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1 Introduction

In this paper, we present the first class of perfect sampling algorithms for the steady-
state distribution of multi-server queues with general interarrival time and service time
distributions. Our algorithm has finite expected running time under the assumption that
the interarrival times and service times have finite 2 + € moments for some € > 0.

The goal of perfect sampling is to sample without any bias from the steady-state
distribution of a given ergodic process. The most popular perfect sampling protocol,
known as Coupling From The Past (CFTP), was introduced by Propp and Wilson in
the seminal paper [23]; see also [2] for another important early reference on perfect
simulation. Foss and Tweedie [15] proved that CFTP can be applied if and only if
the underlying process is uniformly ergodic, which is not a property applicable to
multi-server queues. So, we use a variation of the CFTP protocol called Dominated
CFTP (DCFTP) introduced by Kendall in [19] and later extended in [20,21].

A typical implementation of DCFTP requires at least four ingredients:

(a) a stationary upper bound process for the target process,

(b) a stationary lower bound process for the target process,

(c) the ability to simulate (a) and (b) backward in time (i.e., from time 0 to —¢, for
any t > 0),

(d) afinite time —7 < 0 at which the state of the target process is determined (typi-
cally by having the upper and lower bound processes coalesce), and the ability to
reconstruct the target process from — 7 up to time O coupled with the two bounding
processes.

The time —T is called the coalescence time, and it is desirable to have E [T] < oo.
The ingredients are typically combined as follows. One simulates (a) and (b) backward
in time (by applying (c)) until the processes meet. The target process is sandwiched
between (a) and (b). Therefore, if we can find a time —7 < 0 when processes (a) and
(b) coincide, the state of the target process is known at —7 as well. Then, applying
(d), we reconstruct the target process from —7" up to time 0. The algorithm outputs
the state of the target process at time 0.

It is quite intuitive that the output of the above construction is stationary. Specif-
ically, assume that the sample path of the target process coupled with (a) and (b) is
given from (—o0, 0]. Then, we can think of the simulation procedure in (c) as simply
observing or unveiling the paths of (a) and (b) during [—¢, 0]. When we find a time
—T < 0 at which the paths of (a) and (b) take the same value, because of the sand-
wiching property, the target process must share this common value at —7'. Starting
from that point, property (d) simply unveils the path of the target process. Since this
path has been coming from the infinite distant past (we simply observed it from time
—T), the output is stationary at time 0. Notice that while —7 is a random time, the
output is the state of the target process at the fixed time 0.

One can often improve the performance of a DCFTP protocol if the underlying
target process is monotone [20], as in the multi-server queue setting. A process is
monotone if there exists a certain partial order, <, such that if w and w’ are initial
states where w < w’, and one uses common random numbers to simulate two paths,
one starting from w and the other from w’, then the order is preserved when comparing
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the states of these two paths at any point in time. Thus, instead of using the bounds
(a) and (b) directly to detect coalescence, one could apply monotonicity to detect
coalescence as follows: At any time —t < 0, one can start two paths of the target
process, one from the state w’ obtained from the upper bound (a) observed at time
—t, and the other from the state w < w’ obtained from the lower bound (b) observed
at time —¢. Then, we run these two paths using common random numbers, which are
consistent with the backward simulation of (a) and (b), in reverse order according to
the dynamics of the target process, and check whether these two paths meet before
time zero. If they do, the coalescence occurs at such a meeting time. We also notice
that because we are using common random numbers and system dynamics, these two
paths will merge into a single path from the coalescence time forward, and the state
at time zero will be the desired stationary draw. If coalescence does not occur, then
one can simply let ¢ <— 2¢ and repeat the above procedure. For this iterative search
procedure, we must show that the search terminates in finite time.

While the DCFTP protocol is relatively easy to understand, its application is not
straightforward. In most applications, the most difficult part has to do with element (c).
Then, there is an issue of finding good bounding processes (elements (a) and (b)), in
the sense of having short coalescence times—which we interpret as making sure that
E [T] < oo. There has been a substantial amount of research that develops generic
algorithms for Markov chains (see, for example, [10] and [8]). These methods rely
on having access to the transition kernels, which are difficult to obtain in our case.
Perfect simulation for queueing systems has also received a significant amount of
attention in recent years, though most perfect simulation algorithms for queues impose
Poisson assumptions on the arrival process. Sigman [25,26] applied the DCFTP and
regenerative idea to develop perfect sampling algorithms for stable M/G/c queues.
The algorithm in [25] requires the system to be super-stable (i.e., the system can
be dominated by a stable M/G/1 queue). The algorithm in [26] works under natural
stability conditions, but it has infinite expected termination time. A recent work by
Connor and Kendall [9] extends Sigman’s algorithm [26] to sample stationary M/G/c
queues, and the algorithm has finite expected termination time, but it still requires the
arrivals to be Poisson. The main reason for the Poisson arrival assumption is that under
this assumption, one can find dominating processes which are quasi-reversible (see
Chapter 3 of [18]) and therefore can be simulated backward in time using standard
Markov chain constructions (element (c)).

In general, constructing elements (a) and (b), (a) in particular, as (b) can often be
taken as the trivial lower bound, 0, in the multi-server queue setting requires proving
sample path (almost sure) dominance under different service/routing disciplines. The
sample path method has been widely used in the control of queues [22]. Comparison
of multi-server queues, under the almost sure dominance or the stochastic dominance,
has been studied in the literature (see, for example, [12, 13,27] and references therein).

For general renewal arrival process, our work is close in the spirit to [4,11] and [6],
but the model treated is fundamentally different. Thus, it requires some new devel-
opments. We also use a different coupling construction than that introduced in [26]
and refined in [9]. In particular, we take advantage of a vacation system which allows
us to transform the problem into simulating the running infinite horizon maximums
(from time ¢ to infinity) of renewal processes, compensated with negative drifts so
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that the infinite horizon maximums are well defined. Finally, we note that a significant
advantage of our method, in contrast to [26], is that we do not need to wait until the
upper bound system empties to achieve coalescence. Due to the monotonicity of our
process, we can apply the iterative method introduced above. This is important in
many-server queues in heavy traffic for which it would take an exponential amount of
time (in the arrival rate), or sometimes be impossible, to observe an empty system. We
demonstrate the performance of our procedure for different many-server heavy traffic
regimes using simulation experiments in Sect. 5.

The rest of the paper is organized as follows: In Sect. 2, we describe our simulation
strategy, involving elements (a)—(d), and we conclude the section with the statement
of aresult which summarizes our main contribution (Theorem 1). Subsequent sections
(Sects. 3 and 4) provide more details of our simulation strategy. In Sect. 5, we conduct
some numerical experiments (an online companion of this paper includes a MATLAB
implementation of the algorithm). Section 6 contains the proofs of some technical
results. Lastly, we provide a list of selected notation in the Appendix.

2 Simulation strategy and main result

Our target process is the stationary process generated by a multi-server queue with
independent and identically distributed (iid) interarrival times and iid service times
which are independent of the arrivals. There are ¢ > 1 identical servers, each can
serve at most one customer at a time. Customers are served on a first-come-first-
served (FCFS) basis. Let G(-) and G(~) =1—-G() (resp. F(-) and F(-) =1—-F())
denote the cumulative distribution function, CDF, and the tail CDF of the interarrival
times (resp. service times). We shall use A to denote a random variable with CDF G,
and V to denote a random variable with CDF F.

Assumption 1 (A1) Both A and V are strictly positive with probability one, and there
exists € > 0 such that

E[A*"] < 00, E[V*] < 0.

The previous assumption will allow us to conclude that the coalescence time of our
algorithm has finite expectation. The algorithm will terminate with probability one if
E[AY€] + E[V!T€] < o0.

We assume that G (-) and F (-) are known so that the required parameters in our
algorithmic development can be obtained. We write A = ( fooo G(ndn~' = 1/E[A]
as the arrival rate, and u = ( fooo F (t)dt)’1 = 1/E[V] as the service rate. In order
to ensure the existence of the stationary distribution of the system, we require the
following stability condition: A /(cu) < 1.

2.1 Elements of the simulation strategy: upper bound and coupling

We refer to the upper bound process as the vacation system, the construction that we use
is based on that given in [16]. Let us first explain in words how the vacation system
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operates. Customers arrive at the vacation system according to the renewal arrival
process, and the system operates similarly to a GI/GI/c queue, except that every time
a server (say server i *) finishes an activity (i.e., a service or a vacation), if there is no
customer waiting to be served in the queue, server i* takes a vacation which has the
same distribution as the service times. If there is at least one customer waiting, the
first customer waiting in the queue starts to be served by server i *.

Using a suitable coupling, the work of [16] shows that the total number of jobs in
the vacation system is an upper bound of the total number of jobs in the correspond-
ing multi-server queue. In this paper, we establish bounds for other system-related
processes, such as the Kiefer—Wolfowitz vectors, which are of independent interest.

We next provide more details about the vacation system. We introduce (¢ + 1)
time-stationary renewal processes, which are used to describe the vacation system.

Let

70— {T,?:n eZ\{O}}

be a time-stationary renewal point process with 70 > 0 and 7°, < 0,n > 1 (the T,
are sorted in a non-decreasing order in n). Forn > 1, T,? represents the arrival time
of the n-th customer into the system after time zero, and 79, is the arrival time of the
n-th customer, counting backward in time, from time zero. We also define

Tno’+ = inf {Tn(z : T,S > Tno} ,
that is, the arrival time of the next customer after Tno. Ifn>1orn < -2, T,,O’Jr = Tn0 1
Howeyver, T8’1+ = Tlo. Similarly, we write

n

7O~ = sup {Trg : T,S < Tno} ,

i.e., the arrival time of the previous customer before 7. Define A, := Tt — 79 for
all n € Z\{0}. Note that A, is the interarrival time between the customer arriving at
time T,? and the next customer. A, has CDF G () forn > 1 andn < —2, but A_; has
a different distribution due to the inspection paradox. Figure la provides a pictorial
illustration of the renewal process 7.

Similarly, for i € {1,2,...,c}, we introduce iid time-stationary renewal point
processes

T .= {T,f ‘ne Z\{O}}.

As before, we have that T,f > 0 and Ti,, < 0 for n > 1 with the T,i sorted in a non-
decreasing order. We also define 7;> " := inf{T/ : T! > T!}and Tj"~ := sup{T} :
T} < Ti}. Then, welet Vi := T,/ — T;{. We assume that V/ has CDF F (-) forn > 1
and n < —2.The V; are activities (services and vacations), which are executed by the
i-th server in the vacation system.
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(a) (b)
o, T, o1 T R Ty T, o1 T T’
L j|8 T A T A A - ) 1 11 1 LS
A, A, A, A 4, N'(-1)=2
Fig. 1 Renewal processes. a Definition of A;, b definition of Nl? ()
Next, we define, for each i € {0, 1,...,c}, and any u € (—o00, 00), a counting

process
Ni(t) := |[u,u+11NT"|,

for t > 0, where | | denotes cardinality. Note that as Til <0< Tli by stationarity,
N(g (0) = 0. In particular, the quantity N,? (1) is the number of customers who arrive
during the time interval [u, u + ¢] (see Fig. 1b). The quantity N, (¢) is the number
of activities initiated by server i during the time interval [u, u + t] when i # 0. For
simplicity of the notation, let us write N (t) = Né (t)ifr > 0and N (1) = N,i (—1)
ifr <0.

2.1.1 The upper bound process: vacation system

Let Q,(t) denote the number of people waiting in queue at time ¢ in the stationary
vacation system. We write Q(¢-) := limgy, @y (s) and dQ () := Oy () — Qu(1-).
Also, forany r > 0,i € {0, ..., c} and each u € (—o0, 00), define

Ni@t )= lhiira N, (),

and let dN! (1) := Ni(t) — Ni(t_) for all t > O (note that as N} (0_) = 0, dN! (0)
should equal N/ (0)). Similarly, for r < 0, N* (1—) = N} (|7]_).

We also introduce X, (1) := Ng(t) - > N,i (#). For simplicity of the notation,
we also write X (¢) = Xo(¢z) ifr > 0,and X (¢) = X;(—1t) ift < 0. Then, the dynamics
of (Qy () : t > 0) satisfy

c
dQy (1) =dX (1) + 1 (Qy (1) =0)ZdN’(t), (1)
i=1
given Qy (0). Note that here we are using the fact that arrivals do not occur at the same
time as the start of activity times; this is because the processes 7' are independent

time-stationary renewal processes in continuous time so that Til and Tli have a density.
It follows from standard arguments of Skorokhod mapping [7] that, for r > 0,

Qu(t) = Qu(0) + X (1) — inf (X(s)+ Qv(0)™,
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where (X (s) + Q(0))” = min (X (s) + Q,(0), 0). Moreover, using Lyons construc-
tion, we have that, fort <0,

Qv(1) = SliII)X (s) =X (1) 2

(see, for example, Proposition 1 of [3]). (Q,(¢) : t € (—00,00)) is a well-defined
process by virtue of the stability condition A/(uuc) < 1.

2.1.2 The coupling: extracting service times for each customer

The vacation system and the target process (the GI/GI/c queue) will be coupled by
using the same arrival stream of customers, 79, and assuming that each customer
brings his own service time. In particular, the evolution of the underlying GI/Gl/c
queue is described using a sequence of the form ((T,,O, Vn) ‘n € Z\{O}), where V,,
is the service time of the customer arriving at time Tno. In simulation, we start by
simulating the upper bound process (vacation system). Thus, the V,, must be extracted
from the evolution of Q, (-) so that the same service times are matched to the common
arrival stream both in the vacation system and in the target process.

In order to match the service times to each of the arriving customers in the vacation
system, we define the following auxiliary processes: For every i € {1,...,c}, any
t > 0, and any u € (—o0, 00), let a,i (t) denote the number of service initiations by
server i during the time interval [u, u + ¢]. Observe that

ol (1) = f 1(Qy (s—) > 0)dN! (s —u).
[u,u+t]

That is, we count activity initiations at time Tki € [u, u+t] as service initiations if and
only if O, (Tk’;) > 0. Once again, here we use the fact that arrival times and activity
initiation times do not occur simultaneously.

We now explain how to match service time for the customer arriving at Tno, n e
Z\{0}. First, such a customer occupies position Q, (Tno) > 1 when he enters the
queue. Let Dfl) be the delay (or waiting time) inside the queue of the customer arriving
at T. Then we have that

DY = inf {t >0:0, (Tno) = XC:G;O (t)} ,
i=1

and therefore,
C
Vo= 2 Vincrowog -4V (17 + 23). @
i=1

Observe that the previous equation is valid, because for each n € Z\{0}, there is a
unique i (n) € {1,..., ¢} for which dN'® (T,? + DY) = 1 and AN/ (T,? + DY) = 0
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if j # i (n) (ties are not possible because of the time stationarity of the 7¢), so we
obtain that (3) is equivalent to

VvV, = i(n)
v = Vi r94)°

We shall explain in Sect. 6.1 that (V, : n € Z\{0}) and (Tno ‘n e Z\{O}) are two
independent sequences and the V,, are iid copies of V, i.e., the extraction procedure
here does not create any bias.

2.2 Monotonicity properties and the stationary GI/Gl/c queue
2.2.1 A family of GI/Gl/c queues and the target GI/Gl/c stationary system

We now describe the evolution of a family of standard GI/Gl/c queues. Once we
have the sequence ((7,0, V,,) : n € Z\{0}), we can proceed to construct a family of
continuous-time Markov processes (Z,(¢; z) : t > 0) for each u € (—o0, 00), given
the initial condition Z,, (0; z) = z. We write z = (g, r, e(u)), and set

Zy(t;2) == (Qu(t:2), Ry (t;2), E, (85 2)) s

fort > 0, where Q,, (¢; z) is the number of people in the queue attime u—+z (Q, (0; z) =
q), R, (t; z) is the vector of ordered (ascending) remaining service times of the ¢ servers
attime u 4+t (R, (0; z) = r), and E, (¢; z) is the time elapsed since the previous arrival
attime u + t (E,(0; z) = e(u)).

We shall always use E,(0;z) = e(u) = u — sup{T,? : Tn0 < u}, and we shall
select ¢ and r appropriately based on the upper bound. The evolution of the process
(Zu (s;2) : 0 < s < 1) is obtained by feeding the traffic {(7,?, V;,) : u < T)) < u+s}
for s € (0, ¢] into a FCFS GI/GI/c queue with initial conditions given by z. Construct-
ing (Z, (s; z) : 0 < s < t) using the traffic trace {(Tno, Vn) U< Tn0 < u + s} for
s € (0, t] is standard (see, for example, Chapter 3 of [24]).

One can further describe the evolution of the underlying GI/Gl/c queue at arrival
epochs, using the Kiefer—Wolfowitz vector [1]. In particular, for every non-negative
vector w € R¢ such that w® < w*D (where w® is the i-th entry of w)for1 <i <
¢ — 1, and each k € Z\{0}, the family of processes { Wy (Tno; w) 'n >k,n € Z\{0}}

satisfies
0,+. _ 0. +
Wil T, 5w ) =S (Wi (T, w) + Vyer — Ayl , 4)
with initial condition Wy (7); w) = w, where e; = (1,0,...,0)7 € R, 1 =
(1,..., DT € R, and S is a sorting operator which arranges the entries in a vec-

tor in ascending order. In simple words, Wy (Tno; w) for k € Z\{0} describes the
Kiefer—Wolfowitz vector as observed by the customer arriving at T,? , assuming that
customer who arrived at Tko, k < n, experienced the Kiefer—Wolfowitz state w.

Recall that the first entry of Wy (Tno; w), namely Wk(l) (TO; w), is the waiting time

n
of the customer arriving at T,? (given the initial condition w at Tko). More generally,
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the i-th entry of W (7,); w), namely W,gl) (T.2; w), is the virtual waiting time of the
customer arriving at Tn0 if he decides to enter service immediately after there are at
least i servers free once he reaches the head of the line. In other words, one can also
interpret Wy (Tno; w) as the vector of remaining workloads (sorted in ascending order)
that would be processed by each of the ¢ servers at Tno, if there are no more arrivals
after time T2,

We are now ready to construct the stationary version of the GI/Gl/c queue. Namely,

for each n € Z\{0} and every t € (—o0, 00), we define W (n) and Z (¢) via

W= lim W (T,?; 0) , (5)

Zn =@, RO, EM) = lim Z,(—u,z-(u),

where z_(u) = (0, 0, e(u)). We shall show in Proposition 1 that these limits are well
defined.

2.2.2 The analogue of the Kiefer—Wolfowitz process for the upper bound system

In order to complete the coupling strategy, we also describe the evolution of the
analogous Kiefer—Wolfowitz vector induced by the vacation system, which we denote
by (W, (n) : n € Z\{0}), where v stands for vacation. As with the i-th entry of the
Kiefer—Wolfowitz vector of a GI/GI/c queue, the i-th entry of W,, (n), namely WS’) (n),
is the virtual waiting time of the customer arriving at time Tn0 if he decides to enter
service immediately after there are at least i servers free once he reaches the head
of the line (assuming that servers become idle once they see, after the completion of
current activity, the customer in queue waiting in the head of the line).

To describe the Kiefer—Wolfowitz vector induced by the vacation system precisely,
let U' (¢) be the time until the next renewal after time ¢ in 77, that is U’ (t) =
inf{7, : T} > t} —t. So, for example, U° (T,?) = A, for n € Z\{0}. Let U (t) =
U @,....uc ).

We then have that

W, (n) = DY1+S (U ((T,? + D,?)_)) . (6)

In particular, note that Wlfl) (n) = Dg, i.e., the delay the customer arriving at Tn0
would experience. We next introduce a recursive way of constructing/defining the
Kiefer—Wolfowitz vector induced by the vacation system. We define

Wy (n) = W, (n) + Vye; — Ay,

and let Wlfi) (n) be the i-th entry of W, (n). Let W, (n+) denote the Kiefer—Wolfowitz
vector seen by the customer arriving at T,? ' From the definition of W, (n), we have

Wo ) =S (W )"+ &0).
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where
g0 = 1(WD (n) <0) - Ui® ((Tn0,+)_>

(i.e., ji (n) is the server whose remaining activity time immediately before Tn0 is the
i-th smallest in order).
So, (6) actually satisfies

Wy (n4) = S ((Wy (n) + Veey — A, DT +5,), (7
N\ T
where 5, = (E,El), E,EC)> )

2.2.3 Monotonicity properties

In this section, we will present several lemmas which contain useful monotonicity
properties. The proofs of the lemmas are given in Sect. 6.2 in order to quickly arrive
at the main point of this section, which is the construction of a stationary version of
the GI/GI/c queue.

First, we recall that the Kiefer—Wolfowitz vector of a GI/GIl/c queue is monotone
in the initial condition (8) and invoke a property (9) which will allow us to construct
a stationary version of the Kiefer—Wolfowitz vector of our underlying GI/GI/c queue,
using Lyons construction.

Lemmal Forn >k, k,n e Z\{0}, w" > w~,
Wi (Tno; w+) > Wy (T,?; uf). ®)
Moreover; if k < k' <n,
Wi (T,,O; 0) > Wy (Tno; 0). )
The second result allows us to make precise how the vacation system dominates

a suitable family of GI/GI/c systems, in terms of the underlying Kiefer—Wolfowitz
vectors.

Lemma 2 Forn >k, k,n € Z\{0},
0.
W, (n) > Wi (Tn W, (k)).

The next result shows that in terms of queue length processes, the vacation system
also dominates a family of GI/GI/c queues, which we shall use to construct the upper
bounds.

Lemma3 Letq = Q,(u), r =S (U (1)), and e = u — sup{TnO : Tn0 < u}, so that
7t =(q,r,e)and z7 = (0,0, ¢). Then, fort > u,
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Qu(t —u;27) = Qult —us %) < Qu(1).
Using Lemmas 1-3, we can establish the following result.

Proposition 1 The limits defining W (n) and Z (t) in (5) exist almost surely. Moreover,
we have
Wi (1,:0) < W o < Wi (105 W (). (10)

Proof Using Lemmas 1 and 2, we have that
Wo ) = Wi (15 Wo (0) = We (7,:0).

Then, by property (9) in Lemma 1, we conclude that the limit defining W (n) exists
almost surely and that
Wn) =Wy, (). (1)

Similarly, using Lemma 3, we can obtain the existence of the limit Q(¢) and we have
that Q (t) < Q, (¢). Moreover, by convergence of the Kiefer—Wolfowitz vectors, we
obtain the i-th entry of R (Tn0 +wd (n)), namely

R® (T,,O + W(l)(n)) = (w<” (n) —w® (n))+,

wherei € {1, ..., c}. Lastly, since the age process has been taken from the underlying
renewal process 79, we have that E (1) = t — sup{TnO : Tno < t}. The fact that the
limits are stationary follows directly from the limiting procedure and is standard in
Lyons-type constructions.

For (10), we use the identity W (n) = W (Tno; w (k)), combined with Lemma 1,
to obtain

Wi (72:0) = Wi (T W () = W (.

and then we apply Lemma 2, together with (11), to obtain

W) = We (10 W () = We (7, W ().

2.3 Description of simulation strategy and main result

We now describe how the variation of DCFTP that we mentioned in the Introduction,
using monotonicity of the multi-server queue, and elements (a)—(d), apply to our
setting.

Define a fixed inspection sequence {k; : j > 1} withx; < «;—1 < 0, and define
ko = 0. We start from the first inspection time TKOl (j = 1). The upper bound is
initialized using the Kiefer—Wolfowitz process associated with the vacation system
at T,(Oj. The lower bound is initialized with a null vector 0. We run the two bounding
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GI/GI/c queues forward in time using {(Tno, Vi) 1 kj <n < kj_1}. If the two processes
meet before time zero, then we can “unveil” the state of the stationary GI/GI/c queue;
otherwise, we go backward in time to the next inspection time TK0’+ LU <= J+D
and construct two new bounding GI/GI/c queues accordingly. We repeat the procedure
until the coalescence is detected.
The strategy combines the following facts (which we shall discuss in the sequel).
— Fact I We can simulate sup;-, X (—s) and (NP (=t) : t > 0);_ jointly for any
given ¢t > 0. This part, which corresponds to item (c) is executed by applying an
algorithm from [6] designed to sample the infinite horizon running time maximum
of a random walk with negative drift. We shall provide more details about this in
Sect. 4.
— Fact Il For all k < —1 and every k < n < —1, by Proposition 1, we have that

IA

Wi (7:0) = W () = Wi (75 Wa ()

This portion exploits the upper bound (a) (i.e., Wy, (k)) and the lower bound (b)
(i.e., 0).

— Fact III We can detect that coalescence occurs at some time 7' € [Tko, 0] for some
k < —1 by finding some n € Z_, n > k, such that T,) + Wk(l) (T W, (k)) <0
and

Wi (70 W (0)) = Wi (7,50).

This is precisely the coalescence detection strategy which uses monotonicity of the

Kiefer—Wolfowitz vector and the coalescence time 7 = Tn0 + ngl) (Tno; Wy (k)).
— Fact IV We can combine Facts I-III to conclude that

72 (‘T,? .0 (T,?) .S (U (T,?)) ,o) = 7(0) (12)

is stationary. We also have that

W (Tlo;o) —wQ),

which follows the stationary distribution of the Kiefer—Wolfowitz vector of a
GIl/Gl/c queue.

The main result of this paper is stated in the following theorem.

Theorem 1 Assume (Al) is in force, with A /(cu) € (0, 1). Then, Facts I-IV hold true.
We can detect coalescence at a time —T < 0 such that E (T) < oo.

The rest of the paper is dedicated to the proof of Theorem 1. We have verified
a number of monotonicity properties in Sect. 2.2.3, which in particular allow us to
conclude that the construction of W (n) and Z (¢) is legitimate (i.e., the limits exist
almost surely). The monotonicity properties also yield Fact II and pave the way to
verify Fact III. Section 3 proves the finite expectation of the coalescence time. In
Sect. 4, we provide more algorithmic details about our perfect sampling construction.
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3 Coalescence detection in finite time

In this section, we give more details about the coalescence detection scheme. The next
result corresponds to Fact III and Fact IV.

Proposition 2 Suppose that wt = W, (k) for some k < —1, and w~ = 0. If
Wi (Tno; w+) =W, (TO; w_)for somek <n < —1, then Wy, (T,g; w+) =W@m) =

n

Wi (T,S; w_)for all m > n. Moreover, for all t > Tn0 + Wk(l) (Tno; w+),

Zyo (z — 70 (QU (T,?) .S (U (T,?)) ,0)) = Zy0 (r — 10 (0,0, 0)) —Z@).
(13)

Proof The fact that
Wy (T,g; w+) —W(m) =W, (T,g; w_)

for m > n follows immediately from the recursion defining the Kiefer—Wolfowitz
vector. Now, to show the first equality in (13), it suffices to consider + = Tn0 +

Wk( b (Tno; w+), since from ¢ > Tn0 the input is exactly the same and everyone coming

after T will depart the queue and enter service after time T, + Wk(l) (Tno; w+). The
arrival processes (i.e., E, (-)) clearly agree, so we just need to verify that the queue
lengths and the residual service times agree. First, note that

b (17 (120°) 1 (0 () (0 (1) 0)

= Wi (Tno; w+) — Wk(l) (Tno; w*) -1

= Wi (Tno; w_) - W,fl) (Tno; w‘) -1

= Ryp (Tno +w (Tno; w_) — 70 (0,0, 0)) . (14)
So, the residual service times of both upper and lower bound processes agree. The

agreement of the queue lengths follows from Lemma 3. Finally, the second equality
in (13) follows from Proposition 1. m]

Next, we analyze properties of the coalescence time. Define

st z0 [zt (0. ()5 (0 1)) )
~Zp (t —10; (0, 0, 0)) HOO = 0} .

Notice that if at time 7_ we start an upper bound queue,

Zr_ (5 (Qu(T-), SWU(T-)), 0)),
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and a lower bound queue, Z7_ (-; (0, 0, 0)), they will coalesce before time 0. Thus,
if we simulate the system up to 7_, we will be able to detect a coalescence. We next
establish that E[|T_|] < oo.

By stationarity, we have that |7_| is equal in distribution to

inf 11Zo (15 (Qu(0), S(U(0)), 0)) = Zo (15 (0,0,0)lloc =0 ¢ -

0=<t<Ty

T=inf:Tkon:

Proposition 3 If E[V,] < cE[A,] for n > 1 and Assumption (Al) holds,
E[T] < oc.

Proof Define
t = inf {n >1:W (T,?; W, (1)) =W (T,?; 0)} .

By Wald’s identity, EA, < oo, for any n > 1; it suffices to show that E[7r] < oco.

We start with an outline of the proof, which involves two main components. I) We
first construct a sequence of events which lead to the occurrence of t. The events that
we construct put constraints on the interarrival times and service times so that we see
a decreasing trend on the Kiefer—Wolfowitz vectors. When putting a number of these
events together (consecutively), the waiting time of the upper bound system will drop
to zero. We further impose the events for ¢ more arrivals after the waiting time drops
to zero. Notice that these ¢ arrivals do not have to wait in both the upper bound and
the lower bound systems. Thus, by the time of c-th such arrival, the two systems will
have the same set of customers with the same remaining service times. II) Based on
events constructed in I, we then split the process { W (TnO; Wy(1)) : n > 1} into cycles
where: I1a) the probability that the desired event, which leads to coalescence, happens
during each cycle is bounded from below by a positive constant, and IIb) the expected
cycle length is bounded from above by a constant. Ila allows us to bound the number
of cycles we need to check before finding T by a geometric random variable. Then,
we apply Wald’s identity using IIb to establish an upper bound for E[z].

We next provide more details of the proof, which are divided into part I and II as
outlined above.
Part I We first construct the sequence of events, {§2; : k > 2}, which enjoys the
property that if £2; happens, the two bounding systems will have coalesced by time
of the (k + [cK /e — 1)-th arrival.

As E[V,] < cE[A,], for n > 2, we can find m, € > 0 such that for every n > 2,
the event H, = {V,, < cm — €, A, > m} is nontrivial in the sense that P (H,) > §
for some § > 0. Now, pick K > cm large enough, and define, for k > 2,

k+[cK/e]—1
=W (tw) <k} N H.

n=k
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To see the coalescence of the two bounding systems, let Wk =(K,K,...,K)I be
a c-dimensional vector with each element equal to K. We notice that, under £2y,

Wiz wi (10 W, ().

For n > k, define 17,, = cm — €, /in = m, and the (auxiliary) Kiefer—Wolfowitz
sequence

Wasr = (0 + e = A1) ).
Then, $2; implies V,, < \7,1 and A, > /in for n > k, which in turn implies
Wi (T Wy (D) < W
Moreover, under £2;, we have
W =0and W < cmforn =k + [cK/el —c+1,....k+ [cK/€].

Then, WV (T?; W, (1)) = 0 and W (T.2; W, (1)) < cm forn = k + [¢K /€] —
c+1,...,k+ [cK/e]. This indicates that under 2, (1) all the arrivals between the
(k+ [cK/e] — ¢+ 1)-th arrival and the (k + [cK /€])-th arrival (included) enter ser-
vice immediately upon arrival (have zero waiting time), and (2) the customers initially
seen by the (k + [cK /€] — ¢ 4 1)-th arrival would have left the system by the time
of the (k + [cK /€])-th arrival. The same analysis holds assuming that we replace
Wi (Tko; Wy (1)) by W (Tko; O). Therefore, by the time of the (k + [cK /€] — 1)-
th arrival, the two bounding systems would have exactly the same set of customers
with exactly the same remaining service times, which is equal to their service times
minus the time elapsed since their arrival times (since all of them start service imme-
diately upon arrival). We also notice that since there is no customer waiting, the sorted
remaining service time at TkOJr (K Je]—1 coincides with the Kiefer—Wolfowitz vector
Witek fe1-1-

Part IT We first introduce how to split the process into cycles, which are denoted as
((Ri, Kit1),i > 1}. LetUg := {w : w© < K}. We define

% := inf [n >1:W (Tno; W, (1)) c uK},
and for i > 2, define
P {n > Ry 4 [eK /€] — 1 Wi(TO; Wyo(D) € uK} .

We denote ®; = ﬂEi Hek/el=1 H, fori > 1. We next show that the event ®; happens

n=K;

during the i-th cycle with positive probability. Since P(H,) > 8, P(0;) > 8K/l »
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0. Let N denote the first i for which &; occurs. Then, N is stochastically bounded
by a geometric random variable with probability of success 8/°X/€1. In particular,
E[N] < 8K/l < o0,

We next show that E[k;1 — &;] is bounded using the standard Lyapunov argument.
Under Assumption (Al) and A < cu, {W) (T,?; w (l)) : n > 1} for any fixed initial
condition w(1) is a positive recurrent Harris chain [1]. Under Assumption (A1), we
also have that (Q,(¢) : t € (—o00, 00)) is a well-defined process with E[Q,(f)] < oo
(see the random-walk bound in (18)). Thus,

E [Z wi) (1)} < oo.

i=1

Consider the Lyapunov function g(W) = WO e, g(W) > 0and g(W) — oo as
||W]| — oo. Then, for K large enough, as A < cu, we can find § € (0,c/A — 1/un)
such that

E[g (Wi w) | = gw(1) =5 for w(1) ¢ Us. (1s)

We also have
E [g (Wl(TCOH, w(l)))] < K +¢/p forw(l) € U.

Then, by Theorem 2 in [14], E[k1] < oo and we can find a constant M > 0 such that
Elki —ki—1] < M fori > 2. We comment that here we need to look ¢ steps ahead to
identify the downward drift in (15), Thus, we use a general version of the Lyapunov
argument developed in [14].

Lastly, by Wald’s identity, we have (setting ko = 0) that

E[t] < Elkn]+ [cK/e] — 1

N
=EY (& — ki) + [cK/e] -1
i=1

< E[N]Ix M+ E[ki]+ [cK/e] =1 < oo.

O

Remark 1 Following the proof, we can also conclude that the number of “activities”
(either vacations or services) to simulate in the vacation system, denoted by Ny, is
also finite in expectation. Since coalescence is detected by the r-th arrival, we only
need to simulate the vacation system forward in time from time O until we are able to
extract the first O, (0) + 7 service time requirements to match the customers waiting
in queue at time O and the arrivals from time O to coalescence time 7.

For any m’ < oo such that E[V A m'] > 0, we let N'(1),i = 1, ..., ¢, denote the
counting process corresponding to the i-th “truncated” vacation process with inde-
pendent activity times capped by m’, i.e., V. A m’. Following a standard argument as
in the proof of Ward’s identity in [1], a loose upper bound for E[N,] is given by
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EINy] =Y E[N' (D) +1]+ E1Q.0) + 7]

i=1
<> B[N +1]+E[Q,01+Er]
i=1

E[T]+m

SC'W+E[QU(O)]+E[T]<OO~

4 Simulation procedure

In this section, we first address the validity of Fact I, namely, that we can simulate the
vacation system backward in time, jointly with {T,i m<n< —1} for0 <i < g,
foranym € Z_.

LetG,(-) = A f; G(x)dx and F(-) = u [, F (x)dx denote equilibrium CDFs of the
interarrival time and service time distributions, respectively. We first notice that sim-
ulating the stationary arrival process {TnO in < —1} and stationary service/vacation
completion process {T,{ n < —1} for each 1 < i < c is straightforward by the
reversibility of ’];,’ for 0 < i < c. Specifically, we can simulate the renewal arrival
process forward in time from time 0 with the first interarrival time following G, and
subsequent interarrival times following G. We thenset 7%, = —T forall k > 1. Like-
wise, we can also simulate the service/vacation process of server i, fori =1,...,c,
forward in time from time O with the first service/vacation initiation time following F,
and subsequent service/vacation time requirements distributed as F'. Let Ti k> 1,
denote the k-th service/vacation initiation time of server i counting forward in time.
Then, we set Tik = —T,(i.

Similarly, we have the equality in distribution, for all # > 0 (jointly),

X)L xX@;

therefore, we have from (2) that the following equality in distribution holds for all
t > 0 (jointly):

Qu(—1) L sup X (s) — X ().

s>t

The challenge in simulating Q, (—) involves sampling M (#) = max;>,{X (s)} jointly
with X (#) during any time interval of the form [0, T'] for T > 0. The rest of the section
is devoted to solve this challenge.

The idea is to identify a sequence of random times Ay such that

max {X (1)} > max {X()}.
TO<t<TX+A; 1>TO+ A

Then, M(T?) = max, . 70{X (1)} = maxgo_,_70, {X(®)}. In particular, to cal-

culate M (Tko), we only need to look at the maximum of X () over a finite time
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interval, [T, T? 4+ A]. To find such Ak, we apply two tricks here. The first trick
is to decompose X (¢) into (c + 1) random walks with negative drift associated with
Ni fori = 0,1,...,c. This is based on the fact that for A < ci, we can pick
a € (i, cp) such that NO(r) — at and ((a/c)t - Ni(t)) are “drifting downward” to
negative infinity. We can then bound M (¢) by the “corresponding” running time max-
imum of the random walks with negative drift. The second trick is a “milestone event”
construction, which allows us to identify random times beyond which a random walk
with negative drift will never go above a previously achieved level.

The “milestone events” are similar to the ladder height decomposition of a ran-
dom walk, but we cannot directly use ladder height theory because the corresponding
expressions for the probabilities of interest (for example the probability of an infinite
strictly increasing ladder epoch) are rarely computable in closed form. The “milestone
construction” introduces a parameter m which, together with change of measure ideas,
allows us to simulate without bias the occurrence of object such as the time the random
walk reaches a certain barrier, for example.

Putting these “milestone events” of the random walks together and using the fact
that M (¢) can be bounded by the appropriate running time maximums of the random
walks, we can find the desired Aj. We next provide the details of the construction.

Decomposition Choose a € (A, cu). Then, for ¢t > 0,

C Cc
. a .
X0)=N’t) =Y N @)= N°01) —at (—t—N’t).
() () ; )= (N0 "”;c (1)
We define (c + 1) random walks with negative drift associated with N (t)’s as follows:
sV =0, SV =—arl+1, SO =59 4 (—aA,_1+1)forn=2. (16)
In particular, S,(,O) = NO(T,?) — aT,?. Fori=1,...,c,
. a - . . a -
5O = 1. s = s+ (-1 n Ev,;) forn > 1. (17)
Here, S\ = N {(Ti—) — aT. Figure 2 plots the relationship between {N°(¢) — at :

t > 0} and {S,(,O) : n > 0}, and the relationship between {%’ — Ni(t) : t > 0} and
{S,(,l) :n >0} fori =1,...,c.Inparticular, we notice from Fig. 2 that

maX{NO(s) — as} = max {No(t) —at, max [S,(,O)}} < max {S,SO)} ,
s=t n>NO(1)+1

andfori=1,...,c,

a ; ; i
max {—s - N (s)} = max {S}'(zl)} <= max {Sr(Ll)} .
s>t Le n>Ni(_) n=(Ni(n-1H*
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(@ (b)
N (t)—at

0
) 8!
S)

1
S‘O) 1 : S(I)
4

7

Fig. 2 The relationship between the renewal processes and the random walks a N 0(t) — ar and Sn O p
(a/c)t — N (1) and S

We then notice that, for any given T,

M(T) = max{X(t)} = max {(No(t) —at) + Z ( t—N' (t))}

i=1

< max {No(t) _ at} n Zrlrla]{( {%t — N"(z)}

t>T
< max {S(O)} + max IS(i)] . (18)
a=NO(Ty U " §n>N’(T) p U

Milestone construction We use the “milestone events” construction to generate the
(c+1) random walks with negative drift, S, together with their running time maxima,
M,El) = maxnzk{S,(,’)}, k>0,i =0, 1,...c.This construction is introduced in [5,6],
and we shall provide a brief overview here.

Fixm > 0and L > 1suchthat P(m < M\ < (L+1)m) > Ofori =0, ..., c.The
values of m and L do not seem to have significant impact on algorithm performance,
as long as they are chosen to be small. In our numerical implementation, we choose
m=1and L =3. )

For each random walk {Sf,l) :n>0},i =0,1,...,c, weshall define a sequence of
downward and upward “milestone events,” which we denoted as @ ; and T} , respec-
tively, for j > 0 as follows:

Cb(i) =0, Té =0,

and for j > 1,

! ;=inf{nzrj_11( <o)Vl s < S(’)I—Lm},
J
T; ::inf{ni@j:Séi)>ng+m}.
J
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Notice that P(@} < 00) = 1 while P(T} < o0) < 1, as the random walks have
negative drift. In fact, under (A1), Proposition 2.1 in [6] shows P(T} =00, i.0.) =
1. We observe that when the event {T} = oo} happens, we know that the random

walk will never go above Sg? + m beyond qﬁj This important observation allows
j

us to find the running time maximum M, O particular, let @,’; . denote the first
downward milestone at or after step k, and let @ be the first downward milestone

ke
after @ o With T,;* = oo. Then, after step q)k**, the random walk S will never go
above the level S((D()) + m, and ng) +m < S(') —Lm+m < S() Therefore,
ks kxk k* k*

M(i) = maxn>k{S(i)} = max;_, g {S( )}, i.e., we just need to find the maximum

value of the random walk between step k and step ®!
explanation of the construction.
We are now ready to use the milestone events across the (¢ 4+ 1) random walks to

i igUre 3 provides a pictorial

identify A associated with each Tko (k > 1), such that N i (Tko) >1fori=1,...,c
Define
0 . ¢ (0) 0 _
Ak —IJII>11’1{(D >N (Tk>.S¢O_SNO(TkO)—m,Tj —oo}, (19)
and, fori =1,...,c,

Akzmm{<p;i>1vi(Tk°) 1089 < 5O

i_
=1 ot = ONI(T))-1 —m,T; _oo}. (20)

0
S7(L )w *
1 2 3 4 5 6 7 8 9 10 11
0 | | ] 1 | | | | | | | >
o ;
IS . . ;
-3 <* H
L . !
s ;
< |
—6 :
7 % *
-8 : o3
9 : h
‘ <

Fig. 3 This figure plots a realization of the sample path {S, 00 < n < 11}. Here, we set m = 1 and
L = 3. Then, @? =3, Tlo =4, <I>2 =171f T2 = 00, then forn > 7, S(O) will stay below the level

S§0) + m, which is demonstrated by the bold dashed line. Thus, Mé ) — max,,zz{S(O)} = S(O) by only
comparing the random walk values between step 2 and step 7
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(O (@)

In particular, the random walk {S,’ : n > 0} will never go above the level SA,. +m
. k
forn > A;,i=0,...,c. Let
— 0 i 70
Ag = max{TAg, 112?§C{TA2+1}} T, . 21

Since NY (Tko + Ak) > Ag and N"(Tk0 + Ay —1> Af( fori=1,...,c,

max ’S,(lo)} < S(Og +m and max iS,gi)} < S(i? + m.
n=NO(TQ+Ay) A n=NU(T+Ap)—1 A

Therefore,

C
max {X(1)} < max {S,(lo)} + max {S,(li)}
12T+ A n=NO(TQ+Ap) — n=NU(TQ+Ar)—1

Cc
©) (@)
<§o,+m+ S+ m
e 2 (o)
c

©) (@
= SNO(T,?) + ' SN"(T,{O)fl

i=1
¢ a

< (1) -t + 35 (40 - (1))
i=1

- X (T,?) < max {XO)
TO<t<T2+A«

Under (Al), the time it takes to find Ay using the “milestone” construction has
finite expectation (Theorem 2.2 in [6]). We shall provide the algorithmic details to
generate the random walk with negative drift together with the “milestone” events for
the light-tailed case in Sect. 4.1 to demonstrate the basic idea. The general case can
be found in [6]. We also provide the algorithm to match the service time requirements
to the customers in the vacation system between two consecutive inspection times in
Sect. 4.2. Lastly, the exact simulation algorithm of the GI/GI/c queue is summarized
in Sect. 4.3.

4.1 Simulate a random walk with negative drift jointly with “milestone” events
To demonstrate the basic idea, we work with a generic random walk with negative drift

Sp 1= Sp—1 + X, for n > 0, with Sy given. We also impose the light-tail assumption
on X,, i.e., there exist > 0 such that E[exp(6 X,)] < oo. Let
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and, for j > 1,

@ :=inf{n=71; 1 I(Xj1 <o) V&P :S, <Sp,_, —Lm},
T ::inf{nz<1>j:S,1>S<pj+m}.

We also denote 7,, = inf{n > 0: S5, > m, So = 0}. Notice that P(T; = 00) =
P(t, = 00) > 0.

Sampling @; is straightforward. We just sample the random walk, S, until S, <
Se;_; —Lm.Sampling 7; and the path conditional on 7’; < oo require more advanced
simulation techniques, as P(Y; = o0) > 0.In particular, we use the exponential tilting
idea discussed in [1]. Let ¥ x(6) = log E [exp(@X ,,)] be the log moment generating
function of X,,, then we have EX,, = ¥} (0) < Oand Var(X,) = ¢ (0) > 0. By the
convexity of ¥x(-), we can always find > 0 with ¢x (17) = 0 and ¥ (1) € (0, 00).
Hence, we can define a new measure P, based on exponential tilting so that

dp,

-n —
dP (Xn) = exp(nXy).

Under Py, S, is a random walk with positive drift ¥ (7). Thus, P, (7, < o0) = 1.
By our choice of n, we also have P(t, < 00) = E; exp(—nSy,). In implementation,
we shall generate the path §,, under P, until 7, and check whether U < exp(—nSz,),
where U is a uniform random variable independent of everything. If U < exp(—nSy,,),
we claim that 7,, < 0o and accept the path (S, : n < t,,) as the path of the random
walk conditional on t,,, < o0.

The algorithm to sample the random walk together with the milestone events goes
as follows. Throughout this paper, “sample” in the pseudocode means sampling inde-
pendently from everything that has already been sampled.

Algorithm RWS: Sample a random walk with negative drift until stopping criteria are
met

Input: L, m, {So, ..., Su}, {®Po, ..., @;}, {Yv, ..., T;} and stopping criteria H.
(Note thatn = @;if T; = oo, and n = 7 otherwise. If there is no previous simulated
partial random walk, then we initialize n = 0, j = 0, &9 = 0, 7p = 0, and Sy as
needed.)

1. While the stopping criteria H are not satisfied, set j <— j + 1.
(a) (Downward milestone simulation)
Sample {S; : n + 1 < k < @;} under the nominal measure, i.e., generate the

random walk until §,, < S¢j_1 — Lm. Update n = @;.
(b) (Upward milestone simulation)
Sample S, ..., Sy, from the tilted measure P, (-). Sample U ~ Uniform[0,1].

fU <exp (—ngfm>, set Tj = n+ T, Sprk = Sn +S‘k fork=1,..., 1y

and update n < n + 1,,; otherwise set 7; = oo.
2. Output updated {Sp, ..., Sp}, {Po, ..., ®;} and {7y, ..., 7).
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4.2 Simulate the vacation system between inspection times

To summarize our discussion above, in this section, we provide the pseudocode for
generating the vacation system between the inspection time T,g and T,2+1, forl > 0,
ko =0, and k741 < K.

Algorithm VSS: sample vacation system between TK(; and ng,p and extract corre-
sponding service times

Input: m, L, ky, k-1, {S\", ..., s,ﬁ’lﬁ)},{qbi,...,qu.i},{ri, L Tlfori=0,1,....c.

1. Apply Algorithm RWS to further sample S(? with the stopping criterion  being
no > |iq|. Then, find 7).

2. Apply Algorithm RWS to further sample S(? with the stopping criterion  being
ny = Alofql’ with A|OK,| defined in Eq. (19).

3. Fori =1,...,c, apply Algorithm RWS to further sample S*) until the stopping
criterion H being n; = Al\fql’ with Afm defined in Eq. (20).

4. Compute A, as defined in Eq. (21). Fori =0, 1, ..., ¢, apply Algorithm RWS
to further sample S with the stopping criterion  being Tni,- > T\gzl + Al

5. Construct the backward renewal processes {N'(t) : T,g — Ay <t < 0} using
{S,(f) :0<n<n;}fori =0,1,...,c. In particular, we shall set Tin = —T,f.
Then, construct X (1) = N°(1) — Y {_, N (1) for 1 € [T — A, OL.

6. Set M(T,g) = MaxXpo A, <1<70 {X (1)} and then compute QU(TK(;) = M(T,g) —
X (T,g) to be the number of people waiting in the queue at time TS' The remaining
activity times are Ui(Tlg), fori=1,...,c.

7. If QU(TK?) > 1,thenforl < j < QU(T,S) — 1, the j-th people waiting in queue

arrive at time 7° LetD; =inf{r>0:j =%, a}o (1)}, then extract
Kl

a=0Qu(TY)+]

_\¢ i 0 - . . .
VK:—QU(TK(})-H =>i, VI’\/‘.(T’((3 +Dj)le (T, + Dj) as his service time.
8. For k; < n < —1, use Eq. (3) to extract the service times V,,, ..., V_i.
9. Output

(a) service times of the people waiting in queue at time T,g (excluding the arrival
at T,S), i.e., null if QU(TK(;) = 1l and (VK]*QU(T,((;H“I’ ..., Vig—1) in the order of
arrival if Q,(T,) > 1.

(b) matched arrival times and service times [(TJQ, Vj) k< j< —1] in the
order of arrival.

(c) updated random walks {S(i),...,S,S?} with updated milestone events
{CDi,...,qﬁj.i},{Ti,...,T]?l_}fori=O,1,...,c.

4.3 Overall exact simulation procedure

In this section, we provide the overall pseudocode for our exact simulation algorithm.

Algorithm PS: sample stationary GI/GIl/c queue at time 0
Input:m, L, F, G, c
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1. Fori =0, 1,..., ¢, initiate &) = Y = 0, and S} as defined in Egs. (16, 17).
2. Setkp =0,k1 =—10,1 = 1.
3. (a) Apply Algorithm VSS to sample vacation system between T,S and T/Sq , and
extract corresponding service times.
(b) Start two GI/Gl/c queues, both from T,g, one initialized with

(e () 5(v(7)).0)

and the other initialized with 0. Evolve the two queues forward in time until
time 0 and calculate

€= min ||z (7} =75 (20 (7). 5 (v (13)).0))

0 0.
=2 (17 =13 0)]| -
4. If C = 0, output Z(0) = Zpo (|T,2|; 0). Otherwise (C > 0),setl <« [ + 1,
K/
k1 = 2k—1, then go back to Step 3.

5 Numerical experiments

As a sanity check, we have implemented our MATLAB code in the case of an Erlang
(k1, A)/Erlang(ka, 1) /c queue. We provide a detailed MATLAB implementation of
each of the algorithms required to execute Facts I-IV in the online Appendix to this
paper.

Firstly, in the context of the M/M/c queue, which is a special case of
Erlang(ky, 1) /Erlang(k>, ) /c when ki = ky = 1 and whose stationary distribu-
tion can be computed in closed form, we have compared the theoretical distribution
to the empirical distribution of the number of customers in the system at stationarity.
The empirical distribution is produced from a large number of runs using our perfect
simulation algorithm. Figure 4 shows a comparison of these distributions when A = 3,
u = 2,and ¢ = 2. Gray bars show the empirical result of 5000 draws using our perfect
simulation algorithm, and black bars show the theoretical distribution of the number
of customers in the system. The two are very close to each other. Following [9], we test
the goodness of fit using a Pearson’s chi-squared test; under the null hypothesis, the
empirical histogram converges to theoretical distribution as the sample size increases.
The test yields a p value equal to 0.6806, indicating close agreement (i.e., we can
not reject the null hypothesis). Similarly, Fig. 5 provides another comparison with a
different set of parameters, A = 10, u = 2, ¢ = 10, with a p value being 0.6454 from
the chi-squared test.

Also, for a general Erlang(ky, A)/Erlang(k;, i)/c queue (k; > 1,k; > 1) when
p = (AMky) / (cAzky) = 0.9, we have compared the empirical distribution obtained
from simulation with the numerical results (with precision at least 10~%) provided in
Table III of [17]. Figure 6 shows the comparison for an E3/E>/5 queue with p = 0.9.
We observe that the two histograms are very close to each other. A Pearson’s chi-
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Number of Customers for an M/M/c queue in equilibrium with lambda = 3, mu = 2, ¢ = 2 (5000 draws)
T T T T T T T
[ Perfect Simulation
I Theoretical
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Fig. 4 Number of customers for an M/M/c queue in stationarity when A =3, u =2, and ¢ = 2

Number of Customers for an M/M/c queue in equilibrium with lambda = 10, mu = 2, ¢ = 10 (5000 draws)
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Fig. 5 Number of customers for an M/M/c queue in stationarity when A = 10, u = 2, and ¢ = 10

squared test between the simulated distribution and the numerical one gives a p value
of 0.6815.

Next, we run numerical experiments in the M/M/c case to see how the running
time of our algorithm, measured by mean coalescence time of two bounding systems,
scales as the number of servers grows and the traffic intensity p changes. Starting
from time 0, the upper bound queue has its queue length sampled from the theoretical
distribution of an M/M/c vacation system and all servers busy with remaining service
times drawn from the equilibrium distribution of the service/vacation time; and the
lower bound queue is empty. Then, we run both the upper bound and lower bound
queues forward in time with the same stream of arrival times and service requirements
until they coalesce. Table 1 shows the estimated average coalescence time, E[T],
based on 5000 iid samples, for different system scales in the quality-driven regime
(QD). We observe that E[T] does not increase much as the system scale parameter,
s, grows. Table 2 shows similar results for the quality-and-efficiency-driven operating
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Number of Customers for an E3/E2/5 queue in equilibrium with rho=0.9 (5000 draws)
T T T T T T T
[ Perfect Simulation
n I Numerical Table
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Fig. 6 Number of customers for an Erlang(ky, A)/Erlang(kp, i) /c queue in stationarity when k1 = 3,
r=45ky=2,0=2/3,c=5,and p =0.9

Table 1 Simulation result for

coalescence time of M/M/c Mean 95% confidence interval
queue QD:As =s,¢5 =125, u=1)

100 6.4212 [6.2902, 6.5522]

500 7.0641 [6.9848, 7.1434]

1000 7.7465 [7.6667, 7.8263]
zgéﬁli:enii:lltliliiti(?; AI;I‘ZSMU}Z for Mean 95% confidence interval
queue (QED: Ay =s,cs =5 +2/s, u=1)

100 6.5074 [6.3771, 6.6377]

500 8.5896 [8.4361, 8.7431]

1000 9.4723 [9.3041, 9.6405]

regime (QED). In this case, E[T] increases at a faster rate with s than the QD case,
but the magnitude of increment is still not significant.

Finally, we run a numerical experiment in the M/M/c case aiming to test how com-
putational complexity of our algorithm changes with traffic intensity, p = A/cu. Here,
we define the computational complexity as the total number of renewals (including
arrivals and services/vacations) the algorithm samples in total to find the coalescence
time. We expect the complexity to scale like (¢ + 1)(1 — p)_zE[T(,o)], where (¢ + 1)
is the number of renewal processes we need to simulate, (1 — p) 2 is on average the
amount of renewals we need to sample to find its running time maximum for each
renewal process, and E[T (p)] is the mean coalescence time when the traffic intensity
is p. Table 3 summarizes our numeral results, based on 5000 independent runs of the
algorithm for each p. We run the coalescence check at 10 x 2% fork = 1,2, ..., until
we find the coalescence. We observe that as p increases, the computational complexity
increases significantly, but when multiplied by (1 — p)?, the resulting products are of
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Table 3 Simulation result for computational complexities with varying traffic intensities

A Traffic intensity Mean number of Mean index of suc- Mean number of
(p) renewals sampled cessful inspection renewals sampled
time x (1 — p)2

M/M/c queue with fixed u = 5and ¢ =2

5 0.5 225.6670 11.7780 56.4168
6 0.6 377.0050 14.7780 60.3208
7 0.7 764.3714 21.9800 68.7934
8 0.8 2181.3452 44.2320 87.2538
9 0.9 12,162.6158 161.0840 121.6262
Fig. 7 Matching procedure of Queue length
service times to arrival process atarrival
2
3
2
4. 1
2

Arrivals

about the same magnitude—up to a factor proportional to A, given that the number
of arrivals scales as A per unit time. Therefore, the main scaling parameter for the
complexity here is (1 — p)~2. Notice that if we simulate the system forward in time
from empty, it also took around O ((1 — p)’z) arrivals to get close to stationary.

6 Proof of technical results

6.1 The iid property of the coupled service times and independence of the
arrival process

In order to explain why the V,, form an iid sequence, independent of the sequence

T = {TnO : n € Z\{0}}, it is useful to keep in mind the diagram depicted in Fig. 7,
which illustrates a case involving two servers, ¢ = 2.
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The assignment of the service times, as we shall explain, can be thought of as a
procedure similar to a Tetris game. Arrival times are depicted by dotted horizontal
lines which go from left to right, starting at the left most vertical line, which is labeled
“Arrivals.” Think of the time line going, vertically, from the bottom of the graph (past)
to the top of the graph (future).

In the right-most column in Fig. 7, we indicate the queue length, right at the time
of a depicted arrival (and thus, including the arrival itself). So, for example, the first
arrival depicted in Fig. 7 observes one customer waiting and thus, including the arrival
himself, there are two customers waiting in queue.

The Tetris configuration observed by an arrival at time 7 is comprised of two parts:
(i) the receding horizon, which corresponds to the remaining incomplete blocks, and
(ii) the landscape, comprised of the configuration of complete blocks. So, for example,
the first arrival in Fig. 7 observes a receding horizon corresponding to the two white
remaining blocks, which start from the dotted line at the bottom. The landscape can be
parameterized by a sequence of block sizes, and the order of the sequence is given by
the way in which the complete blocks appear from bottom to top—this is precisely the
Tetris-game assignment. There are no ties because of the continuous time stationarity
and independence of the underlying renewal processes. The colors are, for the moment,
not part of the landscape. We will explain the meaning of the colors momentarily.

The assignment of the service times is done as follows: The arriving customer
reads off the right-most column (with heading “Queue length at arrival”) and selects
the block size labeled precisely with the number indicated by the “Queue length at
arrival.” So, there are two distinctive quantities to keep in mind assigned to each
player (i.e., arriving customer): (a) the landscape (or landscape sequence, which, as
indicated, can be used to reconstruct the landscape), and (b) the service time, which
is the complete block size occupying the “Queue length at arrival”-th position in the
landscape sequence.

The color code in Fig. 7 simply illustrates quantity b) for each of the arrivals.
So, for example, the first arrival, who reads “Queue length at arrival = 2” (which
we have written in green color), gets assigned the second complete block, which we
have depicted in green. Similarly, the second arrival depicted reads off the number
“1” (written in red) and gets assigned the first red block depicted (from bottom to
top). The very first complete block (from bottom to top), which is depicted in black,
corresponds to the service time assigned to the customer ahead of the customer who
collected the green block. The number “1” (in red) is obtained by observing that the
customer with the initial black block has departed.

Now we argue the following properties:

(1) The service times are iid copies of V.
(2) The service times are independent of 7° 0,

About property (1): The player arriving at time 7 reads a number, correspond-
ing to the queue length, which is obtained by the past filtration Fr generated by
UkeZ\{O},Ofifc{Tki : Tki < T}. Conditional on the receding horizon (i.e., remaining
incomplete block sizes), Rr, the past filtration is independent of the landscape. This is
simply the Markov property applied to the forward residual lifetime process of each of
the ¢ renewal processes represented by the ¢ middle columns. Moreover, conditional
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on R, each landscape forms a sequence of iid copies of V because of the structure
of the underlying ¢ renewal processes corresponding to the middle columns. So, let
Q (T) denote the queue length at time 7" (including the arrival at time 7'), which is
a function of the past filtration, and let {L7 (k) : k > 1} be the landscape sequence
observed at time 7', so that L7 (Q (T)) is the service time of the customer who arrives
at time 7. We then have that, for any positive and bounded continuous function f (-),

ELf (LT (Q (M) |Rr] = ELf (LT (1)) [Rr] = ELf (V)],

precisely because, conditional on Ry, Q (T) (being F7 measurable) is independent
of {L7(k):k > 1}.

To verify the iid property, let f1, f2 be non-negative and bounded continuous func-
tions. Assume that 7; < T» are arrival times in 7° (not necessarily consecutive).
Then,

E[fi (L1, (Q(T1)) f2 (L1, (Q (T2)))]

E[E[fi (L7, (Q(T1)) f2 (L7, (Q (T2)) | Fpy. Ry ]
E[fi (L1, (Q (1)) E [ f2 (L1, (Q (T2)) | Fr,. Ry ]|
E[fi(Ly, (Q (TON] ELA(V)] = E[LAAV)IELf2(V)].

The same argument extends to any subset of arrival times, and thus the iid property
follows.

About property (2): Note that in the calculations involving property (1), the actual
values of the arrival times 7', T, and 7> are irrelevant. The iid property of the service
times is established path-by-path conditional on the observed realization 7°. Thus,
the independence of the arrival process and service times follows immediately.

6.2 Proof of technical lemmas of monotonicity

Proof of Lemma 1 Both facts are standard; the first one can be easily shown using
induction. Specifically, we first notice that Wy (T); w*) = w* > w™ = Wi (T w™).
Suppose that Wk(TnO; wt) > Wk(TnO; w™) for some n > k, then

Wk (Tn0’+§ w+) =S <<Wk (T;?’ w+> + V,e1 — An1)+>
> 8 ((Wk (703 w7) + Vaer - Anl)+> = Wi (19 w7).

For inequality (9), we note that Wy (Tkg; 0) > Wy (Tko,; 0) = 0, and therefore, due to
(8), we have that

Wi (7:.0) = Wer (T2 Wi (Ti: 0)) = War (7,:.0).

O
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Proof of Lemma 2 This fact follows immediately by induction from Eqgs. (4) and (7)
using the fact that =, > 0. O

Proof of Lemma 3 We first prove the inequality Q, (t — u; z7) < Q,(t). Note that
U' (u) > 0 for all u (the forward residual lifetime process is right continuous), so
the initial condition r indicates that all the servers are busy (operating) and the initial
q > 0 customers will leave the queue (i.e., enter service) at the same time as those in
the vacation system under the evolution of Z, (-; z*). Now, let us write N = inf{n :
T,? > u} (in words, the next arriving customer at or after u arrives at time T18)~ It is
easy to see that S (U (Tjg)) > Ru(TY — u; z%); to wit, if T occurs before any of
the servers becomes idle, then we have equality, and if T18 occurs after, say, [ > 1
servers become idle, then RM(TIS — u; z7) will have [ zeroes and the bottom ¢ — [
entries will coincide with those of S (U (TI(\),)) which has strictly positive entries.
So, if wy is the Kiefer—Wolfowitz vector observed by the customer arriving at T]8
(induced by Q, (- — u; z*)), then we have W, (N) > wy. By monotonicity of the
Kiefer—Wolfowitz vector in the initial condition and because of Lemma 2, we have

Wo (k) = Wy (T3 Wo (V) = Wiy (T3 ).

for all k > N, and hence, Tk0 + D,? > Tk0 + Wji,l ) (Tko; w N). Therefore, the departure
time from the queue (i.e., initiation of service) of the customer arriving at Tk0 in
the vacation system occurs no earlier than the departure time from the queue of the
customer arriving at time Tko in the GI/GIl/c queue. Consequently, we conclude that
the set of customers waiting in the queue in the GI/GI/c system at time 7 is a subset
of the set of customers waiting in the queue in the vacation system at the same time.
Similarly, we consider Q,,(t — u; z~) < Q,(t — u; z), which is easier to establish,
since, for k > N (with the earlier definition of TI(\), and wy),

Wy (15 wy ) = W (7:0).

So the set of customers waiting in the queue in the lower bound GI/GI/c system at time
t is a subset of the set of customers waiting in the queue in the upper bound GI/GI/c
system at the same time. O
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Appendix: A list of selected notation

Notation

Meaning

Ap i n € Z\{0}
DY n e Z\{0}

Ey(t;2):t>0

i(n):n e Z\{0}

M@):t>0
NO(@t):1>0
NO(r)
Ni@t):t>0
N (1)
Ou(t:z):t>0
Qv(®)
Ry(t;2):t>0

(59 > 0)
(890 > 0)
79 : n e Z\{0}
0.

2% n e Z\(0}

27 e Z\(0}
T} :n € Z\[0})

Tyt in e 2\{0)
Ty~ in = 7)\(0)
v

Ui

U(r)

Vi 1 n € Z\{0}
Vi:n e Z\(0)
W(n) : n € Z\{0}

Wi <Tno; w): n > k and
n, k € Z\{0}

Wy(n) : n € Z\{0}

Wy (n+) : n € Z\{0}

X (1)

Interarrival time between the arrivals at T, and T,?”L (Sect. 2.1)

Waiting time of the customer arriving at T,,0 in the vacation system
(Sect. 2.1.2)

Time elapsed since previous arrival at time u + ¢ when the time elapsed
since previous arrival at time u is the corresponding subvector of z, i.e., e
(Sect. 2.2.1)

Label of the server who serves the customer arriving at T (Sect. 2.1.2)

Running time maximum of process {X (s) : s > ¢} (Sect. 4)

Number of arrivals during [u, u + ] (Sect. 2.1)

Number of arrivals during [0, #] if # > O orin [z, 0] if # < O (Sect. 2.1)

Number of activities initiated by server i during [u, u + ] (Sect. 2.1)

Number of activities initiated by server i during [0, ¢]if # > 0 or [z, 0] if
t < 0 (Sect. 2.1)

Number of people waiting in queue at time u + ¢ of a GI/GI/c queue that
starts at time u and is initialized with z (Sect. 2.2.1)

Number of people waiting in queue in stationary vacation system at time ¢
(Sect. 2.1.1)

Ordered (non-decreasing) remaining service times of all ¢ servers at time
u + t of a GI/GIl/c queue that starts at time « and is initialized with z
(Sect. 2.2.1)

Random walk with negative drift associated with the arrival renewal
process (Sect. 4)

Random walk with negative drift associated with the activity renewal
process of server i (Sect. 4)

n-th ((—n)-th) arrival time counting forward (backward) in time from time
0 (Sect. 2.1)

Next arrival time after T,? (Sect. 2.1)

Previous arrival time before T,? (Sect. 2.1)

n-th ((—n)-th) activity initiation time of server i counting forward
(backward) in time from time O (Sect. 2.1)

Next activity initiation time of server i after T,f (Sect. 2.1)

Previous activity initiation time of server i before T,f (Sect. 2.1)

Time until next arrival from time ¢ (Sect. 2.2.2)

Time until next activity initiated by server i from time ¢ (Sect. 2.2.2)

c-dimensional vector (U1 ),...,U" (t))T (Sect. 2.2.2)

Service time of the customer who arrives at Tno (Sect. 2.1.1)

Length of the activity of server i that is initiated at T,f (Sect. 2.1)

Kiefer—Wolfowitz workload vector at time T,0 of a stationary GI/Gl/c
queue (Sect. 2.2.1)

Kiefer—Wolfowitz workload vector at time T,? of a GI/Gl/c queue which
has its workload vector at time Tk0 being w (Sect. 2.2.1)

Analog Kiefer—Wolfowitz workload vector at time T,? of the stationary
vacation system (Sect. 2.2.2)

Analog Kiefer—Wolfowitz workload vector at time T,? " of the stationary
vacation system (Sect. 2.2.2)
Xo(t)ift > 0or X;(—t)ift <O (Sect. 2.1.1)
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Notation Meaning
Xu(@):t>=0 NS(I)—Zle N;;(t) (Sect. 2.1.1)
Z(t) State vector of a stationary GI/GI/c queue at time ¢
Zy(t;2):t>0 State vector at time u + ¢ of a GI/GI/c queue that starts at time « and is
initialized with z (Sect. 2.2.1)

ol(t):t=>0 Number of service initiations by server i during [u, u 4 t] (Sect. 2.1.2)
q)’/: 1j>0,0<i<c Jj-th downward “milestone” of random walk {S,(,') :n > 0} (Sect. 4)
T} 1j>0,0<i<c Jj-th upward “milestone” of random walk {5,5") :n > 0} (Sect. 4)
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