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a b s t r a c t

This paper proposes a novel method for decorating 3D surfaces using a new type of vector graphics,
called PoissonVector Graphics (PVG). Unlike other existing techniques that frequently require local/global
parameterization, our approach advocates a parameterization-free paradigm, affording decoration of
geometric models with any topological type while minimizing the overall computational expenses. Since
PVG supports a set of simple discrete curves, it is straightforward for users to edit colors and synthesize
geometry details. Meanwhile, the details could be organized by Poisson Region (PR), leading to much
smoother decoration than those of Diffusion Curve (DC). Consequently, it is an ideal tool to create smooth
relief. It may be noted that, DC is adequate to create sharp or discontinuous results. But PR is superior
to DC, supporting level-of-details editing on meshes thanks to its smoothness. To render PVG on meshes
efficiently, we develop a Poisson solver based on harmonic B-splines, which could be constructed using
geodesic Voronoi diagram. Our Poisson solver is a local solver for rendering with more flexibility and
versatility. We demonstrate the efficacy of our approach on synthetic and real-world 3D models.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Despitemanynovel techniques beingdeveloped for 3Dgraphics
modeling in recent decades, decorating 3D surfaces of arbitrary
topological type still remains a common yet challenging task in
geometric modeling and computer graphics applications. Texture
mapping is still a popular technique for enhancing the realism
of 3D surfaces, and the other commonly-used technique is bump
mapping. Based on the local details of the texture, Sander et al. [1]
reallocated the object parameterization to locally provide more
details on the mesh. Carr and Hart [2] used the surface painting
to paint a texture directly onto a surface with a texture atlas. To
provide amore clear shadowmap result near the camera according
to the current viewpoint, Stamminger and Drettakis [3] changed
the texture space by perspective shadow map. Dachsbacher and
Stamminger [4] rendered procedural terrain via geometry image
warping. However, since local or global parameterization is re-
quired, texture mapping is oftentimes computationally expensive.
From the authoringperspective, 3Dediting tools couldnot be easily
supported by texturemapping, as texturemapping frequently fails
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to handle models with complex geometry, and it also tends to
produce high distortion.

An alternative approach is to directly construct color and
displacement functions on 3D surfaces using vector graphics.
Orzan et al. [5] proposed diffusion curves, which diffuse the user-
specified colors from the curves and produce smooth color distri-
bution in space except at the curves. Jeschke et al. [6] rendered
surface details using diffusion curves. Due to the non-vanishing
Dirichlet boundary conditions applied to diffusion curves, their
method can produce only sharp features.

Strongly inspired by the existing works on decoration of arbi-
trary mesh, we take a different approach and propose a 3D mesh
decoration algorithm based on Poisson vector graphics in order
to produce smooth details. PVG [7] is a natural extension to the
popular diffusion curves with two new primitives — Poisson curve
(PC) and Poisson region, which is a good 2D graphic authoring
tool based on Poisson’s equation. It extends diffusion curve from
Laplacian’s equations to Poisson’s equation, allowing non-zero
Laplacians away from curves. In this paper, we generalize PVG
from planar domain to 3Dmesh decoration. Diffusion curves based
decoration algorithm suffers from C0 or C−1 continuity. In contrast,
thanks to the C1 continuity of Poisson regions, our algorithm is
adequate to produce smooth local details.
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To render vector graphics, Orzan et al. [5] designed a multi-grid
solver to use a coarse version of the sections. Jeschke et al. [8] used
finite differences with varying step size to accelerate the calcu-
lation process. Boye et al. [9] presented a finite element method
(FEM) which can convert a diffusion curve image into a mesh-
based representation. It may be noted that, a global solver is not
necessary for mesh rendering, since only faces within or adjacent
to the painting/decoration region shall be further processed. Based
on the vector solver of PVG, we devise a local Poisson solver to
render mesh details efficiently, while avoiding to process global
details. With the local solution, only the vertices that contribute
to the results are evaluated. Our contributions are as follows:

• At the theoretic and computational front, we propose an
efficient Poisson solver directly on 3D meshes, which is a
local solver for rendering with more flexibility.

• In the application of 3D decorations, PVG provides users
with simple inputs (i.e., a set of sparse curves) to produce
detailed geometries. In particular, smooth 3D decorations
could directly benefit from PRwithin the framework of PVG,
which could not be properly enabled by using conventional
DCs.

• Thanks to the smoothness property inherited from PR, our
new method will afford level-of-details editing directly on
complex geometries.

The remaining of the paper is organized as follows. Section 2
reviews the relatedworks and Section 3 introduces the preliminary
knowledge and required terminologies on Poisson vector graphics
and harmonic B-splines. Section 4 presents our PVGmesh solver in
details and Section 5 addresses our specific algorithm, followed by
experimental results and discussions in Section 6. Finally, Section 7
concludes the paper and points out the future work.

2. Related work

This section briefly reviews the work relevant to ours.

2.1. Surface decoration

Besides texture mapping, there are a few other alternatives
for decorating 3D surfaces. Bump mapping [10–12] simulates 3D
surface details by perturbing normal vectors while the original ge-
ometry remains unchanged. In contrast to bumpmapping that can
only control shading normals, parallax mapping [13,14] can also
modify the texture coordinates along the view direction to obtain
mesostructure normals and color data based on the depth values
using an approximate solution. Relief texturemapping [15,16] uses
textures enhanced with depth information to create the illusion
of complex geometric details onto flat polygons with locating
the intersection of the height field and the ray to generate pixel
shader. In contrast to bump mapping, displacement mapping [17–
19] actually changes model’s geometry by moving vertices along
surface normals.

Using texture and displacement mappings, Elber [20] synthe-
sized detailed geometry on the surfaces of objects by mapping
the geometric texture. Zhou et al. [21] proposed a mesh quilting
algorithm to seamlessly synthesize geometric texture sample in-
side a thin shell around an arbitrary surface through local stitching
and deformation. Lai et al. [22] converted the 2D texture into geo-
metric image to reconstruct synthesized geometry. Bhat et al. [23]
presented an example-based method for synthesizing geometric
textures such as pits and grooves on surfaces by extending the
neighborhood-based texture synthesis algorithms for volumetric
models. By reconstructing the fine-scale geometric details over a
simple proxy of the original model, Toledo et al. [24] proposed a
suitable representation for highly tessellated models using a set

of geometry textures. Landreneau and Schaefer [25] developed a
method for generating scales and scale-like structures on a polyg-
onal mesh. Taking a user-sketched lateral line as input (which
controls the distribution and orientation of scales), it computes a
vector field over the surface to control an anisotropic centroidal
Voronoi tessellation and then automatically fills each Voronoi cell
with oriented scales and generates a fully connected 2-manifold
mesh that is suitable for subsequent post-processing applications.
Their method is effective to generate pre-defined patterns repeti-
tively on 3D surfaces, while our method supports free-form vector
graphics and can also provide the usermore control of the displace-
ment.

2.2. Vector graphics

Diffusion curves, proposed byOrzan et al. [5], are 2-sided curves
with colors defined on either side. By diffusing these colors over
the image, the resulting image includes sharp boundaries along
the curves with smoothly shaded regions between them. Note
that diffusion curve images are harmonic functions of colors, the
maximum principle states that a non-constant harmonic function
cannot attain a maximum (or minimum) at an interior point of
its domain. Therefore, the follow-up work focuses on providing
more degrees of freedom for controlling color gradient. Bezerra
et al. [26] proposed diffusion barriers, diffusion anisotropy, and
spatially varying color strength to control the diffusion process.
Their approach is able to diffuse both colors and normal maps,
hereby producing interesting non-photorealistic effects. However,
it is non-intuitive to specify the boundary condition for normals
and normals can only be diffused within a closed diffusion curve.
Using thin-plate splines (TPS), Finch et al. [27] extended diffusion
curves to provide smooth interpolation through color constraints.
Although TPS allowsmore user control and is able tomimic smooth
shading, it often produces unwanted local extremals (hereby un-
predicted colors) due to the violation of the maximal principle
of harmonic equation. Moreover, solving a bi-Laplace’s equation
is more computationally expensive than solving Laplace’s equa-
tion, and it may suffer from serious numerical issues since the
system is less well-conditioned. Lieng et al. [28] proposed shad-
ing curves, which associate shading profiles to each side of the
curve. These shading profiles, which can bemanuallymanipulated,
represent the color gradient out from their associated curves.
Lecot and Levy [29] developed a vectorization method which is
based on a two-level variational parametric segmentation algo-
rithm, minimizing Mumford and Shah’s energy and operating on
an intermediate triangulation, well adapted to the features of the
image. Using holomorphic 1-form, Lai et al. [30] developed an
automatic method for converting raster images to high-quality
gradient meshes with non-trivial topologies. Xie et al. [31] auto-
matically generated sparse diffusion curve vectorizations of raster
images by fitting curves in the Laplacian domain. Their method
is highly efficient, combines Laplacian and bi-Laplacian diffusion
curve representations, and generates a hierarchical representation
that accurately reconstructs both vector art and natural images.

3. Preliminary

In this section, we briefly introduce harmonic B-splines, dif-
fusion curves and Poisson vector graphics. For details, we refer
readers to [32,33]. To ease reading, we list the main notations in
Table 1.
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Table 1
Notations.

Item Description

Ω 2D domain
M Input 3D triangle mesh
U ⊂M A simply connected region on the mesh
x, y Vertices of Ω or M
n Normal vector
ti The ith knot of Ω or M⋃

iVi Voronoi diagram
N1(Vi) 1-ring neighboring cells of Vi
n Number of knots (Voronoi cells)
AM The total area of mesh M
AVi The area of Voronoi cell Vi
Ax The area of Voronoi region of vertex x
eij Voronoi edge between cells Vi and Vj
dij Geodesic distance between ti and tj
f Laplace constraints of PCs and PRs
g The Dirichlet boundary condition
u(x) The solution of Poisson equation
� The Laplace–Beltrami operator
φy(x) Green’s function centered at vertex y

3.1. Harmonic B-splines

Let Ω ⊂ R
2 be a 2D compact domain and T = {ti|ti ∈ Ω}ni=1 a

set of knots. Taking {ti} as the generators, we construct a Voronoi
diagram Ω =⋃n

i=1Vi, where Vi is the Voronoi cell of knot ti.
For arbitrary points x, y ∈ Ω , Green’s function of the Laplace

operator Δ satisfies

Δφy(x) = δy(x), (1)

where δy(x) is the Dirac delta function centered at y. In 2D space,
an analytic solution to Eq. (1) is

φy(x) = 1
2π

log(‖x− y‖).
For a Voronoi cell Vj, applying Green’s theorem to (1) yields∫

Vj

Δφy(x) dσ =
∫

∂Vj

∂Δφy(x)
∂n

ds, (2)

where n is the outward unit normal to the boundary ∂Vj, dσ and
ds are the area and line integral elements, respectively.

Then we define a function ψj for each Voronoi cell Vj as

ψj(x) =
∑

i

wijφti (x), (3)

where wij is the discrete Laplacian weight and
∑

iwijφti (x) is a
boundary sum that approximates the line integral on the right
hand side of Eq. (2).

Feng and Warren [32] showed that the functions ψj are ap-
proximately local, nonnegative, and satisfying partition of unity,
sharing many properties of the popular B-spline’s basis functions.
Therefore they named it harmonic B-spline. Harmonic B-spline has
two salient features that distinguish itself from the conventional
B-spline. First, there is no restriction on knots and splines can be
constructed on a set of fully irregular knots. Second, it is parameter-
ization free, since evaluating Green’s function φy(x) requires only
the distance ‖x − y‖, which can be measured in a coordinate-free
manner.

3.2. Diffusion curves & Poisson vector graphics

Orzan et al. [5] developed diffusion curves, which are 2-sided
curves with colors defined on either side. By diffusing these colors
over the image, the final result includes sharp boundaries along
the curves with smoothly shaded regions between them (see .

(a) DCs. (b) DC image. (c) DCs & PRs. (d) PVG image.

Fig. 1. Diffusion curves and Poisson vector graphics [7]. PVG complements DC by
two new primitives, Poisson regions and Poisson curves, which provide additional
control on colors. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 1(a)(b)). Mathematically speaking, diffusion curve image is the
solution of the following Laplace equation �u(x) = 0, u(x)|∂Ω =
g , where g is user-specified boundary color. Since the solution
of Laplace equation is a harmonic function, which, by the maxi-
mum principle, retains its maximum andminimum on the domain
boundary, implying that u cannot have local maxima or minima,
unless it is constant. As a result, diffusion curves do not have
enough degrees of freedom to control color gradient.

Poisson vector graphics [7] extends the DC framework by
adding two new geometric primitives, called Poisson curves and
Poisson regions. The former is to model color discontinuity across
curves, while the latter is to design smooth shadingwithin the user
specified regions. PVG solves a Poisson’s equation with piecewise
constant Laplacians f , hereby taking DC as a special case with f ≡
0. Extending the zero Laplacian to a piecewise constant function f
brings 4 unique advantages. First, users can explicitly control the
local and/or global shading profiling via manipulating f (which is
a scalar for each color channel). Second, users can easily control
the color extrema, which are either on the curves (for PC and DC)
or inside a region (for PR). Third, PVG allows intersection among
the geometric primitives. Fourth, PVG natively supports seamless
cloning. Although a PVG can have an arbitrary number of PCs
and PRs, it must contain at least one diffusion curve, serving as
the boundary condition g . Hou et al. [7] demonstrated that PVG
is a simple yet powerful authoring tool that can produce photo-
realistic vector graphics from scratches. See Fig. 1(c)(d) for a simple
example of PVG.

3.3. 2D PVG Solver

To render PVG, one solves the following Poisson equation

Δu(x) = f , u(x)|x∈∂Ω = g, (4)

where f is the Laplacian constraint of Poisson curves and regions,
and g is the Dirichlet boundary condition of colors. Using harmonic
B-splines [32], Hou et al. [7] developed a novel random-access
solver for the above Poisson equation.

Green’s third identity provides an analytical solution for
Laplace/Poisson’s equations in the form of integral,

u(x) =
∫∫

Ω

φy(x)Δu(y)dσy

+
∮

∂Ω

(
u(y)

∂φy(x)
∂n

− φy(x)
∂u(y)
∂n

)
dly, (5)

where dσ and dl are the surface and line elements,n is the outward
pointing unit normal of dl.

Hou et al. [7] rasterized the image domain Ω with user-
specified resolution and then discretized the geometric primitives
(DCs/PCs/PRs) using quad-tree. Taking the quad-tree nodes as gen-
erators, they computed a Voronoi diagram to partition the domain
Ω = ⋃

iVi. For each Voronoi cell Vi, they constructed a harmonic
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B-spline basis function ψi(x), whose knots are the generators of Vi
and its 1-ring neighboring cells.

For basis function of a boundary Voronoi cell Vi, they set its
control point λi using the Dirichlet boundary condition g . For basis
functions of internal Voronoi cells, they computed their control
points by solving a sparse linear system of size k×k, where k is the
number of interior quad-tree nodes. Finally, the solution is given
by u(x) = ∑

i=1λiψi(x). Since harmonic B-spline basis functions
are approximately local, evaluating u(x) involves only the basis
functions close to x.

4. PVG mesh solver

Let M be a closed manifold mesh and U ⊂ M a simply
connected region enclosing the PVG primitives. To render PVG on
meshes,we adopt the harmonic B-spline based solver similar to [7].
For a closed mesh M, Green’s function of the Laplace–Beltrami
operator is

Δφy(x) = δy(x)− 1
AM

, (6)

where AM is the area of M. The addition of the area term is
necessary to ensure the existence of a solution y(x) in the compact
case. UsingGreen’s third identity on closedmanifolds,we canwrite
the solution u(x) as

u(x) = 1
AM

∫∫
U
u(x)dσ +

∫∫
U
Φy(x)Δu(x)dσ . (7)

Comparing to the planar case (Eq. (5)), we have the additional term
1

AM

∫∫
Uu(x)dσ which is the average of u(x) in regionU . Such a term

reveals the difference of Green’s function defined on closed and
open domains.

We select a set of knots {tj}nj=1 which is a subset ofmesh vertices
and construct a Voronoi diagram onM. The knot selection criteria
are as follows: (1) the outer boundary of V coincides with the
boundary ofU . (2) the regions on the boundary (i.e., ∂Vj∩∂U �= Φ)
are small enough. (3) the function f in everyVj is a constant. Similar
to [7], we discretize u(x) as

u(x) ≈ 1
AM

∫∫
U
u(x)dσ +

∑
Vj

AVj f |Vj
φVj

(x). (8)

Feng andWarren [32] defined the basis function for Voronoi cell
Vj as

ψj(x) =
AVj

AM
+

∑
Vi∈N1(Vj)

aij(φ̄Vi (x)− φ̄Vj (x))

where the coefficient aij = −‖eij‖
dij

, and the Voronoi edges eij are
fallen into three disjoint classes geometrically: inner boundaries
Eib, outer boundaries Eob and interior edges Eie.

Then we can derive∑
Vj

λjψj

=
∑
Vj

λj
AVj

AM
+

∑
eij∈Eob

aij(φVi
− φVj

)λj

=
∑
Vj

λj
AVj

AM
+

∑
Vj∈I

⎛
⎝φVj

∑
Vi∈N1(Vj)

aij(λi − λj).

⎞
⎠

(9)

For λj of Vj ∈ B, we simply set λj = g|Vj
. To compute the

coefficients ofφVj
(Vj ∈ I) satisfyingAVj f |Vj

, we solve the following
equation

LIλI = b− LBλB, (10)

where bj = AVj f |Vj
. It is apparent that λj is the average color or

displacement in Vj. It is easily verified that the third and fourth
termsof Eqn. (9) are identical to inner boundaries andouter bound-
aries of Eqn. (8). Since λj is the average color or displacement of Vj,∑

Vj∈I∪Bλj
AVj
AM is the average color/displacement of regionU . Thus,

Eqn. (9) is the solution of the Poisson equation (4).
Since the basis function ψj(x) decays to zero quickly, we evalu-

ate u(x) =∑
Vj∈N (x)λjψj(x) using only the basis functions in a local

neighborhood of x.

Remark. Our solver can be extended to handle open meshes. By
removing the constant term and adding the boundary integral to
Eqn. (7), we can express the solution as

u(x) = 1
AM

∫∫
U
u(x)dσ +

∫∫
U
Φy(x)Δu(x)dσ

+
∮

∂U

(
u(x)

∂Φy(x)
∂n

−Φy(x)
∂u(x)
∂n

)
dl.

(11)

The basis function for Voronoi cell Vj is

ψj(x) =
∑

Vi∈N1(Vj)

aij(φ̄Vi (x)− φ̄Vj (x)),

so we obtain the solution u(x) =∑
Vj∈N (x)λjψj(x) in a similar form

as the case of closed meshes.

5. Algorithm

5.1. Overview

PVG consists of three types of primitives: diffusion curve, Pois-
son curve and Poisson region. DC is a curve with color (cDC) or
displacement (dDC) specified by theuser,meanwhile, it guarantees
a unique solution of the Poisson solver as Dirichlet boundary con-
dition. DC is like a radiative heat transport diffusing color or height
on the mesh. PC is a double-sided curve with opposite Laplacian
values and can create high contrast effect along the curve. PR is a
region whose boundary and inside region have reverse Laplacians
and can generate a controllable soft boundary there. PR is effective
to produce the effects like highlight and smooth convex or concave
bump effect. In short, DCs specify color and height on the mesh
as the boundary condition, PCs and PRs control tone by offsetting
Laplacians.

In this paper, we adopt diffusion curves and Poisson regions to
represent both colors and displacements on 3D surfaces, and use
prefixes ‘‘c’’ and ‘‘d’’ to distinguish them. For example, cDC is a
color field represented by diffusion curves and dPR is displacement
generated by Poisson regions. Fig. 5 shows a simple example with
5 cDCs, 4 dDCs and 1 dPR. Besides, from Fig. 5(e)(g), we can see
that how PRs make the difference from traditional DCs to achieve
smooth tune result. As shown in Fig. 2, DC alone produces only
sharp feature, whereas DC+PR can make a smooth displacement
field. Furthermore, PRs are continuous across their boundaries for
2D cases, thanks to the analytic solution of Green’s functions (see
Fig. 3). Unfortunately, we do not have such a luxury for general 3D
meshes, the C1-continuity does not hold any longer. Nevertheless,
editing PRs is still more flexible than DCs, since PRs can intersect
with each other, whereas DCs cannot (see Fig. 4).

Fig. 6 illustrates the pipeline of our surface decoration algo-
rithm. Taking the user-sketched curves as input, we take a subset
of mesh vertices as knots and then construct a geodesic Voronoi
diagram. Then, for each Voronoi cell, we construct a harmonic
B-spline basis function ψ . By solving small sparse linear sys-
tem, we obtain the control coefficients λ and finally express the
color/displacement function using

∑
iλiψi.
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(a) dDC f �= 0, dPR
g = 0.

(b) dDC f = 0, dPR
g = 0.

(c) dDC f = 0, dPR
g = 1.

(d) dDC f = 0, dPR
g = −1.

Fig. 2. Diffusion curves vs Poisson regions. Diffusion curves are associated with
the Dirichlet boundary condition f , while Poisson regions are assigned Laplace
constraints g . We solve the Poisson equation �u = g and u|∂Ω = f to compute
the displacement field. (a) Although the displacement generated by DC is smooth
withinΩ , it is discontinuous along the domain boundary ∂Ω . (b) The only exception
is f ≡ 0, which produces a constant function u ≡ 0. (c)–(d) Combining DC and
PR, we can define displacement which is continuous both inside Ω and across
the boundary ∂Ω . We visualize the values of f and g using color maps: warm
colors are positive values and cold colors are negative values, and green is 0. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

(a) PVG Primitives. (b) PVG image.

Fig. 3. On 2D domain, PR (dashed curve) is C1 continuous across its boundary,
thanks to the analytical solution of Green’s functions of the 2D Laplacian operator.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. PVG allows intersecting primitives, which is a desired feature for editing.
Row 1 shows two PRs intersecting each other. When two diffusion curves are
intersecting, their associated boundary conditions are often ‘‘competing’’, resulting
in non-smooth artifacts (see row 2). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

(a) The original model. (b) Input: cDC. (c) The color result.

(d) Input: dDC. (e) The result. (f) Input: dDC+dPR.

(g) The result. (h) Normal map. (i) The final result.

Fig. 5. Generating a flag model from a cuboid model with simple input based PVG.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Algorithm 1 Decorating 3D meshes with PVG
Require: The triangle mesh M, the PVG primitives (i.e., diffusion

curves and Poisson regions) associated with color and/or dis-
placement constraints

Ensure: The mesh with details and colors decorated by PVG
1: Compute discrete Green’s function φy(x) using [34]
2: Sample knots {ti}ni=1 from mesh’s vertices
3: Construct geodesic Voronoi diagram on M, and M is divided

into a set of sub-regions M =⋃n
i=1 Vi

4: // Construct the harmonic B-spline basis function {ψi}ni=1
5: for each Voronoi cell Vj do
6: ψj(x) = AVj

AM +∑
Vi∈N1(Vj)

aij(φ̄Vi (x)− φ̄Vj (x))
7: φ̄Vj (x) = 1

AVj

∑
y∈Vj

Ayφy(x)
8: end for
9: // Compute the control points λ = {λi}ni=1

10: for each Voronoi cell Vi do
11: Compose ith row of sparse matrix L = {aij}ni,j=1
12: for every neighbor Vj ∈ N1(Vi) do
13: aij = −‖eij‖

dij
14: end for
15: aii =∑

Vj∈N1(Vi)
aij

16: bi = AVi f |Vi
17: end for
18: Solve Lλ = b
19: // Compute the decorated mesh
20: for every vertex x ∈ Vi do
21: u (x) =∑

Vj∈N(x) λjψj (x)
22: end for

5.2. Computing discrete Green’s function

Define gij = φvi (vj) the Green’s function centered at vertex vi
evaluating at vertex vj. We denote by G = (gij)m×m the discrete
Green’s function on closed mesh M , where m is the number of
vertices. Lipman et al. [34] proved that A−1LG = I − 1

n11
T , where

1 is the column vector of all ones. Denote by Mj the jth column
of matrix M. They showed that Gj = x − 1T x

1T 11, where x is a
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particular solution to LA−1Lx = (I − 1
n11

T )j. To get the particular
solution, replace the first row and the first column of A−1L by
zeros and set the diagonal entry at their intersection to 1. Also
replace the first row of (I − 1

n11
T )j by 0. As pointed out in [34],

this kind of linear system can be solved very efficiently by first
performing Cholesky factorization of LA−1L and then performing
two backward substitutions for every given vector on the right
hand side. Green’s functions on open mesh can be similarly solved
by A−1LG = I.

5.3. Computing geodesic Voronoi diagram

While user drawing DC and PR’s boundary on the mesh, each
curve assigned with double-side color or Laplacian weight are
represented by a B-spline curve. According to the work in [35],
de Casteljau’s algorithm is generalized into 2D manifold which
replaced the linear interpolation with the smooth geodesic inter-
polation. With this framework, we represent PVG primitives by
B-spline curves on the mesh. It requires extensive computation of
pairwise geodesic paths. Here we adopt an efficient approach [36]
to compute approximate geodesic distances between any two
points on the mesh. Given the user-sketched B-spline curves, we
assign the vertices belonging to the curves the color or Laplacian
constraints.

To get high quality solution, we need to sample the knots with
sufficient density so that the Laplacian in each Voronoi cell is a
constant. We first include all the key vertices involved in the input
PVG in the knot set. Thenwe add additional vertices that are evenly
selected with the specified knot density. Next, using the knots
as generators, we construct a geodesic Voronoi diagram on the
triangle mesh.

The algorithm of building Voronoi diagram in R
2 has been well

implemented such as by using dual Delaunay triangulation. But in
R

3, the situation becomes more complicated and one of the most
differences is that the bisector is a point trace on the mesh which
have equal geodesic distance to two knot neighbors rather than a
straight line. First, the knots are used as sources to create multi-
source exact geodesic distance field on the mesh by applying the
improved CH algorithm [37]. After that, each vertex is assigned a
geodesic distance to its closest knot. Then, we check each triangle
edge of the mesh and label it if its endpoints have different closest
knots. And if a labeled edge’s incident triangle face involves three
labeled edges, it contains a branch point inside, otherwise it is
crossed through by a segment of bisector. Finally, based on the
labeled edges and faces, we obtain the geodesic Voronoi diagram
(Fig. 6(b)) on the mesh through the marching algorithm [38].

5.4. Computing control coefficients

According to the PVG constraints defined on the vertices and
the constructed geodesic Voronoi diagram, we attempt to solve a
sparse linear system to require control coefficientsλ for expressing
the harmonic B-spline function in the further step. As for construct-
ing this linear system

Lλ = b (12)

here L = {aij} is a sparse symmetric matrix whose size is n×n (n is
the number of knots {ti}), and b is an n-dimensional vector defined
as each knot’s Laplacian value multiplying by its area. Based on
the position relationships of knots in Voronoi diagram, they can
be obtained specifically as follows:

aij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−‖eij‖
dij

, if i �= j and {ti, tj} are neighbors
0, if i �= j and {ti, tj} are not neighbors∑
Vj∈N1(Vi)

aij, if i = j; i, j ∈ [1, n]
(13)

bi = AVi f |Vi
, i ∈ [1, n] (14)

where aij (i, j ∈ [1, n]) is only related to the ith knot ti and its
1-ring Voronoi neighborhood. Note that no matter how the knots
are distributed, on average, each knot has six neighbors (since the
average neighboring Voronoi cells is 6). Therefore, for each row of
L, there are roughly seven non-zero values.

Moreover, allow for rank(L) = (n − 1), and this linear system
Eqn. (12) has infinitely many solutions, we use DCs to assign the
Dirichlet boundary condition. By moving them to the right hand
side of this equation as Eqn. (10), we can attain a unique solution.
That is, the average color (displacement) of each Voronoi cell is
obtained (Fig. 6(d)), which will serve as the control coefficients
for the next step of constructing harmonic B-spline function. In
addition, we know that any PVG consists of at least one DC to
ensure a unique solution.

5.5. Constructing basis functions

In this paper,wewould like to develop amethod for decoarating
3D meshes in both colors and displacements, making that the
Poisson solver isworking on all vertices of themodel. Of course, the
more dense mesh model you use, the higher the resolution result
you get. To achieve a good rendering result, the 3D mesh model
should have sufficiently high resolution. In our implementation,
we use themidpoint subdivision to increase themodel’s resolution
if it is not high enough.

Therefore, the main goal of the Poisson solver is to reduce
the computational cost. Here, we propose an efficient method
for solving the Poisson equation on meshes through constructing
harmonic B-splines. Harmonic B-spline function provides the local
computation for solving the Poisson equation on the mesh instead
of a global solution covering all vertices as the conventional finite
element method does.

As for the construction of harmonic B-spline function on the 3D
mesh M, the above computation has supplied its control coeffi-
cients. According to Green’s third identity and previous derivation,
the jth basis function can be defined on the closed mesh by

ψj(x) =
AVj

AM
+

∑
Vi∈N1(Vj)

aij(φ̄Vi (x)− φ̄Vj (x)), j ∈ [1, n] (15)

and for the open mesh it is:

ψj(x) =
∑

Vi∈N1(Vj)

aij(φ̄Vi (x)− φ̄Vj (x)), j ∈ [1, n] (16)

where Vi is 1-ring neighbor of Vj, AM is the total area of the mesh,
AVj is the area of jth Voronoi cell Vj, and is the average value of
Green function φ in Voronoi cell Vj:

φ̄Vj (x) =
1
AVj

∫
Vj

φ (x, y) dδy (17)

whose discrete form can be expressed as

φ̄Vj (x) =
1
AVj

∑
y∈Vj

Ayφy(x). (18)

Here φy(x) is the Green’s function on the mesh, which can be
obtained by the method in [34]. Note that Green’s function on a
specific 3D mesh only needs to be calculated once, which is done
in the preprocessing step.

Then we can derive the harmonic B-spline function as follows:

u (x) =
n∑

j=1

λjψj (x) (19)
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(a) Displacement constraints. (b) Knots {ti} & Voronoi dia-
gram {Vi}.

(c) Basis function ψj(x). (d) Control points {λi}. (e) Harmonic B-spline func-
tion u(x) =∑n

i=1λiψi (x).

Fig. 6. Illustration of our Poisson solver on the boxmeshM. (a) shows the domain U (because dDCs are not closed, here U =M) and the displacement constraints including
one dPR (red star) and four dDCs (another two on the bottom) along edges of the cuboid model, dPR assigns Laplacian constraints f and dDCs give the Dirichlet boundary
condition g . (b) To ensure that the Laplacian in each Voronoi cell is a constant, we sample n knots consisted of all the key vertices involved in the dPR and dDCs and some
other vertices evenly distributed with specified knot density. Then we use these interior and boundary knots as generators to construct geodesic Voronoi diagram, which
partitions U into a set of disjoint sub-regions, U = ⋃n

i=1Vi . (c) For a Voronoi cell Vj , we define the harmonic B-spline basis function ψj(x), whose knot tj is the generator
of Vj . (d) If Vj is a boundary Voronoi cell, we simply set its control point λj using the given boundary condition g. For internal Voronoi cell Vj , we compute its control point
λj by solving a sparse linear system, whose size is much smaller than the number of vertices of the mesh. (e) We express the solution by the harmonic B-spline function
u(x) =∑n

i=1λiψi (x). Since the basis functions are approximately local, we can evaluate u(x) =∑
Vi∈N (x)λiψi(x) using only the basis functions close to x. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) Input model. (b) Displacement
constraints.

(c) Color
constraints.

(d) Computation
regions (green)

(e) Normal map. (f) Final result.

Fig. 7. Bunny with the SPM logo. With a few diffusion curves and Poisson regions,
we obtain colorful and smooth reliefs. Thanks to the local feature of our solver, we
only need to construct the geodesic Voronoi diagram and harmonic B-splines for
the region of interest. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

where u (x) is each vertex’s color (displacement). These x belong-
ing to the knot set which u (x) are already obtained (by Eqn. (12))
or known (specified by DCs) and there is no need to compute again
u (x). And λj is the control coefficients required from Eqn. (12).

Since the basis function ψ (x, y) decays to zero quickly, we can
evaluate Eqn. (19) by using the basis of a neighborhood around x:

u (x) =
∑

Vj∈N(x)

λjψj (x) . (20)

After solving this harmonic B-spline function Eqn. (20), each
vertex’s color/displacement can be obtained (Fig. 6(e)). Thanks to
the random-access solver, users can decide the region of interest,
hereby reducing the computational cost. For instance, applying the
visibility algorithm such as back-face culling [39] or Z-buffer [40],
we can check whether a point x is visible. If not, we do not need to
compute u(x) at all.

6. Results

We implemented our algorithm in C++ and evaluated it on a
laptop with an Intel i7 CPU2.80 GHz. Our method allows user to
decorate 3D meshes in 3 ways: 1) user sketches PVG primitives
(DCs, PCs and PRs) directly on themesh, and then tunes the Dirich-
let boundary condition g and Laplacian of colors/displacements g;
2) user attaches a pre-defined 2D PVG to the region of interest on
the 3D model using local parameterization; and 3) user tessellates
a pre-defined 2D PVG to the entire 3D model using global param-
eterization.

In Fig. 7, we decorate the Bunny model with the SPM logo
and some colorful patterns. Using PVG, mesh decoration becomes
easier, since users can sketch arbitrary curves on the 3D model
directly and then tune the colors and displacements via setting
the associated functions f and g . Besides, as the input affecting
a small part of the mesh, our Poisson solver can provide a local
computation method for the useful regions which lightens the
calculation burden a lot in actual situations. As shown Fig. 7(d),
based on the input, we can obtain a connected region with open
boundary which need to be calculated. After building a geodesic
Voronoi diagram with the n selected knots from that area, we
can calculate n control points of harmonic B-splines function via
equation Lλ = b. However, only vertices whose Voronoi cells
contain input area (the green regions) will be actually calculated
their u(x).

Fig. 8 shows the result of a stele model decorated with concave
Chinese calligraphy characters and convex patterns of auspicious
clouds and dragon. First, we use two dDCs to generate a whole
concave effect of the middle plaque with the inconsecutive dis-
placement boundaries. Then, we raise the dragon a bit by using the
two dDCs. Next, we emboss the middle part of the dragon and the
auspicious clouds by dPRs. Finally, we carve the Chinese characters
using dPRs.

Fig. 9 shows the result of a vase model decorated with blue and
white porcelain patterns and smooth petal bumps. On one hand,
the vase is decorated with blue andwhite porcelain patterns in the
RGB field. On the other hand, all the petals are smoothly embossed
on the mesh.

Considering that the mesh need to be decorated by massive
repetitive patterns sometimes, our system also accepts global pa-
rameterization as the PVG input to generate rendering result (see
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Table 2
Statistics. We report the number of diffusion curves and Poisson regions used. The prefixes ‘‘c’’ and ‘‘d’’ distinguish the
primitives for color and displacement.

Triangle mesh #cDC #cPR #dDC #dPR

Bunny (Fig. 7) 82 0 82 81
Stele (Fig. 8) 0 0 22 31
Vase 1 (Fig. 9) 385 0 155 155
Vase 2 (Fig. 9) 264 0 264 264
Rhino (Fig. 10) 0 0 3038 3038
Sofa (Fig. 10) 27144 0 27144 27144
Cactus (Fig. 11) 854 0 122+854 122+854
Tree (Fig. 13) 1+ 119× 2 1+ 119× 2 1+ 119× 2 1+ 119× 2
Piggy bank (Fig. 12) 17(+3) 66(+15) 17(+3) 17(+3)

(a) Input
model.

(b)
Displacement
constraints.

(c) Normal
map.

(d) Result w/o
texture.

(e) Result w/
texture.

Fig. 8. Decorating the stele model with concave Chinese calligraphy characters and
convex patterns of auspicious clouds and dragon. By simply adjusting the Laplacian
values, we can control the height of the concave or convex reliefs. Compared
the concave Chinese calligraphy characters and the convex patterns of auspicious
clouds and dragon produced by dPR with those created by dDC, it is apparent
that our PR could produce smooth details while DC could only produce sharp
features. We visualize the displacement constraints by color map in (b), where
warm and cold colors indicate positive and negative displacements respectively.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10). Furthermore, the combination of sketching and global
parameterization can design various gorgeous decoration effects
(see Fig. 11). In our current implementation, the bottleneck is
the pre-computation stage, including constructing the geodesic
Voronoi diagram and computing Green’s functions. For the Piggy
Bank model with roughly 40 PVG primitives, pre-computing takes
138.4s (see Fig. 12). Local updating/editing PVG is much more
efficient than re-computing for the entire model, since Voronoi di-
agram can be updated locally and we only need to re-compute the
basis functions for the affected Voronoi cells. As shown in Fig. 12,
changing colors takes only 0.758s, and editing the geometries of
PRs takes 2.889s.

Thanks to the smoothness provided by PRs, our system also
allows multi-level sculpting for the meshes (see Fig. 13). Table 2
reports the statistics of the testing models. We observe that PVG
can decorate 3D meshes with various effects on the sides of color
and geometry by sketching and global parameterization. Particu-
larly, in the field of 3D geometric detail synthesization, compared
with the result of the sharp displacement boundaries by only using
DCs, our PRs can give a smooth bump effect.

Discussion. Jeschke et al. [6] proposed a surface details decora-
tion method with diffusion curves. Due to the Dirichlet boundary

condition applied to diffusion curves, their method can produce
only sharp features. In contrast, ourmethod is able to produce both
sharp features and smooth displacements, since diffusion curves
are a special case of PVG.

7. Conclusion & future work

Poisson vector graphics, a powerful extension to the popular
diffusion curves, are equipped with two new types of primitives,
namely Poisson curves and Poisson regions. This paper has ad-
vocated a new decoration approach that functions directly over
meshes of arbitrary topological type within the PVG framework.
DCs could be utilized to specify color and height on the mesh,
serving as the boundary condition. At the same time, both PCs
and PRs could control tone by offsetting Laplacians. By using them
in concert, we have detailed a parameterization-free decoration
method in this paper, which is affording users to directly work
on 3D meshes, by sketching out a set of sparse curves intuitively
and conveniently enabled by PVG. At the algorithmic level, to
render PVG on 3D meshes efficiently, we have designed an effi-
cient Poisson solver based on harmonic B-spline functions in this
paper. First, after sampling the knots, we correspondingly built
the geodesic Voronoi diagram on the mesh. Second, we used the
Voronoi cells to construct a sparse linear system whose solution
provides the control coefficients. Finally, we constructed harmonic
B-spline functions and locally synthesized the entire result. With
the local computation provided by harmonic B-spline functions,
we could flexibly and selectively determine which positions of the
mesh model are needed for calculation.

In strong contrast to previous works only supported by the
utility of DCs, our new system could achieve the decoration results
which are embodied not only with the color shading but also
with the smooth embossing and carving visual effects. Addition-
ally, because of the smoothness property directly inherited from
PRs, our system also support multi-level editing on meshes. Since
our system is solely based on a local solver, our system could
significantly reduce the computational burden and provide more
versatility such as ignoring calculation of invisible parts of models
of current interest.

In our current implementation of the PVG solver, we computed
Green’s functions for mesh vertices only and then use linear inter-
polation to approximate the function value for points inside trian-
gular faces. As a result, we require the input mesh is of relatively
good triangulation and high resolution. It is highly desirable to
develop a more accurate method to compute Green’s functions for
non-vertex points. Also, our paper defines the displacement field
using scalar functions. In the future, we plan to extend our method
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(a) Input model. (b) Displacement
constraints.

(c) Normal map. (d) Displacement. (e) Color constraints. (f) Final result.

Fig. 9. Decorating the vases with smooth reliefs generated by Poisson regions. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

(a) Input mesh. (b) Displacement constraints. (c) Normal map. (d) Result w/o texture. (e) Result w/ texture.

Fig. 10. Decorating the Rhino and Sofa models with repetitive patterns. To simplify the procedure, our system provides global parameterization so that the user-specified
pattern can be generated on the entire meshes in a seamless manner. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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(a) Input model. (b) Displacement
constraint.

(c) Normal map. (d) Rendering w/
texture.

(e) Another
displacement
constraint.

(f) Color
constraints.

(g) Normal map. (h) Final result.

Fig. 11. Transforming a sphere into a cactus. We define PVG on 2 separate layers,
where the first layer models the stems and the second layer the sharp spines. Since
PR is continuous, the two layers can be added together in a seamless manner. Note
that it is difficult to use only DCs for LOD modeling, since it is discontinuous along
the curves. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

(a) Input model. (b) First result. (c) Changing
color.

(d) Editing geom-
etry.

(e) Normal map 1. (f) Normal map 2. (g) First GVD. (h) Updated GVD.

Fig. 12. Decorating and editing a piggy bank model. (a) shows the input mesh.
(b) shows the first result of decorating with PVGs. (c) is the second result after
changing color whose Voronoi diagram is not changed. (d) is the final result after
changing DC’s shape of two clouds whose Voronoi diagram is locally updated with
some additional knots and only the vertices x′ inside these new Voronoi cells are
recalculated by using equation u

(
x′

) =∑
Vj∈N(x′)λjψj

(
x′

)
. There are 1,073 knots in

(g), and 214 additional knots are added in (h). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

to vector-valued functions so that we can decorate 3D surfaces
with non-height function based displacement.
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Fig. 13. Modeling a tree using multilevel PVG. Given a rectangular domain (a), user
sketches a circular PR enclosed by a DC whose Dirichlet boundary condition is 0.
The resulting PVG is the tree’s trunk (b). Then user sketches 2 other sets of DC and
PR (c) to define two branches (d). Repeating this procedure a few times, we obtain
the tree (e). Similar to other figures, we visualize the values of f and g using colors,
i.e., green for 0 and red for positive value. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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