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Abstract— Wearable body sensor network (BSN) is widely
used in daily monitoring, well-being management, and
rehabilitation. Energy efficiency imposes a stringent constraint
in wearable BSN, in which wireless transmission is significantly
power-demanding. Compressed sensing (CS) provides a good
solution to reduce power consumption for data transmission due
to the sparsity of signals which can use limited transmitted data
to reconstruct original signals. In this study, we develop a new
method for non-sparse ECG signal compression by leveraging
empirical mode decomposition (EMD) and online dictionary for
wearable devices. Comparing to the state-of-the-art of ECG
compression which can achieve the compression ratio (CR) of
around 25 with the root mean square error (RMSE) around 5%,
our method can achieve the CR up to 60 with the same level of
RMSE for wearable ECG. In addition, our method also has low
computational complexity, which can achieve lower compression
energy. The validation experiments are conducted on both
clinical data and wearable ECG detected by our BSN in noisy
environment. The proposed method shows high feasibility for
real CS on board to achieve ultra-low power consumption.

Keywords—Compressed sensing; wearable device; empirical
mode decomposition; body sensor network

I. INTRODUCTION

Body sensor network emerges increasingly in the recent
decades, which enables the pervasive healthcare by
performing continuous human wellness monitoring and
diagnosis using various wearable sensors. The collected
biosignals from these wearable sensors, such as
electrocardiogram (ECG), heart or respiratory rates (RESP),
and photoplethysmographic (PPG), can be used for disease
diagnosis, well-being management, as well as elderly care [1].
To make wearable sensors flexible and minimize the impact
on daily life, the collected signals can be transmitted
wirelessly. Therefore, low-power consumption becomes a
major challenge in continuous biosignal collection with
limited battery life. For sensor nodes, most of the energy is
consumed on wireless data transmission.

Biosignal compression has been investigated historically
and is recently attracting more and more attention on low-
power data transmission in wearable devices. A number of
compression algorithms for ECG compression have been
proposed and recently reviewed in 2017 by [2]. Generally,
ECG compression can be classified into three categories,
namely, direct method which generally compresses signals by
discarding unnecessary samples directly [3], [4], transform
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method which transforms original signal into other domains
and select a part of transforming parameters to transmit such
as discrete cosine transform (DCT) [5] and discrete wavelet
transform (DWT) [6], and parameter extraction method which
extract dominant features that can be used for signal
reconstruction such as neural networks [7] and Conmpressed
sensing (CS) [13].

In this work, we propose a new method for non-sparse
wearable ECG compression by leveraging EMD to construct a
new online dictionary composed of Intrinsic Mode Functions
(IMF). Unlike other decomposition methods such as Fourier,
wavelet, and polynomial that use predefined analytical basis,
EMD explores the self-similarities and leverages the inherent
property of signals for decomposition, which significantly
reduces the necessary transforming parameters for
reconstructing ECG and achieves very high CR up to 60 with
RMSE around 5%, which is higher than the state-of-the-art of
different methods of ECG compression with CR of 25-35 [2].
In addition, no peak identification step is required during ECG
compression, and thus the computation complexity is
relatively low.

This paper is organized as follows: Section 2 introduces the
proposed method of ECG compression. Section 3 presents the
experiments and results for both clinical data and wearable
ECG in noisy environment. A summary of work is given in
Section 4.

II. ECG COMPRESSION BASED ON EMD

A. Proposed ECG Signal Compression Framework

The proposed ECG signal compression framework
includes three phases, online dictionary construction, ECG
compression, and recovering after wireless transmission, as
shown in Fig. 1. In Phase 1, a two-layer dictionary is
constructed as shown in Fig. 2. In the dictionary, the first layer
is a series of subsequent N samples length ECG frames using
N moving windows extracted from one heartbeat period. The
second layer stores the IMFs decomposed from the ECG
frames in the first layer using EMD, which contains the M
IMFs of each ECG frame. These IMFs are self-similarities
leveraging the inherent property of ECG signals for
decomposition, which is different from existing bases.
Subsequently, in Phase 3 the ECG signals received at the
gateway node are reconstructed by these IMFs.

Phase 2 is the compression stage. In order to compress and
recover an arbitrary N-length input ECG frame, the input ECG
framework needs to identify a matching ECG frame in the
dictionary with extracted features. That is, the location of QRS
complexes in both the input ECG frame and the matching ECG
framework needs to be close enough. Subsequently, the input
ECG frame is represented by the linear combination of the
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Fig. 1 Proposed ECG compression diagram with IMF constructed dictionary basis based on EMD

IMFs from the matching ECG frame. The coefficients of the
M IMFs with the index of the matching ECG frame, which is
M1 number of data, will be used for reconstruction. The N
samples length input ECG is then compressed to M+/ data
points for wireless transmission (M<<AN). The pre-computed
IMF bases are pre-stored without computational cost. In
addition, according to the health condition of subjects, the IMF
bases can be dynamically updated by updating new ECG
frames computed in the gateway node after a certain time
period and transmitting the IMF bases back to the sensor
nodes.

The following of this paper presents the detailed process
for the proposed ECG compression framework. The
performance for both clinical data from MIT-BIH arrhythmia
databases [9] and wearable ECG detected by our BSN [14] are
used for validation in Section 3.

B. ECG Decomposition and Dictionary Construction

In ECG compression, the periodicity of ECG signals is
often used as features to search compression window, in which
peak identification and searching often take place at the
beginning. The compression process generally requires
normalization of segments between peaks to a fixed size.
However, as the recurrent heartbeat period is unnecessarily the
same size, additional process such as length normalization is
then needed, which induces more computation cost. In our
study, the morphology features of each equal-size subsequent
frames during heartbeat period are stored in the feature
dictionary; then any segment of ECG signals which have
arbitrary morphology can be represented using the feature
dictionary without considering the segment locations.

We propose to extract the morphology feature of ECG
signals using EMD which is able to decompose a signal into a
finite number of IMFs. The number of extrema and zero-
crossings in an IMF differs at most by one. By decomposing
signals into IMFs, the nonlinearity of signal can be represented

Feature dictionary

Fig. 2 The architecture of ECG frame feature dictionary

Algorithm 1: Decompose signal into IMFs
a) Identify all extrema of x (t) ;

b) Interpolate the local maxima to form an upper envelop u (x) ;

¢) Interpolate the local minima to form an upper envelop / (x) ;

= (u(x)+l(x))/2 .

¢) Extract the mean from the signal and obtain

h(t) = x(t)=m(t)

f) Check whether 4 (t) satisfies the IMF property. If 4 (t) is an
IMF, iterate all the above steps on the residue
r(t)=x(t)—h(t). Otherwise, keep iteration on /().

d) Calculate the mean envelope m (l)

by its own self-similar IMFs. The algorithm is as Algorithm 1
[10]. Figure 3 shows the EMD applied on different frames with
size longer than the heartbeat duration. With these IMFs, the
training ECG frame in the dictionary can be recovered by
simply linear combination of all the IMFs; whereas the input
ECG frames which have matching signal morphology with the
training frame can be recovered by solving

M
min || ¥ =" a,IMF, | (1)

i=l
where Y is the input ECG frame, ¢; is the coefficient of the
ith IMF from the training ECG frame, M is the total number
of IMFs. Therefore, the input ECG frame can be represented

by

M
Y= oy IMF;+R )
i=1
where R is the error of the reconstruction of ECG frame.
Figure 4 displays the reconstruction of typical ECG frames
with the training ECG frames which have matching
morphology.

As mentioned previously, the training ECG frames in the
dictionary should be extracted from one heartbeat period of
ECG time series. The reasons are that the size of interval
between two peaks is unnecessary equal and multiple peaks in
one frame should be avoided. Thus, it requires a proper frame
size selection. In our study, a single beat based ECG frame size
is selected, which covers one period of ECG in a single
heartbeat and avoids two peaks of ECG in one frame. For
example, the sampling rate of the selected ECG data is 360 Hz,
and one heartbeat ECG typically lasts less than 1 s. Therefore,
ECG frame size of 300 samples is selected for covering the
features of a single heartbeat. The dictionary is constructed by
extracting a series of subsequent /N (for this case N=300) ECG
frames from the one beat ECG time series for the first layer,
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Fig. 4 (a) The training ECG frame and input ECG frame 1 and 2
with similar morphology. (b) Recovered input ECG frame 1 and
2 using IMFs from EMD on the training ECG frame.

and then performing EMD on each frame to obtain the IMFs
for each ECG frame. The number of IMFs M is empirically
selected according to ECG signals, as the EMD results in finite
number of IMFs. Typically, more IMFs used for
reconstruction will result in less error in the reconstruction and
obviously more computation and energy consumption.

C. ECG Frame Matching and Compression

The ECG signal is intercepted with a fixed size, which is
the size of the training ECG frame, to form the input ECG
frame. The first step for compressing the input ECG frame is
called ECG frame matching which refers to finding the similar
training ECG frame in the first layer of dictionary which has
similar signal morphology with the input ECG frame.
For minimizing the computation, finding the maximum dot
product of input ECG frame with training ECG frame is used
for the ECG frame matching process.

After finding the matched training ECG frame, the index
of it is obtained. The corresponding IMFs are used for
compressing the input ECG frame which is compressed to the
coefficients of IMFs by solving Eq. (1). This equation is a
typical underdetermined system, which can be solved using
least squares method. The coefficients are obtained by Eq. (3):

a=(IMFT IMFY ' IMFTY (3)
where o = {¢,a,,...,0y, } , IMF ={IMF,,IMF,,,....,IMF),} ,
Y is the input ECG frame. With Eq. (3), the computation
complexity is extensively reduced compared to other
compression methods which require more complicated

process for signal compression. On the other hand, the data
need to be transmitted wirelessly only includes the coefficients

and the training ECG frame index which is only M+/
numbers.

D. ECG Reconstruction

The ECG reconstruction will be performed on the receiver.
First, the matching ECG frame is identified by the received
index. Subsequently, the recovered ECG frame Y'is the linear
combination of the corresponding IMFs under the matching
ECG frame with the respective received coefficients as
following:

M
Y'= a,IMF, 4)
i=l

Finally, the input ECG signal can be reconstructed frame
by frame using the above proposed method. Figure 4 shows
the recovered ECG. In Fig. 4, the QRS complexes of all three
ECG frames locate approximately at the same point in the
frame and they can be recovered by the IMFs from training
ECG frame with acceptable error.

III. EXPERIMENT AND RESULTS

The proposed method is validated through clinical data
from MIT-BIH arrhythmia database [9] and wearable ECG by
our wearable sensor in practical environment [14]. Typical
ECG signals as well as baseline wander and motion artifacts
are all considered in the ECG recordings for performance
evaluation of the proposed ECG compression method.

A. Performance Metric

The performance can be represented by two parameters
which are CR and RMSE. The CR parameter refers to the ratio
of the original signal bits and the necessarily transmitted
compressed signal bits as Eq. (5),

CR="% (5)

where N, denotes the number of original signal bits, N, is

the number of compressed signal bits. For the recover fidelity
parameter, a typical metrics is the percentage root mean
square difference (PRD) as Eq. (6):

adl

Ipgl

where Y is the input ECG signal, Y' is the reconstructed
ECG signal. In our work, the mean value of the original signal
impacts the actual performance as the reconstruction is based
on the morphology feature extraction, which may be masked
by metric of PRD [2]. As pointed in [2], another metric of
RMSE can easily gauge the error against the signal’s range.
The RMSE can be computed as:

x100 (6)

(7

where p2p is the average peak-to-peak amplitude of ECG
signal, y; and y'; are the ith samples in original ECG signal

and reconstructed ECG signal, respectively, and L is the
length of ECG signal.

B. Clinical Results
For the MIT-BHI ECG data, the fix size of frame is 300,
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Fig. 5 Clinial ECG of Record 117. (a) Original raw signal; (b)
reconstructed signal with CR of 42.8.
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Fig. 6 Chmcal ECG. (a) Original ECG signal; (b) reconstructed
signal with CR of 42.8.

and length of ECG signal is 1115 seconds. The number of
IMF selected can be used to vary the CR. In our experiment,
M=7 IMFs are selected as the feature basis and N=300 ECG
frames are extracted to cover the whole one beat ECG signal.
This will require a memory size of 720 kB. The training ECG
frames are created from the first ECG QRS complex of the
whole ECG signal. Figure 5 shows the complete reconstructed
signal and the original signal, from which the motion artifacts
are also contained in the recovered signals. For the QRS
complex, Figure 6 shows the ECG signal morphology
recovering, in which the baseline wander can also be
reconstructed.

Table 1 compares the performance with other dictionary
based ECG compression method. Our proposed method
achieves the CR up to 42.8 while has similar average RMSE
of 4.82%. Since the ECG frame size and IMF number are
fixed, the CR is also fixed. If the frame size is greater, the CR
can also be improved.

C. Wearable Sensor Results

The wearable ECG compression is based on our previous
wearable ECG sensor [14]. The length of ECG signal is 30
seconds with 300 Hz sampling rate. Since the ECG signal
from wearable sensor has less IMFs than the clinic data, only
M=4 IMFs are selected as the feature basis. The fix frame size
is 300 and N=318 ECG frames are extracted to include the
one beat ECG feature. Figure 7 shows the reconstructed signal
of wearable ECG with the CR of 60 and the RMSE of 5.67%.

TABLE I RESULTS OF ECG COMPRESSIONPERFORMANCE

Methods ECG record CR RMSE
No.
Proposed #101 42.8 4.83%
Proposed #102 42.8 3.54%
Proposed #103 42.8 5.33%
Proposed #111 42.8 4.14%
Proposed #112 42.8 5.43%
Proposed #113 42.8 7.60%
Proposed #117 42.8 2.88%
Proposed Average 42.8 4.82%
[2] Average 27.50 5.00%
[11] Average 25.64 5.50%
[12] Average 13.79 4.20%
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Fig. 7 Wearable heartbeat by our wearable HR sensor. (a) Original
heartbeat signal detected by the system; (b) Reconstructed signal
with CR of 60.

The CR is increased with fewer IMFs. However, the
dictionary size is larger than other methods, which means
more memory is required on wearable devices to store the
feature dictionary.

IV. CONCLUSION

In this paper, we proposed a new ECG signal compression
method based on EMD constructed dictionary bases. The
results show that it can achieve the CR of at least 42.8 for
clinical ECG and 60 for wearable sensor compared to the state-
of-the-art (CR of around 25 with RMSE around 5%). The
future work seeks to reduce the size of the dictionary and the
reconstruction error.
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