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SUMMARY: Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high
dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in
genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical
and challenging question in cluster analysis is whether the identified clusters represent important underlying structure
or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the
context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the
partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a
Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues.
The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate.
Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated

through several simulation studies and applications to two cancer gene expression datasets.
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Statistical Significance for Hierarchical Clustering
1. Introduction

Clustering describes the unsupervised learning task of partitioning observations into homoge-
nous subsets, or clusters, to uncover subpopulation structure in a dataset. As an unsupervised
learning task, cluster analysis makes no use of label or outcome data. A large number of
methods have been proposed for clustering, including hierarchical approaches, as well as
non-nested approaches, such as K-means clustering. Since the work of Eisen et al. (1998),
hierarchical clustering algorithms have enjoyed substantial popularity for the exploratory
analysis of gene expression data. In several landmark papers that followed, these methods
were successfully used to identify clinically relevant expression subtypes in lymphoma, breast,
and other types of cancer (Perou et al., 2000; Bhattacharjee et al., 2001).

While non-nested clustering algorithms typically require pre-specifying the number of
clusters of interest, K, hierarchical algorithms do not. Instead, hierarchical approaches
produce a single nested hierarchy of clusters from which a partition can be obtained for
any possible choice of K. As a result, hierarchical clustering provides an intuitive way to
study relationships among clusters not possible using non-nested approaches. The popularity
of hierarchical clustering in practice may also be largely attributed to dendrograms, a highly
informative visualization of the clustering as a binary tree.

While dendrograms provide an intuitive representation for studying the results of hierarchi-
cal clustering, the researcher is still ultimately left to decide which partitions along the tree
to interpret as biologically important subpopulation differences. Often, in genomic studies,
the determination and assessment of subpopulations are left to heuristic or ad hoc methods
(Verhaak et al., 2010; Wilkerson et al., 2010; Bastien et al., 2012). To provide a statistically
sound alternative to these methods, we introduce statistical Significance of Hierarchical
Clustering (SHC), a Monte Carlo based approach for assessing the statistical significance

of clustering along a hierarchical partition. The approach makes use of the ordered and
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nested structure in the output of hierarchical clustering to reduce the problem to a sequence
of hypothesis tests descending the tree. Each test is formulated such that the procedure may
be applied even in the high-dimension low-sample size (HDLSS) setting, where the number of
variables is much greater than the number of observations. This is of particular importance,
as the number of measured variables in genomic studies continues to grow with advances
in high-throughput sequencing technologies, such as RNA-seq (Marioni et al., 2008; Wang
et al., 2009). A stopping rule along the sequence of tests is also provided to control the
family-wise error rate (FWER) of the entire procedure.

Several approaches have been proposed to address the question of statistical significance
in the non-nested setting. The Statistical Significance of Clustering (SigClust) hypothesis
test was introduced by Liu et al. (2008) for assessing the significance of clustering in HDLSS
settings using a Monte Carlo procedure. While well-suited for detecting the presence of more
than a single cluster in a dataset, the approach was not developed with the intention of
testing in hierarchical or multi-cluster settings. This approach is described in greater detail
in Section 2.2. More recently, Maitra et al. (2012) proposed a bootstrap based approach
(BootClust) capable of testing for any number of clusters in a dataset. However, in addition
to not directly addressing the hierarchical problem, their approach has not been evaluated
in the important HDLSS setting. As such, neither approach provides a solution for handling
the structure and multiplicity of nested tests unique to hierarchical clustering.

For assessing statistical significance in the hierarchical setting, Suzuki and Shimodaira
(2006) developed the R package pvclust. The hypothesis tests used in pvclust are based
on bootstrapping procedures originally proposed for significance testing in the context of
phylogenetic tree estimation (Efron et al., 1996; Shimodaira, 2004). Since the procedure
is based on a nonparamateric bootstrapping of the covariates, while pvclust can be used

in the HDLSS setting, it cannot be implemented when the dataset is of low-dimension. In
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contrast, SHC may be used in either setting. To our knowledge, no other approaches have
been proposed for assessing the statistical significance of hierarchical clustering.

The remainder of this paper is organized as follows. In Section 2 we first review hierarchical
clustering and describe the SigClust hypothesis test of Liu et al. (2008). Then, in Section 3,
we introduce our proposed SHC approach. In Section 4, we present theoretical justifications
for our method under the HDLSS asymptotic setting. We then evaluate the performance of
our method under various simulation settings in Section 5. In Section 6, we apply our method
to two cancer gene expression datasets. Finally, we conclude with a discussion in Section 7.

The SHC procedure is implemented in R, and is available at http://github.com/pkimes/.

2. Clustering and Significance

We begin this section by first providing a brief review of hierarchical clustering. We then
describe the K-means based SigClust approach of Liu et al. (2008) for assessing significance

of clustering in HDLSS data.

2.1 Hierarchical Clustering Methods

Given a collection of N unlabeled observations, X = {x;, ..., xx} in p dimensions, algorithms
for hierarchical clustering estimate all K = 1,..., N partitions of the data through a
sequential optimization procedure. The sequence of steps can be implemented as either an
agglomerative (bottom-up) or divisive (top-down) approach to produce the nested hierarchy
of clusters. Agglomerative clustering begins with each observation belonging to one of N
disjoint singleton clusters. Then, at each step, the two most similar clusters are joined
until after (IV — 1) steps, all observations belong to a single cluster of size N. Divisive
clustering proceeds in a similar, but reversed manner. In this paper we focus on agglomerative
approaches which are more often used in practice.

Commonly, in agglomerative clustering, the pairwise similarity of observations is measured
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using a dissimilarity function, such as squared Euclidean distance (L3), Manhattan distance
(L1), or (1 — |Pearson corr.|). Then, a linkage function is used to extend this notion of
dissimilarity to pairs of clusters. Often, the linkage function is defined with respect to all
pairwise dissimilarities of observations belong to the separate clusters. Examples of linkage
functions include Ward’s, single, complete, and average linkage (Ward, 1963). The clusters
identified using hierarchical algorithms depend heavily on the choice of both the dissimilarity

and linkage functions.
[Figure 1 about here.]

The sequence of clustering solutions obtained by hierarchical clustering is naturally visu-
alized as a binary tree, commonly referred to as a dendrogram. Figure 1A shows a simple
example with five points in R? clustered using squared Euclidean dissimilarity and average
linkage. The corresponding dendrogram is shown in Figure 1B, with the observation indices
placed along the horizontal axis, such that no two branches of the dendrogram cross. The
sequential clustering procedure is shown by the joining of clusters at their respective linkage
value, denoted by the vertical axis, such that the most similar clusters and observations
are connected near the bottom of the tree. The spectrum of clustering solutions can be
recovered from the dendrogram by cutting the tree at an appropriate height, and taking the
resulting subtrees as the clustering solution. For example, the corresponding K = 2 solution

is obtained by cutting the dendrogram at the gray horizontal line in Figure 1B.

2.2 Statistical Significance

We next describe the SigClust hypothesis test of Liu et al. (2008) for assessing significance of
clustering. To make inference in the HDLSS setting tractable, SigClust makes the simplifying
assumption that a cluster may be characterized as a subset of the data which follows a single
Gaussian distribution. While no universal definition for a “cluster” exists, the Gaussian

definition is often used as a reasonable approximation (Mclachlan and Peel, 2000; Fraley and
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Raftery, 2002). While potentially restrictive, the Gaussian definition and SigClust approach
have provided sensible results in real high-dimensional datasets (Verhaak et al., 2010; Bastien
et al., 2012). Therefore, to determine whether a dataset is comprised of more than a single

cluster, the approach tests the following hypotheses:

Hj : the data follow a single Gaussian distribution

Hj : the data follow a non-Gaussian distribution.

The corresponding p-value is calculated using the 2-means cluster index (CI), a statistic
sensitive to the null and alternative hypotheses. Letting C} denote the set of indices of
observations in cluster £ and using &, to denote the corresponding cluster mean, the 2-

means CI is defined as
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where T'SS and S5 are the total and within-cluster sum of squares. Smaller values of the
2-means CI correspond to tighter clusters, and provide stronger evidence of clustering of the
data. The statistical significance of a given pair of clusters is calculated by comparing the
observed 2-means CI against the distribution of 2-means CIs under the null hypothesis of a
single Gaussian distribution. Since a closed form of the distribution of CIs under the null is
unavailable, it is empirically approximated by the Cls computed for hundreds, or thousands,
of datasets simulated from a null Gaussian distribution estimated using the original dataset.
An empirical p-value is calculated by the proportion of simulated null Cls less than the
observed CI. Approximations to the optimal 2-means CI for both the observed and simulated
datasets can be obtained using the K-means algorithm for two clusters.

In the presence of strong clustering, the empirical p-value may simply return 0 if all
simulated CIs fall above the observed value. This can be particularly uninformative when
trying to compare the significance of multiple clustering events. To handle this problem,

Liu et al. (2008) proposed computing a “Gaussian fit p-value” in addition to the empirical
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p-value. Based on the observation that the distribution of Cls appears roughly Gaussian,
the Gaussian fit p-value is calculated as the lower tail probability of the best-fit Gaussian
distribution to the simulated null CIs.

An important issue not discussed above is the estimation of the covariance matrix of the null
distribution, a non-trivial task in the HDLSS setting. A key part of the SigClust approach is
the simplification of this problem, by making use of the invariance of the 2-means CI to mean
shifts and rotations of the data in the Euclidean space. It therefore suffices to simulate data
from an estimate of any rotation and shift of the null distribution. Conveniently, by centering
the distribution at the origin, and rotating along the eigendirections of the covariance matrix,
the task can be reduced to estimating only the eigenvalues of the null covariance matrix. As
a result, the number of parameters to estimate is reduced from p(p + 1)/2 to p. However, in
the HDLSS setting, even the estimation of p parameters is challenging, as N < p. To solve
this problem, the additional assumption is made that the null covariance matrix follows a
factor analysis model. That is, under the null hypothesis, the observations are assumed to
be drawn from a single Gaussian distribution, N(u,3l), with ¥ having eigendecomposition
Y = UAUT such that A = Ag + 02L,, where A is a low rank (< N) diagonal matrix of
true signal, o7 is a relatively small amount of background noise, and I, is the p-dimensional
identity matrix. Letting w denote the number of non-zero entries of Ay, under the factor
analysis model, only w 4 1 parameters must be estimated to implement SigClust. Several
approaches have been proposed for estimating o7 and A, including the hard-threshold, soft-
threshold, and sample-based approaches (Liu et al., 2008; Huang et al., 2015). Descriptions

of these approaches and a new estimator for o} are presented in Web Appendix D.

3. Methodology

To assess significance of clustering in a hierarchical partition, we propose a sequential testing

procedure in which Monte Carlo based hypothesis tests are preformed at select nodes along
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the corresponding dendrogram. In this section, we introduce our SHC algorithm in two
parts. First, using a toy example, we describe the hypothesis test performed at individual
nodes. Then, we describe our sequential testing procedure for controlling the FWER of the

algorithm along the entire dendrogram.

3.1 SHC Hypothesis Test

[Figure 2 about here.|

Throughout, we use j € {1,..., N — 1} to denote the node index, such that j = 1 and j =
(N — 1) correspond to the top-most (root) and bottom-most merges along the dendrogram,
respectively. In Figure 2, we illustrate one step of our sequential algorithm using a toy dataset
of N = 150 observations drawn from R? (Figure 2A). Agglomerative hierarchical clustering
was applied using Ward’s linkage to obtain the dendrogram in Figure 2B. Consider the second
node from the top, i.e. 7 = 2. The corresponding observations and subtree are highlighted
in panels A and B of Figure 2. Here, we are interested in whether the sets of 43 and 53
observations joined at node 2, denoted by dots and x’s, more naturally define one or two
distinct clusters. Assuming that a cluster may be well approximated by a single Gaussian

distribution, we propose to test the following hypotheses at node 2:

Hy : The 96 observations follow a single Gaussian distribution

H, : The 96 observations do not follow a single Gaussian distribution.

The p-value at the node, denoted by p;, is calculated by comparing the strength of clustering
in the observed data against that for data clustered using the same hierarchical algorithm
under the null hypothesis. We consider two cluster indices, linkage value and the 2-means CI,
as natural measures for the strength of clustering in the hierarchical setting. To approximate
the null distribution of cluster indices, 1000 datasets of 96 observations are first simulated

from a null Gaussian distribution estimated using only the 96 observations included in the
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highlighted subtree. Then, each simulated dataset is clustered using the same hierarchical
algorithm as was applied to the original dataset (Figure 2C). As with the observed data, the
cluster indices are computed for each simulated dataset using the two cluster solution ob-
tained from the hierarchical algorithm. Finally, p-values are obtained from the proportion of
null cluster indices indicating stronger clustering than the observed indices (Figure 2D). For
the linkage value and 2-means CI, this corresponds to larger and smaller values, respectively.
As in SigClust, we also compute a Gaussian approximate p-value in addition to the empirical
p-value. In this example, the resulting empirical p-values, 0.020 and 0, using linkage and the
2-means CI, both suggest significant clustering at the node.

In estimating the null Gaussian distribution, we first note that many popular linkage
functions, including Ward’s, single, complete and average, are defined with respect to the
pairwise dissimilarities of observations belonging to two clusters. As such, the use of these
linkage functions with any dissimilarity satisfying mean shift and rotation invariance, such
as Euclidean or squared Euclidean distance, naturally leads to the invariance of the entire
hierarchical procedure. Thus, for several choices of linkage and dissimilarity, the SHC p-value
can be equivalently calculated using data simulated from a simplified distribution centered at
the origin, with diagonal covariance structure. To handle the HDLSS setting, as in SigClust,
we further assume that the covariance matrix of the null Gaussian distribution follows a
factor analysis model, such that the problem may be addressed using the hard-threshold,
soft-threshold and sample approaches proposed in Liu et al. (2008); Huang et al. (2015).

Throughout this paper we derive theoretical and simulation results using squared Euclidean
dissimilarity with Ward’s linkage, an example of a mean shift and rotation invariant choice of
dissimilarity and linkage function. However, our approach may be implemented using a larger
class of linkages and appropriately chosen dissimilarity functions. We focus on Ward’s linkage

clustering as the approach may be interpreted as characterizing clusters as single Gaussian
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distributions, as in the hypotheses we propose to test. Additionally, we have observed that
Ward’s linkage clustering often provides strong clustering results in practice.

Note that at each node, the procedure requires fitting a null Gaussian distribution using
only the observations contained in the corresponding subtree. We therefore set a minimum
subtree size, Ny, for testing at any node. For the simulations in Section 5, we use Ny, = 10.

In this section, we have described only a single test of the entire SHC procedure. For a
dataset of N observations, at most (N — 1) tests may be performed along the dendrogram.
While the total number of tests is typically much smaller due to the minimum subtree
criterion, care is still needed to account for the issue of multiple testing. In the following

section, we describe a sequential approach for controlling the FWER to address this issue.

3.2 Multiple Testing Correction

To control the FWER of the SHC procedure, one could simply test at all nodes simultane-
ously, and apply an equal Bonferroni correction to each test. However, this approach ignores
the clear hierarchical nature of the tests. Furthermore, the resulting dendrogram may have
significant calls at distant and isolated nodes, making the final output difficult to interpret.
Instead, we propose to control the FWER using a sequential approach which provides greater
power at the more central nodes near the root of the dendrogram, and also leads to more
easily interpretable results.

To correct for multiple testing, we employ the FWER controlling procedure of Meinshausen
(2008) originally proposed in the context of variable selection. For the SHC approach, the
FWER along the entire dendrogram is defined to be the probability of at least once, falsely
rejecting the null at a subtree of the dendrogram corresponding to a single Gaussian cluster.
To control the FWER at level a € (0, 1), we perform the hypothesis test described above at

each node j, with the modified significance cutoff:

N; -1
YT N
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where N is used to denote the number of observations clustered at node j. Starting from the
root node, i.e. 7 = 1, we descend the dendrogram rejecting at nodes for which the following
two conditions are satisfied: (C1) p; < o, and (C2) the parent node was also rejected, where
the parent of a node is simply the one directly above it. For the root node, condition (C2)
is ignored. As the procedure moves down the dendrogram, condition (C1) and the modified
cutoff, o}, apply an increasingly stringent correction to each test, proportional to the size of
the corresponding subtree. Intuitively, if the subtree at a node contains multiple clusters, the
same is true of any node directly above it. Condition (C2) formalized this intuition by forcing
the set of significant nodes to be well connected from the root. Furthermore, recall that the
hypotheses tested at each node assess whether or not the two subtrees were generated from
a single Gaussian distribution. While appropriate when testing at nodes which correspond
to one or more Gaussian distributions, the interpretation of the test becomes more difficult
when applied to only a portion of a single Gaussian distribution, e.g. only half of a Gaussian
cluster. This can occur when testing at a node which falls below a truly null node. In this
case, while the two subtrees of the node correspond to non-Gaussian distributions, they do
not correspond to interesting clustering behavior. Thus, testing at such nodes may result in
truly positive, but uninteresting, significant calls. By restricting the set of significant nodes
to be well connected from the root, in addition to controlling the FWER, our procedure also

limits the impact of such undesirable tests.

4. Theoretical Development

In this section, we study the theoretical behavior of our SHC procedure with linkage value as
the measure of cluster strength applied to Ward’s linkage hierarchical clustering. We derive
theoretical results for the approach under both the null and alternative hypotheses. In the
null setting, the data are sampled from a single Gaussian distribution. Under this setting,

we show that the empirical SHC p-value at the root node follows the U(0, 1) distribution. In
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the alternative setting, we consider the case when the data follow a mixture of two spherical
Gaussian distributions. Since SHC is a procedure for assessing statistical significance given
a hierarchical partition, the approach depends heavily on the algorithm used for clustering.
We therefore first provide conditions for which Ward’s linkage clustering asymptotically
separates samples from the two components at the root node. Given these conditions are
satisfied, we then show that the corresponding empirical SHC p-value at the root node tends
to 0 asymptotically as both the sample size and dimension grow to infinity. All proofs are
included in Web Appendix A of the Supplementary Materials.

We first consider the null case where the data, X = {X,..., X x}, are sampled from a
single Gaussian distribution, N(0,3). The following proposition describes the behavior of

the empirical p-value at the root node under this setting.

PROPOSITION 1: Suppose X were drawn from a single Gaussian distribution, N (0, X),

with known covariance matrix 3. Then, the SHC empirical p-value at the root node follows

the U(0, 1) distribution.

The proof of Proposition 1 is omitted, as it follows directly from an application of the
probability integral transform. We also note that the result of Proposition 1 similarly holds for
any subtree along a dendrogram corresponding to a single Gaussian distribution. Combining
this with Theorem 1 of Meinshausen (2008), we have that the modified p-value cutoff
procedure of Section 3.2 controls the FWER at the desired level a.

We next consider the alternative setting. Suppose the data, X, were drawn from a mixture
of two Gaussian subpopulations in RP, denoted by N(p;,0%1,) and N (g, 02L,). Let XV =
{Xgl), ., XWY and X@) = {X§2), ..., X®} denote the N = n + m observations of X
drawn from the two mixture components. In the following results, we consider the HDLSS
asymptotic setting where p — oo and n = p* + o(p), m = p°® + o(p) for a, 3 € (0,1)

(Hall et al., 2005). As in Borysov et al. (2014), we assume that the mean of the difference

11
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(X 51) - X 5-2)) is not dominated by a few large coordinates in the sense that for some € > 0,

P

> (g —pan) =0 (p*), p— oo (2)

Given this assumption, the following theorem provides necessary conditions for Ward’s

linkage clustering to correctly separate observations of the two mixture components.

THEOREM 1: Suppose (2) is satisfied and the dendrogram is constructed using Ward’s
linkage function. Let n,m respectively be the numbers of observations sampled from the two
Gaussian mizture components, N(py,01L,) and N(py, 03L,), with o1 < o9. Additionally,
suppose n. = p® + o(p), m = p® + o(p) for a, B € (0,1), and let u* denote p~*||py, — po||2.
Then, if lim sup % <1, XD and X@ are separated at the root node with probability

converging to 1 as p — o0.

Theorem 1 builds on the asymptotic results for hierarchical clustering described in Bo-
rysov et al. (2014). The result provides a theoretical analysis of Ward’s linkage clustering,
independent of our SHC approach. In the following result, using Theorem 1, we show that
under further assumptions, the SHC empirical p-value is asymptotically powerful at the root

node of the dendrogram. That is, the p-value converges to 0 as p,n, m grow to infinity.

THEOREM 2: Suppose the assumptions for Theorem 1 are satisfied. Furthermore, suppose
o? and o3 are known. Then, using linkage as the measure of cluster strength, the empirical

SHC p-value at the root node along the dendrogram equals 0 with probability converging to 1

as p — o0.

By Theorem 2, the SHC procedure is asymptotically well powered to identify significant
clustering structure in the presence of multiple Gaussian components. While in this section
we only considered the theoretical behavior of SHC using linkage value as the measure of
cluster strength, empirical results presented in the following section provide justification for

alternatively using the 2-means CI.
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5. Simulations

In this section we illustrate the performance of our proposed SHC approach using simulation
studies. Two implementations of SHC are considered, denoted by SHC;, and SHC,, differing
by whether the linkage value or the 2-means CI is used to measure the strength of clustering.

The performance of SHC is compared against the existing pvclust and BootClust ap-
proaches. In each simulation, Ward’s linkage clustering was applied to a dataset drawn from a
mixture distribution in R?. A range of simulation settings were considered, including the null
setting with K’ = 1 and alternative settings with K = 2,3,...,8. To evaluate the robustness
of the SHC approach to the underlying Gaussian assumption, simulations were completed
with each cluster generated from Gaussian as well as t-distributions with 3 and 6 degrees of
freedom, denoted t3 and tg. Simulation settings with both balanced and imbalanced cluster
sizes were also considered. For all values of K, low (p = 10), moderate (p = 100), and high
(p = 1000) dimensional simulations were explored. All settings were replicated 100 times. A
representative set of results are reported in this section. Complete simulation results may
be found in Web Appendix B of the Supplementary Materials. In the interest of space, all
simulation results for K = 2 (Web Tables S5-S9), and K = 4 (Web Tables S18-S20) are left
to Web Appendix B.

In all simulations, SHC p-values were calculated using 100 simulated null cluster indices,
and the corresponding Gaussian-fit p-values are reported. When p = 10, the covariance
matrix for the Gaussian null was estimated using the sample covariance matrix. Otherwise,
the soft-threshold approach described in Huang et al. (2015) was used. The BootClust
implementation was provided by the authors of Maitra et al. (2012). BootClust requires
specifying an upper limit on the possible number of clusters, which was set to 10 for
all simulations. In our simulations, the BootClust approach showed degenerate behavior

when p = 1000, and therefore, performance using BootClust is not reported for these

13
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settings. A more complete discussion of this is provided in Web Appendix B and Web
Table S1, along with a brief review of the fundamental differences between pvclust and our
proposed SHC method. Both the pvclust and BootClust approaches were implemented using
100 bootstrap samples. The pvclust method of Suzuki and Shimodaira (2006) computes
two values: an approximately unbiased (AU) p-value based on a multi-step multi-scale
bootstrap resampling procedure (Shimodaira, 2004), and a bootstrap probability (BP) p-
value calculated from ordinary bootstrap resampling (Efron et al., 1996). In the interest
of space, results for pvclust BP p-values are left to Web Appendix B as the approach
showed consistently negligible power throughout the simulations considered in this section.

A significance threshold of o = 0.05 was used with all three approaches.

5.1 Null Setting (K =1)

[Table 1 about here.]

We first consider the null setting to evaluate the ability of SHC to control for false positives.
In these simulations, datasets of size N = 50, 100, 200 were sampled from a single Gaussian, tg
or t3 distribution in p = 10, 100, 1000 dimensions with diagonal covariance and one dimension
scaled by /v to mimic low-dimensional signal for v > 1. The v = 1 case reduces to the
spherical covariance setting. A subset of the simulation results are presented in Table 1, with
complete results provided in Web Tables S2, S3, and S4.

For each method, we report the number of replications with false positive calls and the
corresponding median computing time of a single replication. As both AU and BP p-values
are computed simultaneously, only a single computing time is reported for pvclust.

In Table 1, both SHC;, and SHC, show generally conservative behavior in settings using
Gaussian simulated data. The conservative behavior of the classical SigClust procedure was
previously described in Liu et al. (2008) and Huang et al. (2015) as being a result of the

challenge of estimating the null eigenvalues and the corresponding covariance structure in the
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HDLSS setting (Baik and Silverstein, 2006). As both SHC; and SHC, rely on the same null
covariance estimation procedure, this may also explain the generally conservative behavior
observed in our analysis. The BootClust approach shows anti-conservative behavior for p =
100, and becomes intractable when p = 1000 under the Gaussian setting. The pvclust AU
p-values shows slight anti-conservative behavior in the Gaussian setting with low-dimension
and high variability (p = 10 and v = 100). Similar performance is observed across all
methods for data generated from the heavy-tailed ¢g distribution. However, using the heavier-
tailed t3 distribution, both SHC; and SHC, exhibit anti-conservative behavior similar to
BootClust and pvclust, illustrating the effect of the Gaussian null assumption made by
both SHC methods. The behavior is particularly pronounced for large sample sizes, as the
null estimation of the t3-distribution is improved. BootClust again shows the strongest anti-
conservative behavior. Both SHC approaches required an order of magnitude less time than

pvclust across all settings, and required less than one minute in high-dimensional settings.

5.2 Three Cluster Setting (K = 3)

[Table 2 about here.|

We next consider the alternative setting in which datasets were drawn equally from three
spherical Gaussian, tg or t3 distributions. The setting illustrates the simplest case for which
significance must be attained at multiple nodes to discern the true clustering structure from
a dendrogram using SHC. Two arrangements of the three components were studied. In
the first, the components were placed along a line with distance ¢ between the means of
neighboring components. In the second, the components were placed at the corners of an
equilateral triangle with side length §. Several values of § were used to evaluate the relative
power of each method across varying levels of signal. For each dataset, N = 150, 300 or 600
samples were drawn randomly from the three components with probabilities 7, 7, 3. Select

simulation results for the triangular arrangement with equal cluster proportions (7, ma, 73 =

15
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1/3,1/3,1/3) are presented in Table 2. Similar results were observed when clusters were
arranged in a line, as well as when unequal cluster proportions were used. Complete results
are presented in Web Tables S10-S17.

For each method, we report the number of replications out of 100 in which statistically
significant evidence was detected for the correct number of clusters as well as the mean
number of significant clusters and the median computing time across replications. Addition-
ally, to assess how well detected clusters agree with the true cluster labels, we report the
mean adjusted Rand Index (ARI) for each method. The ARI provides a measure of cluster
agreement corrected for randomness, with larger values corresponding to higher agreement.

Across all settings under the triangular arrangement, the SHC;, and SHC, approaches show
the highest sensitivity, while pvclust AU p-values consistently over-estimate the number of
clusters. The problem appears to be exacerbated in the low-dimensional (p = 10) setting. In
contrast, the BootClust approach shows similar sensitivity to both SHC; and SHC,; when
p = 10, but greatly over-estimates the number of clusters when p = 100 (Web Table S14) and
becomes intractable when p = 1000 (Web Table S15). As expected, performance decreases

when clusters are generated from the heavy-tailed t3 distribution.

5.3 Increasing Cluster Count Setting (K =5,6,7,8)

[Table 3 about here.]

Finally, we consider the alternative setting in which datasets were drawn from a mixture of
K =5,6,7 or 8 Gaussian or t-distributions. All simulations were performed with N = K - 50
samples. Cluster sizes were determined by sampling from a multinomial distribution with
equal probabilities across clusters. In each replication, the K cluster centers were uniformly
randomly placed within a (K — 1)-dimensional sphere centered at the origin with radius 9,
such that larger values of § roughly correspond to greater separating signal between clusters.

Select simulation results are presented in Table 3, with complete results presented in Web
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Tables S21-S24. As in Simulation 5.2, for each dataset, we report the number of replications
in which the correct number of clusters were predicted, the mean number of significant
clusters, the median computing time, and the mean ARI across replications.

The results presented in Table 3 largely support the results observed in Simulation 5.2.
Again, the pvclust AU p-values provide little power to detect the correct clusters in the sim-
ulated settings, as shown by the relatively low mean ARI values achieved by the method. The
BootClust approach achieves performance comparable to SHC;, and SHCs in the heavy tailed
(t3) setting. However, the approach shows poor performance in the moderate-dimensional
(p = 100) settings (Web Tables S21-S24), and cannot be applied when p = 1000. Both
SHC,, and SHC,; methods show consistent performance across both low (p = 10) and high

(p = 1000) dimensional settings.

6. Real Data Analysis

To further demonstrate the power of SHC, we apply the approach to two cancer gene expres-
sion datasets. In this section, we consider a cohort of 337 breast cancer (BRCA) samples,
previously categorized into five molecular subtypes (Parker et al., 2009). Additionally, in
Web Appendix C and Web Figures S1 and S2, we consider a dataset of 300 tumor samples
drawn from three distinct cancer types. The greater number of subpopulations, as well as
the more subtle differences between them, make the BRCA dataset more challenging than
the dataset described in Web Appendix C. Data were clustered using Ward’s linkage, and

the SHC, approach was applied using 1000 simulations. FWER was controlled at o = 0.05.

6.1 BRCA Gene Expression Dataset

A microarray gene expression dataset of 337 BRCA samples was obtained from the University
of North Carolina (UNC) Microarray Database (https://genome.unc.edu/pubsup/clow/)

and compiled, filtered and normalized as described in Prat et al. (2010). Gene expression
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was analyzed for a subset of 1645 well-chosen intrinsic genes (Prat et al., 2010). We evaluate
the ability of our approach to detect biologically relevant clustering based on five molecular
subtypes: luminal A (LumA), luminal B (LumB), basal-like, normal breast-like, and HER2-
enriched (Parker et al., 2009). The dataset is comprised of 97 LumA, 54 LumB, 91 basal-like,
47 normal breast-like, and 48 HER2-enriched samples. Per-subtype separation and marginal
variances are shown in Web Figure S3. The observed values illustrate that real data, indeed,

fall within the range of parameters used in the simulations of Section 5.

[Figure 3 about here.]

The expression dataset is shown as a heatmap in Figure 3A, with the corresponding
dendrogram and subtype labels reproduced in Figure 3B. The corresponding SHC, p-values
and modified significance thresholds are given only at nodes tested while controlling the
FWER at a = 0.05. SHC, identifies at least three significantly differentiated clusters in
the dataset, primarily corresponding to luminal (LumA and LumB), basal-like, and all
remaining subtypes. Diagnostic plots investigating the SHC model assumptions are shown
in Web Figure S4. While the data appear to be heavier tailed than Gaussian, this may be
partially attributed to the factor analysis model, which is also shown to hold in the plots.
The diagnostics suggest that while still useful, the SHC test may lack some power as in the
moderately heavy-tailed simulations of Section 5. The corresponding ARI for the clusters is
0.42, while the highest achievable ARI using Ward’s linkage clustering was 0.52 at K = 5.
At the root node, the LumA and LumB samples are separated from the remaining subtypes
with a p-value of 8.07e — 4 at a threshold of aj = 0.05. However, Ward’s linkage clustering
and SHC, are unable to identify significant evidence of clustering between the two luminal
subtypes. The difficultly of clustering LumA and LumB subtypes based on gene expression
was previously described in Mackay et al. (2011). Next, the majority of basal-like samples

are separated from the remaining set of observations, with a p-value of 0.0198 at a cutoff of
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o = 0.027. The remaining HER2-enriched, normal breast-like and basal-likes samples show
moderate separation by Ward’s linkage clustering. However, the subsequent node is non-
significant, highlighting the difficulty of assessing statistical significance for larger numbers of
clusters while controlling for multiple testing. When analyzed using pvclust as described in
Section 5, only a single statistically significant cluster of more than 10 samples was identified,
corresponding to the HER2 samples. Finally, when the BootClust approach was applied with
a maximum of 30 clusters, as in the moderate and high-dimensional simulations of Section 5,

the maximum possible number of clusters was predicted.

7. Discussion

While hierarchical clustering has become widely popular in practice, few methods have been
proposed for assessing the statistical significance of a hierarchical partition. SHC was devel-
oped to address this problem, using a sequential testing and FWER controlling procedure.
Through an extensive simulation study, we have shown that SHC provides competitive results
compared to existing methods. Furthermore, in applications to two gene expression datasets,
we showed that the approach is capable of identifying biologically meaningful clustering.

In this paper, we focused on the theoretical and empirical properties of SHC using Ward’s
linkage, and in general, we suggest using SHC, over SHC based on our simulation results.
However, there exist several different approaches to hierarchical clustering, and Ward’s
linkage may not always be the most appropriate choice. In these situations, as mentioned
in Section 3, SHC may be implemented with other linkage and dissimilarity functions which
satisfy mean shift and rotation invariance. Further investigation is necessary to fully char-
acterize the behavior of the approach for different hierarchical clustering procedures.

Some popular choices of dissimilarity, such as those based on Pearson correlation of the
covariates between pairs of samples, fail to satisfy the necessary mean shift and rotation

invariance properties in the original covariate space. As a consequence, the covariance of
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the Gaussian null distribution must be fully estimated, and cannot be approximated using
only the eigenvalues of the sample covariance matrix. When N > p, the SHC method
can still be applied by estimating the complete covariance matrix. However, in HDLSS
settings, estimation of the complete covariance matrix can be difficult and computationally
expensive. A possible direction of future work is the development of a computationally

efficient procedure for non-invariant hierarchical clustering procedures.

SUPPLEMENTARY MATERIALS

Web Appendices, Tables, Figures, and R code referenced in Sections 1, 2, 4, 5, and 6 are

available at the Biometrics website on Wiley Online Library.
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Figure 1. Hierarchical clustering applied to 5 observations. (A) Scatterplot of the obser-
vations. (B) The corresponding dendrogram. This figure appears in color in the electronic
version of this article.
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Figure 2. The SHC testing procedure illustrated using a toy example. Testing is applied
to the 96 observations joined at the second node from the root. (A) Scatterplot of the
observations in R%. (B) The corresponding dendrogram. (C) Hierarchical clustering applied
to 1000 datasets simulated from a null Gaussian estimated from the 96 observations. (D)
Distributions of null cluster indices used to calculate the empirical SHC p-values. This figure

appears in color in the electronic version of this article.
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Figure 3. Analysis of gene expression for 337 BRCA samples. (A) Heatmap of gene
expression for the 337 samples (columns) clustered by Ward’s linkage. (B) Dendrogram
with corresponding SHC p-values and a* cutoffs given only at nodes tested according to
the FWER controlling procedure at a = 0.05. This figure appears in color in the electronic
version of this article.
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Table 1

Representative results for Simulation 5.1 (K = 1). Number of false positives at o = 0.05, and median computing
time over 100 replications. (N : sample size, p: dimension, v: spike size, F': generating distribution.)

parameters |p-value < 0.05] median time (sec.)
N P v F pvAU SHC; SHC; BC pv SHC; SHCq BC
100 10 1 Gaus. 0 0 0 0 22.38 0.16 0.23 0.78
100 100 1 Gaus. 0 0 0 46 28.59 1.2 1.38 7.35
100 1000 1 Gaus. 0 0 0 — 96.79 12.03 13.65 —
100 10 1 te 1 0 0 0 22.44 0.16 0.24 0.79
100 100 1 173 1 0 0 57 34.01 1.21 1.4 8.06
100 1000 1 te 1 0 0 — 115.5 11.09 13.02 —
100 10 1 t3 18 16 20 28 22.02 0.22 0.31 1.09
100 100 1 t3 14 40 45 72 36.6 1.21 1.45 18.9
100 1000 1 t3 22 45 48 — 101.62 12.43 14.58 —
100 10 100  Gaus. 10 0 4 0 25.29 0.22 0.31 1.04
100 100 100  Gaus. 3 0 2 44 34.15 1.06 1.24 8.3
100 1000 100 Gaus. 0 0 0 — 94.58 12.16 13.74 —
100 10 100 123 12 0 0 0 22.48 0.16 0.23 0.76
100 100 100 te 3 0 0 48 34.52 1.2 1.39 8.25
100 1000 100 te 1 0 0 99.47 12.09 13.78 -
100 10 100 t3 22 0 0 0 22.96 0.17 0.26 0.72
100 100 100 t3 16 0 2 51 36.05 1.2 1.39 10.15
100 1000 100 t3 11 9 9 — 117.9 12.28 14.23 —
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Table 2
Representative results for Simulation 5.2 (K = 3) with N = 150 samples and clusters placed at vertices of an
equilateral triangle with side length 6. Number of replications identifying the correct number of significant clusters,
mean number of significant clusters, median computing time and mean ARI over 100 replications. (K : cluster count,

K: predicted cluster count, p: dimension, 0: cluster separation, F': generating distribution.)

parameters |K = 3| (mean K) median time (sec.) mean ARI

P ) F pvAU SHCp, SHC» BC pv SHC; SHC, BC pvAU SHCp SHC; BC
10 4 Gaus. 1(29.17) 21 (1.89) 36 (2.14) 41 (2.19) 422 052 07 159 0.08 043 052 0.53
10 8 Gaus. 25 (10.17) 89 (2.87) 94 (2.94) 94 (2.94) 4204 0.64 0.86 1.56 0.64 093 096 0.96
100 4 Gaus. 11(6.02) 5 (1.58) 3 (1.61) 0(5.23) 5664 273 3.2 1307 0 026 027 0.13
100 8 Gaus. 6 (6.04) 59 (2.59) 62 (2.62) 0 (9.91) 5597 4.08 475 21.42 023 0.8 081 0.38
1000 8 Gaus. 12 (4.32) 24 (2.09) 45 (2.35)  —  180.93 34.32 4207 — 001 053 061 —
1000 16 Gaus. 23 (4.4) 82 (2.81) 90 (2.89) - 194.7 34.69 38.96 — 0.38 091 0.93 -
10 4 t3  0(287) 3(1.29) (1 45) 8(5.36) 4262 031 042 1.65 0.02 009 014 0.3
10 8 t3 2 (22.69) 48 (2.37) 55 (2.75) 55 (4.61) 42.24 0.62 0.85 1.6 0.2 063 073 0.73
100 4 t5 3 (4.79) 16 (1.89) 17 (1.91) 0 (6.4) 57.74 3.38 3.83 17.65 0 0 0 005
100 8  t3  2(6.98) 31 (2.11) 36 (2.36) 0 (9.46) 64.76 2.96 3.80 2227 0.03 0.38 043 0.57
1000 8 3 16 (2.34) 22 (2.09) 25 (2.11)  —  171.07 3554 4333 — 0 001 001 —
1000 16 t3 19 (3.76) 28 (2.44) 32 (2.51)  —  187.08 40.22 4536 — 003 05 051 —
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Table 3
Representative results for Simulation 5.3 (K =5,6,7,8) with N = K - 50 samples. Number of replications
identifying the correct number of significant clusters, mean number of significant clusters, median computing time

and mean ARI over 100 replications. (K : cluster count, K : predicted cluster count, p: dimension, §: cluster
separation, F: generating distribution.)

parameters |K = K| (mean K) median time (sec.) mean ARI
K p é F pvAU SHCp, SHC» BC pv SHC; SHC2 BC pvAU SHC; SHC2 BC
5 10 8 Gaus. 0(8.13) 44 (4.28) 66 (4.65) 66 (4.65) 118.38  2.07 2.88 558 0.5 0.83 09 09
6 10 & Gaus. 2(6.73) 55 (5.26) 78 (5.72) 80 (5.78) 145.95 2.68 3.42 6.75 047 086 0.93 0.94
7 10 8 Gaus. 0(7.02) 56 (6.23) 84 (6.79) 90 (6.9) 238.92 4.96 6.08 12.22 045 0.87 0.95 0.96
8 10 8 Gaus. 0(5.06) 55 (6.99) 85 (7.79) 91 (7.91) 257.84 4.78 6.14 1232 0.39 0.87 0.96 0.97
5 1000 15 Gaus. 3 (7.67) 53 (4.39) 69 (4.67) - 623.62 111.32 125.83 — 0.22 0.86 0.9 -
6 1000 15 Gaus. 5 (8.1) 63 (5.58) 76 (5.76) - 1014.4 136.28 146.92 — 0.33 091 093 —
7 1000 15 Gaus. 7 (8.57) 64 (6.54) 80 (6.7) —1204.04 184.71 198.92 —  0.37 092 094 —
8 1000 15 Gaus. 4 (8.98) 77 (7.66) 92 (7.88) - 1620.74 262.55 279.85 — 041 0.95 097 -
5 10 8 t3 0(42.22) 4(273) 20 (3.43) 22(7) 10862 1.68 218 445 0.2 043 053 0.72
6 10 8 t3  0(47.88) 9 (3.74) 26 (4.49) 20 (7.54) 178.72 2.91 3.87 936 0.2 0.54 0.61 0.77
7 10 8 tg 0(63.18) 7 (4.3) 23(5.33) 20(8.4) 242.14 454 543 13.09 0.2 054 0.64 0.79
8 10 8 t3 0(74.68) 2(4.26) 13 (5.54) 23 (8.96) 289.16 6.24 7.38 17.53 0.17 0.46 0.58 0.8
5 1000 15 ts 20 (5.73) 13 (3.62) 10 (3.68)  — 687.27 115.76 12445 — 002 04 04  —
6 1000 15 t3 15 (8.44) 4 (3.88) 8 (3.97) - 921.06 150.42 161.42 — 001 039 04 —
7 1000 15 t3 7(9.01) 10 (4.64) 12 (4.72) — 1306.18 256.93 263.95 — 0 0.41 0.42 -
8 1000 15 t3 3 (10.07) 6 (5.53) 8 (5.7) - 1387.78 340.85 360.39 — 0.01 0.44 0.45 -




