
  

  

Abstract— Wearable body sensor network (BSN) is widely 
used in daily monitoring, well-being management, and 
rehabilitation. Energy efficiency imposes a stringent constraint 
in wearable BSN, in which wireless transmission is significantly 
power-demanding. Compressed sensing (CS) provides a good 
solution to reduce power consumption for data transmission due 
to the sparsity of signals which can use limited transmitted data 
to reconstruct original signals. In this study, we develop a new 
method for non-sparse ECG signal compression by leveraging 
empirical mode decomposition (EMD) and online dictionary for 
wearable devices. Comparing to the state-of-the-art of ECG 
compression which can achieve the compression ratio (CR) of 
around 25 with the root mean square error (RMSE) around 5%, 
our method can achieve the CR up to 60 with the same level of 
RMSE for wearable ECG. In addition, our method also has low 
computational complexity, which can achieve lower compression 
energy. The validation experiments are conducted on both 
clinical data and wearable ECG detected by our BSN in noisy 
environment. The proposed method shows high feasibility for 
real CS on board to achieve ultra-low power consumption. 
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I. INTRODUCTION 

Body sensor network emerges increasingly in the recent 
decades, which enables the pervasive healthcare by 
performing continuous human wellness monitoring and 
diagnosis using various wearable sensors. The collected 
biosignals from these wearable sensors, such as 
electrocardiogram (ECG), heart or respiratory rates (RESP), 
and photoplethysmographic (PPG), can be used for disease 
diagnosis, well-being management, as well as elderly care [1]. 
To make wearable sensors flexible and minimize the impact 
on daily life, the collected signals can be transmitted 
wirelessly. Therefore, low-power consumption becomes a 
major challenge in continuous biosignal collection with 
limited battery life. For sensor nodes, most of the energy is 
consumed on wireless data transmission.  
     Biosignal compression has been investigated historically 
and is recently attracting more and more attention on low-
power data transmission in wearable devices. A number of 
compression algorithms for ECG compression have been 
proposed and recently reviewed in 2017 by [2]. Generally, 
ECG compression can be classified into three categories, 
namely, direct method which generally compresses signals by 
discarding unnecessary samples directly [3], [4], transform 

 
 

method which transforms original signal into other domains 
and select a part of transforming parameters to transmit such 
as discrete cosine transform (DCT) [5] and discrete wavelet 
transform (DWT) [6], and parameter extraction method which 
extract dominant features that can be used for signal 
reconstruction such as neural networks [7] and  Conmpressed 
sensing (CS) [13].  

In this work, we propose a new method for non-sparse 
wearable ECG compression by leveraging EMD to construct a 
new online dictionary composed of Intrinsic Mode Functions 
(IMF). Unlike other decomposition methods such as Fourier, 
wavelet, and polynomial that use predefined analytical basis, 
EMD explores the self-similarities and leverages the inherent 
property of signals for decomposition, which significantly 
reduces the necessary transforming parameters for 
reconstructing ECG and achieves very high CR up to 60 with 
RMSE around 5%, which is higher than the state-of-the-art of 
different methods of ECG compression with CR of 25-35 [2]. 
In addition, no peak identification step is required during ECG 
compression, and thus the computation complexity is 
relatively low. 

This paper is organized as follows: Section 2 introduces the 
proposed method of ECG compression. Section 3 presents the 
experiments and results for both clinical data and wearable 
ECG in noisy environment. A summary of work is given in 
Section 4. 

II. ECG COMPRESSION BASED ON EMD 

A. Proposed ECG Signal Compression Framework 
      The proposed ECG signal compression framework 
includes three phases, online dictionary construction, ECG 
compression, and recovering after wireless transmission, as 
shown in Fig. 1. In Phase 1, a two-layer dictionary is 
constructed as shown in Fig. 2. In the dictionary, the first layer 
is a series of subsequent N samples length ECG frames using 
N moving windows extracted from one heartbeat period. The 
second layer stores the IMFs decomposed from the ECG 
frames in the first layer using EMD, which contains the M  
IMFs of each ECG frame. These IMFs are self-similarities 
leveraging the inherent property of ECG signals for 
decomposition, which is different from existing bases. 
Subsequently, in Phase 3 the ECG signals received at the 
gateway node are reconstructed by these IMFs. 

Phase 2 is the compression stage. In order to compress and 
recover an arbitrary N-length input ECG frame, the input ECG 
framework needs to identify a matching ECG frame in the 
dictionary with extracted features. That is, the location of QRS 
complexes in both the input ECG frame and the matching ECG 
framework needs to be close enough. Subsequently, the input 
ECG frame is represented by the linear combination of the 
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IMFs from the matching ECG frame. The coefficients of the 
M IMFs with the index of the matching ECG frame, which is 
M+1 number of data, will be used for reconstruction. The N 
samples length input ECG is then compressed to M+1 data 
points for wireless transmission (M<<N). The pre-computed 
IMF bases are pre-stored without computational cost. In 
addition, according to the health condition of subjects, the IMF 
bases can be dynamically updated by updating new ECG 
frames computed in the gateway node after a certain time 
period and transmitting the IMF bases back to the sensor 
nodes. 

The following of this paper presents the detailed process 
for the proposed ECG compression framework. The 
performance for both clinical data from MIT-BIH arrhythmia 
databases [9] and wearable ECG detected by our BSN [14] are 
used for validation in Section 3. 
B. ECG Decomposition and Dictionary Construction 

In ECG compression, the periodicity of ECG signals is 
often used as features to search compression window, in which 
peak identification and searching often take place at the 
beginning. The compression process generally requires 
normalization of segments between peaks to a fixed size. 
However, as the recurrent heartbeat period is unnecessarily the 
same size, additional process such as length normalization is 
then needed, which induces more computation cost. In our 
study, the morphology features of each equal-size subsequent 
frames during heartbeat period are stored in the feature 
dictionary; then any segment of ECG signals which have 
arbitrary morphology can be represented using the feature 
dictionary without considering the segment locations.  

We propose to extract the morphology feature of ECG 
signals using EMD which is able to decompose a signal into a 
finite number of IMFs. The number of extrema and zero-
crossings in an IMF differs at most by one. By decomposing 
signals into IMFs, the nonlinearity of signal can be represented 

by its own self-similar IMFs. The algorithm is as Algorithm 1 
[10]. Figure 3 shows the EMD applied on different frames with 
size longer than the heartbeat duration. With these IMFs, the 
training ECG frame in the dictionary can be recovered by 
simply linear combination of all the IMFs; whereas the input 
ECG frames which have matching signal morphology with the 
training frame can be recovered by solving  
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where Y  is the input ECG frame, iα is the coefficient of the 
ith IMF from the training ECG frame, M is the total number 
of IMFs. Therefore, the input ECG frame can be represented 
by 
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where R  is the error of the reconstruction of ECG frame.  
Figure 4 displays the reconstruction of typical ECG frames 
with the training ECG frames which have matching 
morphology.  

As mentioned previously, the training ECG frames in the 
dictionary should be extracted from one heartbeat period of 
ECG time series. The reasons are that the size of interval 
between two peaks is unnecessary equal and multiple peaks in 
one frame should be avoided. Thus, it requires a proper frame 
size selection. In our study, a single beat based ECG frame size 
is selected, which covers one period of ECG in a single 
heartbeat and avoids two peaks of ECG in one frame. For 
example, the sampling rate of the selected ECG data is 360 Hz, 
and one heartbeat ECG typically lasts less than 1 s. Therefore, 
ECG frame size of 300 samples is selected for covering the 
features of a single heartbeat. The dictionary is constructed by 
extracting a series of subsequent N (for this case N=300) ECG 
frames from the one beat ECG time series for the first layer, 

 
Fig. 1   Proposed ECG compression diagram with IMF constructed dictionary basis based on EMD 

  
  Fig. 2   The architecture of ECG frame feature dictionary 

Algorithm 1: Decompose signal into IMFs 
a) Identify all extrema of ( )x t ; 
b) Interpolate the local maxima to form an upper envelop ( )u x ; 
c) Interpolate the local minima to form an upper envelop ( )l x ; 
d) Calculate the mean envelope ( ) ( ) ( )( ) / 2m t u x l x= + . 
e) Extract the mean from the signal and obtain 

( ) ( ) ( )h t x t m t= − . 
f) Check whether ( )h t satisfies the IMF property. If ( )h t  is an 
IMF, iterate all the above steps on the residue 

( ) ( ) ( )r t x t h t= − . Otherwise, keep iteration on ( )h t . 

 



  

and then performing EMD on each frame to obtain the IMFs 
for each ECG frame. The number of IMFs M is empirically 
selected according to ECG signals, as the EMD results in finite 
number of IMFs. Typically, more IMFs used for 
reconstruction will result in less error in the reconstruction and 
obviously more computation and energy consumption.  
C. ECG Frame Matching and Compression 

The ECG signal is intercepted with a fixed size, which is 
the size of the training ECG frame, to form the input ECG 
frame. The first step for compressing the input ECG frame is 
called ECG frame matching which refers to finding the similar 
training ECG frame in the first layer of dictionary which has 
similar signal morphology with the input ECG frame.                     
For minimizing the computation, finding the maximum dot 
product of input ECG frame with training ECG frame is used 
for the ECG frame matching process.  

After finding the matched training ECG frame, the index 
of it is obtained. The corresponding IMFs are used for 
compressing the input ECG frame which is compressed to the 
coefficients of IMFs by solving Eq. (1). This equation is a 
typical underdetermined system, which can be solved using 
least squares method. The coefficients are obtained by Eq. (3): 

1( )T TIMF IMF IMF Yα −=       (3) 
where 1 2{ , ,..., }Mα α α α= ,  1 2{ , ,..., }MIMF IMF IMF IMF= , 
Y  is the input ECG frame. With Eq. (3), the computation 
complexity is extensively reduced compared to other 
compression methods which require more complicated 
process for signal compression. On the other hand, the data 
need to be transmitted wirelessly only includes the coefficients 

and the training ECG frame index which is only M+1 
numbers.  

D. ECG Reconstruction 
The ECG reconstruction will be performed on the receiver. 

First, the matching ECG frame is identified by the received 
index. Subsequently, the recovered ECG frame 'Y is the linear 
combination of the corresponding IMFs under the matching 
ECG frame with the respective received coefficients as 
following: 
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Finally, the input ECG signal can be reconstructed frame 
by frame using the above proposed method. Figure 4 shows 
the recovered ECG. In Fig. 4, the QRS complexes of all three 
ECG frames locate approximately at the same point in the 
frame and they can be recovered by the IMFs from training 
ECG frame with acceptable error.  

III. EXPERIMENT AND RESULTS 
    The proposed method is validated through clinical data 
from MIT-BIH arrhythmia database [9] and wearable ECG by 
our wearable sensor in practical environment [14]. Typical 
ECG signals as well as baseline wander and motion artifacts 
are all considered in the ECG recordings for performance 
evaluation of the proposed ECG compression method.  
A. Performance Metric 

The performance can be represented by two parameters 
which are CR and RMSE. The CR parameter refers to the ratio 
of the original signal bits and the necessarily transmitted 
compressed signal bits as Eq. (5), 

o

c

N
CR

N
=         (5)  

where oN  denotes the number of original signal bits, cN  is 
the number of compressed signal bits. For the recover fidelity 
parameter, a typical metrics is the percentage root mean 
square difference (PRD) as Eq. (6): 
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|| ||
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where Y  is the input ECG signal, 'Y  is the reconstructed 
ECG signal. In our work, the mean value of the original signal 
impacts the actual performance as the reconstruction is based 
on the morphology feature extraction, which may be masked 
by metric of PRD [2]. As pointed in [2], another metric of 
RMSE can easily gauge the error against the signal’s range. 
The RMSE can be computed as: 
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where 2p p  is the average peak-to-peak amplitude of ECG 
signal,  iy  and 'iy  are the ith samples in original ECG signal 
and reconstructed ECG signal, respectively, and L is the 
length of ECG signal.  
B. Clinical Results 

For the MIT-BHI ECG data, the fix size of frame is 300, 

     
Fig. 3  EMD on different frames of ECG signal. 

 
(a)                                   (b) 

Fig. 4  (a) The training ECG frame and input ECG frame 1 and 2 
with similar morphology. (b) Recovered input ECG frame 1 and 

2 using IMFs from EMD on the training ECG frame. 



  

and length of ECG signal is 1115 seconds. The number of 
IMF selected can be used to vary the CR. In our experiment, 
M=7 IMFs are selected as the feature basis and N=300 ECG 
frames are extracted to cover the whole one beat ECG signal. 
This will require a memory size of 720 kB. The training ECG 
frames are created from the first ECG QRS complex of the 
whole ECG signal. Figure 5 shows the complete reconstructed 
signal and the original signal, from which the motion artifacts 
are also contained in the recovered signals. For the QRS 
complex, Figure 6 shows the ECG signal morphology 
recovering, in which the baseline wander can also be 
reconstructed.  

Table 1 compares the performance with other dictionary 
based ECG compression method. Our proposed method 
achieves the CR up to 42.8 while has similar average RMSE 
of 4.82%. Since the ECG frame size and IMF number are 
fixed, the CR is also fixed. If the frame size is greater, the CR 
can also be improved.    

C. Wearable Sensor Results 
The wearable ECG compression is based on our previous 

wearable ECG sensor [14]. The length of ECG signal is 30 
seconds with 300 Hz sampling rate. Since the ECG signal 
from wearable sensor has less IMFs than the clinic data, only 
M=4 IMFs are selected as the feature basis. The fix frame size 
is 300 and N=318 ECG frames are extracted to include the 
one beat ECG feature. Figure 7 shows the reconstructed signal 
of wearable ECG with the CR of 60 and the RMSE of 5.67%. 

The CR is increased with fewer IMFs. However, the 
dictionary size is larger than other methods, which means 
more memory is required on wearable devices to store the 
feature dictionary.  

IV. CONCLUSION  
In this paper, we proposed a new ECG signal compression 

method based on EMD constructed dictionary bases. The 
results show that it can achieve the CR of at least 42.8 for 
clinical ECG and 60 for wearable sensor compared to the state-
of-the-art (CR of around 25 with RMSE around 5%). The 
future work seeks to reduce the size of the dictionary and the 
reconstruction error. 
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Fig. 5   Clinial ECG of Record 117. (a) Original raw signal; (b) 
reconstructed signal with CR of 42.8. 
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Fig. 6   Clinical ECG. (a) Original ECG signal; (b) reconstructed 
signal with CR of 42.8. 
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Fig. 7   Wearable heartbeat by our wearable HR sensor. (a) Original 
heartbeat signal detected by the system; (b) Reconstructed signal 
with CR of 60. 
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            TABLE I   RESULTS OF ECG COMPRESSIONPERFORMANCE 
Methods ECG record 

No. 
CR RMSE 

Proposed #101 42.8 4.83% 
Proposed #102 42.8 3.54% 
Proposed #103 42.8 5.33% 
Proposed #111 42.8 4.14% 
Proposed #112 42.8 5.43% 
Proposed #113 42.8 7.60% 
Proposed #117 42.8 2.88% 
Proposed Average 42.8 4.82% 
      [2] Average 27.50 5.00% 
     [11] Average 25.64 5.50% 
     [12] Average 13.79 4.20% 
 


