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ABSTRACT
The ever growing amount of educational content renders it in-
creasingly difficult to manually generate sufficient practice or
quiz questions to accompany it. This paper introduces QG-Net,
a recurrent neural network-based model specifically designed
for automatically generating quiz questions from educational
content such as textbooks. QG-Net, when trained on a publicly
available, general-purpose question/answer dataset and with-
out further fine-tuning, is capable of generating high quality
questions from textbooks, where the content is significantly
different from the training data. Indeed, QG-Net outperforms
state-of-the-art neural network-based and rules-based systems
for question generation, both when evaluated using standard
benchmark datasets and when using human evaluators. QG-
Net also scales favorably to applications with large amounts
of educational content, since its performance improves with
the amount of training data.

INTRODUCTION
Quiz questions remain one of the most important pedagogical
tools for learning. Indeed, studies conducted over the last
several decades in both traditional educational settings such
as classrooms, and large-scale, web-based settings such as
massive open online courses (MOOCs) have found that pro-
viding students with frequent and ample quiz questions leads
to better learning outcomes than spending an equal amount of
time studying notes or textbooks [6,15,17–19]. Unfortunately,
manually producing such quiz questions is time-consuming
because of the extensive effort required of human domain ex-
perts. This approach does not scale to the current educational
landscape, where an unprecedented growth of educational
content (e.g., textbooks, blog posts, lecture notes, magazines,
research papers) outpaces the production of questions that
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Context: A healthy person in a family in which some members suffer
from a recessive genetic disorder may want to know if he or she has
the disease-causing gene and what risk exists of passing the disorder
on to his or her offspring. Of course, doing a test cross in humans is
unethical and impractical. Instead, geneticists use pedigree analysis
to study the inheritance pattern of human genetic diseases.

QG-Net: What is unethical in humans?
QG-Net: What do geneticists use to study the inheritance pattern of
human genetic diseases?

Table 1. An example of using QG-Net for question generation. In
this example, the context is a paragraph from OpenStax’s Biology text-
book [27]. The task is to generate questions that are relevant to the
context and answer, which are the colored and underlined parts of the
context.

accompany them. Therefore, there is a pressing need to find
ways to automate the question generation process.

In this work, we study the problem of automatic quiz question
generation from educational content. We focus on the setting
of generating factual questions from a source context, such
as a sentence or a paragraph in a textbook, and a desired an-
swer, which is part of the source context. Table 1 provides
an example of the question generation setting that we con-
sider in our study. Factual questions are an important part
of assessments, because they assess learners’ comprehensive
storage of declarative or factual knowledge, which is essential
for learning [10]. Moreover, they put learners through the
process of stimulating recall, leading to improved knowledge
retention [13, 16, 32]. Thus, factual questions are of substan-
tial value in facilitating learning and improving retention of
learned material. Extensions that can generate more advanced
questions, such as those involving logical induction or infer-
ence, are left for future work.

Within the framework of the problem formulation above, we
aim at addressing two major challenges in automatic quiz
question generation from educational content. The first ma-
jor challenge is that the generated questions need to be both
fluent and relevant to be useful for educational applications.
Fluency requires the model to generate questions that are free
of grammatical errors and, ideally, similar to those that hu-
man domain experts would generate. This property is crucial
to automated question generation since questions that do not
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Figure 1. Heatmap showing the similarity between the SQuAD [30], a
general purpose dataset, and three OpenStax (OS) textbooks [27] used
in our experiments. Darker color indicates higher similarity between
the corresponding word frequencies of two text corpora. We see that
general-purpose text corpora are very similar, but are significantly dif-
ferent from educational content.

satisfy this requirement can easily mislead and frustrate learn-
ers, significantly reducing their pedagogical value. Relevance
requires the model to generate questions tailored to specific
educational content, i.e., questions that are closely related to
the input context and the desired answers. Table 1 shows two
different questions that are generated from the same input con-
text but with different answers. This property is also crucial to
automated question generation, since it enables the model to
generate diverse questions, which can be used as personalized
quiz questions that tailor to the knowledge weakness of each
individual learner. Generating questions that are both fluent
and relevant is difficult, in general, and has been a major topic
of ongoing research [11, 40].

The second major challenge is that there is very limited train-
ing data in educational applications. Training effective ques-
tion generation models typically requires both the input con-
texts and their associated questions. Unfortunately, despite
the rapid growth in the amount of educational content, the
number of quiz questions that accompany them is insufficient,
especially for new content formats like research papers and
blog posts. It is thus difficult to train question generation mod-
els that achieve fluency and relevance by solely relying on
quiz questions in educational settings. However, there exist
massive datasets for general-purpose question generation [30].
Although they are not tailored to educational settings, they
contain abundant information on how questions should be
asked and answered. Therefore, it is interesting to see whether
we can reap the power of these massive datasets to improve
both question fluency and relevance for question generation in
educational settings.

Contributions
We introduce QG-Net, a data-driven question generation
model that is particularly suited for the purpose of generat-
ing quiz questions on educational content. QG-Net follows
the common reader-generator framework [35] but uses sev-
eral key innovations to ensure the fluency and relevance of

the generated questions. First, for the context reader model,
we explicitly encode the answer information as an additional
input, following [38–40]. This additional information encour-
ages the reader to pay attention to specific parts of the input
context, enabling the generator to generate different questions
for different answers in the same input context. Second, for the
question generator model, we incorporate the pointer network
that was originally developed for text summarization [34].
This model design enables the generator to output questions
that are able to focus on specific parts of the input text. We
show that these aspects of QG-Net significantly improve the
fluency and relevance of the generated questions, using a series
of experiments on standard benchmark tasks.

More importantly, we provide the first demonstration of the
effectiveness of adapting models trained on general-purpose
question generation datasets to educational settings, thus re-
solving the problem of insufficient training data in these
settings. Specifically, we show that QG-Net, trained on
SQuAD [30], a massive, publicly available, general-purpose
benchmark dataset, can be successfully adapted to OpenStax
textbooks [27], generating superior questions than existing
RNN-based and rules-based models. The adaptability of QG-
Net enables the automatic generation of questions in a broad
range of educational domains. We also show that compared to
other models, QG-Net scales better with the amount of train-
ing data, since it yields higher quality questions when more
training data becomes available.

These promising results show that using QG-Net for automated
question generation serves as a high-quality and inexpensive
alternative to traditional, labor-intensive question generation.
QG-Net is ideally suited for large-scale educational settings,
where there is an abundance of educational content but a short-
age of corresponding quiz questions.

Background and Related Work
Existing question generation models usually represent the
input context and output question as sequences of words, in-
cluding punctuation marks. These models consist of a context
reader that reads the input context and a question generator
that outputs the question word-by-word. For example, the
input context in Table 1 contains 75words, and the output
questions from QG-Net contain 7 and 14 words. In other
words, these models treat question generation as a sequence to
sequence learning problem: the reader sequentially processes
the input text, from the first word to the last, while the gen-
erator outputs one word at a time, until the entire question
sentence is generated.

A large body of prior work on question generation relies on
extensive feature engineering by parsing the input text and
hand-crafting templates or linguistic rules [1, 11, 23, 37]. For
example, [11] uses a parser and a set of pre-defined heuristics
to generate a large number of questions, and train a ranker
with a small, dedicated dataset to select the best one. Due to
the meticulously crafted heuristics, these rules-based models
perform reasonably well when the language of the input text
is well structured. However, when the input context exhibits
subtle or complex linguistic features that the hand-crafted



Figure 2. QG-Net model Architecture (best viewed in color).

features overlook, these rules-based models fail to generate
satisfactory questions.

Recently, there has been a paradigm shift from rules-based
models to data-driven models such as recurrent neural net-
works (RNNs). Such data-driven models are capable of learn-
ing the structures of input and output texts directly from a
massive amount of training data [35]. These models are easy
to train and have been shown to generate better quality ques-
tions than rules-based models [7, 40]. However, almost all
RNN-based question generation models are designed to gen-
erate questions for machine-related tasks rather than human-
related tasks. Specifically, these models lead to improved
performance on a series of benchmark tasks, such as machine
reading comprehension [7, 39, 40] and machine question an-
swering [8, 36, 38]. As a result, the quality of the questions
themselves is often unsatisfactory, since quality is not the pri-
mary area of concern in these tasks. Thus, these models are
not readily applicable to educational content, since question
fluency and relevance are crucial in human-related tasks.

To the best of our knowledge, there exists no prior work on
adapting the above question generation models to educational
content. One possible reason is that textbooks are written in
very different styles than more general-purpose text corpora.
For example, Figure 1 shows the difference in word patterns
between text from educational content and from a general-
purpose question generation dataset, an indication that they
have very different content. As a result, there is little evidence
to suggest that RNN-based question generation models can be
successfully applied to educational content.

THE QG-NET MODEL
We now formulate the question generation problem and detail
the QG-Net model. We first lay out the notation that we will

use throughout the rest of the paper. Let Ci = {ci j}
LC

i
j=1 be the

ith input context sequence (e.g., a paragraph from a textbook)

that contains LC
i words, and Ai = {aik}

LA
i

k=1 be the length LA
i

answer sequence associated with Ci. Similarly, Qi = {qit}
LQ

i
t=1

denotes the output question sequence of length LQ
i that cor-

responds to the ith input context sequence Ci and answer se-
quence Ai. In this work, we assume that the answer sequence
is a continuous segment within the corresponding context; see
Table 1 for an example. This assumption unifies the repre-
sentation of the answer words and other words in the context
by using a binary-valued indicator function as an additional
feature to indicate whether a word belongs to the answer; an
extension to explore the possibility of external answers is left
for future work. We make use of continuous word represen-
tations and represent words as vectors using GloVe [26], an
embedding that maps every word into a d-dimensional vector.
This vector representation encodes syntactic and semantic re-
lations among words by pre-training on web-scale data [29].
Therefore, the words ci j, aik, qit in the context, answer, and
question are all encoded as d-dimensional vectors. In this
work, we set d = 300. We drop the index i in the discussion
below, unless there is ambiguity.

Problem Formulation
QG-Net generates questions by iteratively sampling question
words qt ∈V Q from the probability distribution

P(Q|C,A,θ) =
LQ

∏
t=1

P
(
qt |C,A,{qτ}t−1

τ=1,θ
)
, (1)

where θ denotes the set of parameters.

QG-Net calculates this probability distribution in two steps.
First, a context reader processes each word c j in the input
context and turns it into a fix-sized representation h j ∈Rn, j =
1, . . . ,LC. Next, a question generator generates the question
text word-by-word, i.e., one word qt at each time step t =



1, . . . ,LQ, given all context word representations
(
{h j}LC

j=1

)
and all question words in previous time steps

(
{qτ}t−1

τ=1

)
.

Context Reader
The context reader is a bi-directional long short-term memory
(bi-LSTM) network [33], an RNNs that is more effective at
preserving information from further past in sequential learning
tasks. Bi-LSTM processes the input context words sequence
in both the forward and backward directions. In each direction,
the bi-LSTM iteratively maps i) the jth word vector in the
input context and ii) the previous hidden state in this direction
into the current ( jth) hidden state:

−→
h j =

−−−−−−→
bi-LSTM(c̃ j,

−→
h j−1),

←−
h j =

←−−−−−−
bi-LSTM(c̃ j,

←−
h j+1),

where
−→
h j and

←−
h j are the hidden states corresponding to the

forward and the backward directions, respectively. The aggre-
gated hidden state of the jth word in the input context is the

concatenation of these two hidden states: h j =
[−→

h T
j ,
←−
h T

j

]T
.

We refer the readers to [14] for details on LSTM networks. c̃ j
is the augmented input word vector corresponding to the jth
word, which we detail next.

Encoding the answer into context word vectors
When given different parts of the same input context as an-
swers, QG-Net needs to generate different questions that focus
on the relevant contextual information that different answers
provide; see Table 1 for an example. To achieve this, QG-
Net encodes the kth word in the answer sequence ak into a
2-dimensional vector as additional features ANS to the word
vectors in the input context, which are given by:

ANS j =

{
[1,0]T , if ak = c j+k ∀ k ∈ [0,LA],

[0,1]T , otherwise.
(2)

In a similar manner, we encode three additional linguistic
features of each word in the input context, including part of
speech tag POS, name entity NER, and word case CAS. We
use the Stanford natural language processing toolkit [25] to
for the POS and NER tags. Each of these features captures
additional linguistic information and thus complements the
GloVe word vectors. We concatenate these feature encodings
with the original GloVe word vectors c j to form the new word
vectors c̃ j that serve as input to the bi-LSTM context reader:

c̃ j =
[
c j,ANST

j ,POST
j ,NERT

j ,CAST
j
]T ∈ Rd+d′ , (3)

where d′ denotes the aggregated dimension of the additional
features. We found that these additional features are a criti-
cal piece of side information for QG-Net to generate diverse
questions from the same input context.

Question Generator
The question generator generates a question word-by-word,
from time step t = 1 to t = LQ, where LQ is the length of the
question that we have defined previously. At each time step t,
the question generator generates a question word through the
following two internal calculations.

First, a uni-directional LSTM network recurrently maps the
current (tth) question word into a fix-sized vector, which is the
tth hidden state of the network:

st = LSTM(yt ,st−1),

where st ∈ Rn is the hidden state associated with the tth word
in the question. Second, a softmax function [9] calculates a
probability distribution over all words from a fixed question
vocabulary |V Q|:

et = σ(Ws[sT
t ,c
∗T
t ]T +bs),

P1(qt) = softmax(WeeT
t +be),

(4)

where et is an intermediate variable, σ is the sigmoid func-
tion [9], and Ws, bs, We, be are model parameters. The vector
c∗t ∈ Rn is the context vector, which is the weighted sum of
the input hidden states H = [h1, ...,hLC ]:

c∗t = Hat ,

where at ∈ RLC
is the attention weight vector calculated by the

attention mechanism [2] as

at = softmax(HTWhst), (5)

where Wh ∈ Rn×n is part of the model parameters. From the
probability distribution in (4), the generator samples a word
qt ∈V Q at time step t of the generation process, thus deciding
the next word in the output question.

Incorporating pointer networks to improve question relevance
Since a good question should be closely related to the context
(e.g., by using words directly from the input context), we
impose the pointer network [34] on the generator’s vocabulary.
Specifically, the pointer network calculates the output word
probabilities as a mixture of two probabilities, one over the
question vocabulary |V Q| and the other over the input context
vocabulary |VC

i |, i.e., the set of unique words in the input
context

P(qt) = P(zt = 0)P(qt |zt = 0)+P(zt = 1)P(qt |zt = 1).

In the equation above, zt is a binary-valued variable that
switches between generating a word from the question vo-
cabulary and from the input context vocabulary

zt =

{
0 if qt ∈ |V Q|,
1 if qt ∈ |VC

i |.

The question word qt is now drawn from the extended vocabu-
lary V Q∪VC

i , i.e., the union of the question vocabulary and the
vocabulary of the ith input context. Therefore, the probability
of generating a word in the question vocabulary is given by (4)
as P(qt |zt = 0) = P1(qt). The probability of generating a word
in the input context vocabulary is parameterized by the weight
vectors as P(qt |zt = 1) = ∑l:ql=cl

alt . The mixing probability,
i.e., P(zit = 1), is calculated from the hidden states st as

P(zt = 1) = σ(Wzst +bz),

where wz ∈ Rn,bz ∈ R are model parameters.



EXPERIMENTS
In this section, we showcase the efficacy of QG-Net through
both quantitative and qualitative experiments. We first quanti-
tatively compare QG-Net with several baselines on standard
benchmark tasks using a publicly available dataset. We then
qualitatively validate QG-Net’s adaptivity to educational set-
tings by showing examples of questions that it generates using
several textbooks from a wide range of domains.

Quantitative Evaluation
Since educational content does not follow QG-Net’s input
format (there is no specified context associated with each ques-
tion), we can only quantitatively evaluate our model by com-
paring it against baselines using publicly available, general-
purpose datasets.

Experiment setup
We train QG-Net on SQuAD, the Stanford Question Answer-
ing Dataset [30]. SQuAD contains more than 100k data in-
stances, each of which consists of a short paragraph taken
from a Wikipedia article, an answer which is a span of text
from the paragraph, and a human generated question based
on the paragraph and the answer. We treat the paragraph as
the input context to the model and the question as output, thus
effectively turning SQuAD into a training dataset for ques-
tion generation. The dataset explicitly provides us with the
indices of the first and last words in the answer. This infor-
mation makes it straightforward to encode the answer into the
corresponding context word vectors.

We truncate each paragraph to only the single sentence that
contains the answer and use this sentence as the context during
training.1

The SQuAD dataset consists of a training set, a validation set,
and a test set. They all have the same format. Since the test
data is hidden and cannot be accessed, we split the validation
set into two halves, and use one half for validation and the
other half for test set. During training, we aim to minimize
the difference between the generated question and the true
question in the training set. We quantify this difference using
the negative log likelihood

L(θ) =−logP(Q|C,A,θ)

=−
LQ

∑
t=1

logP(qt |C,A,{qiτ}t−1
τ=0,θ).

(6)

Since this loss function is differentiable everywhere, we use
the standard back-propagation through time (BPTT) with the
mini-batch stochastic gradient descent algorithm to learn the
model parameters. We employ teacher forcing (i.e., the ques-
tion generator takes as input the words in the questions in the
training set during training), the standard procedure for train-
ing LSTMs. During testing, at each time step, the question
generator takes its own generated word from the previous time
step as input. To generate the best question, we use beam
search, a greedy yet effective approximation to exhaustive
1We have also experimented with varying the number of sentences
in the input context, and found that the performance is robust to the
number of sentences in the input context.

Models Metrics

BLEU-4 METEOR ROUGE-L

Over-generate & Rank [12] 0.1120 0.1702 0.2792
LSTM 0.0231 0.0796 0.2703
LSTM + linguistic features 0.0393 0.0972 0.3129
LSTM + attention [7] 0.0658 0.1150 0.3161
LSTM + attention 0.1086 0.1555 0.3988

+ linguistic features

QG-Net without linguistic features 0.0723 0.1249 0.3368
QG-Net (our full model) 0.1386 0.1838 0.4437

Table 2. A comparison between QG-Net and several baselines on the
SQuAD dataset; results show that it outperforms every baseline across
all metrics.

search, to select the top 25 possible candidate output question
sentences. We then choose the one with the lowest negative
log likelihood as the final output question. See [9] and ref-
erences therein for details regarding the training and testing
techniques.2

Baselines
We compare QG-Net with the following baselines: Over-
generate & Rank [12], a rules-based system that achieves
comparable performance to neural network-based models, as
reported by [7, 40], LSTM, the basic LSTM model, LSTM
+ features, the basic LSTM model with the same linguistic
features that we use in our model as additional input, LSTM +
attention [7], the most recent, state-of-the-art question neural
network-based question generation model using the attention
mechanism, LSTM + attention + linguistic features, the
model in [7] augmented with the same linguistic features that
we use in our model, and QG-Net without features, QG-Net
with the linguistic features removed.

Evaluation metrics
Automatically evaluating question generation models is a dif-
ficult task, because there are no metrics designed specifically
to measure the quality of questions. Therefore, we adopt
BLEU [28] and METEOR [21] from machine translation, and
ROUGE-L [22] in text summarization as evaluation metrics for
question generation, following [7] and [40]. These metrics are
calculated by comparing the machine generated question with
a human generated reference question from the same input.
We refer readers to [21, 22, 28] for details on these metrics.3
All metric scores take a value in [0,1]; higher values indicate
higher quality questions. These metrics serve as an initial,
inexpensive, large-scale comparison between our model and
several other baselines, and can reveal insights into the fluency
and relevance of questions generated by each model.

Results and discussion
Table 2 summarizes the comparisons between QG-Net and
the baselines on SQuAD test set. We see that QG-Net out-
performs all of the baselines on all of the metrics, sometimes
significantly so. The results in Table 2 validate the effective-
ness of our task-specific modifications to the existing neural
2QG-Net code at https://github.com/moonlightlane/QG-Net
3The BLEU score counts the co-occurrences of sub-sequences of
length N between machine and human generated questions, where
N = 1,2,3,4 [4]; we report only BLEU-4 for simplicity of exposition.

https://github.com/moonlightlane/QG-Net


Context In 2012, the Economist Intelligence Unit ranked Warsaw as the 32th most liveable city in the world.

Reference Question When was Warsaw ranked as the 32nd most liveable city in the world?

% Training data used 10% 40% 100%

Over-generate & Rank When did the Economist Intelligence
Unit rank Warsaw as the 32nd most live-
able city in the world in?

When did the Economist Intelligence
Unit rank Warsaw as the 32nd most live-
able city in the world in?

When did the Economist Intelligence
Unit rank Warsaw as the 32nd most live-
able city in the world in?

LSTM + attention + linguis-
tic features

What is the name of the city in the
world?

In what year did the CIA conduct War-
saw?

In what year was Warsaw ranked as the
fifth most liveable city in the world?

QG-Net When was the Economist Intelligence
ranked?

When was the Economist Intelligence
Unit ranked?

When was Warsaw ranked as the 32nd
most liveable city in the world?

Table 3. Examples of questions generated by models trained on varying amounts of training data. The input context and reference question are from
the SQuAD test set. Answer words are colored and underlined. Over-generate & Rank generates the same questions regardless of the amount of data
it is trained on. QG-Net generates higher quality questions than both the rules-based model (Over-generate & Rank) and the neural-network based
model (LSTM + attention + linguistic features). The input context comes from the SQuAD test set.

network-based models, namely, adding linguistic features and
incorporating vocabulary from the input context. For exam-
ple, we observe that incorporating additional linguistic fea-
tures into the input significantly improves the performance of
RNN-based models; therefore, these linguistic features con-
tain important side information that is key to generating high-
quality questions. We also observe that QG-Net outperforms
the LSTM + attention + linguistic features baseline, showing
that the ability to copy words into generated questions offers
further performance gain.

Scalability with training data
We now show that the performance of QG-Net improves when
more training data becomes available. We adopt the same
setup from the previous experiment, except that we now vary
the amount of training data by training QG-Net on 10%, 40%,
70% and 100% of the SQuAD training set.

Figure 3 plots the ROUGE-L score of our model compared to
the Over-generate & Rank and LSTM + attention + linguistic
features baselines. These results show that the performance
of the neural network-based models increases significantly
with more training data, while that of the rules-based system
baseline does not. We also observe that QG-Net outperforms
the LSTM + attention + linguistic features baseline, and sig-
nificantly so when the amount of training data is very low,
demonstrating its outstanding robustness.

To further illustrate the quality of the questions these models
generate using different amounts of training data, we show
examples of generated questions in Table 3. The table shows
that the rules-based baseline generates the same question, re-
gardless of the amount of training data. While both neural
network-based models generate higher quality questions with
more training data, the LSTM + attention + linguistic features
baseline fails to fully leverage the context (generating “fifth”
instead of “32nd” in its output), even with full training data.
This observation shows that the LSTM + attention + linguistic
features baseline can only improve its mastery of linguistic
structure of questions but not its ability to focus on the context
as the amount of training data increases. On the contrary, QG-
Net quickly learns to focus on answer-relevant information
and is able to generate a meaningful question with full training
data. This result implies that QG-Net is well-suited to big-data

Figure 3. Bar plot comparing the performance of various models trained
on varying amounts of training data in terms of the ROUGE-L score on
the SQuAD test set. QG-Net outperforms both baselines and thus scales
favorably to settings where massive training data is available.

settings, since it can leverage massive training data to improve
the quality of the questions it generates.

Qualitative Evaluation on OpenStax Textbooks
In this section, we show that transferring the QG-Net model
trained on the general-purpose SQuAD dataset to specific sub-
ject domains covered by OpenStax (OS) textbooks can lead
to fluent and relevant questions. In particular, we take our
trained model and apply it to educational content without any
further fine-tuning. For this experiment, we choose three OS
textbooks: Biology, Sociology, and History. Each of these
textbooks covers a different domain, ranging from natural
sciences to social sciences and humanities. Each textbook
provides roughly four questions at the end of each section
but does not provide information on which sentences or para-
graphs may help with the answer. As a result, we evaluate the
generated questions qualitatively by comparing and contrast-
ing questions generated by QG-Net and the baselines.

Data preparation
Since QG-Net requires both contexts and answers as input,
we need to find contexts and the corresponding answer text
segments within these contexts. Therefore, we develop a
procedure to automatically generate a large set of context-
answer pairs. We first split the entire textbooks into chunks



Context (Biology): On each chromosome, there are thousands of genes that are responsible for determining the genotype and phenotype of the individ-
ual. A gene is defined as a sequence of DNA that codes for a functional product. The human haploid genome contains 3 billion base pairs and has
between 20,000 and 25,000 functional genes.

3 billion base pairs between 20,000 and 25,000

QG-Net without linguistic features : How many genes are responsible for
determining the genotpye and phenotype?

QG-Net without linguistic features : How many genes are responsible for
determining the genotpye and phenotype?

QG-Net : How many base pairs are on the human genome? QG-Net : How many functional genes are on the human haploid genome?

Table 4. Example of two generated questions for two different answers with the same input context. The answers are underlined and marked with
different colors in the input context. We see that QG-Net generates distinct questions on the same input text words for different answers. The input
context comes from the OpenStax (OS) Biology textbook.

of contexts containing one to five sentences and then use the
following heuristics to find feasible answers:

• Word(s) that appear in the index of the textbooks are fea-
sible answers. Textbooks usually contain an index with
important terms and phrases in the textbook, which serves
as a reasonable source of answers.

• Words that have special NER tags, including “location”
(e.g., London), “person” (e.g., John Doe), “date” (e.g., June
2018), “number” (e.g., 1 million), and “organization” (e.g.,
Association for Computing Machinery). Words or phrases
with these tags often contain useful factual information, and
can thus be used as possible answers to questions.

Results and discussion
First, we showcase the significant benefit of adding linguistic
features to QG-Net. Table 4 compares a question generated
by QG-Net with one generated by QG-Net without linguistic
features, on a context from OS Biology textbook with two
different answers. Results show that QG-Net is able to gen-
erate dramatically different questions for different answers
using the same input context. The two answers are only a few
words apart and are of the same name entity type “number”.
QG-Net successfully captures the subtle difference between
the relevant information (“base pairs” and “functional genes”)
and generates a relevant question for each answer. On the con-
trary, QG-Net without linguistic features is unable to detect
this subtle difference and generates the same question even
though the answers are different.

Second, we show that questions generated by QG-Net are
more fluent and relevant to input contexts and answers than
those generated by the baselines. Table 5 compares questions
generated by QG-Net and two strong baselines, Over-generate
& Rank and LSTM + attention + linguistic features, using 6
different input contexts. In every case, QG-Net generates a
question that is more fluent and relevant than those generated
by the two baselines.

In terms of fluency, we see that the Over-generate & Rank
baseline struggles with complex linguistic structures in the
input context (e.g., parallel structure in Contexts 3 and 5, and
the presence of semicolon in Contexts 1 and 6), and is unable
to generate coherent question sentence in these cases. The
other baseline, LSTM + attention + linguistic features, tends
to generate grammatically incorrect questions that contain
repeated words or phrases (e.g., the word “race” in the question
generated from Context 3, and the phrase “white nation” in

the question generated from Context 5). On the other hand,
QG-Net is able to generate fluent questions even when the
input context is lengthy and complex (e.g., Contexts 1 and 5).

In terms of relevance, we see that the Over-generate & Rank
baseline often generates questions irrelevant to the answer
(e.g., questions generated from Contexts 3, 5 and 6). LSTM
+ attention + linguistic features baseline generates seemingly
relevant questions, but in a number of cases it makes factual
errors, generating words or phrases that are not relevant to
the input contexts (e.g., the phrase “Kinsey scale” in the ques-
tion generated from Context 3 and the word “deuterium” in
the question generated from Context 4). On the other hand,
QG-Net generates questions that are relevant to all the input
contexts and answers. We note that there are a few cases
where the questions generated by QG-Net and the LSTM +
attention + linguistic features baseline are identical (Context
2) or arguably comparable in terms of fluency and relevance
(Context 6). Overall, however, questions generated by QG-Net
appear to be of higher quality than those generated by the two
baselines.

Human Evaluation on OpenStax Textbooks
To further validate the superior quality of the questions gen-
erated by QG-Net compared to those generated by baselines,
we perform a human evaluation experiment on a number of
questions generated from all three OpenStax textbooks.

Experimental setup
For each textbook, we sample 100 input contexts and their
associated answers. We then generate one question per context-
answer pair using three different models: QG-Net, Over-
generate & Rank, and LSTM + attention + linguistic features.
During evaluation, the human evaluators are presented with
one input context-answer pair at a time, along with questions
generated by each model. To avoid possible biases, we ran-
domly shuffle the presentation order of the three questions
for each input context. The human evaluators are asked to
provide a binary rating (e.g., either true or false) to each of
the three questions on two metrics: whether the question is
fluent (i.e., coherent and grammatically correct) and whether
the question is relevant to the input context-answer pair. As a
final metric (dubbed “preference”), the human evaluators are
asked to select which question(s) could have been generated
by a real human: we allow the evaluators to select more than
one question or none of them. This metric reflects the evalua-
tors’ subjective judgments of how “human-like” the questions
are. We performed the experiments on Amazon Mechanical



Context 1 (Biology): Another example of the link between basic and applied
research is the Human Genome Project, a study in which each human chro-
mosome was analyzed and mapped to determine the precise sequence of DNA
subunits and the exact location of each gene.

Context 2 (Biology): Adenosine triphosphate, or ATP, is the primary energy
currency in cells; ATP stores energy in phosphate ester bonds.

Over-generate & Rank: What is a study? Over-generate & Rank: What is the primary energy currency in cells; atp
stores energy in phosphate ester bonds?

LSTM + attention + linguistic features: What is the study between basic
and applied research?

LSTM + attention + linguistic features: What is the primary energy cur-
rency in cell?

QG-Net: What is the name of the study in which each human chromosome
was analyzed?

QG-Net: What is the primary energy currency in cells?

Context 3 (Sociology): Weber noted that different groups were affected dif-
ferently based on education, race, and gender, and that peoples reactions to
inequality were moderated by class differences and rates of social mobility, as
well as by perceptions about the legitimacy of those in power.

Context 4 (Sociology): In fact, from a structural functionalist perspective,
one of the positive contributions of deviance is that it fosters social change.

Over-generate & Rank: What was education race, and,? Over-generate & Rank: What is one of the positive contributions of deviance
that it fosters in fact?

LSTM + attention + linguistic features: Along with education, race, race
and race, what other groups were affected by the Kinsey scale?

LSTM + attention + linguistic features: What is one of the positive contri-
butions of deuterium?

QG-Net: Along with education and race, what did Weber believe different
groups were affected by?

QG-Net: What is one of the positive contributions of deviance?

Context 5 (History): The 1830 Indian Removal Act and subsequent dis-
placement of the Creek, Choctaw, Chickasaw, Seminole, and Cherokee tribes
of the southeast fulfilled the vision of a white nation and became one of the
identifying characteristics of the age of Jackson.

Context 6 (History): Attendees agreed to a declaration of rights and senti-
ments based on the Declaration of Independence; It declared, we hold these
truths to be self-evident: that all men and women are created equal; that they
are endowed by their creator with certain inalienable rights; that among these
are life, liberty, and the pursuit of happiness.

Over-generate & Rank: What did and subsequent displacement of the Creek,
Choctaw, Chickasaw, Seminole, and Cherokee tribes of the southeast fulfil the
vision of a white nation?

Over-generate & Rank: Was it the first of what became annual meetings that
have continued to the present day?

LSTM + attention + linguistic features: What was the name of the act that
caused a white nation to become a white nation?

LSTM + attention + linguistic features: What document was given to the
declaration of rights and themes?

QG-Net: What act became one of the identifying characteristics of the age of
Jackson?

QG-Net: Attendees agreed to a declaration of rights and sentiments based on
what document?

Table 5. Example of three questions generated by three different models from various input contexts and answers. We see that, in all cases, QG-Net
generates questions that are both fluent and relevant, whereas in most cases, the two baselines fail to do so. The input contexts come from the OS
Biology, Sociology, and History textbooks.

Turk [3] and collected 4 responses for each generated question.
We then calculate, for each question, the statistical mode of
the evaluations for each of the three metrics. This procedure
enables us to resolve disagreements among raters and results
in a single label for each metric.

Results and discussion
Figure 4 summarizes the human evaluation results in 3 sep-
arate bar plots for the OS Biology, Sociology, and History
textbooks. In all three plots, we count the number of questions
in which the majority of raters gave a positive evaluation for
each of the three question generation models. In all cases,
QG-Net (often significantly) outperforms the two baselines
on all three evaluation metrics. We evaluate the statistical
significance of these results using a binomial test, and find that
the degree to which QG-Net outperforms the two baselines
is statistically significant well beyond the p = 0.05 level for
all evaluation metrics except for fluency and relevance for the
History textbook (p = 0.11 and p = 0.5, respectively). We
emphasize that, in the case of evaluating whether the questions
could have been generated by a human, QG-Net significantly
outperforms the two baselines (beyond the p = 0.01 level for
all textbooks). Moreover, in the majority of cases (more than
60 out of 100 questions across all textbook subjects), QG-Net

generates a question that is deemed “human-like” by human
evaluators.

We thus conclude that QG-Net generates questions that are
fluent, relevant, and “human-like” more often than existing
models. These results imply that questions generated by QG-
Net have better applicability in real-world educational settings
than those generated by other baselines.

LIMITATIONS OF QG-NET AND FUTURE WORK
In this section, we discuss two major limitations of QG-Net
and discuss possible future works to address these limitations.

First, although QG-Net generates significantly better questions
than previous models, it is not guaranteed to always gener-
ated good questions, since there exist no effective question
evaluation metrics that can automatically filter out bad ques-
tions. The absence of such metrics means that QG-Net is not
yet ready for large-scale automated deployment in real-world
educational settings, since human experts are still required to
review the generated questions before assigning them to learn-
ers. However, experts’ involvement provides an opportunity
for developing novel and interactive “human-in-the-loop” sys-
tems. Specifically, we can first use QG-Net to generate a large
number of quiz questions at low cost. Then, we can leverage



Figure 4. Bar plots comparing the performance of QG-Net with two strong baselines on three human evaluation metrics. Each bar plot shows results
on one of the OS textbooks. In the majority of cases, QG-Net generates questions that are more fluent, more relevant to the input context and answer,
and are considered as similar to those human would have generated more often than the baselines.

feedback on the quality of the generated questions provided
by either human experts or by testing their pedagogical val-
ues [20, 24] to further improve QG-Net’s capability. These
interactive systems have the potential to improve with increas-
ing usage, which is an ideal fit for large-scale educational
applications.

Second, QG-Net is only capable of generating factual ques-
tions. While factual questions are valuable for learning (see
the Introduction), this constraint limits the depth of the ques-
tions. Several recent works make use of first order logic that
enables model to perform reasoning to some extent [5,31], but
these works do not directly apply to the task of question gener-
ation. A combination of first order logic and neural networks
thus holds promise for generating more advanced questions.

CONCLUSION
We have introduced QG-Net, an RNN-based question genera-
tion model specifically designed for generating quiz questions
from educational content such as textbooks. Our model de-
sign leverages several recent advances in text summarization
and question answering. We have demonstrated the superior
performance of QG-Net over several baselines on a standard
benchmark dataset. More importantly, we have demonstrated
that, after training QG-Net on a general-purpose question gen-
eration dataset, we can adapt it to educational content and
generate fluent and relevant questions, without further fine-
tuning. These promising results suggest that QG-Net has the
potential to automate and scale up the question generation
process for educational settings where a large number of quiz
and practice questions are needed to accompany abundant
educational content.
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