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Abstract
Wepresent fracturing analysis of topologicalMaxwell lattices when they are stretched by applied
stress.Maxwell lattices aremechanical structures containing equal numbers of degrees of freedom and
constraints in the bulk and are thus on the verge ofmechanical instability. Recent progress in
topologicalmechanics led to the discovery of topologically protected floppymodes and states of self
stress at edges and domainwalls ofMaxwell lattices.When normal brittlematerials are being
stretched, stress focuses on crack tips, leading to catastrophic failure. In contrast, wefind that when
topologicalMaxwell lattices are being stretched, stress focuses on states of self stress domainwalls
instead, and bond-breaking events start at these domainwalls, even in presence of cracks. Remarkably,
wefind that the stress-focusing feature of the self-stress domainwalls persists deep into the the failure
process, when a lot of damages already occurred at these domainwalls.We explain the results using
topologicalmechanics theory and discuss the potential use of these topologicalMaxwell lattice
structures asmechanicalmetamaterials that exhibit high strength against fracturing andwell
controlled fracturing process.

1. Introduction: topologicalmechanics andMaxwell lattices

In recent years, there have been substantial advances in applying the conceptual framework of topological states
ofmatter to classicalmechanical systemswhich are governed byNewton’s laws [1–22]. Thesemechanical
systems can acquire exoticmechanical behaviors, such as one-waywave transport [5, 6, 10–17], nonlinear
soliton [4], switchable stiffness [21], and selective buckling [22], that originate in the topological states of their
phonon band structures.Many of these systems belong to the class ofMaxwell lattices, lattices that contain equal
number of degrees of freedom and constraints in the bulk and hence are on the verge ofmechanical instability.
For any idealmechanical system that consistsmass points connected by harmonic springs on a periodic lattice in
d-dimensional space, the condition for aMaxwell lattice is z d2 , where z is themean coordination
number [3, 23–31]. This condition comes frombalancing the degrees of freedomper site, d, with the average
number of constraints per site, z 2.

For generalmechanical structures with point-like particles and central-force bonds one can apply the
Maxwell–Calladine counting rule [1, 3, 23, 32],

N N N d N , 1s b0 SS ( )
whereNs is the number of sites in the lattice,Nb is the number of springs,N0 is the counting offloppymodes
(modes of zero elastic energy) andNSS is the counting of states of self stress (eigenstates of tension and
compression on bondswith no net force on any site). For a periodicMaxwell lattice which has no boundaries, we
always have N d N 0s b and therefore N N0 SS. AfiniteMaxwell lattice has fewer springs on the lattice
boundaries and therefore N d N 0s b and N N0 SS so theremust befloppymodes.While theMaxwell–
Calladine counting rule gives us the relation betweenN0 andNSS, it does not tell uswhere the floppymodes and
states of self stress are in space, andwhether they are localized or extended in theMaxwell lattice, which depend
on the actual lattice architecture. A topological invariant, RT, called ‘topological polarization’, was introduced by
Kane and Lubensky in [1], to characterize localization offloppymodes and states of self stress.Wewill discuss
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more details of the topological polarization in the Theory section below. Similar to the topological states of
matter in other systems,mechanical behaviors that are rooted in this topological invariant remain robust even
when the system is locally perturbed. Thismakes topologicalmechanics a promising approach for designing
mechanicalmetamaterials that are insensitive to impurities and defects.

In this paper, we study howMaxwell lattices fracturewhen they aremacroscopically deformed by a uniaxial
strain applied to the boundaries.We are especially interested in the fracturing process of lattices that are
topologically polarized, i.e. R 0T , and contain topologically protected localized states of self stress. It was
shown in [22] that whenMaxwell lattices with self-stress domainwalls buckle under pressure, the buckling
regions localize to the self-stress domainwalls because stress focuses on these domainwalls. Similarly, wefind
that fracturing of theseMaxwell lattices under external tension starts at these self-stress domainwalls due to this
stress-focusing effect.More interestingly, even after a significant part of the self-stress domainwalls is damaged
during the fracturing process, stress still robustly focuses to these domainwalls. After the first bond-breaking
event, the latticemean coordination number decreases below theMaxwell point, z d2 , and thus simple
topologicalmechanics theory that predicts localized states of self stress no longer directly apply. The fact that
stress still focuses on the self-stress domainwalls when the lattice is damaged originates from the robustness of
these topologically protected edge states of theseMaxwell lattices.

The stress and damage focusing effect of self-stress domainwalls inMaxwell lattices provides remarkable
protection on the rest of the structure. Aswe showbelow, these self-stress domainwalls guide stress away from
pre-existing cracks in the structure. Thus, unlike normalmaterials where stress focuses on crack tips leading to
catastrophic failure [33],Maxwell lattices with self-stress domainwalls exhibit amuchmore gradual fracturing
process where only a small number of bonds break at each step of strain increase, without any large avalanches.
These observations reveal the great potential of usingMaxwell lattices to design high strengthmetamaterials in
which failure occurs gradually at predicted locations.

To study the fracturing ofMaxwell lattices, we choose two types of two-dimensional (2D)Maxwell lattices,
the deformed square lattice and deformed kagome lattice, which are commonly used in the research of
topologicalmechanics [1, 20, 23]. Both types of theseMaxwell lattices can acquire nonzero RT by varying site
positions in the unit cell.Wefirst generate ‘phase diagrams’ of RT in the parameter space of site positions and
then determine the site positions that we need to polarize the lattice with desired RT. Infigure 1, we show these
lattices with their topological polarization RT. The configurations of their unit cells will be used throughout this
paper. To acquire states of self stress that are protected by topology, we introducemultiple domains of these
lattices with different RT, which are separated by domainwalls offloppymodes and states of self stress. Such
structures are shown infigure 2 for both the deformed square and the deformed kagome lattices. The connection
between RT, domainwalls and protected states of self stress will be explained in section 2.

2. Theory: topological polarization and exponential decay of topological surfacemodes

InMaxwell lattices, the coordination number z d2 ensures that the counting of constraints and degrees of
freedomalways equal locally, except near open boundaries of the lattices, where there are fewer constraints than
degrees of freedom, giving rise tofloppymodes.Whether an edge of aMaxwell lattice hosts exponentially
localized floppymodes is characterized by the topological polarization RT, which is defined through calculating
winding numbers of the determinate of the compatibilitymatrixC(q) over closed paths (figure 1) across the
first Brillouin zone, i.e. [1],

n q
q

C q
1

2 i
d

d

d
ln det . 2∮ ( ) ( )

The compatibilitymatrixC(q), as we discuss below in this section, is a linear operator thatmaps lattice site
displacements to bond extensions.We follow two paths along the reciprocal lattice vectors q1 and q2 and
calculate the topological winding numbers n1 and n2 for any 2Dperiodic lattice. The topological polarization for
a periodicMaxwell lattice is then defined as R r rn nT 1 1 2 2, where ri{ }are the real space primitive vectors that
correspond to the reciprocal vectors qi{ } inmomentum space.

To determinewhich boundaries have exponentially localized floppymodes or states of self stress, we need to
calculate the surface integral of RT over a surface (contour for 2D lattices) that encloses the lattice boundary of
interest,.i.e. [1],

R G
V

s
1

d , 3T
0

T∮ · ( )

whereV0 is the volume of the unit cell, G is the reciprocal vector orthogonal to the surface .With symmetric
choice of unit cells where the number of cut bonds are the same on opposite edges (this is characterized by the
local count S

L as defined in [1] and symmetric unit cellmeans 0S
L ), T directly gives the difference between
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the numbers offloppymodes and states of self stress inside the surface . In this paperwe construct the
deformed square and deformed kagome lattices with such symmetric unit cells. As a result,

N NSS0 T L T is the counting of howmanymore localizedfloppymodes are inside than
localized states of self stress. Since bothN0 andNSS are non-negative, when 0, there are guaranteedfloppy
modes inside that are protected by the topology of the bulk phonon structure of the lattice; when 0,
there are guaranteed states of self stress inside .

The formulation described above applies equally to lattice surfaces (outer boundaries, with vacuum
considered R 0T ) and domainwalls (inner boundaries between lattice domains with different RT). Examples
of lattices with domainwalls are shown infigure 2.When 0 0( ) for a surface that encloses a domainwall,
therewill be topologically protected floppymodes (states of self stress) localized on the domainwall. In these
lattices, because the two domains separated by the domainwall are of homogeneous (but different) RTʼs, the
value of is proportional to the height of the domainwall.

Floppymodes and states of self stress that are localized on boundaries exponentially decay into the lattice
bulk because their wave vectors q have nonzero imaginary parts, i.e. q k i . For example, afloppymodes
on a lattice boundary u A q r A k r rexp i exp i( · ) ( · · ) decays into the lattice bulkwith a decay rate
∣ ∣. The sign ofκ is dictated by the topological polarization RT (which is why RT determines which edge or
domainwallfloppymodes and states of self stress localizes to), whereas themagnitude ofκ depends on the
detailed geometry of the unit cell. To ensure localization offloppymodes or states of self stress on edges or
domainwalls, the lattice domain depth has to be greater than 1 ∣ ∣. To determine the value of , we need to
solve q from the condition for allfloppymodes using the compatibilitymatrix,

qCdet 0. 4( ) ( )

Taking the component of q along the boundary to be any real wave number, we can solve for that controls the
decay rate perpendicular to the boundary. The decay rate of states of self stress can be similarly solved by
requiring

Figure 1.Deformed square (a), (b) and deformed kagome (c), (d) lattices that are used in the simulation of lattice fracturing. For both
types of lattice, we choose one lattice that is topologically polarized (a), (c) and one lattice that is not (b), (d). The positions of the lattice
sites inside one unit cell of the lattices are (a) r r0, 0 , 0.6, 0.21 2( ) ( ), r r0.4, 0.9 , 0.2, 0.43 4( ) ( ), (b)
r r r r0, 0 , 0.5, 0.1 , 0.6, 0.6 , 0.1, 0.51 2 3 4( ) ( ) ( ) ( ), (c) r r r0, 0 , 0.52, 0.13 , 0.06, 0.31 2 3( ) ( ) ( ) and (d)
r r r0, 0 , 0.52, 0.13 , 0.36, 0.31 2 3( ) ( ) ( ), and the primitive vectors of the lattices are (a), (b) e e1, 0 , 0, 11 2( ) ( ) and (c),
(d) e e1, 0 , 1 2, 3 21 2( ) ( ). In each of the four lattices, unit cells aremarked by the black dotted boundary, and bonds that
belong to themarked unit cell aremarked as thick blue solid lines (other bonds in the lattice are thin black solid lines). Each unit cell in
the deformed square lattice contains four sites, and each unit cell in the deformed kagome lattice contains three sites. The integral
paths for determining RT are alsomarked in thefirst Brillouin zone (insets on the right) of the lattices.
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qQdet 0, 5( ) ( )
where Q CT is the equilibriummatrix of the lattice. Since Q Cdet det , the decay rate of states of self stress is
the same as the decay rate of thefloppymodes in a given domain.

Finally, we need to connect the states of self stress to the linear response of the lattice tomacroscopic
deformations.We start with the equilibriummatrixQ and compatibilitymatrixC of a lattice [32, 34]

f tQ , 6( )
e uC , 7( )

where t is the force on each springs, u is the displacement of each lattices sites, f is the net force on each lattice
sites and e is the extension on each springs. It is straightforward to show that Q CT. In addition, t is related to
e as t eK whereK is the diagonalmatrix of the spring stiffness.

For the study of lattice fracturing under external stress, wemake explicit distinction between lattice
boundaries with controlled displacement (denoted as∂V in subscript) and the lattice bulk (V ) so that we can
impose deformations on the boundaries and equilibrate the lattice in the bulk. The linear equations then become

f tQ , 8V V ( )
e u uC C , 9V V V V ( )

where boundary displacements u V are given.We can solve t by setting f 0V (force balance on all internal
sites) and simplify the above equations as

t u uQ Q K C C 0. 10V V V V V V( ) ( )
Therefore t is a null vector ofQV and thusmust be a superposition of states of self stress in the lattice bulk, i.e.
t sai i i, where si{ } is the complete orthonormal basis for the null space ofQV.We can further express t as

t s s s u sK C , 11
i j

i j j V V i
,

1( · )( · ) ( )

Figure 2.The deformed square (top) and deformed kagome (bottom) lattices with domainwalls that have 0T . Lattice-domain
topological polarizations RT aremarked in the bar on top of each lattice. There are floppymodes that are localized on the domainwall
with 0T (marked ‘+’ in the bar), and self stress on the domainwall with 0T (marked ‘−’ in the bar).
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which shows that when bond extension caused by the boundary deformation u V has nonzero overlapwith
states of self stress in the bulk, bonds in the lattice will have nonzero tension originated from these bulk states of
self stress.We show the derivation of equation (11) in detail in the appendix. In general, matricesQ andC are
functions of lattice site position and bond direction. Therefore, we need to updatematricesQ andC at each step
that strain is changed. To linear order approximation, we treatQ andC as constantmatrices that are determined
by the initial configuration of the lattice, and this approximationmatches reasonably well with our simulation
results, which treat nonlinear deformations exactly, at small strains.

Up to nowwe have not consider the possibility that the latticesmay have topologically protectedWeyl points
that can complicate our definition for RT. It has been shown that a deformed square lattice with four lattice sites
in a unit cell can have zero or twoWeyl points in thefirst Brillouin zone, depending on geometry of the lattice
[20]. For a kagome latticewith three sites in the unit cell, there are noWeyl points. This paper is only concerned
with fracturing of lattices with noWeyl points.

3. Simulation: lattice fracturing due to of external load

In simulation, we build up our systemby connecting nearest neighbor (NN) pointmasses with harmonic springs
that are free to rotate around both of their joints. TheHamiltonian of our system is therefore

r rH k l
1

2
, 12

i j NN
i j ij

,

2(∣ ∣ ) ( )

where k is the spring stiffness which is set to one in the simulation, ri is the position of site i and li j, is the rest
length of the spring between site i and site j. The geometry of sites and springs are shown infigures 1 and 2 for
both the deformed square and the deformed kagome lattices. It is worth noting that thisHamiltonian takes care
of geometric nonlinearities in the structures and applies to arbitrarily large deformations.

To simulate the fracturing process of the lattice, we impose uniaxial strain in the vertical direction to the
lattice boundary by holding the lattice sites on the bottomboundary stationary vertically while displacing the
lattices sites on the top boundary with a distance δh=hγ up, while h is the height of the lattice and γ is the strain
thatwe impose. The lattice sites on top and bottomboundaries are allowed to slide along the horizontal
directions of the boundaries. The lattices have awidthw and open boundary conditions on the left and the right
boundaries.With the boundary condition defined above, we relax the lattice to an energyminimum such that
the force of springs are balanced on all internal lattice sites [35]. Thus, the vertical degrees of freedomof the top-
and bottom-boundary sites correspond to∂V, and their horizontal degrees of freedom, alongwith all internal
sites correspond toV in our discussion of the theory.

At every strain step (given γ), we examine force on springs and compare the amplitude of the force to a
compressive strength fc and a tensile strength ft. Both ft and fc define the limit force that a spring can bear, beyond
which the spring breaks and is removed from the lattice.Whenwe need to break and remove springs after
relaxation, we do so and retake the relaxationmethod for the new lattice and further remove springs that are
beyond compressive/tensile limits.We repeat this process until force balance is reachedwith all springs within
limits.We then proceedwith the next strain step.We set f f f 10 1t c 0

2 in our simulation for all
springs in the lattices.

4. Results

Webegin by testing the lattices’ linear response to uniaxial load, as shown infigure 3. The simulation protocol is
discussed in section 3, and to obtain linear response, we use very small strain ( 10 13 ) so no bonds are
beyond compression/tensile force limit.We not only include perfect lattices as shown infigure 2 but also
include lattices that have cracks in the bulk.

Infigure 3, we show the stress distribution of linear response for the lattices. Consistent with theory, high
stress appears at the domainwalls on the right of the lattice, where the topological polarization ensures a
topological charge of h 0, an indication that the domainwall acquires localized states of self stress
that are protected by the lattice topology. There is no stress localization on the left domainwall, where the
topological polarization gives a topological charge of h 0, indicating protected floppymodes instead of
localized states of self stress.We alsofind that unlike normalmaterials, inwhich stress is amplified at crack tips
[33, 36], in these topologicalMaxwell lattices there is no obvious stress at the tips of the cracks. Thus, these cracks
are protected by the self-stress domainwalls. In addition, we observe no significant difference of stress
distribution between the deformed square and deformed kagome lattices, and between lattices with andwithout
cracks. The overall stress distribution in the linear regime ismainly determined by the topology of the lattices
bulk, regardless of themicroscopic details and small defects thatmay exist in the lattices.
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We then test the entire process of fracturing of the lattices in the quasi-static limit, where kinetic energy of
the lattices is quickly dissipated,much faster than the relaxation process of the lattices.We increase the strain by
small steps such that at each new strain atmost one bond breaks initially (theremay be subsequent avalanches
whenwe recalculate the stress distribution after the initial bond breaking but in our observation all avalanches
are small events with number of breaking bonds of 1( )). For all lattices shown infigure 3, wefind that the
fracture begins in one of the bonds at the self-stress domainwall where stress localizes, as one expect from the
linear theory.

Interestingly, the next bond breaking events continue to concentrate near the self-stress domainwalls
(figure 4), evenwhen the lattice is rather deep into the failure process and the coordination number becomes
z d2 . This is amanifestation of the robustness of topological protection—with small damages at the domain
wall, the deformation is small in the bulk, the phonon band topology of the bulk of the lattice is unchanged and
still dictates the exponential localization of states of self stress and floppymodes. Because there is a total of

h 0 states of self stress at the domainwall, this remains true until the number of broken bonds
becomes comparable to . In addition, the concentration of breaking events during fracturing needs the
lattice bulk to remain in the same topological state as strain is increased. Therefore, before testing the process of
fracturing, we confirm that the initial configurations of the lattice are deep inside polarized phases of RT and not
close to any phase boundary. This guarantees that perturbation to lattice site positions and bond directions does
not destroy the topological state.

It is worth noting that localized stress distributions that appear to be similar to those shown infigure 3 can
also emergewithout a topological origin. An example of this is shown infigure 5(a), wherewe show a lattice with
R 0T in all domains but still shows localized states of self stress. The structure contains twisted kagome lattices
[3] of opposite direction of twisting in its neighboring domains. In particular, the pointing up triangles rotate
clockwise in the two domains on the left and right and rotate counterclockwise in themiddle domain, leading to
two domainswalls. There is stress localization at the left domainwall. This, however, does not conflict with the
theory of topologicalmechanics. In this structure, the left domainwall has topological charge 0, which
indicates equal numbers offloppymodesN0 and states of self stressNSS. As long as N N0 SS, they can both
localize at the domainwall. Indeed, our calculation through the null spaces ofmatrixC andQ shows pairs of
states of self stress and floppymodes at this domainwall.Wemarked one of thefloppymodes infigure 5(a)with
blue arrows in the kagome lattice. To explicitly show that the nonzeroNSS andN0 here are not a consequence of
the lattice topology, but rather the local geometry of the lattice in the region, we cut a thin strip of the lattice that
contains the localized states of self stress but does not include the bulk of the lattice. As shown infigure 5(b), the
linear response of the thin strip still contains the localized states of self stress, despite the fact that it is cut from
the lattice bulk.

For comparison, we take the deformed kagome lattice shown in figure 3(c) that has nonzero RT and a
domainwall of 0, and cut a thin strip containing this domainwall out of the lattice bulk.We then test the
linear response of the thin strip alone, which is shown infigure 3(d). Interestingly, the states of self stress in the
thin strip disappear when it is cut off from the lattice bulk. This is consistent with the theory of topological

Figure 3.The linear response of lattices when a small strain 10 13 is imposed in the vertical direction to the deformed square
(a), (b) and deformed kagome (c), (d) lattices. Springs are colored according to the values of their tension (legend on the right). (a) and
(c) show lattices with intact bulk domains. (c) and (d) Show lattices with small cracks of pre-removed bonds (highlighted blue on their
boundaries) in bulk domains. In all cases, stress focuses on self-stress domainwalls.Wemark RT for the bulk of the lattice domains
and the sign of for domainwalls above each lattice.
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Figure 4. Snapshots of deformed square (a) and deformed kagome (b) lattices that are in the process of fracturing. Broken springs that
have been removed from the lattices aremarked in green. The broken springs are localized near the self-stress domainwalls with

0n < .

Figure 5.Comparison between localized states of self stress that are non-topological and topological. (a)Anon-topological lattice
(R 0T = in all domains) that exhibits localized states of self stress. The lattice contains three domains of twisted kagome lattices of
alternating twisting directionswith twodomainwalls. Any sub region of this latticemust have N NSS 0= . (b)A thin layer of lattice that
is cut out of lattice (a) to isolate the states of self stress, showing that the localized states of self stress in lattice (a) is not a result of
phonon band topology. Because N NSS 0= in this strip, theremust be corresponding localized floppymodes. One example of such
floppymodes is shown by arrows in (a). (c)A topological deformed kagome lattice (R 0T ¹ )which has a domainwall of 0n < and
localized states of self stress that are protected by the bulk phonon band topology. (d)The thin strip that contains the state of self stress
domainwall is cut off from the lattice in (c).Without the bulk, the state of self stress is no longer present in the cut off strip.

7
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mechanics that the topologically protected states of self stress comes from the bulk phonon band topology, and
when the domainwall is isolated out the exponentially localized states of self stress no longer exist. A similar
demonstration forfinite-frequency edge states has been shown in [6] in a gyroscopic system.

Next, we test the effect of embeddingmultiple domainwalls in the lattices. Topologically protected states of
self stress are characterized by their decay rateκ as we discussed in section 2.Onlywhen the bulk domain depth is
greater than 1/κ, the state of self stress is well defined to be exponentially localized. Therefore, two domainwalls
that are separated by a distanceΔw?2/κ can be treated as independent. This allows us to designNDWdomain
walls that are independent to each other in a single lattice provided that the lattice depth w N wDW .

The advantages of designingmechanicalmetamaterials withmultiple self-stress domainwalls are the
following. First, the self-stress domainwalls ‘attract’ stress and protect regions in between. This is shown in
figures 6(a)–(c)wherewe compare a lattice withmultiple self-stress domainwalls and a deformed kagome lattice
with the same type of unit cell geometry but only one domain. Under the same vertical tension, the lattice with
domainwalls only have high stress at the domainwalls and the regions in between bear very low stress, whereas
the one-domain lattice is homogeneously stressed. Infigure 6(c)we showquantitatively the bond force
comparison between the two lattices. Second, by controlling the density of these domainwalls we can also
control the elasticmodulus, E NDW, under the condition that domainwalls are independent, as shown in
equation (11) and infigure 6(d). Third, because the exponentially localized states of self stress are topologically
protected, as we discussed above, they continue to attract stress deep into the fracturing process, leading to a
gradual failure, in contrast to catastrophic failure in conventional brittlematerials (figure 7). Videos of our
simulations of the fracturing process ofMaxwell lattices with one ormultiple domainwalls, as well as brittle
failure of the regular kagome lattice are included in the supplementarymaterials is available online at stacks.iop.
org/NJP/20/063034/mmedia.

Figure 6. (a)Adeformed kagome latticewith domains of RT pointing to left and right in alternating order, creating self-stress and
floppy-mode domainwalls. (b)Adeformed kagome lattice of homogeneous geometry and RT pointing to the left with no domain
walls. In (a) and (b) the lattices are stretched in the vertical directionwith the same force, and the bonds are colored according to
tension they carry (legend at the right of (b)). (c)Bond forces in the lattices in (a) and (b). At each horizontal (x)position, we check all
bonds that cross this horizontal coordinate and plot the tension of themost stretched bond.Under the same external load, bond forces
aremuch lower in the bulk of the deformed kagome lattice with domainwalls. (d)The elasticmodulus E against uniaxial stretching in
the vertical direction of lattices as shown in (a) as a function of the number of domainwallsNDW.
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5. Conclusion

To summarize, we investigated howMaxwell lattices with domainwalls hosting topologically protected states of
self stress and floppymodes fracture under applied stress.Wefind that bond breaking events concentrate near
self-stress domainwalls, providing protection to the lattice bulk, even deep into the failure process.

Our results open the door to the design of high strengthmechanicalmetamaterials based on topological
mechanics. By controlling the line density of the domainwalls, we can control both the elasticmoduli and the
fracturing process of the structure.We show that in the presence of self-stress domainwalls, the bulk of the
lattice is protected from fracturing, evenwhen small cracks exist in the bulk. This is a useful property that can be
used in structures where perfect periodicity in the bulk needs to be protected for functions, such as wave-
manipulating acousticmetamaterials.
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Appendix

In this appendix, we show the derivation of equation (11) for the spring tensions t in the bulk of the lattice. It has
been shown in themain text that t must be a superposition of states of self stress in the bulk, i.e.

t sa , A.1
i

i i ( )

Figure 7. (a)The stress–strain curve for a deformed kagome latticewithmultiple self-stress domainwalls during the fracturing
process. The initial point (i), peak point (ii), and one of the valley points (iii) aremarked on the curve, with snapshots of the system at
these points shown. Bonds are colored according to the tension they bear (legend of tension scale at the lower right panel). In (iii),
broken springs that are removed from the lattice is colored yellow.
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where si{ } is the complete orthonormal basis of the null space ofQV. Using t eK we canwrite down the
explicit expression for the coefficients ai as

s t s ea K , A.2i i i· · ( )
r t r eK0 , A.3i i· · ( )

where ri{ }are the set of eigenvectors for nonzero eigenvalues ofmatrixQV.We then plug in equation (9) in the
main text to rewrite e using uV and u V , i.e.

s u ua K C C , A.4i i V V V V· ( ) ( )
r u uK C C0 . A.5i V V V V· ( ) ( )

This can be simplified by decomposing the spring constantmatrixK into the null space and the orthogonal
complement space ofQV into

K
K K
K K

, A.6rr rs

sr ss
⎜ ⎟⎛
⎝

⎞
⎠ ( )

where r rK Krr ij i j( ) · , r sK K Krs ij sr ji i j( ) ( ) · and s sK Kss ij i j( ) · . Note thatKrr is invertible because its
eigenvalues are nonzero.We then simplify our expression by denoting aiwith a vector a such that a ai i( ) , and
have the equations for the linear coefficients as

a u uK P C K P K P C , A.7sr r V V sr r ss s V V( ) ( )
u uK P C K P K P C0 , A.8rr r V V rr r rs s V V( ) ( )

wherePs is the projection operator from the original bond label space into the states-of-self-stress space (null
space ofQV), andPr is the projection operator from the original bond label space into the orthogonal
complement space.We have also used the property that sC 0V i for all states of self stress i.

From equation (A.8), we obtain

u uP C K K P K P C . A.9r V V rr rr r rs s V V
1( ) ( )

Finally, by plugging this relation into equation (A.7), we obtain our linear coefficients

a uK K K P K P K P K P C , A.10sr rr rr r rs s sr r ss s V V
1[ ( ) ] ( )

which can be further simplified as

a uK P C , A.11ss s V V
1( ) ( )

using amatrix identity that K K K K Kss ss sr rr rs
1 1( ) ( ) . Putting the coefficient back into equation (A.1), we

arrive at equation (11) in themain text.
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