
 
Fig. 1: (A) Radiative cooling test chamber, with soda lime glass atop a GaSb PV cell inside. 
(B) Test chamber schematic: it consists of high-density polystyrene foam, sealed by a low-density, 
transparent polyethylene film. Two PV diodes (one with soda lime glass and one without) are measured 
in two nearly-identical chambers at the same time with a type-K thermocouple for comparison.  



Fig. 2: The mid-IR emittance spectra of bare 
GaSb (red line) and the soda lime glass 
(black line). Both are measured by FTIR at a 
30° incident angle. The spectrum of soda lime 
glass is measured when stacked on a Si 
wafer with aluminum deposited on the back. 
In the mid-IR, soda lime glass is mostly 
opaque. 

 
Fig. 3: Daytime radiative cooling measurement on 
June 7, 2017. Solar irradiance, measured by a 
pyranometer mounted at 45° facing south (blue solid 
line) is angle-corrected to quantify the solar 
irradiance upon a horizontal surface (blue dashed 
line). Ambient temperature (purple line) is measured 
by a thermometer sitting below the setup. The 
stabilized temperature difference between GaSb PV 
diodes with and without soda lime glass is 2.6 . 
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with an augmented design architecture with a higher ratio of the cooler to PV cell area. Implementation of 
this latter design could potentially increase overall efficiencies of solar TPV systems by up to 5% relative 
with relatively little increase in cost or overall system complexity. Finally, we project that even larger 
increases in open-circuit voltage would be possible for multi-junction CPV designs, using the same 
radiative cooling strategy, since the cooling would individually increase the operating voltage obtained 
from each junction. In future work, it will be important to test these hypotheses through direct electrical 
measurements. 
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