Statistica Sinica Preprint No: SS-2016-0260R2

Title

Stability Enhanced Large-Margin Classifier Selection

Manuscript ID

SS-2016-0260R2

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/s5.202016.0260

Complete List of Authors

Will Wei Sun
Guang Cheng and
Yufeng Liu

Corresponding Author

Will Wei Sun

E-mail

sunweisurrey8(@gmail.com




Statistica Sinica: Preprint
doi:10.5705/ss.202016.0260

Stability Enhanced Large-Margin Classifier Selection

Running title: Large-Margin Classifier Selection

Will Wei Sun? Guang Cheng! Yufeng Liut

Abstract

Stability is an important aspect of a classification procedure as unstable predictions
can potentially reduce users’ trust in a classification system and harm the reproducibil-
ity of scientific conclusions. We introduce a concept of classification instability, decision
boundary instability (DBI), and incorporate it with the generalization error (GE) as a
standard for selecting the most accurate and stable classifier. For this, we implement
a two-stage algorithm: (i) select a subset of classifiers whose estimated GEs are not
significantly different from the minimal estimated GE among all the candidate classi-
fiers; (ii) take the optimal classifier to be the one achieving the minimal DBI among
the subset selected in stage (i). This selection principle applies to both linear and
nonlinear classifiers. Large-margin classifiers are used as a prototypical example to
illustrate this idea. Our selection method is shown to be consistent in the sense that

the optimal classifier simultaneously achieves the minimal GE and the minimal DBI.
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Various simulations and examples further demonstrate the advantage of our method

over alternative approaches.

Keywords: Asymptotic normality, Large-margin, Model selection, Selection consistency, Sta-

bility.

1 Introduction

Classification aims to identify the class label of a new subject using a classifier constructed
from training data whose class memberships are given. It has been widely used in such
fields as medical diagnosis, fraud detection, and natural language processing. Classification
methods have been successfully developed with classical approaches such as Fisher’s linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), and logistic regression
(see Hastie et al. (2001) for a comprehensive review), and modern approaches such as
the support vector machine (SVM) (Cortes and Vapnik (1995)) and boosting (Freund and
Schapire (1997)). Liu et al. (2011) proposed a platform, large-margin unified machine
(LUM), for unifying various large margin classifiers ranging from soft to hard.

In the literature, much of the research has focused on improving the predictive accuracy
of classifiers and hence generalization error (GE) is often the primary criterion for selecting
the optimal one from the rich pool of existing classifiers; see Vapnik (1998) and Steinwart
(2007). Recently, researchers have started to explore alternative measures to evaluate the
performance of classifiers. For instance, besides prediction accuracy, computational complex-
ity and training time of classifiers are considered in Lim et al. (2000). Wu and Liu (2007)
proposed the robust truncated hinge loss SVM to improve the robustness of the standard
SVM. Qiao and Liu (2009) and Wang (2013) investigated several measures of cost-sensitive
weighted generalization errors for highly unbalanced classification tasks since, in this case,
GE itself is not sufficiently informative. In this paper, we focus on the stability of a classi-

fication procedure. Stability has received attention in statistics and machine learning. For
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example, Wang (2010) employed clustering instability as a criterion to select the number
of clusters; Adomavicius and Zhang (2010) introduced stability as a new performance mea-
sure for recommender systems; Meinshausen and Bithlmann (2010) and Shah and Samworth
(2013) used stability for variable selection; Sun et al. (2013) applied variable selection sta-
bility for model selection, and Lim and Yu (2016) incorporated estimation stability into the
tuning parameter selection of regularized regression models. While successes of stability have
been reported in these works, little has been done for classification stability itself, expect
for some results on nearest neighbor classifiers (Sun et al. (2016)). Consequently, there is a
need for a systematic study of stability in a general classification context.

We introduce a notion of decision boundary instability (DBI) to assess the stability
(Breiman (1996)) of a classification procedure arising from the randomness of training sam-
ples. Providing a stable prediction plays a crucial role on users’ trust of a classification
system. In the psychology literature, for example, it has been shown that advice-giving
agents with larger variability in past opinions are considered less informative and less help-
ful than those with a more consistent pattern of opinions (Gershoff et al. (2003); Van Swol
and Sniezek (2005)). Then too, scientific conclusions should be reproducible with respect to
small perturbations of data. Reproducible research has recently received much attention in
statistics (Yu (2013)), biostatistics (Kraft et al. (2009); Peng (2009)), computational science
(Donoho et al. (2009)) and other scientific communities (loannidis (2005)). A classification
procedure with more stable prediction performance is preferred when researchers aim to
reproduce the reported results from randomly generated samples.

We attempt to select the most accurate and stable classifier by incorporating DBI into our
selection process. We suggest a two-stage selection procedure: (i) eliminate the classifiers
whose GEs are significantly larger than the minimal one among all the candidate classifiers;
(ii) select the optimal classifier as that has the minimal DBI among the remaining classifiers.

In the first stage, we show that the cross-validation estimator for the difference of GEs

induced from two large-margin classifiers is asymptotically Gaussian, which enables us to
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construct a confidence interval for the GE difference. If this confidence interval contains
0, the classifiers are considered indistinguishable in terms of GE. By applying this, we can
obtain a collection of potentially good classifiers whose GEs are close enough to the minimal
value. In the second stage, we check whether the collection of potentially good classifiers
perform well in terms of their stability by invoking a further selection criterion DBI. This
measure can precisely reflect the visual variability in the decision boundaries due to perturbed
training samples.

This two-stage selection algorithm is shown to be consistent in the sense that the selected
optimal classifier simultaneously achieves the minimal GE and the minimal DBI. The proof
is nontrivial because of the stochastic nature of the two-stage algorithm. Our method is
distinguished from bias-variance analysis in classification since the latter focuses on the
decomposition of GE, e.g., Valentini and Dietterich (2004). Our DBI also differs from the
stability-oriented measure of Bousquet and Elisseeff (2002), which was defined as the maximal
difference of the decision functions trained from the original datasets and the leave-one-out
datasets. More discussion of the connection with other variability measures is given in Section
3.3. In the end, extensive experiments illustrate the advantage of our selection algorithm
over alternative approaches in terms of both classification accuracy and stability.

For simplicity, we focus on linear classifiers. The nonlinear extension is conceptually
feasible by mapping the nonlinear feature space into a higher dimensional linear space; see
the Appendix for further discussion. The rest of the article is organized as follows. Section
2 reviews the large-margin classifiers that are used as prototypical examples to illustrate our
method. Section 3 describes the main properties of our classifier selection procedure. Section
4 establishes the selection consistency of the proposed selection procedure. Simulations and
examples are in Section 5, followed by a brief discussion in Section 6. The Appendix and

Supplementary Materials are devoted to technical details and a notation table.
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2 Large-Margin Classifiers

This section briefly reviews the large-margin classifiers, that serve as prototypical examples
to illustrate our two-stage classifier selection technique. The proposed method is broadly
applicable to general classifiers.

Let (X,Y) € R¢x {1, —1} be random variables from an underlying distribution P(X,Y).
Denote the conditional probability of class ¥ = 1 given X = x as p(x¢) = P(Y =
1|X = x), where p(z) € (0,1) to exclude the degenerate case. Let the input variable
be x = (z1,...,249)7, & = (1,21, ...,24)", with coefficient w = (wy,...,wg)?T and param-
eter @ = (b,w”)T. The linear decision function is defined as f(z;0) = b + x"w = &0
with the decision boundary S(x;0) = {x : f(x;0) = 0}. The performance of the classifier
sign{ f(x; 0)} is measured by the classification risk E[1{Y # sign{f(X;0)}}], where the ex-
pectation is with respect to P(X,Y). Since the direct minimization of this risk is NP hard
(Zhang (2004)), various convex surrogate loss functions L(-) have been proposed to deal
with this computational issue. Denote the surrogate risk as R.(0) = E[L(Y f(X;8))], and
assume that the minimizer of Ry(80) is obtained at Oy, = (bor,, wi;)?. Here Oyr, depends on
the loss function L.

Given the training sample D,, = {(x;,y;);i = 1,...,n} drawn from P(X,Y), a large-

margin classifier minimizes the empirical risk

n

On(0) = %Z L(y,-('mei + b)) + %wTw, (1)

where )\, is some positive tuning parameter. The estimator minimizing O, (0) is denoted
by 6, = (/b\L, w;)T. Common large-margin classifiers employ squared loss L(u) = (1 — u)?,
exponential loss L(u) = e, logistic loss L(u) = log(14e™*), and hinge loss L(u) = (1—u).
There seems to be no general guideline for selecting loss functions in practice, except for cross-
validation error. Ideally, if we had access to an arbitrarily large test set, we would choose

the classifier for which the test error was the smallest. In reality where only limited samples
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are available, cross-validation error may not be able to accurately approximate the testing
error. Our goal is to establish a practically useful selection criterion by incorporating DBI

with the cross-validation error.

3 Classifier Selection Algorithm

In this section, we propose a two-stage classifier selection algorithm that selects candidate
classifiers whose estimated GEs are relatively small and deems the optimal classifier the one

with the smallest DBI from those chosen.

3.1 Stage 1: Initial Screening via GE

We show that the difference of the cross-validation errors obtained from two large-margin
classifiers is asymptotically Gaussian, which enables us to construct a confidence interval
for their GE difference. We further propose a perturbation-based resampling approach to
construct this confidence interval.

Given a new input (X, Yy) from P(X,Y’), we define the GE induced by the loss function
L as

1 . )
Doy = 5 EIY; — sign{f(Xo;00)}, @)

where 0 1 is based on the training sample D,,, and the expectation is with respect to both D,,
and (X, Yp). The GE in (2) is equivalent to the mis-classification risk E[1{Y; # sign{ f(Xo; @L)}}]
In practice, the GE, which depends on the underlying distribution P(X,Y’), needs to
be estimated using D,. The empirical generalization error Dj = E(EL) with ﬁ(@) =
(2n)~1 370 |yi—sign{ f(z;; 0)}] as an estimate suffers from the problem of overfitting (Wang
and Shen (2006)). We use the K-fold cross-validation procedure to estimate the GE; this
can significantly reduce the bias (Jiang et al. (2008)). We randomly split D,, into K dis-
joint subgroups and denote the kth subgroup as I. For k = 1,..., K, we obtain the

estimator EL(_k) from all the data except those in I, and calculate the empirical average
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A~ A~

D(Or—r) = QL) X iey, lvi — Sign{f(mi;aL(_k))}\ with |[i| the cardinality of I. The

K-fold cross-validation (K-CV) error is thus computed as

K
D,=K'Y DO). (3)
k=1

We took K =5 for our numerical experiments.
To establish the asymptotic normality of the K-CV error ﬁL for a general loss L(-), we

require certain regularity conditions.

(L1) The probability distribution function of X and the conditional probability p(x) are

continuously differentiable.
(L2) The parameter 6y, is bounded and unique.
(L3) The map 0 — L(yf(x;0)) is convex.

(L4) The map 6 — L(yf(x;0)) is differentiable at @ = 0y, a.s., and G(6.) is element-
wisely bounded, where

G(Oor) = B[TeL(Y [(X:0)VoL(Y [(X:0))]| .

=YoL

(L5) The surrogate risk R (0) is bounded and twice differentiable at 6 = 0y, with positive

definite Hessian matrix H(0or) = V3R 1(0)|o=0,; -

Assumption (L1) ensures that the uniform law of large numbers can be applied. Assumption
(L3) ensures that the uniform convergence theorem for convex functions (Pollard (1991))
can be applied; it is satisfied by all the large-margin loss functions considered in this paper.
Assumptions (L.4) and (L5) are required to obtain the local quadratic approximation to the
surrogate risk function around 6@g;. Assumptions (L2)—(L5) were previously used by Rocha

et al. (2009) to prove the asymptotic normality of 0.



Statistica Sinica: Preprint
doi:10.5705/ss.202016.0260

Our result establishes the asymptotic normality of ﬁL for any large-margin classifier,

generalizing the result for the SVM in Jiang et al. (2008).

Theorem 1 If (L1)-(L5) hold and )\, = o(n~/?), for any fived K,
Wy = \/E(ﬁL - DOL) R N(07 E(iﬁ)) as n — oo, (4)

where by = 1|Y1—sign{ f (X 1; 6o1) |~ Do —d(0or)" H (Bo1.) ™ My(8o1.) with d(6) = Vo E(D(8)),
and M;(0) = VoL(Y1f(X1;0)).

The proof of Theorem 1 is in Section S.1 of the online supplement. An immediate
application compares competing loss functions L; and Ls. Take their GE difference A5 and
its consistent estimate 312 to be Dga — Do; and 1/52 - 231, respectively. To test whether the
GEs induced by L; and L, are significantly different, we need to establish an approximate
confidence interval for Ajs based on the distribution of Wa,, = Wy — W, = nt/ 2(312 —
A13). We apply the perturbation-based resampling procedure of Park and Wei (2003) to
approximate the distribution of Wa ,, this in common with Jiang et al. (2008) who employed
it to construct the confidence interval of SVM’s GE. Specifically, let {G;}; be i.i.d. random

variables drawn from the exponential distribution with unit mean and unit variance, and let

2 . 1 ¢ T An T
0; = arg min {ﬁ Zl G,L; (yz('w x; + b)) + W w} . (5)
Conditionally on D,,, the randomness of 5: merely comes from that of Gy,...,G,. Take

Wi, = W; — Wy, with

n

* — 1 . n* A
ij =n 1/22{5 y2—81gn{f(wl,9])}’ _DJ}Gz (6)
i=1
By repeatedly generating a set of random variables {G;,7 = 1,...,n}, we can obtain a large

number of realizations of W3 to approximate the distribution of Wa,,. The proof of the

following is in the online supplement.
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Theorem 2 Suppose that the assumptions in Theorem 1 hold. Then as n — oo,
Wha,, -4 N(O, Var(yrz — ¢11)>7

where P11 and P19 are defined in Section S.2 of the online supplement, and
Wa,, L N(07 Var(yia — wn)) conditional on D,

where ‘=" means conditional weak convergence in the sense of Hoffmann-Jorgensen (1984).

Our algorithm summarizes the resampling procedure for establishing the confidence in-
terval of the GE difference Ajs.
Algorithm 1 (Generalization Error Comparison Algorithm)

Input: Training sample D,, and candidate loss functions L; and Ls.
Step 1. Calculate K-CV errors D, and D, induced from L; and Lo, respectively.
Step 2. For r =1,..., N, repeat the following steps:
(a) generate i.i.d. samples {GET) 7, from Exp(1);

(b) find 5;(T) via (5), W) via (6), and calculate W7 = w3 — w;.

J 12

Step 3. Construct the 100(1 — «)% confidence interval for Ajy as

[312 - 71_1/2¢1,2;a/27 312 - n_1/2¢1,2;1—a/2] )

where Ay = Dy — D; and $1.9. is the ath upper percentile of {WZ(IIQ), . Wz(g)}.

In our experiments, we repeated the resampling procedure N = 100 times in Step 2, and
fix & = 0.1. The effect of the choice of « is discussed at the end of Section 3.4. The GEs of
two classifiers induced from L; and L, are judged as significantly different if the confidence

interval established in Step 3 does not contain 0. We apply Algorithm 1 to eliminate the
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classifiers whose GEs are significantly different from the minimal GE of a set of candidate
classifiers.

Employing statistical testing for classifier comparison has been successfully applied in
practice (Dietterich (1998); Demsar (2006)). In particular, Demsar (2006) reviewed several
statistical tests in comparing two classifiers on multiple data sets and recommended the
Wilcoxon sign rank test, which examined whether two classifiers were significantly different
by calculating the relative rank of their corresponding performance scores on multiple data
sets. Compared to the Wilcoxon sign rank test, our perturbed cross-validation estimator
has the advantage of being theoretically justified without assuming measured performance
scores have no sampling error.

The classifiers that emerge from Algorithm 1 are potentially good. However, their decision
boundaries may change dramatically following small perturbations of the training sample,
indicating prediction instability. We introduce the DBI to capture the prediction instability,

and embed it into our classifier selection algorithm.

3.2 Stage 2: Final Selection via DBI

In this section, we define the DBI and then provide an efficient way to estimate it in practice.

Example: To motivate the DBI, we start with a simulated example using two classifiers:
squared loss L; and hinge loss L,. We generated 100 observations from a mixture of two
Gaussian distributions with equal probability: N((—0.5,—0.5)T, I5) and N((0.5,0.5)7, )
with I an identity matrix of dimension two. In Figure 1, we plot the decision boundary
S(x; 5]) based on D,,, and 100 perturbed decision boundaries {S(x; @;(1)), oo S 5;(100))}
for j = 1,2; see Step 2 of Algorithm 1. Figure 1 reveals that the perturbed decision bound-
aries of the squared loss are more stable than those of the SVM given a small perturbation
of the training sample. To quantify the variability of the perturbed decision boundaries with
respect to the original unperturbed decision boundary S(x; /O\J) is a nontrivial task since the

boundaries spread over a d-dimensional space, d = 2 in Figure 1. We transform the data in

10
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such a way that the variability can be fully measured in a single dimension. We find a d x d
transformation matrix Ry, orthogonal with determinant 1, such that the decision boundary
based on the transformed data DI = {(x!,v,),7i = 1,...,n} with 2! = Ryx; is parallel to
the Xy, ..., X1 axes; see the supplementary material S.3 for the calculation of R;. The
variability of the perturbed decision boundaries with respect to the original unperturbed
decision boundary then reduces to the variability along the last axis Xy. To illustrate, we
apply the data-transformation idea to the SVM plotted in the middle plot of Figure 1. From
the right plot in Figure 1, the variability of the transformed perturbed decision boundaries
(in gray) with respect to the transformed unperturbed decision boundary (in black) reduces
to the variability along the X5 axis only; the transformed unperturbed decision boundary is
parallel to the X axis. The choice of data transformation is not unique as, for example, we
could interchange the role of the two axes; the DBI measure we introduce is transformation
invariant.

Figure 1: Two classes are shown in circles and crosses. The black line is the decision boundary
based on the original training sample, and the gray lines are 100 decision boundaries based

on perturbed samples. The left (middle) panel corresponds to the least square loss (SVM).
The perturbed decision boundaries of SVM after data transformation are shown on the right.

Given the loss function L, we define the coefficient estimator based on transformed data

DI as b\TL and the coefficient estimator of its corresponding perturbed decision boundary as

11
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~F . . . . .
0 L*. We find the following relationship via the transformation matrix Ry:

This can be shown by replacing x; with Rya; in (1) and (5) and using the property of

Ry. Given 6; = (b}, wgl, ., @ )T we define the d-th dimension of S(X; BTL) as

Sai=——fe = ) = X (7)

Wrq =1 Wpa

DBI is then the variability of the transformed perturbed decision boundary S(X; /B\TL*)
with respect to the transformed unperturbed decision boundary S(X ,gTL) along its d-th

dimension.

Definition 1 The decision boundary instability (DBI) of S(m;gL) is
DBI (S(X; aL)) —E [Var (Sd\XLd))] , (8)

where Sy is defined in (7) and Xz_d = (X],...,xI_)T.

)

Remark 1 The conditional variance Var(Sq|X I_ 4)) in (8) captures the variability of the
transformed perturbed decision boundary along the dth dimension based on a given sample.
After data transformation, the transformed unperturbed decision boundary is parallel to
the XY, ..., X;_1 axes. This conditional variance precisely measures the variability of the
perturbed decision boundary with respect to the unperturbed decision boundary conditioned

on the given sample. The expectation in (8) then averages out the randomness in the sample.

Example Continuation: We give an illustration of (8) via the 2-dimensional example

shown in the right plot of Figure 1. For each sample, the conditional variance in (8) was

12
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estimated via the sample variability of the projected X, values on the perturbed decision
boundary. Then the final DBI was estimated by averaging over all samples.

In Appendix A.1, we demonstrate an efficient way to simplify (8) by approximating the
conditional variance via the weighted variance of 52 The idea is to connect the conditional
variance of the d-th dimension of decision boundary with the variance of the coefficients of

the corresponding decision function. We show that
DBI(S(X:0,)) ~ (w} ) 2E |X!", (n~'x! x|
(X50.)) ~ (wy,,) (=) \"* ZoL,(—a) (—d) | (9)

where wL 4 1s the last entry of the transformed coefficient O(T) ., and n’lEg L(d) is the asymp-
totic variance of the first d dimensions of gTL Therefore, DBI can be viewed as a proxy
measure of the asymptotic variance of the decision function.

We propose a plug-in estimate for the approximate version of DBI in (9). Direct estima-
tion of DBI in (8) is possible, but it requires perturbing the transformed data. To reduce

the computational cost, we can take advantage of the resampling results in Stage 1 based on

the relationship between ZEL and Xor. We can estimate Z(T)L by

. 5 Spw RE N S S
= Ab b; g given that Y, = | ’ Ab ) (10)
RLZ'w,b RLZng Ew,b Zw

where iL is the sample variance of 52 obtained from Stage 1 as a byproduct. Hence,

combining (9) and (10), we propose the estimator

noSAT St
~ i= Li_ X i
) _ Z =1 (—=d) = L,(—d)*"*(—d) (11)

D/\BI<S X0 ,
o (n] 1)
where 1732 4 1s the last entry of /O\TL, and iTL (—d) is obtained by removing the last row and

last column of iTL defined in (10). The DBI estimate in (11) is the one we use in numerical

experiments.

13
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3.3 Relationship of DBI with Other Variability Measures

DBI may appear to be related to the asymptotic variance E(¢;)? in Theorem 1. But these
two quantities are quite different. When data are nearly separable, reasonable perturbations
to the data may only lead to a small variation in the K-CV error, while small changes in
the data (especially those support points near the decision boundary) may lead to a large
variation in the decision boundary which implies a large DBI. In Section 5, we provide
examples to show that these variation measures generally lead to different choices of loss
functions, and the loss function with the smallest DBI often corresponds to the classifier
that is more accurate and stable.

While the stability-oriented measure of Bousquet and Elisseeff (2002) shares a similar
spirit as our DBI, they focus on the variability of the decision function as opposed to the
decision boundary. Their procedure is not transformation invariant while ours is.

In the experiments, we compare our classifier selection algorithm with approaches using
these two alternatives. Our method achieves superior performance in classification accuracy

and stability.

3.4 Summary of Classifier Selection Algorithm

Algorithm 2 (Two-Stage Classifier Selection Procedure):

Input: Training sample D,, and a collection of candidate loss functions {L; : j € J}.
Step 1. Obtain the K-CV errors ﬁj for each j € J, with minimal value 13,5.

Step 2. Apply Algorithm 1 to establish the pairwise confidence interval for each GE
difference A;;. Eliminate the loss L; if the corresponding confidence interval does not

cover zero. The set of potentially good classifiers is

A= {] €J: 3tj - n_l/Qd)t,j;aﬂ S 0}7

14
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where ﬁtj and ¢ j.o/2 are defined in Step 3 of Algorithm 1.

Step 3. Estimate DBI for each L;, j € A via (11). The optimal loss function is L;- with

~

Jj* = arg %I/I\lljB\I(S(X’ 9]-)>. (12)

In Step 2, we fix the confidence level @ = 0.1 since it provides a sufficient but not too
stringent confidence level. Our experiment in Section 6.1 further shows that the set A is quite
stable against o within a reasonable range around 0.1. The optimal loss function L;« selected
in (12) is not necessarily unique. However, according to our experiments, multiple optimal
loss functions are quite uncommon. In principle we can perform an additional significance
test for DBI in Step 3, but the related computational cost is high given that DBI is already

a second-moment measure. We choose not to include this test in our algorithm.

4 Selection Consistency

This section investigates the selection consistency of our algorithm by showing that the
selected classifier achieves the minimal GE and minimal DBI asymptotically. To simplify
the presentation, we establish our selection consistency via the large-margin unified machines
(LUM, Liu et al. (2011)); the extension to other large-margin classifiers is straightforward.

The LUM offers a platform unifying various large margin classifiers ranging from soft to
hard ones. A soft classifier estimates the class conditional probabilities explicitly and makes
the class prediction via the largest estimated probability, while a hard classifier directly
estimates the classification boundary without a class-probability estimation (Wahba (2002)).

The class of LUM loss functions can be written as

Ly(u) = (13)

15
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where the index parameter v € [0, 1]. As shown by Liu et al. (2011), when v = 1 the LUM
loss reduces to the hinge loss of SVM, which is a typical example of hard classification; when
v = 0.5 the LUM loss is equivalent to the DWD classifier, which can be viewed as a classifier
that is between hard and soft; and when v = 0 the LUM loss is a soft classifier that has an
interesting connection with the logistic loss. Therefore, the LUM framework approximates
many of the soft and hard classifiers in the literature. Figure 2 displays LUM loss functions

for various values of v and compares them with some commonly used loss functions.

Figure 2: Plots of least square, exponential, logistic, and LUM loss functions with v =

0,0.5, 1.
Loss functions
o T
[\ \, \
\\ \ ——- Least square
W\ — Exponential
@ N\ \ --- Logistic
\ == LUM: y=0
o == LUM:y=0.5
@ o |
o -
|

In the LUM framework, we denote the true risk as R,(0) = E[L,(yf(x;0))], the true
parameter as 6y, = argming R,(0), the GE as Dy, the empirical generalization error as

lA),Y, and the K-CV error as 737. Given data D,,, LUM solves

b,w 2

P 1 ¢ T ApwTw
Bv—argmln{ﬁ;[W(yi('w wi—i-b)) +7}. (14)

In Corollaries 1 and 2 provided in Section S.4 of the online supplement, we establish the
asymptotic normality of 57 and 137, respectively. These preliminary results are used to

develop the selection consistency of our two-stage classifier selection algorithm.

16
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For the LUM class, the set of potentially good classifiers is

~

Ro={v€0.1: D, < Dy; + 026,502} (15)

where 75 = arg min, ¢, 737, based on D,,. Its population version is defined as those classifiers

achieving the minimal GE, denoted

fo= {7 €10,1]: Doy = Dovg }, (16)

where 5 = argmin,¢p,1) Do,. To show the selection consistency, we require an additional

assumption on the Hessian matrix H(6y,) defined in Corollary 1, see the online supplement.

B1) The smallest eigenvalue of the true Hessian matrix Ay, (H (6g)) > ¢1, and the largest
y
eigenvalue of the true Hessian matrix A\yax(H (00)) < 2, where the positive constants

c1, co do not depend on 7.

As seen in the proof of Corollary 1, the true Hessian matrix H(6,,) is positive definite
for any fixed vy € [0, 1]. Therefore, Assumption (B1) is slightly stronger in the uniform sense.
It is required to guarantee the uniform convergence results, (5.15) and (5.17), in Section S.7

of the online supplement.

Lemma 1 If (L1), (B1), and (A1) in the online supplement hold, for A, = o(n™*/?),

’D%‘ — Doy | = Op(n™'72). (17)

In the second stage, we denote the index of the selected optimal classifier as

Ao = arg min @(S(X; 57)), (18)

v€A0
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and its population version as
Yo = arg};rel'krg DB](S(X; /057)) (19)
Theorem 3 If the assumptions in Lemma 1 hold, as N — oo,
‘173\1(5()(; §%)> - DBI(S(X; 5%)> ‘ = op(nY), (20)

where N is the number of resamplings in Step 2 of Algorithm 1.

Theorem 3 implies that the estimated DBI of the selected classifier converges to the DBI
of the true optimal classifier, that has the smallest DBI. Therefore, the proposed two-stage
algorithm is able to select the classifier with the minimal DBI among those classifiers having
the minimal GE. In summary, we have shown that the selected optimal classifier has achieved

the minimal GE and the minimal DBI asymptotically.

5 Experiments

In this section, we first demonstrate the DBI estimation procedure introduced in Section 3.2,
and then illustrate the applicability of our classifier selection method in various examples.
In all experiments, we compared our selection procedure, denoted as “cv+dbi”, with two
alternative methods: “cv+varcv”, the two-stage approach selecting the loss with the minimal
variance of the K-CV error in Stage 2; “cv+be”, the two-stage approach selecting the loss
with the minimal classification stability, as in Bousquet and Elisseeff (2002), in Stage 2. Stage
1 of each alternative approach is the same as ours. We consider six large-margin classifier
candidates: least squares loss, exponential loss, logistic loss, and LUM with v = 0,0.5,1. In

all the large-margin classifiers, the tuning parameter A\, was selected via cross-validation.
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5.1 Illustration

This subsection demonstrates the DBI estimation procedure and checks the sensitivity of
the confidence level v in Algorithm 2.

We generated labels y € {—1,1} with equal probability. Given Y = y, the predictor
vector (z1,79) was generated from a bivariate normal N ((uy, uy)T, I) with the signal level
w=0.8.

We first compared the estimated DBIs with the true DBIs for various sample sizes.
We varied the sample size n as 50, 100, 200, 500, and 1000. The classifier with the least
squares loss was investigated due to its simplicity. Simple algebra gives the true parameter
0o, = (0,0.351,0.351) and the transformed parameter 0$L = (0,0,0.429). The covariance

matrix Yo, and the transformed covariance matrix Zg ;, were computed as

0439 0 0 0439 0 0
Sor = 0 0268 —0.170 and Xf, = 0 0439 0 :
0  —0.170 0.268 0 0 0.098

given the transformation matrix

V2 V2
Ry — 2 2
V2 V2
2 2
Plugging these terms into (9) led to
~ 3.563
DBI(S(X;OL)> ~ . (21)
n

Figure 3 compares the estimated DBIs in (11) with the true DBIs in (21). They match
well for various sample sizes and their difference vanishes as the sample size increases.
To show the sensitivity of the confidence level a to the set A in Algorithm 2, we randomly

selected one replication and found the proportion of potentially good classifiers over all six
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Figure 3: Comparison of true and estimated DBIs in Example 6.1. The true DBI for each n
is denoted as a triangle and the estimated DBIs from replicated experiments are illustrated
by box plots.
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classifiers. As « increases, the confidence interval for the difference of GEs narrows, and
hence the size of A will be smaller. The change of the proportion reflects exactly the change
of A since A is monotone with respect to a. For each o € {l/100; [ = 0,...,50}, we
computed the proportion of potentially good classifiers and observed that the proportion

was stable in a reasonable large range around 0.1.

5.2 Simulations

In this section, we recount the performance of our method using four simulated examples.
These simulations were previously studied by Liu et al. (2011). In each simulation, the
size of training data sets was 100 and that of testing data sets was 1000. All procedures
were repeated 100 times and the averaged test errors and averaged test DBIs of the selected
classifier were reported.

Simulation 1: Two predictors were uniformly generated over {(z,xs) : 23 + 23 < 1}.
The class label y was 1 when x5 > 0 and —1 otherwise. We generated 100 samples and then
contaminated the data by randomly flipping the labels of 15% of the instances.

Simulation 2: The setting of Simulation 1 except that we contaminated the data by
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randomly flipping the labels of 25% of the instances.

Simulation 3: The setting of Simulation 1 except that we contaminated the data by
randomly flipping the labels of 80% of the instances whose |z5| > 0.7.

Simulation 4: Two predictors were uniformly generated over {(zy,x2) : |z1| + |12| <
2}. Conditionally on X; = z; and Xy = mo, the class label y took 1 with probability
3@t /(] 4 e3@te2)) and —1 otherwise.

We demonstrate the mechanism of our proposed method for one repetition of Simulation
1. As shown in the upper left plot of Figure 4, exponential loss and LUMs with v = 0.5 or 1
are potentially good classifiers in Stage 1; they happen to have the same K-CV error. Their
corresponding DBIs are compared in the second stage. As shown in the upper right plot of
Figure 4, LUM with v = 0.5 gives the minimal DBI and is selected as the final classifier.
In this example, while exponential loss gives the minimal K-CV error, its decision boundary
is unstable compared to that of LUM with v = 0.5. To show that our DBI estimation is
reasonable, we display the perturbed decision boundaries for these three potentially good
classifiers on the bottom of Figure 4. The relationship among their instabilities is captured
by our DBI estimate: compared with exponential loss and LUM with v = 1, LUM with
~v = 0.5 is more stable.

We report the averaged test errors and averaged test DBIs of the classifier selected from
our method as well as two alternative approaches, see Table 1. In the four simulated ex-
amples, “cv+dbi” achieves the smallest test errors, while the difference among test errors of
all algorithms is generally not significant. All methods are the same during the first stage
and those left from Stage 1 are all potentially good in terms of classification accuracy, but
“cv+dbi” is able to choose the classifiers with minimal test DBIs in all simulations and the
improvements over other algorithms are significant. Overall, our method is able to choose

the classifier with outstanding performance in both classification accuracy and stability.
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Figure 4: The K-CV error, the DBI estimate, and the perturbed decision boundaries in
Simulation 1 with flipping rate 15%. The minimal K-CV error and minimal DBI estimate
are indicated with triangles. The labels Ls, Exp, Logit, LUMO, LUMO0.5, and LUM1 refer
to least squares loss, exponential loss, logistic loss, and LUM loss with index v = 0,0.5, 1,

respectively.
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Table 1: The averaged test errors and averaged test DBIs (multiplied by 100) of all methods:
“cv+4varcv” is the two-stage approach which selects the loss with the minimal variance of the
K-CV error in Stage 2; “cv+be” is the two-stage approach which in Stage 2 selects the loss
with the minimal classification stability defined in Bousquet and Elisseeff (2002); “cv+4-dbi”
is our method. The smallest value in each case is given in bold. Standard errors are given

in subscript.

Simulations cv+varcv cv+be cv+dbi
Sim 1 Error 0.1910002 0.1940‘002 0.1900.002
DBI | 0.1390.043 0.1350019 0.081¢.002
Sim 2 Error 0.2960.002 0.3030‘003 0.2950.002
DBI | 0.291p.044 0.318p.036 0.229¢.012
Sim 3 Error 0.2180.006 0'2340.006 0.2090.004
DBI | 0.124p.008 0.2910037 0.1070.003
Sim 4 Error 0.1200.001 0.1210.001 0.1190.001
DBI 0.88409.207 0.41409.106 0.235¢ 933
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5.3 Examples

In this subsection, we compare our method with the alternatives on three datasets in the
UCI Machine Learning Repository (Frank and Asuncion (2010)).

The first data set is the liver disorders data set (liver) that consists of 345 samples with
6 variables of blood test measurements. The class label splits the data into two classes with
sizes 145 and 200. The second data set is the breast cancer data set (breast) which consists
of 683 samples after removing missing values (Wolberg and Mangasarian (1990)). Each
sample has 10 experimental measurement variables and one binary class label indicating
whether the sample is benign or malignant. These 683 samples arrived periodically as Dr.
Wolberg reported his clinical cases. In total, there are 8 groups of samples which reflect the
chronological order of the data. It is expected that a good classification procedure should
generate a classifier that is stable across these groups of samples. The third data set is
the credit approval data set (credit) which consists of 690 samples with 15 features, among
which 307 samples have a positive class label and the rest have a negative class label.

For each dataset, we randomly split the data into 2/3 training samples and 1/3 testing
samples, and reported the averaged test errors and averaged test DBIs based on all classifier
selection algorithms over 50 replications, see Table 2. Compared with the alternatives,
“cv+dbi” obtains significant improvements in DBIs and simultaneously attains satisficatory
test errors that are minimal or statistically indistinguishable to the minimal one.

Table 2: The averaged test errors and averaged test DBIs of all methods in real example.
The smallest value in each case is given in bold. Standard errors are given in subscript.

Data cv4-varcv cv+be cv+dbi
Liver Error | 0.331g.006 0.3350.006 0.3270.006
DBI 0.140¢ 013 0.1579.024 0.1130p012
Breast Error 0.0380,002 0.0380.002 0.0380,002
DBI | 0.3880p.066 0.15209028 0.124( 023

Credit Error | 0.1350004 0.1380p.004  0.1360.004
DBI | 0.229g5.101 0.157g.042 0.112 923
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6 Discussion

This paper proposes a two-stage classifier selection procedure based on GE and DBI. It
selects the classifier with the most stable decision boundary among those classifiers with
relatively small estimated GEs. The concept of DBI is quite general, and its extension to
a broader framework, e.g., multi-category classification (Shen and Wang (2007); Zhang and
Liu (2013)) or high-dimensional classification (Fan et al. (2012)), is conceptually simple.
In particular, in the multi-category classification, we suggest using the one-versus-all idea
(Rifkin and Klautau (2004)) to extend our DBI measure. For K classes, we compute DBI
as the DBI between the k-th class and the other K — 1 classes, then average the DBIs to
obtain the final DBI as K ! 22{:1 DBI;. When K = 2, this reduces to our original DBI.
The extension to the nonlinear classifiers is also feasible. We give detailed discussions
of the nonlinear extension in Appendix A.2. Briefly, in Stage 1, the asymptotic normality
of the nonlinear K-CV error remains valid due to Hable (2012); in Stage 2, measuring the
instability of the nonlinear decision boundaries is possible by mapping the nonlinear decision

boundaries to a higher-dimensional space where the projected decision boundaries are linear.

Supplementary Materials

In the online supplement, we provide all proofs, discuss the calculation of the transformation

matrix, and provide a notation table.
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Appendix: Technical Details

In the Appendix, we discuss an efficient approximation of DBI, and propose a nonlinear

extension of our two-stage classifier selection algorithm.

A.1. Approximating DBI via (9)

We propose an approximate version of DBI, (9), which is easily estimated in practice. Ac-

cording to (8), we can calculate DBI(S(X; EL)) as

-y TT ATk -y T
E [X(_d)Var ("72 yx}fd))x(_d)} , (A.1)
o1 T ~tx T ) ~Tx ~Fx g~ ~ Tk ~ Tk
where X' = (LXJ(rfd))T and "7TL = ( - bTL /wE,d, _wTL,l/wTL,d---a—wTL,d—1/wTL,d)- To

further simplify (A.1), we need the following as an intermediate step.

Theorem 4 If (L1)-(L5) hold and \, = o(n=*/?), as n — oo,

V(@ —0or) —5 N(0.Zor), (A.2)
Vn, —0;) =% N(0,%;) conditional on D, (A.3)
where Yo, = H(Oor) 'G(0or)H(0or) . After data transformation, as n — oo,
i
Vi(0, —6),) —= N(0,3f,), (A4)
\/ﬁ(éf - /O\TL) N N(0,%!,)  conditional on D, (A.5)
where 8}, = (bor,, wl, RT)T and
by YpwRE p 2w
= ’ bt if we partition Yoy, as ’ "
RLZ'w,b RLZ'wR% 2w,b 2w

We omit the proof of Theorem 4 since (A.2) and (A.3) directly follow from (S.1) and Ap-
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pendix D in Jiang et al. (2008), and (A.4) and (A.5) follow from the Delta method.
Let 7} = ( b /de, wL 1/de @Ld_l/tﬁld). According to (A.4) and (A.5), we
know that Var(n} |XJr )) is a consistent estimate of Var(n ") because 71" and i1 can be

written as the same function of @ L* and @ 1, respectively. Hence, we claim that
DBJ(S(X;@L)) ~E (X oVar@) X\ d)>.

Furthermore, we can approximate Var(f!) by (wgd)_ [n _12&( 4}, where n~ EOL( g 1

the asymptotic variance of the first d dimensions of 5 1, since de is asymptotically normal

with mean de and variance converging to 0 as n grows (Hinkley (1969)). Finally, we can

get the desirable approximation (9) for DBI. [

A.2. Nonlinear Extension

The extension of our two-stage algorithm to nonlinear classifiers contains two aspects: asymp-
totic normality of the K-CV error in Stage 1; the application of DBI in Stage 2. The former
is still valid due to Hable (2012), and the latter is feasible by mapping the nonlinear decision
boundaries to a higher dimensional space where the projected decision boundaries are linear.

Extension of Stage 1: We first modify several key concepts. Theloss L : X x Y xR —
[0, 00) is convex if it is convex in its third argument for every (z,y) € X x ). A reproducing
kernel Hilbert space (RKHS) H is a space of functions f : X — R which is generated by a
kernel k£ : X x X — R. Here the kernel k£ could be a linear kernel, a Gaussian RBF kernel,
or a polynomial kernel.

Given i.i.d training samples D, = {(x;,v;);¢ = 1,...,n} drawn from P = (X,Y), the

empirical function f7 p, », solves

min — ZL (i, iy f(25)) + A ”f”?—[

feH N

In the nonparametric case, the optimization problem of minimizing population risk is
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ill-posed because a solution is not necessarily unique, and small changes in P may have large
effects on the solution. Therefore it is common to impose a bound on the complexity of the
predictor and estimate a smoother approximation to the population version (Hable, 2012).
For a fixed Ay € (0,00), we denote fr p), as the population function which solves

i [ Lie.y. S@)Pd(e ) + Nl £

feH

The following conditions are assumed in Hable (2012) to prove the asymptotic normality
of the estimated kernel decision function.
(N1) The loss L is a convex, P-square-integrable Nemitski loss function of order p € [1, 00).
(N2) The partial derivatives L'(z,y,t) := %(m,y,t) and L' (z,y,t) == %Q—Qf(x,y,t) exist for
every (z,y,t) € X x Y x R and are continuous.
(N3) For every a € (0,00), there is b, € Ly(P) and b, € [0,00) such that, for every (z,y) €

X x ), SUPte[—q,a] |L/(CIZ, Ys t)| < b;(l’, U) and SUD¢e[—a,q] |L”((L‘, y7t)| < b:;

Proposition 1 (Theorem 3.1, Hable (2012)) If (N1)-(N3) hold and N\, = Ao +o(n=/%), for

every Ao € (0,00), there is a tight, Borel-measurable Gaussian process H : Q@ — H such that
\/ﬁ(fL;Dn,An - fL7P7)\0> — HL.

Remark 2 Least squares, exponential, and logistic losses all satisfy (N1)-(N3), while LUM
loss is not differentiable and does not satisfy (N2). Hable (2012) showed that any Lipschitz-
continuous loss function (e.g. LUM loss) can be modified as a differentiable e—version of the

loss function such that (N1)-(N3) are satisfied; see Remark 3.5 in Hable (2012).

In the nonlinear case, the GE Dy, and the K-CV error ﬁL are modified accordingly. The
asymptotic normality of W, = \/ﬁ(ﬁL — Dyp) follows from Proposition 1, Corollary 3.3 in
Hable (2014), and a slight modification of the proof of our Theorem 1. Then a perturbation-
based resampling approach can be constructed analogously to Algorithm 1.

Extension of Stage 2: The concept of DBI is defined for linear decision boundaries.

In order to measure the instability of nonlinear decision boundaries, we map the nonlinear
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decision boundaries to a higher dimensional space where the projected decision boundaries
are linear.

Figure Al: The nonlinear perturbed decision boundaries for the least squares loss (left) and
SVM (right) in the bivariate normal example with unequal variances.

Here we illustrate the estimation procedure via a bivariate normal example with sample
size n = 400. Assume the underlying distributions of the two classes are f; = N((—1,—1)T, I,)
and fo = N((1,1)T,2[5) with equal prior probability. We map the input {z;, 2} to the
polynomial basis {z1, T, 7179, 2%, 23} and fit the linear large-margin classifiers using the ex-
panded inputs. The instability of the original nonlinear decision boundary comes down to
the instability of the linear boundaries in the expanded space. Figure A1 demonstrates 100
nonlinear perturbed decision boundaries for the least squares and SVM losses, where the
former is visually more stable than the latter. Indeed, their corresponding DBI estimations
in the expanded space capture this relationship in that the estimated DBI of the former is

0.017 and that of the latter is 0.354. [ |

References

Adomavicius, G. and Zhang, J. (2010), On the Stability of Recommendations Algo-

rithms, ACM Conference on Recommender Systems, 47-54.

28



Statistica Sinica: Preprint
doi:10.5705/ss.202016.0260

Bousquet, O. and Elisseeff, A. (2002), Stability and Generalization, Journal of Machine

Learning Research, 2, 499-526.

Breiman, L. (1996), Heuristics of Instability and Stabilization in Model Selection, Annals

of Statistics, 24, 2350-2383.

Cortes, C. and Vapnik, V. (1995), Support-Vector Networks, Machine Learning, 20,

273-279.

Demsar, J. (2006), Statistical Comparisons of Classifiers over Multiple Data Sets, Jour-

nal of Machine Learning Research, 7, 1-30.

Dietterich, T. (1998), Approximate Statistical Tests for Comparing Supervised Classi-

fication Learning Algorithms, Neural Computation, 10, 1895-1923.

Donoho, D.L., Maleki, A., Shahram, M., Rahman, I.U. and Stodden, V. (2009), Repro-
ducible Research in Computational Harmonic Analysis., IEEE Computing in Science

and Engineering, 11, 8-18.

Efron, B. (1975), The Efficiency of Logistic Regression Compared to Normal Discrimi-

nant Analysis, Journal of American Statistical Association, 70, 892-898.

Fan, J., Feng, Y., and Tong, X. (2012), A ROAD to Classification in High Dimensional

Space, Journal of the Royal Statistical Society, Series B, T4, 745-771.

Frank, A. and Asuncion, A. (2010), UCI Machine Learning Repository,

http://archive.ics.uci.edu,/ml.

Freund, Y. and Schapire, R. (1997), A Decision Theoretic Generalization of On-line
Learning and An Application to Boosting, Journal of Computer and System Sciences,

55, 119-139.

29



Statistica Sinica: Preprint
doi:10.5705/ss.202016.0260

Gershoff, A., Mukherjee, A., and Mukhopadhyay, A. (2003), Consumer Acceptance of
Online Agent Advice: Extremity and Positivity Effects, Journal of Consumer Psychol-

ogy, 13, 161-170.

Hable, R. (2012), Asymptotic Normality of Support Vector Machine Variants and Other

Regularized Kernel Methods, Journal of Multivariate Analysis, 106, 92-117.

Hable, R. (2014), Asymptotic Confidence Sets for General Nonparametric Regression

and Classification by Regularized Kernel Methods, Technical Report.

Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction, Springer-Verlag: New York.
Hoffmann-Jorgensen, J. (1984), Stochastic Processes on Polish Spaces. Unpublished.

loannidis, J.P.A. (2005), Why Most Published Research Findings Are False, PLoS
Medicine, 2, 696-701.

Jiang, B., Zhang, X., and Cai, T. (2008), Estimating the Confidence Interval for Pre-
diction Errors of Support Vector Machine Classifiers, Journal of Machine Learning Re-

search, 9, 521-540.

Koo, J., Lee, Y., Kim, Y., and Park, C. (2008), A Bahadur Representation of the Linear

Support Vector Machine, Journal of Machine Learning Research, 9, 1343-1368.

Kraft, P., Zeggini, E. and loannidis, J.P.A. (2009), Replication in Genome-Wide Asso-

ciation Studies., Statistical Science, 24, 561-573.

Lim, C. and Yu, B. (2016), Estimation Stability with Cross Validation, Journal of

Computational and Graphical Statistics, To Appear.

Lim, T., Loh, W.Y., and Shih, Y.S. (2000), A Comparison of Prediction Accuracy,
Complexity, and Training Time of Thirty-three Old and New Classification Algorithms,

Machine Learning, 40, 203-229.

30



Statistica Sinica: Preprint
doi:10.5705/ss.202016.0260

Liu, Y., Zhang, H., and Wu, Y. (2011), Hard or Soft Classification? Large-Margin

Unified Machines, Journal of American Statistical Association, 106, 166-177.

Meinshausen, N. and Biithlmann, P. (2010), Stability Selection, Journal of the Royal

Statistical Society, Series B, 72, 414-473.

Park, Y. and Wei, L.J. (2003), Estimating Subject-specific Survival Functions under

the Accelerated Failure Time Model, Biometrika, 90, 717-723.
Peng, R. D. (2009), Reproducible Research and Biostatistics, Biostatistics, 10, 405-408.

Pollard, D. (1991), Asymptotics for Least Absolute Deviation Regression Estimators,

Econometric Theory, 7, 186-199.

Qiao, X. and Liu, Y. (2009), Adaptive Weighted Learning for Unbalanced Multicategory

Classification, Biometrics, 65, 159-168.

Rifkin, R. and Klautau, A. (2004), In Defense of One-Vs-All Classification, Journal of

Machine Learning Research, 5, 101-141.

Rocha, G., Wang, X., and Yu, B. (2009), Asymptotic distribution and sparsistency
for [1 penalized parametric M-estimators, with applications to linear SVM and logistic

regression, Technical Report.

Shah, R. and Samworth, R. (2013), Variable Selection with Error Control: Another Look

at Stability Selection, Journal of the Royal Statistical Society, Series B, 75, 55-80.

Shen, X. and Wang, L. (2007), Generalization Error for Multi-class Margin Classifica-

tion, Electronic Journal of Statistics, 1, 307-330.

Steinwart, 1. (2007), How to Compare Different Loss Functions and Their Risks, Con-

structive Approzimation, 26, 225-287.

31



Statistica Sinica: Preprint
doi:10.5705/ss.202016.0260

Sun, W., Wang, J., and Fang, Y. (2013), Consistent Selection of Tuning Parameters via

Variable Selection Stability, Journal of Machine Learning Research, 14, 3419-3440.

Sun, W., Qiao, X., and Cheng, G. (2016), Stabilized Nearest Neighbor Classifier and

Its Statistical Properties, Journal of American Statistical Association, To Appear.

Valentini, G. and Dietterich, T. (2004), Bias-Variance Analysis of Support Vector Ma-
chines for the Development of SVM-Based Ensemble Methods, Journal of Machine

Learning Research, 5, 725-775.

Van Swol, L. and Sniezek, J. (2005), Factors Affecting the Acceptance of Expert Advice,

British Journal of Social Psychology, 44, 443-461.
Vapnik, V. (1998), Statistical Learning Theory, John Wiley and Sons, New York.

Wahba, G. (2002), Soft and Hard Classification by Reproducing Kernel Hilbert Space

Methods, Proceedings of the National Academy of Sciences, 99, 16524-16530.

Wang, J. (2010), Consistent Selection of the Number of Clusters via Cross Validation,

Biometrika, 97, 893-904.

Wang, J. (2013), Boosting the Generalized Margin in Cost-Sensitive Multiclass Classi-

fication, Journal of Computational and Graphical Statistics, 22, 178-192.

Wang, J. and Shen, X. (2006), Estimation of Generalization Error: Random and Fixed

Inputs, Statistica Sinica, 16, 569-588.

Wolberg, W. H. and Mangasarian, O.L. (1990), Multisurface Method of Pattern Sep-
aration for Medical Diagnosis Applied to Breast Cytology, Proceedings of the National
Academy of Sciences, 87, 9193-9196.

Wu, Y. and Liu, Y. (2007), Robust Truncated Hinge Loss Support Vector Machines,

Journal of American Statistical Association, 102, 974-983.

32



Statistica Sinica: Preprint
doi:10.5705/ss.202016.0260

Yu, B. (2013), Stability, Bernoulli, 19, 1484-1500.

Zhang, C. and Liu, Y. (2013), Multicategory Large-margin Unified Machines, Journal

of Machine Learning Research, 14, 1349-1386.

Zhang, T. (2004), Statistical Behavior and Consistency of Classification Methods Based

on Convex Risk Minimization, Annals of Statistics, 32, 56-134.

33



	Introduction
	Large-Margin Classifiers
	Classifier Selection Algorithm
	Stage 1: Initial Screening via GE
	Stage 2: Final Selection via DBI
	Relationship of DBI with Other Variability Measures
	Summary of Classifier Selection Algorithm

	Selection Consistency
	Experiments
	Illustration
	Simulations
	Examples

	Discussion

