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he problem of coordinating task- and motion-level operations for mul-

tirobot systems arises in many real-world scenarios. A simple example

is an automated warehouse system in which heavy robots move inventory pods

in a space inhabited by humans. The robots may have to avoid close proximity

to humans and each other, or they may have
to compete for resources with each other,
yet they have to work toward a common
objective.! Another example is airport
surface operations in which towing vehicles
autonomously navigate to aircraft and tow
them to their destinations.? This task-level
coordination has to be done in conjunction
with the motion-level coordination of action
primitives so that each robot has a kinemat-
ically feasible plan.

The coordination of task- and motion-
level operations for multirobot systems
requires a large search space. Current tech-
nologies are inadequate for addressing the
complexity of the problem, which becomes
even worse since we have to take imper-
fections in plan execution into account.
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For example, exogenous events might not
be included in the domain model. Even if
they are, they can often be modeled only
probabilistically.3

In this article, we present an overview of
our hierarchical framework for the long-
term autonomy of multirobot systems. Our
framework combines techniques from auto-
mated artificial intelligence (AI) planning,
temporal reasoning, and robotics. Figure 1
shows its architecture for a small example.

The plan-generation phase uses a state-
of-the-art Al planner®> for causal reasoning
about the task-level actions of the robots, in-
dependent of their kinematic constraints to
achieve scalability. It then identifies the de-
pendencies between the preconditions and
effects of the actions in the generated plan
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Figure 1. Architecture of our hierarchical framework. First, we discretize the continuous multiagent pathfinding (MAPF)
problem in time and space and use an Al planner to solve the resulting NP-hard problem. Then, we solve the simple temporal
network (STN) for the resulting discrete MAPF plan in polynomial time to generate a kinematically feasible plan that provides
guaranteed safety distances among robots under the assumption of perfect plan execution. Control uses specialized robot
controllers during plan execution to exploit the slack in the plan to try to absorb any imperfect plan execution. If this doesn‘t
work, partial dynamic re-planning re-solves a suitably modified STN in polynomial time. Only if this doesn't work either, partial
dynamic re-planning re-solves a suitably modified MAPF problem more slowly.

and compiles them into a temporal
plan graph (TPG) that encodes their
partial temporal order. Finally, it an-
notates the TPG with quantitative
information that captures some kine-
matic constraints associated with ex-
ecuting the actions. This converts the
TPG into a simple temporal network
(STN) from which a plan (including
its execution schedule) can be gener-
ated in polynomial time that takes
some of the kinematic constraints of
the robots into account (for simplicity
called a kinematically feasible plan
here), namely, by exploiting the slack
in the STN. The term “slack” refers
to the existence of an entire class of
plans consistent with the STN, al-
lowing us to narrow down the class
of plans to a single kinematically fea-
sible plan. A similar notion of slack
is well studied for STNs in general in
the temporal-reasoning community.
The plan-execution phase also ex-
ploits the slack in the STN, namely
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for absorbing any imperfect plan ex-
ecution to avoid time-consuming
re-planning in many cases.

We use a multi-robot path-planning
problem as a case study to present the
key ideas behind our framework and
demonstrate it both in simulation and
on real robots.

Plan Generation

We use a state-of-the-art Al planner
for reasoning about the causal inter-
actions among actions. In the multi-
agent pathfinding (MAPF) problem,
which is well studied in AI, robotics
and theoretical computer science, the
causal interactions are studied oblivi-
ous to the kinematic constraints of
the robots. We're given a graph with
vertices (that correspond to locations)
and unit-length edges between them.
Each edge connects two different ver-
tices and corresponds to a narrow
passageway between the correspond-
ing locations in which robots cannot
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pass each other. Given a set of robots
with assigned start vertices and tar-
gets (goal vertices), we have to find
collision-free paths for the robots
from their start vertices to their tar-
gets (where the robots remain) that
minimize the makespan (or some
other measure of the cost, such as the
flowtime). At each timestep, a robot
can either wait at its current vertex
or traverse a single edge. Two robots
collide when they’re at the same ver-
tex at the same timestep or traverse
the same edge at the same timestep in
opposite directions.

The MAPF problem is NP-hard
to solve optimally or bounded sub-
optimally since it’s NP-hard to ap-
proximate within any constant factor
less than 4/3, called the suboptimal-
ity guarantee.® Yet, powerful MAPF
planners have recently been developed
in the Al community that can find
(optimal or bounded suboptimal)
collision-free plans for hundreds of
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Figure 2. Environment of a simulated automated warehouse system where robots
need to swap sides from Area1l to Area2 and vice versa. The red arrows show user-
suggested edges to traverse (called highways). Highways make the resulting plan

more predictable and speed up planning.

Figure 3. Target assignment and path-
finding. (a) TAPF instance with two
teams: Team 1 (in pink) and Team 2 (in
green). The circles on the left are robots.
The circles in light colors on the right
are targets given to the team of the
same color. (b) Graph representation of
the TAPF instance. Team 1 consists of

a single robot with start vertex A and
target H. Team 2 consists of two robots
with start vertices E and F, respectively,
and targets D and I.

robots at the cost of ignoring the ki-
nematic constraints of real robots.3=%7
We report on two of our own contri-
butions to such MAPF planners below.

Consistency and Predictability
of Motion

For many real-world multirobot sys-
tems, the consistency and predict-
ability of robot motions is important

(especially in work spaces shared
by humans and robots), which isn’t
taken into account by existing MAPF
planners. We’ve shown that we
can adapt Al planners, such as the
bounded suboptimal MAPF plan-
ner Enhanced Conflict-Based Search
(ECBS),® to generate paths that in-
clude edges from a user-provided set
of edges (called highways) whenever
the suboptimality guarantee allows
it, which makes the robot motions
more consistent and thus predictable.
The highways can be an arbitrary set
of edges and thus be chosen to suit
humans. For example, highways need
to be created only in the part of the
environment where the consistency of
robot motions is important. Further-
more, highways provide suggestions,
not restrictions. Poorly chosen high-
ways don’t make a MAPF instance
unsolvable, although they can make
the MAPF planner less efficient. On
the other hand, well-chosen highways
typically speed up the MAPF planner
because they avoid front-to-front col-
lisions between robots that travel in
opposite directions.

Our version of the ECBS planner
with highways either inflates the heu-
ristic values or the edge costs non-
uniformly in a way that encourages
path finding to return paths that in-
clude the edges of the highways.? For
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example, we can place highways in an
automated warchouse system along
the narrow passageways between the
storage locations as shown by the red
arrows in Figure 2. We’ve also devel-
oped an approach for learning good
highways automatically* that’s based
on the insight that solving the MAPF
problem optimally is NP-hard but
computing the minimum-cost paths
for all robots independently is fast,
by employing a graphical model that
uses the information in these paths
heuristically to generate good high-
ways automatically.

Target Assignment

and Path Finding

For the MAPF problem, the assign-
ments of robots to targets are pre-
determined, and robots are thus not
exchangeable. In practice, however,
the assignments of robots to targets
are often not predetermined. For
example, consider two robots in an
automated warchouse system that
have to deliver two inventory pods to
the same packing station. It doesn’t
matter which robot arrives first at
the packing station, and their places
in the arrival queue of the packing
station are thus not predetermined.
We therefore define the combined
target assignment and path-finding
(TAPF) problem for teams of robots
as a combination of the target-as-
signment and path-finding problems.
The TAPF problem is a generalization
of the MAPF problem where the ro-
bots are partitioned into equivalence
classes (called teams). Each team is
given the same number of unique tar-
gets as there are robots in the team.
We have to assign the robots to the
targets and find collision-free paths
for the robots from their start ver-
tices to their targets in a way such
that each robot moves to exactly
one target given to its team, all tar-
gets are visited, and the makespan is
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minimized. Any robot in a team can
be assigned to any target of the team,
and robots in the same team are thus
exchangeable. However, robots in
different teams aren’t exchangeable.
Figure 3 shows a TAPF instance with
two teams of robots.

The TAPF problem is NP-hard to
solve optimally or bounded subop-
timally for more than one team.®
TAPF planners have two advantages
over MAPF planners: optimal TAPF
plans often have smaller makespans
than optimal MAPF plans for TAPF
instances since optimal TAPF plans
optimize the assignments of robots
to targets, and state-of-the-art TAPF
planners compute collision-free paths
for all robots on a team very fast and
thus often scale to a larger number of
robots than state-of-the-art MAPF
planners. We developed the optimal
TAPF planner Conflict-Based Min-
Cost Flow (CBM),*> which combines
heuristic search-based MAPF plan-
ners'® and flow-based MAPF plan-
ners'! and scales to TAPF instances
with dozens of teams and hundreds
of robots.

Generation of Kinematically
Feasible Plans

MAPF/TAPF planners generate plans
using idealized models that don’t
take the kinematic constraints of
actual robots into account. For ex-
ample, they gain efficiency by not
taking velocity constraints into ac-
count and instead assuming that all
robots always move with the same
nominal speed in perfect synchroni-
zation with each other. However, it’s
communication-intensive for robots
remain perfectly synchronized
as they follow their paths, and their
individual progress will thus typi-
cally deviate from the plan. Two ro-
bots can collide, for example, if one
robot already moves at large speed
while another robot accelerates from

to
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Robot t=1 t=2 t= =4
1 (in Team 1) A—B B— F F—>G G—>H
2 (in Team 2) E—F F—G G—>H H—1
3 (in Team 2) F—G G—>H H—C C—>D
(a)
a () (a7

(c)
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Figure 4. (a) TAPF plan produced by the optimal TAPF planner CBM for the TAPF
instance in Figure 3. (b) Temporal plan graph (TPG) for the TAPF plan. Each node
in the TPG represents the event “robot j arrives at vertex /" at timestep i. The arcs
indicate temporal precedences between events. (c) Augmented TPG.

standstill. Slowing down all robots
results in large makespans and is thus
undesirable.

We thus developed MAPF-POST,
a novel approach that makes use
of an STN!2 to postprocess a MAPF/
TAPF plan in polynomial time
and create a kinematically feasible
plan.13:14 MAPF-POST utilizes in-
formation about the edge lengths and
maximum translational and rota-
tional velocities of the robots to trans-
late the plan into a temporal plan
graph (TPG) and augment the TPG
with additional nodes that guarantee
safety distances among the robots.
Figure 4 shows an example. Then, it
translates the augmented TPG into an
STN by associating bounds with arcs
in the augmented TPG that express
non-uniform edge lengths or velocity
limits (due to kinematic constraints
of the robots or safety concerns).
It then obtains an execution sched-
ule from the STN by minimizing the
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makespan or maximizing the safety
distance via graph-based optimiza-
tion or linear programming. The ex-
ecution schedule specifies when each
robot should arrive in each location
of the plan (called arrival times). The
kinematically feasible plan is a list
of locations (that specify way-points
for the robots) with their associated
arrival times.

Plan Execution

The robots will likely not be able to
follow the execution schedule per-
fectly, resulting in plan deviations.
For example, our planner takes ve-
locity constraints into account but
doesn’t capture higher-order kine-
matic constraints, such as accelera-
tion limits. Also, robots might be
forced to slow down due to unfore-
seen exogenous events, such as floors
becoming slippery due to water spills.
In such cases, the plan has to be ad-
justed quickly during plan execution.
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Figure 5. Simulated automated warehouse environment. The in-set in the top-left
corner shows an overhead view. The robots are at different pickup locations and
need to deliver the color-coded boxes to the left and right side, respectively.

Frequent re-planning could address
these plan deviations, but it’s time-
consuming (and thus impractical) due
to the NP-hardness of the MAPF/
TAPF problem. Instead, control uses
specialized robot controllers to ex-
ploit the slack in the plan to try to ab-
sorb any imperfect plan execution. If
this doesn’t work, partial dynamic re-
planning re-solves a suitably modified
STN in polynomial time. Only if this
doesn’t work either, partial dynamic
re-planning re-solves a suitably modi-
fied MAPF problem more slowly.

Control

A robot controller takes the current
state and goal as input and computes
the motor output. For example, the
state of a differential drive robot can
be its position and heading, and the
motor output is the velocities of the
two wheels. The goal is the execution
schedule, assuming a constant move-
ment velocity between two consecu-
tive way-points (called the constant
velocity assumption). Robots can’t
execute such motion directly because
they can’t change their velocities in-
stantaneously and might not be able
to move sideways. The actual safety
distance during plan execution is thus
often smaller than the one predicted

during planning, which is why we
recommend to maximize the safety
distance during planning rather than
the makespan. We use robot control-
lers that try to minimize the effect
of the above limitations. For differ-
ential drive robots, we use the fact
that turning in place is often much
faster than moving forward. Further-
more, we adjust the robot velocities
dynamically based on the time-to-go
to reach the next way-point. It’s espe-
cially important to monitor progress
toward locations that correspond to
nodes whose slacks are small. Robots
could be alerted of the importance of
reaching these bottleneck locations in
a timely manner. Similar control tech-
niques can be used for other robots
as well, such as drones, as long as no
aggressive maneuvers are required.

Partial Dynamic Re-planning

If control is insufficient to achieve the
arrival times given in the execution
schedule, we adjust the arrival times
by resolving a suitably modified STN,
resulting in a new execution schedule.
Only if this doesn’t work either, we
re-solve a suitably modified MAPF
problem, resulting in a new kinemat-
ically feasible plan. If probabilistic
models of delays and other deviations
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from the nominal velocities are avail-
able, they could be used to determine
the probabilities that each location
will be reached in a certain time in-
terval and trigger re-planning only if
one or more of these probabilities be-
come small3.

Experiments

We implemented our approach in
C++ using the boost library for ad-
vanced data structures, such as
graphs. Experiments can be executed
on three abstraction levels, namely,
agent simulation, robot simulation,
and real robots:

e The agent simulation uses the con-
stant velocity assumption and is
fast. It can be used to verify the
code and create useful statistics for
the runtime, minimum distance
between any two robots, and av-
erage time until any robot reaches
its target, among others. It can also
be used for scalability experiments
with hundreds of robots in clut-
tered environments.

e The robot simulation adds real-
ism because it uses a physics engine
(instead of the constant velocity
assumption) and realistic robot
controllers for the simulated robots
to follow the execution schedule.
We use V-REP as robot simulation
for differential drive robots, robots
with omnidirectional wheels, flying
robots, and spiderlike robots.

e Real robots are the ultimate test-
bed. We use a team of eight iRobot
Create? differential drive robots.!

In the following, we discuss two
example use cases on a 2.1 GHz In-
tel Core i7-4600U laptop computer
with 12 Gbytes RAM. Each example
is solved within 10 seconds of com-
putation time and also shown in our
supplemental video at http://idm-lab
.org/project-p.html.
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Automated Warehouse

In the automated warehouse use case,
we model two robot teams. The first
team consists of 10 KUKA youBot
robots, which are robots with omni-
directional wheels capable of carry-
ing (only) small boxes. The second
team consists of two Pioneer P3DX
robots, which are differential-drive
robots capable of carrying (only)
large boxes. The robots have to
pick up small and large color-coded
boxes and bring them to a target of
the same color. We split the task into
two parts.

First, each robot has to move to an
appropriately sized box and pick it
up. Second, it has to move to a target
of the same color. The first part is a
TAPF instance with two teams, one
for each robot type. The second part
is a TAPF instance with four teams,
one for each color.

We use the robot simulation on a
2D grid. Figure 5 shows a screenshot
after the first part has already been
executed and the robots are at differ-
ent pickup locations. The KUKA ro-
bots use their grippers to pick small
boxes from shelves while the Pio-
neer robots receive the large boxes
from a conveyor belt. The robots then
need to move to the targets on the
left and right side of the warehouse,
respectively.

Formation Changes

Formations are useful for convoys,
surveillance operations, and artistic
shows. The task of switching from
one formation to another, perhaps in
a cluttered environment, is a TAPF
problem. In the formation-change use
case, we model a team of 32 identi-
cal quadcopters that start in a build-
ing with five open doors. The robots
have to spell the letters U - S — C out-
side the building, which is a special
TAPF instance where all robots
are exchangeable (also called an
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Figure 6. Simulated formation-change environment. The 32 quadcopters start inside
the glass building at the bottom of the picture and need to coordinate the usage
of the four exit doors in order to create the depicted goal formation spelling the

lettersU-S-C.

anonymous MAPF instance'!). We
use the robot simulation on a 3D
grid. Figure 6 shows a screen-shot of
the goal formation.

n the future, we plan to apply our

framework to more realistic appli-
cations such as planning for real au-
tomated warehouses, where orders
need to be fulfilled continuously. For
more information on our research, see
http://idm-lab.org/project-p.html. =
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