examples
in large scale datasets,” in 2017 IEEE Intl. Conf. on Systems, Man, and
Cybernetics (SMC), Banff, Canada, Oct. 2017.




