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SUMMARY

Sufficient dimension reduction is popular for reducing data dimensionality without stringent
model assumptions. However, most existing methods may work poorly for binary classifica-
tion. For example, sliced inverse regression (Li, 1991) can estimate at most one direction if the
response is binary. In this paper we propose principal weighted support vector machines, a uni-
fied framework for linear and nonlinear sufficient dimension reduction in binary classification. Its
asymptotic properties are studied, and an efficient computing algorithm is proposed. Numerical
examples demonstrate its performance in binary classification.

Some key words: Fisher consistency; Hyperplane alignment; Reproducing kernel Hilbert space; Weighted support
vector machine.

1. INTRODUCTION

Increasing data dimension can pose challenges at various stages of a statistical analysis. Given a
p-dimensional predictor X ∈ R

p and a univariate response Y ∈ R, sufficient dimension reduction
assumes that

Y |= X | BTX , (1)
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where |= denotes statistical independence. Dimension reduction is achieved by finding a matrix
B ∈ R

p×k for some k < p while preserving all the information about Y contained in X . The
model (1) does not assume any specific relationship between X and Y . Because B in relation
(1) is not unique, we define the central subspace, SY |X , as the intersection of span(B) for all B

satisfying (1), where span(B) denotes the space spanned by the columns of B. It is known that
SY |X exists uniquely under mild conditions (Cook, 1996, 1998b; Yin et al., 2008). One often
assumes that span(B) = SY |X to facilitate estimation. The dimension k of SY |X is called the
structural dimension, and its estimation is also crucial.

There are many methods for sufficient dimension reduction. Sliced inverse regression (Li,
1991) and sliced average variance estimation (Cook & Weisberg, 1991) are among the early
proposals and continue to be widely used in practice. Others include principal Hessian direction
estimation (Li, 1992; Cook, 1998a), iterative Hessian transformation estimation (Cook & Li,
2002), the Fourier method (Zhu & Zeng, 2006), partial least squares estimation (Li et al., 2007),
and directional regression (Li & Wang, 2007).

By construction, (1) is linear sufficient dimension reduction. Cook (2007) introduced nonlinear
sufficient dimension reduction as a generalization of (1):

Y |= X | φ(X ), (2)

where φ : R
p �→ R

k is an unknown vector-valued function of X . Under (2), dimension reduction
is achieved by identifying a possibly nonlinear function φ. We assume that φ is unique modulo
injective transformation to guarantee its identifiability. Several methods have been proposed for
nonlinear sufficient dimension reduction (Wu, 2008; Yeh et al., 2009; Wu et al., 2013). Lee et al.
(2013) introduced a general theory for nonlinear sufficient dimension reduction.

In this article, we focus on sufficient dimension reduction in binary classification. In the
regression context with a continuous response Y , predicting whether Y is greater than a specific
value, i.e., I (Y � c) for a given constant c, can be easier than predicting Y itself, since the
resolution of the dichotomized response I (Y � c) is much lower than that of Y . Here I (A) = 1 if
event A is true and 0 otherwise. In the sufficient dimension reduction literature, however, many
estimators rely on inverse regression, whose target is functionals of X given Y . Thus, they may
suffer in binary classification due to the insufficient information provided by the binary response.
For example, sliced inverse regression can estimate at most one direction of SY |X and sliced
average variance estimation is known for its inefficiency in binary classification; see Cook & Lee
(1999) and Li & Wang (2007).

In binary classification, Shin et al. (2014b) showed that SY |X = Sp(X )|X , where p(X ) =
pr(Y = 1 | X ) and Sp(X )|X is analogously defined as SY |X by replacing Y with p(X ) in (1). The
equivalence between SY |X and Sp(X )|X provides a natural way to improve the poor resolution
of binary Y by replacing it with continuous p(X ). Shin et al. (2014b) proposed to apply sliced
inverse regression to X and p(X ), instead of Y . Although slices based on p(X ) are unavailable,
Shin et al. (2014b) estimated the slices by exploiting Fisher consistency of the weighted support
vector machine (Lin et al., 2002) without knowing p(X ).

Li et al. (2011) proposed principal support vector machines, a unified learning framework for
sufficient dimension reduction in regression. Li et al. (2011) showed that the normal of an optimal
hyperplane separating the sets S+

c = {X : Y � c} and S−
c = {X : Y < c} for an arbitrary given

c ∈ R lies in SY |X if E(X ) = 0p and cov(X ) = Ip, where 0p and Ip are the p-dimensional zero
vector and identity matrix. The principal support vector machine applies linear support vector
machines to (Ỹc, X ) for different values of c, where Ỹc = 1 if Y � c and −1 otherwise. The
normals of the optimal hyperplanes obtained from these support vector machines can estimate
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Fig. 1. Motivating example: Panel (a) depicts projections of the estimated SY |X onto the (X1, X2) plane for model (i)
with k = 1. The arrow represents the basis of the true SY |X . Dotted and solid lines are the estimated SY |X by sliced
inverse regression and the principal weighted support vector machine, respectively. Panel (b) depicts the estimated SY |X
on the three-dimensional predictor space for model (ii) with k = 2. The shaded plane is the true SY |X , and the fine and
coarse meshes represent the estimated SY |X by sliced average variance estimation and the principal weighted support
vector machine, respectively. Two different symbols, pluses and circles, represent observations from different classes.

SY |X . The principal support vector machine has promising performance. In binary classification,
however, it suffers from estimating at most one direction for SY |X as well, since there is only one
way of dichotomizing Y , which is already binary.

In this article, motivated by the properties of principal support vector machines for sufficient
dimension reduction in regression, we propose a new dimension reduction method for binary
classification, called the principal weighted support vector machine. The basic idea is to consider
optimal hyperplanes that separate S+

π = {X : p(X ) � π} and S−
π = {X : p(X ) < π} for different

values of π ∈ (0, 1). If p(X ) were known, then it would play the role of a continuous response,
and SY |X could be estimated from the normals of these hyperplanes since SY |X = Sp(X )|X , thus
avoiding the difficulty with a binary response. However, p(X ) is unknown and its estimation is
more challenging than classification itself, so it is not desirable to estimate p(X ) first in order to
perform dimension reduction. Moreover, we cannot impose a strong model assumption on p(X ),
since sufficient dimension reduction is a model-free approach that only requires conditional
independence between Y and X in (1). The proposed method tackles these issues by embedding
p(X ) in a weighted support vector machine.

As an illustration, we consider two simple models: (i) Y = sign(2X1 + X2 + 0·2ε) and (ii)
Y = sign(2X1 + log |X2| + 0·2ε), where ε ∼ N (0, 1) and X = (X1, . . . , Xp)

T ∼ Np(0p, Ip)

with p = 3. Notice that B = (2, 1, 0)T for model (i) and B = (e1, e2) for model (ii), where
e1 and e2 are p-dimensional vectors whose first and second elements, respectively, are whose
other elements are all 1 and 0. We randomly generate 200 observations under each model and
estimate SY |X by different methods. The results are shown in Fig. 1. For model (i), SY |X forms
a line since k = 1, and the angles between the estimated and true SY |X are reported as 0·12 and
0·08 radians for sliced inverse regression and the principal weighted support vector machine,
respectively. Both approaches perform well in this case, with the principal weighted support
vector machine being slightly better. For model (ii), SY |X forms a plane since k = 2, where

Downloaded from https://academic.oup.com/biomet/article-abstract/104/1/67/2929337
by guest
on 28 August 2018



70 S. J. SHIN, Y. WU, H. H. ZHANG AND Y. LIU

sliced inverse regression can recover only one basis component of the true SY |X . Sliced averaged
variance estimation does not estimate SY |X satisfactorily, whereas the principal weighted support
vector machine shows substantial improvement in recovering the true SY |X . Frobenius norm

distances d(B̂, B) = ‖P
B̂

− PB‖F are 0·709 and 0·094 for sliced average variance estimation

and the principal weighted support vector machine, respectively. Here PB = B(BTB)−1BT, ‖ · ‖F

denotes the Frobenius norm, and B and B̂ are the true and estimated bases of SY |X , respectively.
We provide the corresponding 360◦ rotation animation in the Supplementary Material.

2. LINEAR PRINCIPAL WEIGHTED SUPPORT VECTOR MACHINE

2·1. Population level

We start by briefly introducing the weighted support vector machine, which will serve as the
building block for the proposed method. For a given set of data {(Xi, Yi) ∈ R

p × {−1, +1} :
i = 1, . . . , n}, the linear weighted support vector machine (Lin et al., 2002) solves

(ân, b̂T
n)

T = arg min
a,b

bTb + λ

n

n
∑

i=1

wπ (Yi)|1 − Yi(a + bTXi)|+, (3)

where |u|+ = max(u, 0) and wπ (Y ) = 1 −π if Y = 1 and π if Y = −1 with a weight π ∈ (0, 1)

that controls the relative importance of the two classes. The weighted support vector machine (3)
can be viewed as a loss-plus-penalty formulation. The tuning parameter λ balances the goodness
of fit and complexity of the model measured by the loss and penalty functions, respectively. In
the weighted support vector machine, the loss function changes as π varies, while the observed
data input remains unchanged. The weighted support vector machine is Fisher-consistent; the
minimizer of the expected loss given X is the Bayes rule (Lin et al., 2002).

For a pair of random variables (X , Y ) ∈ R
p × {−1, +1}, the linear principal weighted support

vector machine minimizes

�π (θ) = βT	β + λE {wπ (Y )|1 − Yf (X ; θ)|+} , (4)

where θ = (α, βT)T, 	 = cov(X ), and f (X ; θ) = α + βT{X − E(X )}. The differences between
(4) and the population counterpart of the objective function in (3) are the matrix 	 in the penalty
term and the centring of X in f (X ; θ). For standardized X , with E(X ) = 0p and cov(X ) = Ip,
(4) becomes the population version of (3):

βTβ + λE
{

wπ (Y )|1 − Y (α + βTX )|+
}

.

Fisher consistency of the weighted support vector machine ensures that a hyperplane {X :
f (X ; θ0,π ) = 0} optimally separates S+

π = {X : p(X ) � π} and S−
π = {X : p(X ) < π},

where θ0,π = (α0,π , βT
0,π )T = arg minθ �π (θ). Equivalent to Sp(X )|X , SY |X can be estimated

from the normal of this optimal hyperplane using the idea of Li et al. (2011).
Theorem 1 provides a theoretical foundation for the linear principal weighted support vector

machine for linear sufficient dimension reduction.

THEOREM 1. Assume that E(X | BTX ) is a linear function of BTX . Then for any given weight

π ∈ (0, 1), β0,π ∈ SY |X under (1).
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The assumption in Theorem 1 is known as the linearity condition. It implies that
E(βTX | BTX ) = βTPB(	)X where PB(	) = B(BT	B)−1BT	, and it plays an essential role
in sufficient dimension reduction. The condition holds when X is elliptically symmetric (Li &
Duan, 1989; Li, 1991; Li & Dong, 2009) and approximately holds when p is large (Hall & Li,
1993).

Considering a sequence of weights 0 < π1 < · · · < πH < 1, we have θ0,h = (α0,h, βT
0,h)

T =
arg minθ �πh

(θ) (h = 1, . . . , H ). By Theorem 1, span(β0,1, . . . , β0,H ) ⊆ SY |X . Following the
usual protocol in sufficient dimension reduction, we assume that span(β0,1, . . . , β0,H ) = SY |X
whenever span(β1, . . . , βH ) ⊆ SY |X and H is large enough. This often holds in practice (Cook
& Ni, 2006).

For the principal weighted support vector machine, Y is binary and remains unchanged while
the loss function in (4) is changed as the weight π varies. For different π , the target of (4) is
changed, enabling us to estimate more than one direction of SY |X in binary classification. In
this regard, the principal weighted support vector machine is more than a weighted version of
the principal support vector machine. Furthermore, π in the principal weighted support vector
machine plays a different role from the weight used in weighted least squares regression, where
only estimation efficiency is improved by adopting weights. The effect of the weight in the
principal weighted support vector machine is analogous to that of the quantile level parameter in
the check loss of quantile regression.

2·2. Finite-sample estimation and solution paths

Denote the observed data by {Zi = (Xi, Yi) : Xi ∈ R
p, Yi ∈ {−1, +1}, i = 1, . . . , n}. The sam-

ple version of �π in (4) is

�̂n,π (θ) = βT	̂nβ + λ

n

n
∑

i=1

wπ (Yi)|1 − Yi f̂n(Xi; θ)|+, (5)

where f̂n(Xi; θ) = α + βT(Xi − X̄n), X̄n = n−1 ∑n
i=1 Xi is the sample mean, and 	̂n denotes the

sample covariance matrix. Given a grid 0 < π1 < · · · < πH < 1, let θ̂n,h = (α̂n,h, β̂T
n,h)

T =
arg minθ �̂n,πh

(θ) (h = 1, . . . , H ). The candidate matrix of the linear principal weighted support
vector machine is

M̂n =
H

∑

h=1

β̂n,hβ̂
T
n,h. (6)

The first k eigenvectors of M̂n, denoted by V̂n = (v̂1, . . . , v̂k), estimate a basis of SY |X . Due to

the way it was constructed, M̂n may have more than one eigenvector with a nonzero eigenvalue.
The above procedure requires minimizing (5) repeatedly for π1, . . . , πH , which can be compu-

tationally intensive when the sample size n and/or H are large. With transformations η = 	̂
1/2
n β

and Ui = 	̂
−1/2
n (Xi − X̄n), (5) becomes ηTη + n−1λ

∑n
i=1 wπ (Yi)|1 − Yi(α + ηTUi)|+, which is

equivalent to training the weighted support vector machine with respect to α and η. Denote the

optimizer by α̂n,π and η̂n,π . Then the optimizer of (5) is α̂n,π and β̂n,π = 	̂
−1/2
n η̂n,π .

To facilitate the computation of the principal weighted support vector machine, we employ
a solution path algorithm that computes entire trajectories as a function of π (Wang et al.,
2008; Shin et al., 2014a), which we call the π -path. The algorithm has the same computational
complexity as solving a single quadratic programming problem (Hastie et al., 2004). As an
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Fig. 2. π -path of β̂n(π) = {β̂n,1(π), . . . , β̂n,p(π)}T: solid lines represent the π -paths

of β̂n,1(π) and β̂n,2(π) corresponding to X1 and X2, while dotted lines are those of

β̂n,j(π)(j = 3, . . . , 10) corresponding to other predictors.

illustration we use a simulated dataset with n = 500 and p = 10 generated from the first
model f1 in § 4, where only X1 and X2 are used to define SY |X . Figure 2 depicts the π -path of

β̂n,π = β̂n(π) = {β̂n,1(π), . . . , β̂n,p(π)}T as a function of π . In Fig. 2, the π -paths of β̂n,1(π)

and β̂n,2(π) associated with relevant predictors X1 and X2 show larger variation than the paths of

β̂n,j(π) ( j = 3, . . . , 10) corresponding to irrelevant predictors.

2·3. Large-sample properties

Asymptotic results for the linear principal weighted support vector machine are closely con-
nected with those for the linear support vector machine (Jiang et al., 2008; Koo et al., 2008)
and the principal support vector machine (Li et al., 2011). Without loss of generality, we assume
that E(X ) = 0 and let X̃ = (1, X T)T. Then f (X ; θ) = θTX̃ . Let θ̂n,π = (α̂n,π , β̂T

n,π )T denote the
minimizer of (5). We sometimes omit the subscript π for simplicity when the results hold for an
arbitrary value of π .

Throughout this subsection, we make the following regularity assumptions:

Assumption 1. X has an open and convex support and E(‖X ‖2) < ∞.

Assumption 2. The conditional distribution X | Y is dominated by the Lebesgue measure.

Assumption 3. For an arbitrary θ |= θ0,

∑

y∈{−1,+1}
pr{Y = y, X ∈ �(y, θ)} > 0,

where �(y, θ) = {X : (1 − yθTX̃ )(1 − yθT
0 X̃ ) < 0}.

Assumption 4. For arbitrary given vectors β, δ ∈ R
p, let U and V denote βTX and δTX ,

respectively. Then the map u �→ E(X | U = u, V , Y )fU |V ,Y (U = u | V , Y ) is continuous for any
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V ∈ R and Y ∈ {−1, +1}, where fU |V ,Y (U | V , Y ) denotes the conditional density of U given V

and Y .

Assumption 5. Given U = u, there exists a nonnegative R
p+1-valued function c(V , Y ) such

that E{c(V , Y )} < ∞ and E(X̃ | U = u, V , Y )fU |V ,Y (U = u | V , Y ) < c(V , Y ), where the
inequality holds componentwise.

Assumptions 1 and 2 are standard for sufficient dimension reduction. Assumption 3 is similar
to that in Theorem 1 of Jiang et al. (2008), which guarantees the existence of a unique minimum of
�π (θ) which is not strictly convex with respect to α. Assumptions 4 and 5 essentially ensure the
continuity and boundedness of the gradient vector of �π (θ), which turns out to be non-Lipschitz
with respect to θ . These regularity conditions are required to avoid technical difficulties brought
by the use of a non-strictly convex and nondifferentiable function | · |+ in �π (θ). In order to
relax these conditions, it is possible to consider a strictly convex differentiable loss.

Now, we establish the consistency of θ̂n.

THEOREM 2. Suppose that 	 is positive definite and Assumption 2 holds. Then θ̂n → θ0 in

probability as n → ∞.

The Bahadur representation of θ̂n is provided in Theorem 3.

THEOREM 3. Assume that 	 is positive definite and Assumptions 1– 5 hold. Then

n1/2(θ̂n − θ0) = −n−1/2H−1
θ0

n
∑

i=1

Dθ0(Zi) + op(1),

where

Dθ (Z) = (0, 2βT	)T − λwπ (Y )X̃ YI (θTX̃ Y < 1),

Hθ = 2 diag(0, 	) + λ
∑

y=−1,1

pr(Y = y)wπ (y)fβTX |Y (y − α | y)E(X̃ X̃ T | θTX̃ = y).

Here diag(0, 	) denotes the (p + 1) × (p + 1) block-diagonal matrix whose block-diagonal

elements are 0 and 	.

For any given πh, let S(θ0,h, Z) = Fθ0,hDθ0,h(Z) with Fθ0,h being the last p rows of H−1
θ0,h

(h =
1, . . . , H ). A Bahadur representation of β̂n,h is then

n1/2(β̂n,h − β0,h) = −n−1/2
n

∑

i=1

S(θ0,h, Zi) + op(1) (7)

by Theorem 3. From (7), asymptotic normality of M̂n in (6) is established.

THEOREM 4. Let M0 =
∑H

h=1 β0,hβ
T
0,h. Under the conditions of Theorem 3, n1/2vec

(M̂n − M0) → N (0p2 , 	M ) in distribution as n → ∞. The form of the covariance matrix 	M is

given in the Supplementary Material.

Finally, asymptotic normality of V̂n follows from Theorem 4 and Corollary 1 of Bura & Pfeiffer
(2008).
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COROLLARY 1. Assume that rank(M0) = k and let V0 = (v1, . . . , vk) denote the first k

eigenvectors of M0. Under the conditions of Theorem 3, we have n1/2vec(V̂n − V0) →
N (0pk , 	V ) in distribution as n → ∞, with 	V = (D−1U T ⊗ Ip)	M (UD−1 ⊗ Ip), where U is a

p×k matrix with columns being the eigenvectors of M0 corresponding to its nonzero eigenvalues,

and D is a k × k diagonal matrix with the nonzero eigenvalues as diagonal elements.

2·4. Determination of structural dimension

Under (1), the structural dimension k is a crucial quantity, and must be estimated from the
data. In this regard, Li et al. (2011) proposed a procedure that determines k in a data-adaptive
manner for the linear principal support vector machine. We consider a criterion similar to theirs,

Gn(m; ρ, M̂n) =
m

∑

j=1

�j − ρ
m log n√

n
�1,

where �j is the jth leading eigenvalue of M̂n in (6) and ρ is a tuning parameter. Follow-
ing the lines of Theorem 8 of Li et al. (2011) and Theorem 4 above, we can prove that
k̂ = arg maxm∈{1,...,p} Gn(m; ρ, M̂n) is a consistent estimator of k , i.e., limn→∞ pr(k̂ = k) = 1.
We propose an algorithm to select ρ by directly extending the idea of Li et al. (2011); see the
Supplementary Material.

3. KERNEL PRINCIPAL WEIGHTED SUPPORT VECTOR MACHINE

3·1. Population level

Under (2), we consider the following objective function as a nonlinear generalization of (4):

�π (α, ψ) = var{ψ(X )} + λE {wπ (Y )|1 − Yf (X ; α, ψ)|+} , (8)

where f (X ; α, ψ) = α + ψ(X ) − E{ψ(X )} with ψ being a function in a Hilbert space H

of functions of X . Notice that (8) is equivalent to (4) if ψ(X ) is a linear function of X , i.e.,
ψ(X ) = βTX .

Theorem 5 provides a theoretical foundation for the nonlinear principal weighted support
vector machine.

THEOREM 5. Consider the identity mapping from a function f ∈ H to f ∈ L2(PX ), where

L2(PX ) = {f : (
∫

|f |2 dPX )1/2 < ∞}, with PX the probability measure induced by X .

Assume that the mapping is continuous and H is a dense subset of L2(PX ). Let (α0,π , ψ0,π ) =
arg minα,ψ �π (α, ψ). Then for any given weight π ∈ (0, 1), ψ0,π ∈ H has a one-to-one transfor-

mation that is measurable with respect to σ {φ(X )}, where σ {φ(X )} denotes the σ -field generated

by φ(X ) in (2).

3·2. Finite representation via kernel trick

Due to the infinite dimension of H, it is not trivial to estimate (α0,π , ψ0,π ). We employ the
reproducing kernel Hilbert space HK generated by a positive definite kernel K(·, ·). By the
representer theorem (Kimeldorf & Wahba, 1971), the minimizer of the empirical version of
(8) has a n-dimensional representation of ψπ (·) = αT

πkn(·), where απ = (α1,π , . . . , αn,π )T and
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kn(·) = {K(·, Xi) : i = 1, . . . , n}T. However, as pointed out by Li et al. (2011), the solution space
spanned by kn(·) is too rich, so that the solution often overfits the data.

As an alternative, Li et al. (2011) proposed

ψπ (X ) = γ T
πω(X ), (9)

with d-dimensional parameter γπ = (γ1,π , . . . , γd,π )T and the associated basis functions ω(X ) =
{ωj(X ) : j = 1, . . . , d}T. Here ωj(·) is the jth leading eigenfunction of the sample covariance
operator 	n such that 〈ψ1, 	nψ2〉HK computes the sample covariance of ψ1(Xi) and ψ2(Xi)

(i = 1, . . . , n). Under the assumptions in Theorem 5, there exists a bounded and self-adjoint
operator 	 : H → H such that 〈ψ1, 	ψ2〉H = cov{ψ1(X ), ψ2(X )} (Conway, 1990). This
provides a justification of (9), since (8) can be equivalently rewritten as

�π (α, ψ) = 〈ψ , 	ψ〉H + λE {wπ (Y )|1 − Yf (X ; α, ψ)|+}.

By Proposition 2 of Li et al. (2011),

ωj(X ) = k̃n(X )Tqj/λj (j = 1, . . . , d),

where k̃n(·) = kn(·)−n−1 ∑n
i=1 kn(Xi) and qj and λj are the jth leading eigenvector and eigenvalue

of the matrix Qn = (In − Jn/n)Kn(In − Jn/n). Here Kn is the kernel matrix whose (i, j)th element
is K(Xi, Xj) (i, j = 1, . . . , n) and Jn denotes the n-dimensional square matrix whose elements are
all one. Notice that Qn is the candidate matrix of kernel principal component analysis (Schölkopf
et al., 1997) on HK . In fact, (9) restricts the full solution space to the subspace spanned by the
first d principal directions to avoid overfitting.

For the choice of d, we suggest an integer around n/4 or even smaller. Li et al. (2011) propose
using any integer between n/3 and 2n/3 for the principal support vector machine. As mentioned
in § 1, binary responses have weaker signals than continuous responses and therefore a smaller
value of d is better to avoid overfitting.

3·3. Estimation

Inserting α + γ Tω(X ) into f (X ; α, ψ), a sample version of (8) is

�̂n,π (α, γ ) = γ T�T�γ + λ

n

n
∑

i=1

wπ (Yi)|1 − Yi(α + γ T�i)|+, (10)

which we call the kernel principal weighted support vector machine. The matrix �, whose (i, j)th
element is ωj(Xi) (i = 1, . . . , n; j = 1, . . . , d), is identical to (q1, . . . , qd) with qj defined above
as the eigenvector of Qn (Li et al., 2011).

Let (α̂n,π , γ̂ T
n,π )T = arg minα,γ �̂n,π (α, γ ), the minimizer of (10). It is shown that γ̂n,π =

λ
∑n

i=1 ν̂i,πYi{(�T�)−1�i}/2, where ν̂π = (ν̂1,π , . . . , ν̂n,π )T solves

max
ν1,...,νn

n
∑

i=1

νi − 1

4

n
∑

i=1

n
∑

j=1

νiνjYiYjP
(i,j)
� (11)

subject to 0 � νi � λwπ (Yi) (i = 1, . . . , n),
n

∑

i=1

νiYi = 0,

with P
(i,j)
� the (i, j)th element of P� = �(�T�)−1�T.
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If � = Kn, then P� = Ip and (11) becomes independent of X , which explains the overfitting
problem on the full solution space spanned by kn(·). Notice that (11) is the same as the dual
problem of the weighted support vector machine with a kernel matrix P�. The π -path algorithm
can be exploited to obtain the entire solution profile of ν̂π for all π ∈ (0, 1).

Finally, we have a candidate matrix
∑H

h=1 γ̂n,hγ̂
T
n,h with (α̂n,h, γ̂ T

n,h)
T the minimizer of

�̂n,πh
(α, γ ) (h = 1, . . . , H ). The jth component of φ(X ) = {φ1(X ), . . . , φk(X )}T in (2) is then

estimated by φ̂j(X ) = v̂T
j ω(X ) (j = 1, . . . , k), where V̂n = (v̂1, . . . , v̂k) contains the first k

eigenvectors of
∑H

h=1 γ̂n,hγ̂
T
n,h.

4. SIMULATION STUDIES

4·1. Linear sufficient dimension reduction

The following model is assumed for the simulation: Yi = sign{f (Xi) + εi} (i = 1, . . . , n),
where Xi ∼ Np(0p, Ip) and the random error εi ∼ N (0, 0·22). Nine different combinations of
(n, p) ∈ {100, 500, 1000} × {10, 20, 30} are considered.

Five different decision functions are considered: f1(X ) = X1/{0·5 + (X2 + 1)2}, f2(X ) =
(X1 + 0·5)(X2 − 0·5)2, f3(X ) = sin(X1/eX2), f4(X ) = X1(X1 + X2 + 1), and f5(X ) = (X 2

1 +
X 2

2 )1/2 log(X 2
1 + X 2

2 )1/2. They all share a common central subspace, span(B) with B = (e1, e2).
Notice that f4 is approximately and f5 exactly symmetric about the origin. Under the exactly
symmetric scenario, the β0,h (h = 1, . . . , H ) are identical, so the linear principal support vector
machine fails. This is similar to the failure of sliced inverse regression for regression with a
symmetric regression function (Cook & Weisberg, 1991).

For the principal weighted support vector machine, we use twenty π values equally spaced
between 0 and 1 and set λ = 1. Our method is not overly sensitive to the choice of H and λ

provided that the weights πh are well-spread over the interval (0, 1) and both H and λ are not too
small. The rationale is to avoid the situation where all the solutions are similar and it is hard to
extract the variation efficiently.

Sliced inverse regression, sliced average variance estimation, partial least squares estimation,
the Fourier method, iterative Hessian transformation, directional regression and probability-
enhanced sliced inverse regression (Shin et al., 2014b) are considered as competing methods.
We use the Frobenius norm distance d(B̂, B) = ‖P

B̂
− PB‖F defined in § 1 to evaluate the per-

formance of an estimator B̂. We assume that the true k = 2 is known. Sliced inverse regression
and partial least squares estimation can estimate at most one direction. Table 1 reports d(B̂, B)

averaged over 100 repetitions for n = 500 and p = 10. See the Supplementary Material for
results for all combinations of n and p.

The linear principal weighted support vector machine outperforms the other methods under
f1, f2 and f3, which are not symmetric about the origin. The improvement of the linear principal
weighted support vector machine for f4 is not significant compared to the others, partly because f4
is approximately symmetric about the origin. For f5, both the probability-enhanced sliced inverse
regression and linear principal weighted support vector machine fail, since f5 is exactly symmet-
ric about the origin, while sliced average variance estimation performs best. In § 4·2, we will see
that this limitation can be resolved by employing the kernel principal weighted support vector
machine.

In order to provide a more complete picture, we also consider models with k = 1 by simply
replacing X2 with X1 in f1, f2 and f3: f ′

1(X ) = X1/{0·5 + (X1 + 1)2}, f ′
2(X ) = (X1 + 0·5) ×
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Table 1. Performance of the linear sufficient dimension reduction methods for n = 500 and

p = 10. Reported values are the averaged Frobenius norm distances between the projection

matrices of the true and estimated SY |X over 100 independent repetitions

SIR SAVE PLS FCN IHT DR PRE PWSVM

f1 1·30 1·29 1·02 1·29 1·32 1·28 1·13 0·75
f2 1·24 1·27 1·03 1·21 1·14 1·26 1·06 1·02
f3 1·30 1·26 1·02 1·28 1·30 1·25 1·11 0·80
f4 0·64 0·77 1·07 0·47 0·47 0·54 0·59 0·53
f5 1·38 0·27 1·64 0·49 1·42 0·27 1·70 1·60

f ′
1 0·20 0·21 0·21 0·20 1·28 0·21 0·19 0·17

f ′
2 0·29 0·42 0·29 0·30 0·66 0·30 0·32 0·26

f ′
3 0·19 0·20 0·20 0·19 1·21 0·19 0·17 0·15

SIR, sliced inverse regression; SAVE, sliced average variance estimation; PLS, partial least squares estimation; FCN,
Fourier method; IHT, iterative Hessian direction; DR, directional regression; PRE, probability-enhanced sliced inverse
regression; PWSVM, principal weighted support vector machine.

(X1 − 0·5)2 and f ′
3(X ) = sin(X1/eX1). The linear principal weighted support vector machine

outperforms all others even when k = 1.
In practice, the structural dimension k is unknown. The numerical performance of the approach

proposed in § 2·4 to determine k is also investigated under various scenarios. The results are
relegated to the Supplementary Material.

4·2. Nonlinear sufficient dimension reduction

The linear principal weighted support vector machine fails when the true decision curve f is
symmetric about the origin. Next we apply the kernel principal weighted support vector machine
using the Gaussian kernel K(X , X ′) = exp

{

−‖X − X ′‖2/(2σ 2)
}

, with σ the median of pairwise
Euclidean distances between the two classes (Jaakkola et al., 1999). Both λ and π grids are set to
be the same as the linear principal weighted support vector machine in § 4·1. Figure 3 compares
the linear and kernel principal weighted support vector machines for a dataset with n = 200
and p = 10 simulated from f5. The linear principal weighted support vector machine fails as the
radial distinction becomes much less clear than that in the true SY |X , while the kernel principal
weighted support vector machine recovers the true f5 very well.

Li et al. (2011) argued that the nonlinear principal support vector machine can transform a
difference in variability in the original space to a difference in location in the reduced feature
space obtained from the kernel principal support vector machine. This is how the kernel support
vector machine works for nonlinear classification, and a similar phenomenon is observed in the
kernel principal weighted support vector machine.

To evaluate its performance, we consider Hotelling’s T 2 statistic between the two classes in the
reduced space whose dimension is k = 2. If the sufficient dimension reduction method performs
well, the two classes should be clearly separated and hence the associated Hotelling’s T 2 statistic
would be large. Table 1 reports the averaged T 2 over 100 independent repetitions when n = 500
and p = 10. Hotelling’s T 2 statistic may fail to evaluate performance when a classification
pattern is nonlinear. In this sense, a large T 2 statistic is a sufficient but not necessary condition
for good classification. Table 1 reports its smallest values for sliced average variance estimation,
which outperforms other methods according to Table 1, especially for f5. Nevertheless, the kernel
principal weighted support vector machine shows extremely large values of T 2, which is sufficient
to guarantee good classification performance. Combining this with Fig. 3, we conclude that the
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Fig. 3. Sufficient dimension reduction under f5: panel (a) is a scatterplot of bT
1 X and bT

2 X , i.e., X1 and X2; panel (b)

depicts a scatterplot of b̂T
1 X and b̂T

2 X , where B̂ = (b̂1, b̂2) is estimated by the linear principal weighted support vector

machine; panel (c) shows a scatterplot of the true f5(X ) versus the first sufficient predictor φ̂1(X ) estimated by the
kernel principal weighted support vector machine.

kernel principal weighted support vector machine performs very well even when the true decision
curve is symmetric about the origin.

To provide a fair comparison, we use k = 2 for all sufficient dimension reduction methods,
linear or nonlinear, to report performance in the above. Yet it is obvious that Y is conditionally
independent of X given (X 2

1 + X 2
2 ) for f5. Consequently, the corresponding structural dimension

should be 1 for nonlinear sufficient dimension reduction. If using k = 1, the corresponding
average Hotelling’s T 2 is 616·4 with a standard deviation of 71·8 for the kernel principal weighted
support vector machine. This large Hotelling’s T 2 value echoes the good performance illustrated
in Fig. 3(c).

5. WISCONSIN BREAST CANCER DATA

We use the Wisconsin Diagnostic Breast Cancer data available at http://archive.ics.uci.edu/ml/
index.html. The dataset contains diagnoses of breast cancer for 569 subjects with 30 predictors.
For the linear principal weighted support vector machine, λ and π grids are set in the same way
as in § 4·1. We employ the procedure proposed in § 2·4 to determine k . Figure 4(a) depicts
Gn(m; ρ, M̂n) as a function of m at an optimal ρ selected as 0·009, and hence the structural
dimension is estimated as arg maxm Gn(m; ρ, M̂n) = 3. Figure 4(b) shows a three-dimensional
scatterplot of predictors projected onto the estimated SY |X by the linear principal weighted support
vector machine. It shows that the two classes are well separated in the estimated SY |X . See the
Supplementary Material for a 360◦ rotation animation of the scatterplot. Finally, we also apply
the kernel principal weighted support vector machine to the data, with the Gaussian kernel and
σ , λ and π grids chosen in the same way as in § 4·2. The kernel principal weighted support
vector machine seems to work well in that the two classes are clearly separated by φ̂1(X ). See
Fig. 4(c).

In practice, the goal is often the improvement of classification accuracy after dimension reduc-
tion. In this regard, we carry out validation analysis as follows. First, we randomly split the data
into training and test sets of equal size. Different sufficient dimension reduction methods are
then applied to the training set, and the five-nearest-neighbour classifiers are applied to train a
classifier on the estimated SY |X . Finally, the test responses are predicted by plugging the test
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Fig. 4. Wisconsin diagnostic breast cancer data: panel (a) depicts Gn(m; ρ, M̂n) as a function of m at ρ = 0·009, which

is maximized at 3 (vertical line); panel (b) shows the scatterplot of (b̂T
1 X × b̂T

2 X × b̂T
3 X ) where B̂ = (b̂1, b̂2, b̂3) is

estimated by the linear principal weighted support vector machine; panel (c) depicts boxplots of φ̂1(X ) estimated by the
kernel principal weighted support vector machine for the two classes.

Table 2. Averaged test error rate (%) of the five-nearest-neighbour classifier for the

Wisconsin diagnostic breast cancer data

k SAVE FCN IHT DR PRE
PWSVM

Linear Kernel
1 17·9 12·1 22·0 4·4 4·5 5·2 8·6
2 12·9 8·8 12·2 4·5 4·3 5·1 8·3
3 11·6 7·8 6·9 5·7 4·5 5·3 7·9
4 11·9 7·4 5·9 5·9 4·5 5·3 7·7
5 12·2 7·2 5·9 6·2 4·5 5·4 7·8

The largest standard error for the results is 0·2%. See Table 1 for the abbreviations of the methods.

predictors projected onto the estimated SY |X into the five-nearest-neighbour classifier trained in
the previous step. Each procedure is independently repeated 100 times and the averaged test error
rates are given in Table 2. The averaged test error rate with the original data without applying
sufficient dimension reduction is 7·2%.

Most sufficient dimension reduction methods with a carefully selected k , except sliced average
variance estimation, perform reasonably well, in the sense that they do not lose information
for classification after sufficient dimension reduction. In particular, probability-enhanced sliced
inverse regression outperforms the others regardless of the number of sufficient predictors used,
but the linear principal weighted support vector machine also shows promising performance.
The kernel principal weighted support vector machine performs unsatisfactorily in terms of
classification accuracy, and linear sufficient dimension reduction seems to be enough for this
example.

6. DISCUSSION

The proposed principal weighted support vector machine is not directly applicable when the
number of predictors p is larger than the sample size n, because the estimated sample covari-
ance matrix in (5) is singular and hence the minimizer of (5) may not be unique. One possible
remedy is to employ an additional penalty for β. This resolves the problem but requires additional
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assumptions to guarantee consistency. Selection of the associated penalty parameter needs to be
appropriately addressed. Another way to handle the case where p is larger then n is to use mar-
ginal screening, which is popular for dimension reduction. Many screening methods possess the
so-called sure screening property. However, it is not desirable to use model-based screening meth-
ods since sufficient dimension reduction does not impose any explicit relationship between the
response and predictors. Recently, Mai & Zou (2013) developed a model-free screening method,
called the Kolmogorov filter for binary responses. A natural idea would be to apply the principal
weighted support vector machine after the Kolmogorov filter if p is excessively large.

In multiclass classification, Wu et al. (2010) proposed a model-free probability estimation
method based on robust weighted multiclass support vector machines by using their Fisher con-
sistency. It is possible to develop the principal weighted multiclass support vector machine for
sufficient dimension reduction in multiclass classification.
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SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online includes proofs of the technical results,
the details of the modified algorithm to estimate the structural dimension for the linear principal
weighted support vector machine, additional simulation results, and real data validation.
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