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ABSTRACT

A novel framework and related methodologies are described to
leverage RF power for building intelligent and battery-free devices
with communication and computation capabilities. These passive
devices are envisioned to make significant impact for the popu-
lar vision of smart dust due to extreme low power operation. The
communication framework relies on tag-to-tag backscattering with
very limited energy resources. The computing framework relies
on a novel AC computing methodology that facilitates local data
processing with an order of magnitude less power consumption.
These enabling technologies, as described in this paper, revitalize
the concept of smart dust with significant impact on various ap-
plication domains such as smart spaces, implantable devices, and
environmental/structural monitoring,.
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1 INTRODUCTION

The powerful vision of smart dust, proposed in the late 1990s, con-
sists of tiny mote-like devices that are distributed throughout an
environment and possess critical capabilities such as sensing, com-
putation, and wireless communication [13]. Despite the significant
impact this vision had in the field of wireless sensor networks, the
original anticipated framework has not yet come true since deliv-
ering power to each of these devices has been a primary barrier.
Existing battery technologies are not only highly costly, but also
impractical since it would require hundreds of millions of battery
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Figure 1: RF-powered intelligent tags that can communicate with each
other through backscattering and achieve local computation through effi-
cient AC computing methodology.

changes a day. Furthermore, limited power densities of conven-
tional electrochemical charge storage techniques place stringent
constraints on form factor.

In this paper, tiny tags that are powered by harvesting available
RF energy are introduced, as conceptually illustrated in Fig. 1. RF
power can be provided both from ambient sources such as cellu-
lar, TV or WiFi signals as well as from dedicated wireless power
sources such as RF exciters. Dedicated RF power sources have been
successful in providing the required energy for radio frequency
identification (RFID) and wireless charging applications.

Contrary to traditional approaches that are based on active ra-
dios, the communication among the tags is achieved by backscat-
tering principle where the data are transmitted by reflecting an
incident RF signal while modulating the input impedance of the
tag antenna. The receiving tag decodes the transmitted signal
through passive and low power envelope detection. Furthermore,
the backscattering principle is exploited to monitor the wireless
channel and therefore carry out wireless sensing, where the tags
can detect new object in proximity. This requires energy-efficient
local processing and decision making, which is achieved by the
proposed AC computing methodology. Contrary to conventional
methods that rely on rectifying the harvested AC signal and con-
ventional DC-based computing, in the proposed method, the local
processing core directly uses the harvested AC signal by leveraging
adiabatic circuit theory. Thus, the significant losses related to rectifi-
cation are eliminated and the computing is performed significantly
more efficiently due to adiabatic charging and charge-recycling.
The proposed passive tags have enormous implications both for (a)
near-field (range limited) applications such as brain implantable
devices for neural recording and stimulation and (b) for far-field
applications such as smart spaces.
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The rest of the paper is organized as follows. Related background
material is provided in Section 2. Contributions of this work are
highlighted in Section 3. The proposed tag architecture and critical
components are detailed in Section 4. Several related applications
where the proposed tags can be utilized are discussed in Section 5.
Finally, conclusions are offered in Section 6.

2 BACKGROUND

Conventional RF-powered tags utilize RF power harvesting and
backscatter communication to deliver sufficient functionality to
communicate small amounts of information. Backscattering is based
on modulating an external RF signal incident on the antenna of the
device. The modulation is achieved by modifying the impedance
levels seen by the antenna, thereby changing its reflection coef-
ficient. This requires very small amount of power which, with
appropriate circuits, can be supplied by the external RF signal itself.
Today, the most widely used embodiment of this technology is in
RFIDs [10, 11]. In RFID, the external RF signal is provided via a
relatively higher power embedded computer, possessing an active
radio, referred to as the ‘reader’ The reader also receives and in-
terprets the modulated signal backscattered by the tag. RFID has
long been standardized and is now widely deployed in logistics and
inventory applications to perform identification and tracking [1].
Variations of RFID exist as research platforms such as tags with
sensors [9, 47] and tags with programming/computational ability
(Computational RFID) [32, 47].

Two recent innovations have improved the possibility of ubiqui-
tous deployment of such tags. These include 1) use of ambient RF
signals (e.g., TV or WiFi) to provide the external RF signal and/or
to power the tag [17, 21] and 2) tag-to-tag backscatter communica-
tions [3, 21, 26]. Use of ambient RF signals enables the tags to be
deployed anywhere with no other infrastructure support necessary.
Tag-to-tag backscatter implies that there is no need to have high-
powered reader devices in the neighborhood to read the tag signals;
the tags themselves can read and in turn relay the information
using multihop routing. This enables highly scalable deployment.

3 CONTRIBUTIONS

This work benefits from existing tag-to-tag backscattering princi-
ple, but significantly enhances the basic technique for improved
robustness and range. Furthermore, conventional tags suffer from
lack of sufficient compute ability due to limited available power.
Transmitting large amounts of raw data is not practical due to sig-
nificant power cost and additional latency for the decision making
process. Thus, an AC computing methodology is proposed to en-
hance the energy efficiency by more than an order of magnitude.
Conventional digital logic in these applications typically relies on
ultra-low voltage design with subthreshold operation [19]. Even
though power levels in the range of nanowatts are achieved, an
important limitation of these approaches is significant reduction
in performance (clock frequency in range of several kHz) which
is critical for applications where real-time inference and decision
making are required.
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Figure 2: Proposed tag architecture depicting different mod-
ules.

4 PROPOSED TAG ARCHITECTURE

A high level block diagram of the proposed tag architecture, the
principle building block of an intelligent tag network, is shown in
Fig. 2. The architecture is similar to the traditional RFID tag with
additional functionality and revised communication module opti-
mized for tag-to-tag communication. The tag comprises antenna,
RF energy harvesting and power management modules, modulator
and demodulator for tag-to-tag communication, DC control and
AC computational logic, along with memory and energy storage
element, a supercapacitor, within a small form-factor.

A single frequency RF energy harvesting at 915 MHz or at
2.4 GHz is possible, as well as multi-band RF energy harvesting
with more complex antenna design [5, 18, 38]. The incident RF sig-
nal is divided between sinusoidal power-clock signal required for
the operation of AC logic, a DC supply voltage generated through
AC-DC conversion for operation of DC logic and communication
module, with extra energy being stored. The tags are designed to
operate on a harvest-use-store principle with a supercapacitor as an
energy storage element. Based on the incident RF power, stored en-
ergy and possible actions that can be taken, the logic implemented
in the power management module directs the operation of the
tag. The tag can integrate different ultra-low power stand-alone
sensors. Additionally, the backscatter links themselves provide a
form of sensing ability (sensing of backscatter channel state infor-
mation(BCSI) integrated in demodulator) that can be exploited to
perform network-wide inference. The computational logic, based
on the collected data, is used for extracting information about the
tag’s environment.

4.1 RF Energy Harvester

The RF energy harvesting circuit comprises voltage multiplier that
converts the incident AC signal to DC voltage as well as several
signal conditioning blocks to obtain the required AC signals (power-
clock) for AC computational logic. Different number of stages of
the voltage multiplication can be used to boost the DC voltage.
The energy efficiency, which is the amount of energy transfered
by the voltage multiplier, in the conventional voltage multiplier
is optimized for a certain small range of input powers. While the
tag is listening for or receiving the message from another tag, the
incident power at the antenna input is split between the energy
harvester and the demodulator. In conventional RFID tags, due to
a high modulation index of the received signal, the power ratio is
determined solely by the optimization of the energy harvesting.
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Figure 3: (a) General RFID communication setup, (b)
Backscatter tag-to-tag communication network setup.
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However, in the tag-to-tag link, the low modulation index not only
adds complexity to the design of the demodulator itself, but also
calls for the co-design of the energy harvester and demodulator.
As an example of this optimization strategy, we examined the per-
formance of the demodulator for different ratios of power division
between the demodulator and power harvester. We demonstrated
that there exists optimal power ratio that optimizes the energy
transfer and voltage sensitivity of the demodulator circuit [2].

Design of the energy harvester with high energy efficiency over
a wide input power range presents significant challenge. Structures
like dual-path rectifier have been proposed in the literature [23, 24],
however the range of the input powers over which the efficiency
was optimized is narrow compared to the range of the incident
powers at which the tag should operate. An energy-aware architec-
ture of the energy harvester that will optimize the energy efficiency
over a wide range of the incident power is a potential research
direction.

4.2 Tag-to-Tag Link Design

The focus in the design of the communication module of the pro-
posed tag is to achieve robust and reliable tag-to-tag communication
link across a wide range of incident power. In conventional RFID
reader-tag links, a tag demodulates a signal with a very high mod-
ulation index which greatly increases the robustness of the link, as
illustrated in Fig. 3(a). The backscatter tag-to-tag link is illustrated
in Fig. 3(b). The amplitude of the baseband signal depends on the
input power at both the transmitting and receiving tags, along with
the phase at which the transmitting tag backscatters due to the
relative phase difference between the superimposing excitation and
backscatter signals. The detailed analysis is presented in [14]. The
tag-to-tag link is asymmetric as the tag closer to the RF source,
when it backscatters, produces signal with high modulation index,
while when it is receiving, the modulation index of the received
signal is low due to high input power.
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4.2.1 Modulator Design. The traditional backscatter modula-
tor transmits data by switching between two different terminating
impedances connected to the antenna. In tag-to-tag link, the ampli-
tude of the baseband signal depends on the relationship between
the relative phase difference between the superimposing RF source
excitation signal and the signal backscattered from transmitting
tag, and the phase of the terminating impedance at the transmitter
tag. At specific distances between the tags, there exists a null in
the response at the receiving tag, that is no distinction between
the received signals for both states of the modulator of transmit-
ting tag. We have analyzed this problem in detail and proposed a
transmission scheme in which modulator transmits messages at
two orthogonal transmitter phases [36]. If signal is canceled in one
transmitter phase, the amplitude will be maximum in the other
phase. We implemented the modulator that reflects the incident
signal at a different phase using variable terminating impedance.
This increases the robustness of the link by preventing nulls in the
response at the receiving tag at specific distances between tags [36].

4.2.2  Demodulator Design. The signal reception using passive
envelope detection [7, 16, 30] has been widely explored in the
context of backscatter systems. However, application to tag-to-tag
communication system gives rise to unique challenges. While in
the forward (reader to tag) link of traditional RFID systems, the
incoming signal at the tag has a very large modulation index, in tag-
to-tag link, the Rx tag receives a much weaker backscatter signal
from a Tx tag in the presence of a much stronger external excitation
signal. This means that the modulation index of the incoming signal
is at least an order of magnitude lower.

We use the envelope detector as the input circuit at the interface
with antenna followed by the passive filter to improve signal-to-
noise ratio (SNR), as in the conventional RFID tags [6, 7, 15, 40]. If
there would be preceding RF gain stage, the power consumption
of the tag would exceed 50 yW [4], which is much higher than the
power available to RF energy harvesting tags. The envelope detector
is implemented as voltage doubler. Since we want to resolve small
modulation index, the envelope detector is followed by architecture
comprising an amplifier with integrated band-pass filter followed by
comparator. The integrated high-pass filtering removes the baseline
from the modulated signal. The high-gain amplifier is implemented
as low-noise, low-power folded cascoded amplifier.

The proposed demodulator architecture with voltage doubler
followed by an amplifier with integrated high-pass filtering was
simulated in 45 nm CMOS technology with supply voltage of 1.1 V.
Averaged gain of amplifier is 64 which is enough to detect very
weak signal. To demonstrate how the incoming signal with low
modulation index can be distinguished, the input power to the
tag was held at -28 dBm with ASK modulation and data rate of
10 kbps. At this incident power, we are able to resolve the received
backscatter signal with the modulation index as low as 0.6% [14].
The power consumption of the demodulator is 1.2 yW.

4.2.3  Prototype platform for tag-to-tag communication. We have
fabricated a discrete prototype of RF backscattering tag, shown in
Fig. 4. In the initial prototype, RF power harvesting is not imple-
mented and the tag is powered by a CR 1620 coin cell battery. The
prototype tag includes a single dipole antenna and uses a discrete
component conventional architecture of the modulator and the
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Figure 4: Prototype RF tag with dipole antenna and conven-
tional modulator and demodulator implementation.

demodulator. In the demodulator, a two stage voltage multiplier, im-
plemented using zero bias Schottky diode HSMS-285x series from
Avago Technologies, is used for envelope extraction. To demon-
strate the tag-to-tag link, we have performed experiments with
dedicated RF source providing CW signal at 915 MHz in lab envi-
ronment. We have demonstrated that the maximum communication
distance between tags at the incident power of —20 dBm at both
tags is 3 m and that at the incident power of —15 dBm the range
extends to 7 m.

4.3 Adaptive Power Management

For the operation of a tag in a network of tags, in addition to
the outlined challenges in the circuit design, the management of
the operation of the tag on RF harvested energy and with a low
capacity energy storage element introduces some unique challenges
compared to the energy management of a traditional sensor node.
Sensory nodes incorporate active radios that dominate the power
budget, although significant steps have been made in reducing
their power consumption [4, 8, 12, 27, 31]. The sensor nodes with
energy harvesting have optimized energy-neutral operation that
maximizes their performance with respect to the available energy,
either on node level or application level [22, 25, 29, 33, 37, 39]. The
balance between energy and performance is achieved through a
wide range of adaptive techniques that control parameters like
duty-cycle of the operation, transmit power of active radio and
sensor reliability [20, 35, 41]. Backscatter-based communication in
the proposed tag reduces the energy cost of the communication
by a few orders of magnitude compared to the sensor node with
active radio. This results in a different energy budget distribution
for different modes of operation compared to the conventional
sensor node and calls for different management techniques to be
used in the tag’s implementation.

In a network of tags, the power needed for backscattering at
the Tx tags is small relative to the power needed to demodulate a
signal. The power needed for demodulation again depends on the
modulation index (lower power for higher modulation index) and
is thus variable. The available RF power could be harvested in the
supercapacitor on-tag (Fig. 2) that could be used if instantaneous
power availability is limited for the function at hand (either transmit,
receive or processing). However, due to the small size of the tag, the
supercapacitor capacity is limited. Overall, the above issues lead to
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Figure 5: Adiabatic logic based AC computing approach: (a)
2-phase power-clock generation and signal shapers to elim-
inate negative voltage components, (b) schematic of a PAL
based inverter, (c) chain of PAL logic gates powered with AC
power-clock signals with 180° phase difference.

an interesting power management plus network formation problem.
Depending on the available RF power on a tag (this may depend
on the exciter and tag locations and is different for different tags),
the tag must decide on whether to demodulate a relatively weak
backscatter signal from a neighbor. Due to the inherent redundancy
in the network, the value of this action may not be significant
relative to the needed energy. Thus, the network “links” that are
to be used for communication are not well-defined even in a static
network setting. The weaker links may only be occasionally used
depending on the available RF power on the Rx tag and the value
of using that link, By contrast, stronger links could be used more
frequently as they may be less power constrained. A challenge here
is the development of algorithms and protocols so that the links are
used ‘optimally’ in the sense that the value of using a specific link
for data routing is balanced with the energy budget of its Rx tag.

4.4 On-Site AC Computing

The proposed AC computing methodology enables energy-efficient
data processing unit that can potentially be integrated within the
passive tag [43]. AC computing leverages adiabatic circuit theory
developed in the early 1990s [34, 46]. Extreme low power operation
is achieved by eliminating rectification for logical operation and
recycling charge during computation.

Existing adiabatic logic families should be reinvented for inter-
operability with the RF energy harvester described in Section 4.1.
In this work, pass transistor adiabatic logic (PAL) [28] is used as an
example, as as illustrated in Fig. 5 A PAL gate consists of two NMOS
transistors N1, N2, and a pair of cross-coupled charging/recovering
PMOS transistors P1, P2. The primary advantage of PAL is the abil-
ity to fully recycle charge since the NMOS transistors are connected
to AC power supply. In addition, note that PAL is a two-phase logic
where the AC supply of each consecutive gate is 180° out-of-phase,
as depicted in Fig. 5(c). Thus, when one of the gates is at the “evalu-
ation" phase, the preceding gate is at the “hold" phase, maintaining
the input signals stable for the evaluating gate. Note that the two
inductors within the energy harvester are configured such that the
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Figure 6: Comparison of power consumed by the 8-bit ALU
and SIMON32/64 core, implemented using the proposed AC
computing method and conventional method that relies on
rectification and DC computing.

two harvested AC signals have 180° phase difference. PAL, how-
ever, cannot correctly operate with the harvested AC signal that
has both positive and negative voltage components. To mitigate
this limitation, a low complexity and efficient signal shaper was
developed, as described in [42]. Another approach is to rely on
efficient charge recovery logic based AC computing, as described
in [45].

The feasibility of the proposed approach has been demonstrated
by recent results where the power consumed by a processing block
(that relies on RF power and AC computing) has been reduced by
more than an order of magnitude. Two examples that are imple-
mented with AC computing include an 8-bit arithmetic logic unit
to implement general purpose digital functions and a bit serialized
SIMON?32/64 (32-bit plaintext with a 64-bit key) core for lightweight
encryption [44]. Both blocks operate with the harvested 13.56 MHz
carrier signal, which serves as both the power and clock signal.
Both ALU and SIMON are also implemented with a conventional
approach that relies on rectification and DC computing. The overall
power consumption is compared in Fig. 6 for both blocks. For the
8-bit ALU, the proposed approach achieves up to 16.2X reduction
in power whereas for the SIMON core, power is reduced by up
to 34X and the energy efficiency (kb/sec/yW) is enhanced by 27X.
The larger reduction for the SIMON core is primarily due to the
existence of a large number of registers (required for bit serialized
architecture) where AC computing is highly beneficial due to much
smaller and efficient register implementation.

An important future work for AC computing is the develop-
ment of a system-level energy management methodology. Since
the modulation/demodulation and memory blocks as well as the su-
percapacitor require a DC voltage, the energy management module
should determine how to split the harvested energy into DC and
AC paths, depending upon the incoming data, required data pro-
cessing, and power consumption of each block. Another interesting
direction would be to investigate on-chip AC energy storage meth-
ods such as a flywheel manufactured on-chip by utilizing MEMS
technology. AC energy storage would eliminate rectification loss
when storing energy that would be later used by the data processing
block.

5 APPLICATIONS

5.1 Smart Spaces - Beyond the IoT

The proposed technology will make possible that all objects in
our living-, working-, and traveling-spaces will be tagged with
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miniature passive RF-addressable tags, which can autonomously
communicate and interact among themselves without the need for
a centralized control. These interactions will enable ‘smart spaces’
wherein objects can collaboratively understand the ‘space’ around
them and recognize dynamic activities and events therein. Such
context-aware intelligent physical spaces will enable new levels of
automated human-object interaction and control through efficient
exchange of information and knowledge. The tags in this vision
will be designed for seamless and ubiquitous deployment, with low
cost, and with size and form factor which will allow them to blend
with all objects in our everyday spaces; from furniture to smaller
objects such as clothes, wallets or keys. This vision goes beyond
today’s IoT (Internet of Things), where IoT concept is limited to only
powerful devices - typically possessing an embedded processor and
traditional network communication, such as thermostats, cameras
or light bulbs.

5.2 Floating Implantable Microsystems

The proposed research can be highly beneficial for brain implantable
microsystems. The number of applications for implantable systems
has been growing in the recent years with significant impact on dis-
ease treatment and general healthcare. In the design of implantable
devices, providing wireless power to the device and data communi-
cation link are critical parts of the system design. Power harvesting
and telemetry through inductive coupling present a commonly
used solution. As the bandwidth of the communication link is lim-
ited, raw sensor data need to be processed and compressed before
transmission. Since the power is highly limited, performing these
computational tasks requires extremely efficient computational
techniques. Furthermore, the ability of the multiple implanted de-
vices to communicate via backscattering exhibits significant oppor-
tunities in terms of real-time and closed-loop distributed sensing
and decision making.

5.3 Environmental and Structural Health
Monitoring

Wide deployment of wireless sensor nodes has been limited by the
maintenance cost incurred by the battery replacement. Alterna-
tively, proposed tags require only ambient RF signals to operate
autonomously in these environments. In most of these applications,
the detection of specific events (rather than continuous logging of
sensor data) is critical. Unfortunately, detecting these critical events
by processing raw sensor data increases the computational burden
and therefore the overall energy cost. Proposed tags are able to
carry out most of the processing locally and make decisions cooper-
atively with neighboring tags. We anticipate that the reduction in
the energy cost for both computing and tag-to-tag communication
achieved in this work will enable many of the potential applications
that have been traditionally impeded.

6 CONCLUSIONS

Key enabling technologies have been described to develop RF-
powered passive tags with wireless communication and computa-
tion capabilities. These tags represent the foundation for building
intelligent tag networks, revitalizing the popular vision of smart
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dust. Critical enabling technologies include adaptive power man-
agement for backscatter based tag-to-tag communication and AC
computing for energy-efficient and local decision making. The
proposed framework is highly applicable to smart spaces and en-
vironmental/structural health monitoring where frequent battery
changes are impractical, and brain implantable devices where a
closed-loop system is essential for fast and efficient stimulation.
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