
Report from Dagstuhl Seminar 18061

Evidence About Programmers for Programming Language
Design
Edited by
Andreas Stefik1, Bonita Sharif2, Brad A. Myers3, and
Stefan Hanenberg4

1 Univ. of Nevada – Las Vegas, US, stefika@gmail.com
2 Youngstown State University, US, shbonita@gmail.com
3 Carnegie Mellon University – Pittsburgh, US, bam@cs.cmu.edu
4 Univ. of Duisberg-Essen, DE, stefan.hanenberg@uni-due.de

Abstract
The report documents the program and outcomes of Dagstuhl Seminar 18061 “Evidence About
Programmers for Programming Language Design”. The seminar brought together a diverse group
of researchers from the fields of computer science education, programming languages, software en-
gineering, human-computer interaction, and data science. At the seminar, participants discussed
methods for designing and evaluating programming languages that take the needs of program-
mers directly into account. The seminar included foundational talks to introduce the breadth
of perspectives that were represented among the participants; then, groups formed to develop
research agendas for several subtopics, including novice programmers, cognitive load, language
features, and love of programming languages. The seminar concluded with a discussion of the cur-
rent SIGPLAN artifact evaluation mechanism and the need for evidence standards in empirical
studies of programming languages.

Seminar February 4–9, 2018 – https://www.dagstuhl.de/18061
2012 ACM Subject Classification Software and its engineering → Software notations and

tools, Human-centered computing → HCI design and evaluation methods, Human-centered
computing → Accessibility, Social and professional topics → Computing education

Keywords and phrases programming language design, computer science education, empirical
software engineering, eye tracking, evidence standards

Digital Object Identifier 10.4230/DagRep.8.2.1
Edited in cooperation with Michael Coblenz

1 Executive summary

Michael Coblenz (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Michael Coblenz

Programming languages underlie and have significant impact on software development,
especially in terms of the ability of programmers to achieve their goals. Although designers
of programming languages can already reason about the formal properties of their languages,
few tools are available to assess the impact of design decisions on programmers and software
engineers.

At Dagstuhl Seminar 18061, a diverse set of participants gathered to review the existing
body of evidence about programmers that has implications on programming language design.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Evidence About Programmers for Programming Language Design, Dagstuhl Reports, Vol. 8, Issue 02, pp. 1–25
Editors: Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/18061
https://doi.org/10.4230/DagRep.8.2.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


2 18061 – Evidence About Programmers for Programming Language Design

Participants also reviewed existing research methods, such as eye tracking, that may help
better understand the impact of language design decisions on programmers. Participants
brainstormed a long list of possible research questions for investigation (§4), and then divided
into working groups (§5) to focus on several areas of research interest, including novices,
context switching and cognitive load, language features, emotional attachment to languages,
and representativeness of subjects in studies. In each area, participants proposed research
methods and questions that they felt would be valuable to address in the future. Then, the
group discussed and prioritized these research questions.

The seminar included a discussion of the need for an evidence standard in empirical
studies of programming languages, focusing on content of the evidence standard, adoption
mechanisms, and criteria for what it might include in our field. Finally, the seminar concluded
with a discussion of future directions for research, including a list of research questions that
the participants were planning on collaborating on in the near future.



Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 3

2 Contents

Executive summary
Michael Coblenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Overview of Talks
How do PL Researchers Think? and Evidence about Software Engineers for PL
Design
Jonathan Aldrich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

How does the Programming Language Community Design a Language?
Craig Anslow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Thinking about Programmers with Disabilities
Ameer Armaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Enhancing Compiler Error Messages: What’s been done, what needs doing
Brett A. Becker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Visualizing and Interpreting Multimodal Data
Tanja Blascheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Methodological Considerations
Brian Dorn and Briana B. Morrison . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Don’t Understand Program Comprehension
Johannes C. Hofmeister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

What evidence do we have about programming language design?
Antti-Juhani Kaijanaho and Andrew J. Ko . . . . . . . . . . . . . . . . . . . . . . . 9

Scientists Programming
Amelia A. McNamara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Types of Studies
Brad A. Myers, Jonathan Aldrich, Michael Coblenz, and Joshua Sunshine . . . . . 10

Programming language cultures are relevant
Lutz Prechelt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Eye Tracking in Program Comprehension
Bonita Sharif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Early Experimental Studies of Conditionals in Programming Languages
Walter F. Tichy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Future Research Questions and Studies
Impacts in the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Language features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Novices and learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Cognition and affect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Working groups

18061



4 18061 – Evidence About Programmers for Programming Language Design

Novices: polyglot questions
Johannes Bechberger, Scott Fleming, Briana B. Morrison, Bonita Sharif, Andreas
Stefik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Context Switching and Cognitive Load
Ameer Armaly, Andrew Begel, Tanja Blascheck, John Daughtry, Rob DeLine, Ciera
Jaspan, Philip Merlin Uesbeck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Language features and error-proneness
Jonathan Aldrich, Michael Coblenz, Andrew J. Ko, Thomas LaToza, Sibylle Schupp,
and Walter Tichy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Why do people love programming languages?
Andrew Duchowski, Matthias Hauswirth, Brad A. Myers, Craig Anslow, Brian
Dorn, Lutz Prechelt, and Antti-Juhani Kaijanaho . . . . . . . . . . . . . . . . . . . 21

Representativeness of subjects in studies
Felienne Hermans, Johannes C. Hofmeister, Amelia A. McNamara, Lea Verou . . 22

Open problems
Evidence standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 5

3 Overview of Talks

3.1 How do PL Researchers Think? and Evidence about Software
Engineers for PL Design

Jonathan Aldrich (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Jonathan Aldrich

Joint work of Michael Coblenz, Joshua S. Sunshine, Brad A. Myers

Evidence about programmers is of increasing interest in programming language design, and
my colleagues and I have argued for incorporating this evidence in an interdisciplinary
approach to programming language design [1]. However, PL design is a domain quite different
from other domains in which human behavior has been studied. This talk is an introduction,
aimed at HCI experts and others studying human behavior, to the field of programming
language design. I’ll give an example of programming language design, discuss the goals and
potential impact of language design, and talk about how PL researchers currently think about
language design. I’ll talk about what makes a programming language viable for large-scale
development, and about how ideas from software engineering (which are ultimately derived
from empirical research) could influence improve future language designs. Finally, I’ll suggest
some strategies that empirically-focused researchers can use to maximize their impact on PL
design.

References
1 Michael Coblenz, Jonathan Aldrich, Joshua Sunshine, and Brad Myers. Interdisciplinary

Programming Language Design. Working draft, available at
http://www.cs.cmu.edu/~aldrich/papers/interdisciplinary-pl-design.pdf, February 2018.

3.2 How does the Programming Language Community Design a
Language?

Craig Anslow (Victoria University – Wellington, NZ)

License Creative Commons BY 3.0 Unported license
© Craig Anslow

Designing a programming language is hard. The design process is complicated and different
for each language. In this talk, the results from a study are presented from interviewing
expert programming language designers (n=25) in the SIGPLAN community on how they
designed their languages. The study also asked if they have conducted user experiments on
their language and how they value these types of experiments. Results show that designing
a language is very hard and a complex process; very few have adopted human-centered
design methods or conducted user experiments. However, most language designers felt
that conducting user experiments is of great value but very hard to perform. Encouraging
programming language designers to adopt human-centered design methods and conduct user
experiments will help to improve the usability and effectiveness of their languages.

18061

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.cs.cmu.edu/~aldrich/papers/interdisciplinary-pl-design.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


6 18061 – Evidence About Programmers for Programming Language Design

3.3 Thinking about Programmers with Disabilities
Ameer Armaly (University of Notre Dame, US)

License Creative Commons BY 3.0 Unported license
© Ameer Armaly

Programmers with disabilities face a variety of problems depending on the exact nature
of their disability. Consequently, programmers with disabilities cannot be addressed as a
monolithic group; researchers must instead examine the problems and impacts of individual
disabilities. In this talk, I introduce the different ways disability has been thought of in
society. I then present two research projects relating to programmers who are blind as
examples of the different ways researchers can effectively examine and address the experience
of programmers with disabilities. I also demonstrate in detail the experience of programming
while blind and discuss ideas for future exploration.

3.4 Enhancing Compiler Error Messages: What’s been done, what
needs doing

Brett A. Becker (University College Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Brett A. Becker

Joint work of Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin, Catherine
Mooney

Main reference Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin, Catherine
Mooney: “Effective compiler error message enhancement for novice programming students”,
Computer Science Education, Vol. 26(2-3), pp. 148–175, 2016.

URL http://dx.doi.org/10.1080/08993408.2016.1225464

Programming is an essential skill that all computing students are expected to master. However,
programming can be difficult to learn. Successfully interpreting compiler error messages is
crucial for correcting errors and progressing toward success in learning programming. Yet
these messages are often difficult to understand and pose a barrier to progress for many
novices, with struggling students often exhibiting high frequencies of errors, particularly
repeated errors [2]. The area of compiler error enhancement has seen increased activity
in the last several years, particularly in presenting empirical evidence of effects. This talk
focuses on these recent results. After discussing the importance of compiler error messages
and the problems they present, empirical motivating evidence demonstrating a need for
enhanced compiler error messages is reviewed. Then, recent empirical evidence on enhanced
compiler error messages is discussed, including a debate on the effects and effectiveness of
enhancing compiler error messages. In light of these recent results, the current state of play
is then presented, organized in three areas: metrics and signals; compilers and languages;
and frameworks, guidelines and principles. Finally, directions for research going forward are
discussed.

References
1 Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson Murphy-

Hill and Chris Parnin. Do developers read compiler error messages? Proceedings of the 39th
International Conference on Software Engineering (ICSE 2017), Buenos Aires, Argentina,
May 2017, IEEE Press. DOI: 10.1109/ICSE.2017.59

2 Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin
and Catherine Mooney. Effective compiler error message enhancement for novice

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1080/08993408.2016.1225464
http://dx.doi.org/10.1080/08993408.2016.1225464
http://dx.doi.org/10.1080/08993408.2016.1225464
http://dx.doi.org/10.1080/08993408.2016.1225464


Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 7

programming students. Computer Science Education 26 (2-3), (2016) 148-175. DOI:
10.1080/08993408.2016.1225464

3 Brett A. Becker, Kyle Goslin, and Graham Glanville. The effects of enhanced compiler
error messages on a syntax error debugging test. Proceedings of the 48th ACM Technical
Symposium on Computer Science Education (SIGCSE 2018), Baltimore, Maryland, USA,
February 2018. ACM. DOI: 10.1145/3159450.3159461

4 Brett A. Becker, Cormac Murray, Tianyi Tao, Changheng Song, Robert McCartney
and Kate Sanders. Fix the first, ignore the rest: Dealing with multiple compiler er-
ror messages. Proceedings of the 48th ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE 2018), Baltimore, Maryland, USA, February 2018. ACM. DOI:
10.1145/3159450.3159453

5 Brett A. Becker. An effective approach to enhancing compiler error messages. Proceedings
of the 47th ACM Technical Symposium on Computer Science Education (SIGCSE 2016),
Memphis, Tennessee, USA, March 2016. ACM. DOI: 10.1145/2839509.2844584

6 Brett A. Becker and Catherine Mooney. Categorizing compiler error messages with principal
component analysis. 12th China-Europe International Symposium on Software Engineering
Education, Shenyang, China, May 2016.

7 Brett A. Becker. A new metric to quantify repeated compiler errors for novice pro-
grammers Proceedings of the 21st Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2016), Arequipa, Peru, July 2016. ACM. DOI:
10.1145/2899415.2899463

8 Brett A. Becker. An exploration of the effects of enhanced compiler error messages for com-
puter programming novices. MA Thesis, Dublin Institute of Technology, Dublin, Ireland,
November 2015.

9 Paul Denny, Andrew Luxton-Reilly and Dave Carpenter. Enhancing syntax error messages
appears ineffectual. In Proceedings of the 19th Annual Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE 2014), Arequipa, Peru, July 2014. ACM.
DOI: 10.1145/2591708.2591748

10 Devon Harker. Examining the effects of enhanced compilers on student productivity. MSc
Thesis, University of Northern British Columbia, Prince George, British Columbia, Canada,
2018.

11 Michael J. Lee and Andy J. Ko. Personifying programming tool feedback improves novice
programmers learning. In Proceedings of the 7th International Workshop on Computing
Education Research (ICER 2011), Seattle, Washington, USA, August 2011, ACM. DOI:
10.1145/2016911.2016934

12 Raymond S. Pettit, John Homer and Roger Gee. Do enhanced compiler error messages
help students?: Results inconclusive. Proceedings of the 47th ACM Technical Symposium
on Computer Science Education (SIGCSE 2017), Seattle, Washington, USA, March 2017,
ACM. DOI: 10.1145/3017680.3017768

13 James Prather, Raymond Pettit, Kayla Holcomb McMurray, Alani Peters, John Homer,
Nevan Simone, and Maxine Cohen. On novices’ interaction with compiler error messages:
A human factors approach. Proceedings of the 2017 ACM Conference on International
Computing Education Research (ICER 2017), Tacoma, Washington, USA, August 2018,
ACM. DOI: 10.1145/3105726.3106169

18061



8 18061 – Evidence About Programmers for Programming Language Design

3.5 Visualizing and Interpreting Multimodal Data
Tanja Blascheck (INRIA Saclay – Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Tanja Blascheck

Main reference Tanja Blascheck, Kuno Kurzhals, Michael Raschke, Michael Burch, Daniel Weiskopf, Thomas Ertl:
“Visualization of Eye Tracking Data: A Taxonomy and Survey”, Comput. Graph. Forum,
Vol. 36(8), pp. 260–284, 2017.

URL http://dx.doi.org/10.1111/cgf.13079

In program language design, evaluation plays a crucial role. In recent years, eye tracking
has become one means to analyze how participants perceive and understand a programming
language. Because programming is highly interactive, a study should take interaction into
account as well. In addition, think-aloud data gives insights into cognitive processes of
participants using a programming language. Typically, researchers evaluate these data
sources separately. However, it is beneficial to correlate eye tracking, interaction, and think
aloud data for deeper analyses. I present challenges and possible solutions in triangulating
behavior using multiple evaluation data sources and how these approaches can be used to
analyze programming languages. Overall, the objective of this talk is to provide methods
and techniques that contribute to more holistic evaluation methods that, in turn, leads to an
improved understanding of programming languages. Starting by exploring existing evaluation
methodologies, a description of the state-of-the-art of visualization techniques [5] that are
available for studying eye movement data are provided and it is discussed, to what extent the
existing techniques can be applied. To integrate the use of eye movement data with log files
and think-aloud protocols, three novel visualization techniques are contributed: the Radial
Transition Graph [6], the AOI Sequence Chart [1], the AOI hierarchy approach [2], and a
Visual Coding Approach [3], which embeds Word-sized Eye Tracking Visualizations [4].

References
1 T. Blascheck, M. John, K. Kurzhals, S. Koch, and T. Ertl. VA2: A visual analytics ap-

proach for evaluating visual analytics applications. IEEE Transactions on Visualization and
Computer Graphics, 22(1): 61–70, 2016.

2 T. Blascheck, K. Kurzhals, M. Raschke, S. Strohmaier, D. Weiskopf, and T. Ertl. AOI
hierarchies for visual exploration of fixation sequences. In Proceedings of the Symposium
on Eye Tracking Research & Applications, pages 111–118. ACM, 2016.

3 T. Blascheck, F. Beck, S. Baltes, T. Ertl, and D. Weiskopf. Visual analysis and coding of
data-rich user behavior. In Proceedings of the IEEE Conference on Visual Analytics Science
and Technology, pages 141–150. IEEE Computer Society Press, 2016.

4 F. Beck, T. Blascheck, T. Ertl, and D. Weiskopf. Word-sized eye tracking visualizations. In
Eye Tracking and Visualization, pages 113–128. Springer, 2017.

5 T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl. Visualization
of eye tracking data: A taxonomy and survey. Computer Graphics Forum, 2017.

6 T. Blascheck, M. Schweizer, F. Beck, and T. Ertl. Visual comparison of eye movement
patterns. Computer Graphics Forum, 36(3): 87–97, 2017.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1111/cgf.13079
http://dx.doi.org/10.1111/cgf.13079
http://dx.doi.org/10.1111/cgf.13079
http://dx.doi.org/10.1111/cgf.13079


Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 9

3.6 Methodological Considerations
Brian Dorn (University of Nebraska – Omaha, US) and Briana B. Morrison (University of
Nebraska – Omaha, US)

License Creative Commons BY 3.0 Unported license
© Brian Dorn and Briana B. Morrison

In this talk we review conceptual and practical elements of empirical study design. Multiple
epistemological stances on evidence are introduced, and we frame the work of programming
as activity to be understood holistically using the activity theory framework. We then discuss
specific methods and tools from computer science education and the learning sciences that
may be useful to the programming language design community when designing studies.

3.7 I Don’t Understand Program Comprehension
Johannes C. Hofmeister

License Creative Commons BY 3.0 Unported license
© Johannes C. Hofmeister

How do we understand programs? When we ask this question, it is worthwhile to think about
what comprehension is and how we can make it measurable. If we don’t, we might end up
asking the wrong questions. For example, several studies had asked how syntax highlighting
affects comprehension. But why should recall questions be answered differently depending on
the color of the words? I proposed that highlighting does not affect memory and reasoning,
and instead affects perceptual processes. This idea was demonstrated visually. The talk
showed how psychologists reason about such ideas, by introducing explaining variables,
named constructs.

3.8 What evidence do we have about programming language design?
Antti-Juhani Kaijanaho (University of Jyväskylä, FI) and Andrew J. Ko (University of
Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Antti-Juhani Kaijanaho and Andrew J. Ko

In this talk we present an informal review of the body of evidence about programming
language design. The talk discusses the results of two mapping studies of empirical studies
about programming languages, and a literature review of evidence about the effect of
programming languages on productivity and errors. The talk concludes that we don’t know
very much (there are only about 100 studies evaluating language features), that the number
of studies is accelerating, but very slowly, and that most studies focus on evaluating novel
language features, rather than systematically comparing language features in broad use. The
researchers doing these studies tend to be trained in labs with expertise on running human
subjects experiments.

18061

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


10 18061 – Evidence About Programmers for Programming Language Design

3.9 Scientists Programming
Amelia A. McNamara (Smith College – Northampton, US)

License Creative Commons BY 3.0 Unported license
© Amelia A. McNamara

Main reference Julia S. Stewart Lowndes, Benjamin D. Best, Courtney Scarborough, Jamie C. Afflerbach, Melanie
R. Frazier, Casey C. O’Hara, Ning Jiang, and Benjamin S. Halpern: “Our path to better science in
less time using open data science tools.” Nature Ecology & Evolution, 1, 2017

URL https://doi.org/10.1038/s41559-017-0160

Scientists are an important important sub-category of programmers, because their work
has implications in government policy, medicine and general knowledge. The three main
categories of computer use by scientists are “make models, generate data” “generate data,
make models,” and general application programming. We will not consider the last category
in this talk, as it is the closest to traditional software engineering. Common tools for making
models to generate data are Matlab, Sage, Maple, and Mathematica. Scientists who generate
data (by field collection, experimentation, etc) and make models, often use Excel, Stata,
SPSS, SAS, R or Python. The transition from non-reproducible research to more robust
analysis can be challenging, but the benefits are broad. We consider as a case study a
marine science group who wrote “Our path to better science in less time using open data
science tools” about their movement from Excel to a toolkit including git and GitHub for
collaboration and version control, R in the IDE RStudio for analysis, and RMarkdown for
reproducibility and narrative.

3.10 Types of Studies
Brad A. Myers (Carnegie Mellon University – Pittsburgh, US), Jonathan Aldrich (Carnegie
Mellon University – Pittsburgh, US), Michael Coblenz (Carnegie Mellon University – Pitts-
burgh, US), and Joshua Sunshine (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Brad A. Myers, Jonathan Aldrich, Michael Coblenz, and Joshua Sunshine

Main reference Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, YoungSeok Yoon: “Programmers Are Users
Too: Human-Centered Methods for Improving Programming Tools”, IEEE Computer, Vol. 49(7),
pp. 44–52, 2016.

URL http://dx.doi.org/10.1109/MC.2016.200

Traditional programming language design approaches center around theoretical and perfor-
mance-oriented evaluation. Recently, researchers have been considering more approaches to
language design, including the use of quantitative and qualitative user studies, to evaluate how
different designs affect users. In this talk, we define “design” to encompass both the activities
before and during creation of a system, including needs finding, and the activities involved
in the evaluation after the design has been created. We list desiderata of programming
languages, including software engineering quality attributes such as correctness, performance
of the resulting code, expressiveness, speed of compiling, understandability, ease of reasoning,
modifiability and learnability. We identify the different kinds of people or roles involved,
such as logician, industrialist, empiricist and teacher. Then, we list many different methods
that can be used to help with the design, most of which we have used in our group. These
include: contextual inquiry, interviews, surveys, corpus studies, natural programming, rapid
prototyping, programming language and software engineering theory, qualitative usability
studies, case studies, expert evaluation, performance evaluation, user experiments, and

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1038/s41559-017-0160
https://doi.org/10.1038/s41559-017-0160
https://doi.org/10.1038/s41559-017-0160
https://doi.org/10.1038/s41559-017-0160
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/MC.2016.200
http://dx.doi.org/10.1109/MC.2016.200
http://dx.doi.org/10.1109/MC.2016.200
http://dx.doi.org/10.1109/MC.2016.200


Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 11

formalism and proof. We argue for taking an interdisciplinary approach using mixed methods
to answer questions. Finally, we argue against having unsubstantiated claims, using methods
incorrectly, assuming the conventional wisdom, and inadequate reporting of results.

3.11 Programming language cultures are relevant
Lutz Prechelt (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Lutz Prechelt

Main reference Lutz Prechelt: “Plat_Forms: A Web Development Platform Comparison by an Exploratory
Experiment Searching for Emergent Platform Properties”, IEEE Trans. Software Eng., Vol. 37(1),
pp. 95–108, 2011.

URL http://dx.doi.org/10.1109/TSE.2010.22

We will contrast glimpses of possible cultures (found in self-presentations) of different
programming languages: Haskell vs. C++ vs. Go; PHP vs. Ruby; Perl vs. Python. These
suggest that distinct cultures may exist for at least many languages. Then we discuss two
pieces of actual evidence that such cultures have relevant impact: First, in one experiment
the Java participants all chose either a simple, very inefficient or a super-efficient, but very
cumbersome solution, while the Perl and Python participants chose a third one, based on
HashMaps, that is simple and efficient. Second, in another experiment 4 of 6 Perl and
PHP teams chose the most straightforward and by far most maintenance-friendly approach,
while the Java teams picked a conventional one involving property files, although that is
cumbersome and its only advantage (internationalization) was explicitly not required.

References
1 Lutz Prechelt. An empirical comparison of seven programming languages. IEEE Computer

33(10), October 2000.
2 Lutz Prechelt. An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl

for a search/string-processing program. Technical Report 2000-5, 34 pages, Fakultät für
Informatik, Universität Karlsruhe, Germany, March 2000.

3 Lutz Prechelt. Plat_Forms: A Web Development Platform Comparison by an Exploratory
Experiment Searching for Emergent Platform properties. IEEE Trans. on Software Engi-
neering 37(1):95-108, Jan-Feb 2011.

4 Lutz Prechelt. Plat_Forms 2007: The Web Development Platform Comparison – Evalua-
tion and Results. Technical Report TR-B-07-10, 118 pages, Freie Universität Berlin, Institut
für Informatik, June 2007.

3.12 Eye Tracking in Program Comprehension
Bonita Sharif (Youngstown State University, US)

License Creative Commons BY 3.0 Unported license
© Bonita Sharif

Main reference Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Müller, Michael Falcone,
Bonita Sharif: “iTrace: enabling eye tracking on software artifacts within the IDE to support
software engineering tasks”, in Proc. of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 – September 4, 2015, pp. 954–957, ACM,
2015.

URL http://dx.doi.org/10.1145/2786805.2803188

Eye tracking has been used since the 1800s for various tasks in psychological research. An
eye tracker tells us what a person is looking at while they are doing a task. This information
is invaluable for researchers and educators. Educators can see the thought processes that

18061

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/TSE.2010.22
http://dx.doi.org/10.1109/TSE.2010.22
http://dx.doi.org/10.1109/TSE.2010.22
http://dx.doi.org/10.1109/TSE.2010.22
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2786805.2803188
http://dx.doi.org/10.1145/2786805.2803188
http://dx.doi.org/10.1145/2786805.2803188
http://dx.doi.org/10.1145/2786805.2803188
http://dx.doi.org/10.1145/2786805.2803188
http://dx.doi.org/10.1145/2786805.2803188


12 18061 – Evidence About Programmers for Programming Language Design

go into reading and comprehending code. This can help them devise better intervention
strategies. Researchers can see how developers work while fixing a bug or adding a feature
and use this information to devise better methods and tools for them. In this talk, I will
describe eye tracking technology, introduce three eye tracking studies related to program
comprehension and describe how we can conduct empirical studies at scale using iTrace, a
tool that implicitly embeds eye tracking into the developer work environment. In conclusion,
a discussion about how these results could help PL designers and educators is presented.

References
1 Bonita Sharif, Timothy Shaffer, Jenna L. Wise and Jonathan I. Maletic. Tracking Devel-

opers’ Eyes in the IDE. IEEE Software, 33:3, 2016
2 Bonita Sharif and Jonathan Maletic. iTrace: Overcoming the Limitations of Short Code

Examples in Eye Tracking Experiments. IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2016, Raleigh, NC, USA, October 2 – 7, 2016

3 Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd
and Thomas Fritz. Tracing software developers’ eyes and interactions for change tasks,
ESEC/FSE, Aug 30 – Sept 4, 2015

4 Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha E. Crosby, James H. Paterson,
Carsten Schulte, Bonita Sharif and Sascha Tamm. Eye movements in code reading: relax-
ing the linear order, IEEE International Conference on Program Comprehension, ICPC,
Florence, Italy, May 16 – 24, 2015

5 Bonita Sharif and Jonathan Maletic. An Eye Tracking Study on camelCase and under_score
Identifier Styles.. IEEE International Conference on Program Comprehension, ICPC, Braga,
Portugal, USA, Jun 30 – Jul 2, 2010

3.13 Early Experimental Studies of Conditionals in Programming
Languages

Walter F. Tichy (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Walter F. Tichy

Eight controlled experiments about conditionals in programming languages are surveyed. The
experiments were identified in a mapping study by Kaijanaho as the only controlled studies
on conditionals between 1973 and 1993. They evaluated the goto statement, arithmetic if,
nested if-then-else, scoping keywords such as begin and end, decision tables, if-then rule
sets, and indentation. The first paper, Sime et al’s study of 1973, compared goto statements
with nested if-then-else without scoping constructs. The experiment used a specially designed
micro language that isolated the language feature under study, a technique that was taken up
by later experiments. A 1977 study by the same authors added scoping and indentation, while
a 1984 paper by Vessey et al used decision tables rather than text to specify the statements to
be written. A 1978 paper by Embley advocated using empirical studies in conjunction with
considerations of the complexity of the associated proof rules when designing new control
constructs. Two studies compared rule sets with if-then-else and goto. Even the effect of
the true/false direction of Boolean expressions in conditionals was tested.

From the standpoint of experimental methodology, these studies were well constructed,
but they appear to have had little impact on programming language design. For example,
the nested if-then-else statement was already present in the Algol programming language in
1960, and Dijkstra’s famous letter “The Go To Statement Considered Harmful” (which called
for the abolishment of the goto statement) appeared in 1968, years before Sime’s controlled

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 13

trial of 1973. The surveyed papers pay scant attention to the intense debate about structured
programming at the time, which started with Dijkstra’s 1968 letter. Knuth published a
thorough study of control constructs, including the goto and its alternatives, in 1974. By
1978, the C language provided an adequate set of control constructs, including if-then-else,
curly braces instead of unwieldy keywords, short-circuit evaluation of Boolean expressions,
as well as switch, continue, break, and return statements, which are constrained forms of
goto. This set has stood the test of time and is still in use in more recent languages such as
Java. Apparently, language designers, by personal programming experience, introspection,
or intuition, found adequate forms of conditionals without recourse to controlled trials.
However, not all questions about programming languages can be settled that way. For
example, the questions of whether to prefer dynamic over static type-checking, or functional
over imperative programming, need evidence to be answered reliably.

References
1 Edsger W. Dijkstra, Letters to the Editor: Go To Statement Considered Harmful, Commu-

nications of the ACM, 11(3), March 1968, 147-148. DOI: 10.1145/362929.362947
2 David W. Embley, Empirical and formal language design applied to a unified control con-

struct for interactive computing, Int. J. Man-Machine Studies (1978) 10 (2), 197-216. DOI:
10.1016/S0020-7373(78)80012-1

3 D. J. Gilmore and T.R.G. Green, Comprehension and recall of miniature programs, Int. J
Man-Machine Studies (1984), 21 (1), 31-48. DOI: 10.1016/S0020-7373(84)80037-1

4 R. Halverson, An Empirical Investigation Comparing IF-THEN Rules and Decision Ta-
bles for Programming Rule-Based Expert Systems, In System Sciences, 1993, Proceed-
ing of the Twenty-Sixth Hawaii International Conference on. Vol. iii, 316–323 vol.3.DOI:
10.1109/HICSS.1993.284327

5 E.R. Iselin, Conditional statements, looping constructs, and program comprehension: an
experimental study. Int. J. Man-Machine Studies (1988) 28 (1), 45–66. DOI: 10.1016/S0020-
7373(88)80052-X

6 A.-J. Kaijanaho, Evidence-Based Programming Language Design, A Philosophical and
Methodological Exploration, Dissertation, Faculty of Information Technology of the Uni-
versity of Jyväskylä, Finland, 2015

7 B.W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
8 D.E. Knuth, Structured Programming with go to Statements, ACM Computing Surveys,

6(4), 1974, 261-301. DOI: 10.1145/356635.356640
9 P. Naur (ed.), Report on the Algorithmic Language Algol 60, Comm. of the ACM, 3(5),

1960, 299-314. DOI: 10.1145/367236.367262
10 B. Shneiderman, Exploratory experiments in programmer behavior. Int. J. Computer and

Information Sciences (1976) 5 (2), 123–143. DOI:10.1007/BF00975629
11 B. Shneiderman, and R. Mayer, R. Syntactic/semantic interactions in programmer behavior:

A model and experimental results. Int. J. Parallel Programming (1979) 8 (3), 219–238. DOI:
10.1007/BF00977789

12 M.E. Sime, T.R.G. Green, and D. J. Guest, Psychological evaluation of two conditional
constructions used in computer languages. Int. J. Man-Machine Studies 5 (1), (1973) 105–
113. DOI: 10.1016/S0020-7373(73) 8001-2

13 M.E. Sime, T.R.G. Green, and D. J. Guest. Scope marking in computer conditionals
– a psychological evaluation. Int. J. Man-Machine Studies 9 (1), (1977) 107–118. DOI:
10.1016/S0020-7373(77)80045-X

14 I. Vessey and R. Weber, Conditional statements and program coding: an experimental
evaluation. Int. J. of Man-Machine Studies 21 (2), (1984) 161–190. DOI: 10.1016/S0020-
7373(84)80065-6

18061



14 18061 – Evidence About Programmers for Programming Language Design

4 Future Research Questions and Studies

The seminar included a brainstorming session where the goal was to enumerate research
questions. The session was free-form and questions that were mentioned or written down by
participants are listed here. To be clear on the intent here, our goal with this section was to
document many of the research questions mentioned by participants.

We categorized the questions into broader themes after the event. We did this for
organization in this document and to make it easier to see the big picture of what participants
were interested in, but participants themselves did not have these categories during the
session. Finally, while we did conduct some light editing, and removed a few questions
that did not feel fleshed out enough to include, we did not substantively edit the original
questions.

4.1 Impacts in the field
These questions appeared related to either how programming languages evolved, or could
evolve, in regard to their impact in practice. We imagine many other questions on the topic
could be asked.

4.1.1 Standardization

Research Question What aspects of programming languages have been largely standardized?
Description Over the last 50 years, while there has been some disagreement across program-

ming languages, it is clear that some features have been more successful than others.
Which parts have been standardized across multiple languages, and why?

4.1.2 Library design

Research Question Different software developers, given a library or API design problem,
make different design choices. What can we learn about programming language and API
design from the diversity of choices made by experts?

4.1.3 Polyglot programming

Research Question What is the impact of polyglot programming? Are there economic costs
of the current polyglot state?

Description Often programmers need to embed one language in another (e.g. embedded
SQL, or JavaScript inside HTML inside Ruby). What impact does this have?

4.1.4 Methods of language evolution

Research Question Characterize the in-use methods of programming language evolution
among designers and maintainers of existing languages. To what extent are these consistent
or inconsistent? How do these relate to the costs and benefits of programmers adopting
these changes and using the new language features? Can we predict the costs/benefits of
language changes?
Maybe eventually a given language is “done” and the cost of change outweighs any benefit.
What is the effect of language feature creep on development?



Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 15

4.2 Methodology
There was interest amongst participants in the methodological procedures under which we
can test languages. This might include trying to garner a better understanding who we are,
or perhaps who we should test in such studies, in addition to asking questions about the
kinds of metrics we might use for evaluation.

4.2.1 Representativeness of participants

Research Question How representative are the students or subjects we use now? Which
groups of people are we using now? We could compare new groups to the current group.
This was an issue in psychology as well [1] and in medicine [2]. This also includes the
diversity of the stakeholders.

References
1 http://www.slate.com/articles/health_and_science/science/2013/05/weird_psychology_

social_science_researchers_rely_too_much_on_western_college.html
2 http://www.theguardian.com/lifeandstyle/2015/apr/30/fda-clinical-trials-gender\

-gap-epa-nih-institute-of-medicine-cardiovascular-disease

4.2.2 Measuring cognitive load

Research Question What empirical methods can be used to unobtrusively measure cognitive
load? The goal would be measure and propose interventions that improve productivity.

Description We don’t yet know how to measure cognitive load in programmers, but we
suspect that programmers’ ability to be productive decreases when cognitive load is
too high. We should identify and standardize methods that can be used to (minimally-
invasively) measure cognitive load. Then, we should show that cognitive load indeed
interferes with programmer effectiveness. Finally, we should create effective interventions
that help decrease cognitive load (or help people be more effective when it is high. Eye
tracking methodology lends itself well for this type of analysis.).

4.3 Language features
Many programming languages have features in common. While some have unique philosophies
or semantics, many have commonalities like loops, conditionals, functions, classes, or other
features. Even if the underlying semantics are the same, or very similar, language designers
often use alternative notations or representations for them. Other times, designers vary the
semantics in subtle ways. A variety of questions were asked regarding individual language
features or aspects of their paradigms.

4.3.1 Functional vs. procedural languages

Research Question How are people reasoning differently in functional vs procedural
languages? Where are they spending their time? Can we characterize how they are
working? How does this look different from the existing literature on procedural languages?

Study Type Exploratory Qualitative Work
Description How do we characterize how functional programmers work? We could study an

expert functional programmer by giving them a design problem and asking them to solve
it and implement a corresponding program. Asking participants to work in pairs could

18061

http://www.slate.com/articles/health_and_science/science/2013/05/weird_psychology_social_science_researchers_rely_too_much_on_western_college.html
http://www.slate.com/articles/health_and_science/science/2013/05/weird_psychology_social_science_researchers_rely_too_much_on_western_college.html
http://www.theguardian.com/lifeandstyle/2015/apr/30/fda-clinical-trials-gender\-gap-epa-nih-institute-of-medicine-cardiovascular-disease
http://www.theguardian.com/lifeandstyle/2015/apr/30/fda-clinical-trials-gender\-gap-epa-nih-institute-of-medicine-cardiovascular-disease


16 18061 – Evidence About Programmers for Programming Language Design

enable capturing their thoughts better because they would need to communicate with
each other. For comparison purposes, the study might have five functional teams, five
object-oriented teams, and five procedural teams.
The design could include multiple problems that seem more biased towards one type of
language or the other, enabling analysis regarding the effect of the language paradigm.
Further research questions include:

How can we predict the task/language fit for a given task and language pair?
What does it mean to pick the right language for the task? Particularly, if a language
supports more than one paradigm, how do developers choose a specific paradigm?

References
1 Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Investigating Novice

Programming Mistakes in Large-Scale Student Data. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (SIGCSE ’15). ACM, New York,
NY, USA, 522-527. DOI: http://dx.doi.org/10.1145/2676723.2677258

4.3.2 Concurrency and parallelism

Research Question What are appropriate language representations for concurrency and/or
parallelism?

Description How do people think about these kinds of programs? Perhaps understanding
human cognition would help develop a more effective way of writing concurrent and/or
parallel code.

4.3.3 Creativity vs. Utility

Research Question What are the best language features to support creativity and how do
they differ from those that provide other kinds of benefits?

4.3.4 Making the average programmer much better

Research Question Perhaps current languages are still too low-level. How could we make
the average programmer 10x better? Some ideas for language approaches include:

Search-based
Machine learning
Programming by example and imitation
Programming by question-answer
Natural language

In databases, users moved from databases to analysis of big data. How would that
look like for programming? We should not only think about languages, but also about
tools/IDEs and processes.

4.4 Novices and learning
Programming languages are used at all levels, from Kindergarten in many U.S. schools to
seasoned professionals working in the field. While the spectrum is broad, some participants
were interested in learnability or ease of use by those earlier in a lifetime. These questions
thus focused around issues they thought might be relevant.

http://dx.doi.org/10.1145/2676723.2677258


Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 17

4.4.1 Learning performance of CS concepts

Research Question How does language design affect performance when students are studying
various topics in computer science?

4.4.2 Learnability

Research Question What factors affect learnability of individual language features?

4.4.3 Attributes of authenticity

Authenticity typically concerns the extent to which users of educational programming tools
(such as block-based editors) feel that they are learning “authentic” programming (as opposed
to learning a different set of skills that do not count as “real” programming). However, there
is an argument that authenticity applies to professionals as well.

Research Question What are the principal attributes of authenticity in programming lan-
guages?

Description For example, how do we prevent authenticity questions from stifling innovation?

4.4.4 Accents: implications of training on cross-language use

Research Question What is the impact of one’s first programming language on subsequent
programming behavior? What is the impact on language tools on programmer behavior
across language environments? For example, at code.org, users are given the blocks in
advance, so users do not practice the skill of finding a block. There was a position paper
about this at VL/HCC 2015: http://www.felienne.com/archives/4352

4.4.5 Error handling and learning

Research Question Does graceful error handling improve the experience of learning pro-
gramming for novices?

4.4.6 Novice vs. Expert compiler usage

Research Question How do published novice programmer compilation behaviors compare
to that of industry developers?

Description Replicate a set of Blackbox [1] studies against Google developer logs and
quantitatively compare distribution of error rates and other statistics. This serves as a
bridging question between academia and industry to move the field forward. What can
we learn from novices to help experts? What can we learn from experts to help novices?

4.4.7 Error messages

Research Question How do users read error messages and how is it affected by different
error message content or display choices?

4.4.8 Error-proneness

Research Question What is error-proneness?
Description What leads to incorrect thinking / logic errors? Come up with a formal

definition that would allow this to be checked. All PL designers want to have low values
for error-proneness. Ideally come up with something that could be objectively measured.

18061

http://www.felienne.com/archives/4352


18 18061 – Evidence About Programmers for Programming Language Design

4.5 Cognition and affect
A variety of questions were asked that were related to users thinking or feeling about
programming. Such attributes could inform us about reasons for adoption or other factors of
interest.

4.5.1 Thoughts about program behavior

Research Question How do people think about what a program does?
Description Try to evaluate program understanding. Is there an analogy to “code-switching”

from linguistics? If so, is code switching good or bad? What models should we have of
programming and how do we apply them to writing code? How do models change during
programming? What’s the relationship to cognitive load and working memory?

4.5.2 Language Love

Research Question What makes people love a language?
Description Evaluate what factors influence people’s feelings about languages. Is loving

programming not at all related to loving a programming language? Maybe culture and
the ecosystem matter too.

4.5.3 Programmer descriptions of structures

Research Question In what ways do programmers describe the structure of their systems?
And how do such descriptions help with programming tasks?

Description Study 1 : Interview developers to see how they describe system structures. Ask
them to describe the system in several different ways; how do those descriptions differ,
and what order are they described in? Watch them drawing diagrams and talking through
them in a think-aloud study.
Study 2 : How do these descriptions prime a programmer for completing tasks? Prompt
half of the participants to describe a system in one way prior to completing a task. The
other half of the participants would just get the task without having to describe the
system first. Measure productivity and interaction (possibly using eye tracking).

4.5.4 Mental spatial structures

Research Question Learn what mental spatial structures people develop regarding code
(and what affects this). For example, how do people learn where (in a given file) particular
pieces of code are? How does this differ between people? Is this different for people with
various disabilities?

5 Working groups

The participants divided into working groups to focus on some of the research questions
above that attracted the most interest and had potential for significant contributions.



Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 19

5.1 Novices: polyglot questions
Johannes Bechberger (Karlsruher Institut für Technologie, DE), Scott Fleming (University
of Memphis – Memphis, US), Briana B. Morrison (University of Nebraska – Omaha, US),
Bonita Sharif (Youngstown State University – Youngstown, US), Andreas Stefik (University
of Nevada, Las Vegas – Las Vegas, US)

This working group focused on questions on polyglot programming, which regards working in
multiple programming languages at once. What happens when a programmer learns multiple
languages? To what extent does knowledge transfer between languages? Is there an impact
on productivity for domains, like the web, where programmers are forced to use multiple
languages at once?

Study participants could be evaluated at several times for a longitudinal study: for
example, after two semesters, after the end of the semester in which they learn their second
language, and at graduation. At each time, they might be given code for various tasks in
multiple languages and ask them to explain the code, even though they haven’t necessarily
seen those languages before. They could also be asked to trace the execution with various
inputs. Eye tracking might provide insight into the participants’ approach to the problem
and help identify whether the participants recognize beacons [1], which help programmers
understand the structure and behavior of programs. It might be helpful to do the study on
pairs of participants rather than individual participants so that experimenters can observe
the conversation. Regarding language learning, the group also discussed the question of
whether it is better to learn one language deeply or learn multiple languages at once.

References
1 Susan Wiedenbeck. Beacons in computer program comprehension. International Journal of

Man-Machine Studies 25.6 (1986): 697-709.

5.2 Context Switching and Cognitive Load
Ameer Armaly (University of Notre Dame – Notre Dame, US), Andrew Begel (Microsoft
Research – Redmond, US), Igor Crk (Southern Illinois University – Edwardsville, US), Tanja
Blascheck (INRIA Saclay – Orsay, FR), John Daughtry (Google Inc. – Seattle, US), Rob
DeLine (Microsoft Corporation – Redmond, US), Ciera Jaspan (Google Inc. – Mountain
View, US) , Philip Merlin Uesbeck (University of Nevada, Las Vegas – Las Vegas, US)

This working group focused on enumerating interesting research questions. Part of the con-
versation overlapped with the Novices group, with a shared interest in polyglot programming.
The idea is that a polyglot programming scenario might lead to higher cognitive load, as
programmers must remember information pertaining to multiple (potentially inconsistent)
programming methodologies. Language designs that facilitate polyglot programming might
involve addressing language inconsistencies, such as in loop constructs; missing constructs
(one could compare languages in which one has a construct that the other lacks); and
embeddings, in which programmers could embed code in one language inside code written in
another language.

The group discussed the need for better methodologies to measure cognitive load; to be
usable for a programming study, the methods must be non-destructive and non-interfering.
Low cost is also important for practical reasons. The group was interested in how programming
language designs and program design decisions correlate with cognitive load. Do particular

18061



20 18061 – Evidence About Programmers for Programming Language Design

programming language constructs correlate with cognitive load? The group hypothesized
that the number of types in use correlates with cognitive load, and that cognitive load might
correlate with typos or stutter. The current results regarding cognitive load seem to try to
categorize users as being overloaded or not rather than trying to assess cognitive load in a
quantitative way. It might be interesting to consider the units of cognitive load so that it
can be correlated more directly.

5.3 Language features and error-proneness
Jonathan Aldrich (Carnegie Mellon University – Pittsburgh, US), Michael Coblenz (Carnegie
Mellon University – Pittsburgh, US), Andrew J. Ko (University of Washington – Seattle, US),
Thomas LaToza (George Mason University – Fairfax, US), Sibylle Schupp (TU Hamburg-
Harburg, DE), Walter Tichy (KIT – Karlsruher Institut für Technologie, DE)

Programming language designers tend to think a lot about user errors (bugs) because a
lot of the techniques used in language design are intended to exclude particular classes of
bugs. As a result, the working group on language features focused on creating a grand theory
of error-proneness of language features, specifically regarding errors that emerge through
reasoning, not perceptual slips or conflicts with prior knowledge.

Language features are abstractions. As such, they hide certain aspects of execution
for the benefit of simpler reasoning. For example, consider integer division, which hides
remainders, integer truncation, and division by zero. If, in hiding that complexity, the
language feature allows the developer to never have to reason about that internal complexity,
error-proneness is low. However, if the language feature still occasionally forces the developer
to have to reason about that internal complexity, that reasoning will be even harder because
the complexity is hidden, and therefore error-proneness may be higher. For example, 10/3
requires a programmer to reason about integers versus floating-point numbers. 10/0 requires
programmers to reason about runtime errors.

The group hypothesized that the mechanism of error production is that developers need
to be able to reason correctly about the behavior of an abstraction. If they do not have access
(e.g. via training) to a correct model of that behavior, they will make mistakes. Abstractions
occasionally hide behavior developers must reason about. Furthermore, error-proneness may
arise by composition of language features: language features may interact with each other in
ways that are error-prone.

5.3.1 Examples

The division operator in most languages fully encapsulates the complexities of division,
but not in the case of 0 or floating-point. Those nuances are not visible in the / operator
in most languages, reducing the visibility of the need to handle those cases, increasing
the likelihood of errors.
Constraints make it easier to express declarative properties between values, but one must
understand the hidden semantics of constraint satisfaction algorithms to avoid unintended
side effects of cycles.
Memory-safe languages allow programmers to think in terms of abstract objects and
fields instead of the linear memory on which those objects are imposed. This abstraction
eliminates many non-local interactions (or alternatively, “safety rules”) that programmers
have to consider in unsafe languages. The abstraction rarely breaks down in terms of



Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 21

correctness; the main cases where it does are interaction with code written in unsafe
languages (e.g. the native code interface in Java). It does break down in cases where an
application’s performance or memory-usage needs are strict enough to be affected by the
costs of the garbage collection and dynamic checks necessary for memory safety.
Monads (are these error-prone or hard to use? Are those different?)

5.3.2 Operationalization

Error-proneness is defined as semantics of an abstraction that are hidden but a developer
must reason about correctly in order to be used correctly. Error-proneness may have a
trade off with expressiveness because increased expressiveness requires abstraction, which
hides complexity. If one must reason about that abstraction, an error might occur if that
abstraction is hard to understand or use. This is related to the idea of leaky abstractions,
but that work focuses more on architectural consequences and not language features o not
error-proneness.

The theory might be used as a thinking tool in a language design process, and as a way
to generate hypotheses to test. Doing so might validate the theory: if it effectively predicts
parts of designs that are error-prone, it is a useful theory. APIs might also be analyzable in
the same framework. The group also considered perceptual sources of errors from syntax;
these are more akin to slips than to mistakes, depending on whether one considers these
terms to be substantively different, but they are errors nonetheless.

5.3.3 Evaluation

Researchers might work to test the theory by building a predictive error model and showing
that it makes useful predictions for particular language features. Future work should figure
out criteria for thresholds: how much complexity is enough to cause error-proneness? What
does this depend on: experience, etc...? In the future, researchers should compare fine-grained
differences in what an abstraction hides and compare developers’ defect production.

5.4 Why do people love programming languages?
Igor Crk (Southern Illinois Univ. – Edwardsville, US),Andrew Duchowski (Clemson Uni-
versity, USA), Matthias Hauswirth (University of Lugano, Switzerland), Brad A. Myers
(Carnegie Mellon University – Pittsburgh, US), Craig Anslow (Victoria University of Welling-
ton), Brian Dorn (University of Nebraska, Omaha), Lutz Prechelt (FU Berlin, Germany),
Antti-Juhani Kaijanaho (University of Jyväskylä, Finland)

This working group focused on understanding affect: what is it about languages that causes
people to love or hate them? Is it primarily due to technical attributes (e.g. features) or is
personal relevance more important? For example, people might love the first language they
used, or their feelings might be driven by their prior positive (or negative) experiences using
languages on particular projects.

The group designed an interview study in which participants would be asked:
Is there a language you love, and why?
Tell me about a time when a language feature helped you achieve a goal.
Tell me about a time when a language feature stood in the way of a goal.
Tell me about a time when you abandoned a language in favor of another one.

18061



22 18061 – Evidence About Programmers for Programming Language Design

In the discussion, the participants noted that it is easy to conflate love with adoption.
Sometimes people don’t have choices because their language selection is dictated by their
employer or other practical considerations. Any study of this would need to separate the
questions of adoption from the questions of emotional attachment, and separate the influences
of the various factors. The study might leverage standard business or psychological measures
of affect.

The group was interested in what qualities of people cause them to be drawn to particular
languages. One might ask: “How would one characterize people who love language X?”
The group was also interested in the progression of feelings over time as people learn more
languages (for example, at a university). By asking senior programmers, teachers, and
students at various stages, one could study how language learning affects feelings about
languages. It might also be interesting to compare adoption and use to what people love.
Other study techniques might involve asking programmers who know at least two languages
well for comparisons and explanations of what languages they do not like. It is important
to include social aspects in this discussion; perhaps people like or dislike languages in part
because of the people in the language communities. Perhaps some people love programming
languages in general rather than loving specific languages. Another question the group
identified pertained to global adoption: is there a map of which languages are in use in each
part of the world? If not, is it worth creating?

5.5 Representativeness of subjects in studies
Felienne Hermans (TU Delft, NL), Johannes Hofmeister (Universität Passau, DE), Amelia
A. McNamara (Smith College – Northampton, US), Lea Verou (MIT – Cambridge, US)

This working group discussed a practical problem that the community has encountered
when running studies: most studies so far have been on university students at high-quality
universities who have studied some programming. This biases the sample toward white, male,
able-bodied, high socio-economic status students. The group identified three mechanisms to
mitigate the impact of this problem:
1. Studies should be reporting gender, SES, ethnicity. However, the European Union has

restrictions on what data can be collected, which may make tracking ethnicity difficult
for researchers in the EU.

2. Run studies on other groups to assess impact on alternative demographics. Medicine has
had this problem too: men were used largely in the 1940s because of the connections to
the military in early controlled experiments, for example.

3. Make sure we understand the results from psychology and HCI in this area [1].

References
1 Ari Schlesinger, Keith Edwards, Rebecca E. Grinter. (2017). Intersectional HCI: Engaging

Identity through Gender, Race, and Class. 5412-5427.
https://doi.org/10.1145/3025453.3025766

https://doi.org/10.1145/3025453.3025766


Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 23

6 Open problems

6.1 Evidence standards
The participants had a plenary discussion about the need for an evidence standard in human
factors research in computer science. There seemed to be general consensus that an evidence
standard would clarify to authors and reviewers how to report on their research to improve
replication and to clarify the limitations of particular studies. The group discussed the details
of the CONSORT evidence standard [1]. Some participants expressed concern at having to
comply with a standard, but the strong majority seemed to find the idea reasonable. The
group also had broad consensus that the types of information that the CONSORT standard
requires in its reporting are a reasonable place to start when proposing an evidence standard.

6.1.1 Adoption of evidence standards

Some ideas that were proposed to assist adoption include:
Send a draft of an evidence standard for publication. Where to send such work was
unclear.
Two approaches were considered for adoption of such a standard. One way was to use
a top-down approach where we attempt to convince a publication venue to require its
use for some papers. Another way would be to propagate the standard bottom-up by
submitting papers that follow it, citing in each work in a consistent way. Both approaches
have pros and cons.
It is important to start with the right community. The IEEE VL/HCC conference
(http://www.vlhcc.org) might be a good place to start because lots of the VL/HCC
leadership are among the meeting participants. As such, perhaps a recommendation
could be attached to the VL/HCC call for papers. In comparison, CHI has an informal
evidence standard based on psychology papers. Alternatively, the computing education
conferences and journals already use empirical data heavily, perhaps especially TOCE
and ICER, and as such might be good targets.
An evidence-based track at a conference might be a lightweight way to further adoption.
Perhaps eventually the whole conference would be in this track.
Make reviewers feel like they are the “last ones to know” about the evidence standard so
that they feel like they should adopt the new standards of the “in” group.
Change is not an instant process and working toward a standard is a marathon, not a
sprint.
The Open Science Framework is an existing mechanism to manage scientific workflows,
including study registration. Study registration is a well-accepted technique in science to
reduce a number of potential problems during the publication process (e.g., Type I error,
fraud, “surprise factor”). Perhaps leveraging existing mechanisms could reduce the cost
and difficulty of adoption.
While CONSORT, the What Works Clearinghouse, APA, and other standards exist, it
was unclear what evidence standard would work best for computer science. Given other
disciplines already have such standards, we may be able to learn from them in designing
ours, while potentially improving them to avoid historical mistakes.
If an evidence standard were to be adopted at particular conferences or journals, or across
conferences and journals, training will be needed to help scholars use and understand it,
both at the reviewing and at the writing stages.

18061



24 18061 – Evidence About Programmers for Programming Language Design

6.1.2 Criteria

Participants discussed some criteria for good evidence standards:
Evidence standards should be clear so that authors know what the expectations are,
but the standard should not unnecessarily make papers longer since page limits are of
concern.
Care should be taken to avoid unnecessarily rejecting papers to which the standards don’t
align well.
The standard should include guidelines both for authors and reviewers.
It needs to be possible to cite the evidence guidelines. Also it would be nice to be able to
cite study guidelines.
It should be clear that the evidence standard does not apply to all kinds of research.
For example, there was a backlash in the UIST community when it became expected
that authors include an A/B study of their work because some authors felt that this was
inappropriate for their work.

References
1 Schulz, K.F., Altman, D.G., Moher, D., for the CONSORT Group. CONSORT 2010 State-

ment: updated guidelines for reporting parallel group randomised trials. Annals of Internal
Medicine. 2010;152. Epub 24 March. http://annals.org/article.aspx?articleid=745807

http://annals.org/article.aspx?articleid=745807


Andreas Stefik, Bonita Sharif, Brad A. Myers, and Stefan Hanenberg 25

Participants

Jonathan Aldrich
Carnegie Mellon University –
Pittsburgh, US

Craig Anslow
Victoria University –
Wellington, NZ

Ameer Armaly
University of Notre Dame, US

Johannes Bechberger
KIT – Karlsruher Institut für
Technologie, DE

Brett A. Becker
University College Dublin, IE

Andrew Begel
Microsoft Research –
Redmond, US

Tanja Blascheck
INRIA Saclay – Orsay, FR

Neil C. C. Brown
King’s College London, GB

Michael Coblenz
Carnegie Mellon University –
Pittsburgh, US

Igor Crk
Southern Illinois Univ. –
Edwardsville, US

John M. Daughtry
Google – Seattle, US

Fabian Deitelhoff
Fachhochschule Dortmund, DE

Rob DeLine
Microsoft Corporation –
Redmond, US

Brian Dorn
University of Nebraska –
Omaha, US

Andrew Duchowski
Clemson University, US

Scott Fleming
University of Memphis, US

Baker Franke
Code.org – Seattle, US

Reiner Hähnle
TU Darmstadt, DE

Matthias Hauswirth
University of Lugano, CH

Felienne Hermans
TU Delft, NL

Johannes Hofmeister
Universität Passau, DE

Ciera Jaspan
Google Inc. –
Mountain View, US

Antti-Juhani Kaijanaho
University of Jyväskylä, FI

Andrew J. Ko
University of Washington –
Seattle, US

Thomas LaToza
George Mason University –
Fairfax, US

Andrew Macvean
Google – Seattle, US

Jonathan I. Maletic
Kent State University, US

Amelia A. McNamara
Smith College –
Northampton, US

Briana B. Morrison
University of Nebraska –
Omaha, US

Brad A. Myers
Carnegie Mellon University –
Pittsburgh, US

Lutz Prechelt
FU Berlin, DE

Sibylle Schupp
TU Hamburg-Harburg, DE

Bonita Sharif
Youngstown State University, US

Andreas Stefik
Univ. of Nevada – Las Vegas, US

Walter F. Tichy
KIT – Karlsruher Institut für
Technologie, DE

Phillip Merlin Uesbeck
Univ. of Nevada – Las Vegas, US

Lea Verou
MIT – Cambridge, US

18061


	Executive summary Michael Coblenz
	Contents
	Overview of Talks
	How do PL Researchers Think? and Evidence about Software Engineers for PL Design Jonathan Aldrich
	How does the Programming Language Community Design a Language? Craig Anslow
	Thinking about Programmers with Disabilities Ameer Armaly
	Enhancing Compiler Error Messages: What's been done, what needs doing Brett A. Becker
	Visualizing and Interpreting Multimodal Data Tanja Blascheck
	Methodological Considerations Brian Dorn and Briana B. Morrison
	I Don't Understand Program Comprehension Johannes C. Hofmeister
	What evidence do we have about programming language design? Antti-Juhani Kaijanaho and Andrew J. Ko
	Scientists Programming Amelia A. McNamara
	Types of Studies Brad A. Myers, Jonathan Aldrich, Michael Coblenz, and Joshua Sunshine
	Programming language cultures are relevant Lutz Prechelt
	Eye Tracking in Program Comprehension Bonita Sharif
	Early Experimental Studies of Conditionals in Programming Languages Walter F. Tichy

	Future Research Questions and Studies
	Impacts in the field
	Methodology
	Language features
	Novices and learning
	Cognition and affect

	Working groups
	Novices: polyglot questions Johannes Bechberger, Scott Fleming, Briana B. Morrison, Bonita Sharif, Andreas Stefik
	Context Switching and Cognitive Load Ameer Armaly, Andrew Begel, Tanja Blascheck, John Daughtry, Rob DeLine, Ciera Jaspan, Philip Merlin Uesbeck
	Language features and error-proneness Jonathan Aldrich, Michael Coblenz, Andrew J. Ko, Thomas LaToza, Sibylle Schupp, and Walter Tichy
	Why do people love programming languages? Andrew Duchowski, Matthias Hauswirth, Brad A. Myers, Craig Anslow, Brian Dorn, Lutz Prechelt, and Antti-Juhani Kaijanaho
	Representativeness of subjects in studies Felienne Hermans, Johannes C. Hofmeister, Amelia A. McNamara, Lea Verou

	Open problems
	Evidence standards

	Participants

