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ARTICLE INFO ABSTRACT
ATfiFle hiSfOfJ/_-‘ We present a novel feature identification framework to recognize difficult-to-manufacture
Available online 23 March 2018 drilled holes in a complex CAD geometry using deep learning. Deep learning algorithms

have been successfully used in object recognition, video analytics, image segmentation,
etc. Specifically, 3D Convolutional Neural Networks (3D-CNNs) have been used for object
recognition from 3D voxel data based on the external shape of an object. On the other
hand, manufacturability of a component depends on local features more than the external
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3D Convolutional Neural Network shape. Learning these local features from a boundary representation (B-Rep) CAD model
Voxelized Representations is challenging due to lack of volumetric information. In this paper, we learn local features
GPU-Accelerated Algorithms from a voxelized representation of a CAD model and classify its manufacturability. Further,

to enable effective learning of localized features, we augment the voxel data with surface
normals of the object boundary. We train a 3D-CNN with this augmented data to identify
local features and classify the manufacturability. However, this classification does not
provide information about the source of non-manufacturability in a complex component.
Therefore, we have developed a 3D-CNN based gradient-weighted class activation mapping
(3D-GradCAM) method that can provide visual explanations of the local geometric features
of interest within an object. Using 3D-GradCAM, our framework can identify difficult-to-
manufacture features, which allows a designer to modify the component based on its
manufacturability and thus improve the design process. We extend this framework to
identify difficult-to-manufacture features in a realistic CAD model with multiple drilled
holes, which can ultimately enable development of a real-time manufacturability decision
support system.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Deep learning (DL) algorithms, designed to hierarchically learn multiple levels of abstractions from data, have been
extensively used in computer vision (Sarkar et al., 2015; Lee et al., 2009; Lore et al., 2017). Specifically, 3D-Convolutional
Neural Networks (3D-CNN) have been used extensively for object recognition, point cloud labeling, video analytics, human
gesture recognition, object shape retrieval etc. (Wu et al,, 2015; Maturana and Scherer, 2015a,b; Riegler et al., 2016; Huang
and You, 2016; Zhu et al.,, 2016). Object recognition (Socher et al., 2012) has been one of the most challenging problems in
the area of computer vision and pattern recognition. Early DL-based approaches used simple projection of the 3-dimensional
object to a 2-dimensional representation such as depth images or multiple views to recognize an object. However, there is

* Corresponding author,
E-mail addresses: sambitg@iastate.edu (S. Ghadai), adarsh@iastate.edu (A. Krishnamurthy).
1S, Ghadai and A. Balu contributed equally to the paper.

https://doi.org/10.1016/j.cagd.2018.03.024
0167-8396/© 2018 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.cagd.2018.03.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:sambitg@iastate.edu
mailto:adarsh@iastate.edu
https://doi.org/10.1016/j.cagd.2018.03.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2018.03.024&domain=pdf

264 S. Ghadai et al. / Computer Aided Geometric Design 62 (2018) 263-275

Voxelization

Convolution Filters 1 Convolution Filters 2 Output:

Manufacturability

Ih
=

—)

Fully Connected
Convolutional Convolutional Pooling Layer. Layer
Layer Layer

Input: B-Rep CAD Model Volumetric Representation

ivation
Map

Fig. 1. Framework for deep-learning based design for manufacturability. The CAD model is converted to a voxel representation and is input to a 3D-CNN for
manufacturability classification. The 3D-CNN output is analyzed using 3D-GradCAM to provide manufacturability feedback.

significant loss of geometric information while using a 2D representation of a 3D object. Therefore, it is difficult to learn
about the local or internal features of the object using these projection-based techniques. In this paper, we make use of
voxelized 3D representation of the object, augmented with surface normal information, to identify localized features in an
object.

Voxelized models have been successfully used for object recognition (Wu et al.,, 2015; Maturana and Scherer, 2015a,b).
Generally, point cloud data is converted to a volume occupancy grid or voxels to represent the model and identify the
object. However, voxel-based occupancy grid representation does not inherently have information regarding the surfaces of
the object without additional processing. It is also not robust enough to capture information about the location, size, or
shape of a feature within an object. Providing additional information about the geometry increases the accuracy of object
detection (Wang and Siddiqi, 2016). In this paper, we propose to use normal information of the surfaces of the object, in
addition to the volume occupancy information, to efficiently learn the local features.

Learning local features in a geometry is different from object recognition. Object recognition is a classification problem,
where the object is classified based on a collection of features identified in the object. In this work, we make use of a
DL network to learn local feature descriptors without any specific input to describe the features. Based on the feature
descriptors that are learned, we make use of a semi-supervised methodology to classify the part based on the local features
of interest.

One of the applications of the aforementioned methodology explored in this paper, is to identify difficult-to-manufacture
features in a CAD geometry and ultimately classify its manufacturability. A successful part or product needs to meet its
specifications, while being feasible to manufacture. In general, manufacturability feedback is provided to the designer only
after the design has been finalized. This leads to an iterative process, often leading to longer product development times
and higher costs. There are different handcrafted design for manufacturability (DFM) rules that ensure manufacturability
of a design. For this purpose, the hierarchical architecture of DL can be used to learn increasingly complex features by
capturing localized geometric features and feature-of-features. Thus, a deep-learning-based design for manufacturing (DLDFM)
tool (Fig. 1) can be used to learn the various DFM rules from different examples of manufacturable and non-manufacturable
components without explicit handcrafting.

A primary concern while examining the manufacturability of CAD geometries using a DL based approach is the black-box
nature of such deep networks. Interpretation of the decision making process in the form of visual explanations is essential
for extracting the local features in an object that effectuates its non-manufacturability. Visual detection of local features fur-
ther enables re-designing of the component to be manufacturable. Recent major work on interpreting DL output by Selvaraju
et al. (2016) makes use of a 2D gradient-weighted class activation map for producing visual explanations of the CNN’s deci-
sion making process for object recognition in images. In this work, we extend the GradCAM to 3D objects for interpretation
of 3D-CNN’s outputs and visualizing the regions that give rise to non-manufacturability conditions in the objects.



S. Ghadai et al. / Computer Aided Geometric Design 62 (2018) 263-275 265

Manufacturable Hole Manufacturable Through Hole Non-Manufacturable Hole Non-Manufacturable Hole Non-Manufacturable Hole
hd <5 Wall Thickness: t < d/2 Bottom Wall Thickness: t < d/2 hd =5

Fig. 2. Different DFM rules based hole examples to classify manufacturable and non-manufacturable geometries.

In this paper, we present a 3D Convolutional Neural Network (3D-CNN) based framework that will learn and identify
localized geometric features from an expert database in a semi-supervised manner. Further, this framework is trained in
the context of manufacturability with different CAD models classified as manufacturable and non-manufacturable based on
traditional DFM rules. The main contributions of this paper include:

o GPU-accelerated methods for converting CAD models to volume representations (voxelization augmented with surface
normals), which can be used to learn localized geometric features.

e Application of deep learning to manufacturability analysis of drilled holes.

e A novel voxel-wise 3D gradient-weighted feature localization based on the 3D-CNN framework to identify local features
that are non-manufacturable.

This paper is arranged as follows. In Section 2, we discuss the design for manufacturability (DFM) rules used for gen-
eration of the datasets for training and testing the 3D-CNN. We explain about the volume representations that we use for
3D-CNN in Section 3. In Section 4, we discuss the details of 3D-CNN, including the network architecture and the hyper-
parameters. In Section 5, we explain 3D gradient weighted class activation mapping for identifying the localized geometric
features. Finally, in Section 6, we show the results of the deep learning based design for manufacturability (DLDFM) frame-
work in classifying manufacturable and non-manufacturable CAD models and capability of the model to identify localized
geometric features in a large realistic CAD model.

2. Manufacturability of drilled holes

Design for Manufacturing (DFM) rules for drilling have been traditionally developed based on the parameters of cylin-
drical geometry and geometry of the raw material. In this paper, we show an application of our approach to learn localized
geometric features to identify non-manufacturability of drilled holes. Deciding the manufacturability of a part is framed as
a binary classification problem. We apply 3D-CNN to learn the parameters to classify for manufacturability.

The important geometric parameters of a hole are the diameter, the depth, and position of the hole. However, there are
certain additional geometric parameters that do not contribute to manufacturability analysis but might affect the machine
learning framework. For example, the face of the stock on which the hole is to be drilled does not affect the manufactura-
bility of the hole but need to be considered while training because the volumetric representation of the CAD model is not
rotationally invariant.

In our DLDFM framework, the following DFM rules are used to classify the drilled hole as manufacturable as shown in
Fig. 2:

1. Depth-to-diameter ratio: The depth-to-diameter ratio should be less than 5.0 for the machinability of the hole
(Boothroyd et al., 2002; Bralla, 1999). It should be noted that this rule is generic and applicable for all materials.

2. Through holes: Since a through hole can be drilled from both directions, the depth-to-diameter ratio for a through hole
should be less than 10.0 to be manufacturable.

3. Holes close to the edges: A manufacturable hole should be surrounded with material of thickness at least equal to the
half the diameter of the hole.

4. Thin sections in the depth direction of the hole: A manufacturable hole should have material greater than half the
diameter along the depth direction.

The preceding rules are used to generate the ground truth manufacturability data for the training set, which is then
used to learn the manufacturable and non-manufacturable features by the DLDFM Framework. However, it should be noted
that for a DLDFM framework, one need not explicitly mention the rule. Rather, for industrial applications, one can train the
DLDFM framework using the industry relevant historical data available in the organization, which need not be strictly rule
based. The historical data can also be based on experience during previous attempts to manufacture a part. Thus, this DLDFM
framework is an attempt to generate a DFM framework based on few basic local features. For more complicated shapes, one
can augment the training set and then re-train the DLDFM framework, which can then be used for analyzing complex
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Fig. 3. Large scale CAD model to test DLDFM network. The holes in red are non-manufacturable and the green are manufacturable based on the DFM
rules as discussed in Section 2. colored hole is a marginal case of manufacturability. The two holes are manufacturable individually but are
non-manufacturable due to their proximity to each other. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)
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Fig. 4. A sample block with a drilled hole with its dimensions highlighted in the projected view.

parts for manufacturability. This eliminates explicit hand-crafting of rules, ultimately leading to a better manufacturability
analysis.

2.1. Training data

Based on the DFM rules for drilling, different synthetic sample solid models are generated using a CAD modeling kernel.
A large component can be considered a union of these synthetic blocks as shown in Fig. 3. We use ACIS (Spatial Corporation,
2014), a commercial CAD modeling kernel to create the solid models. Cuboids and Cylinders of different sizes that fit in a
bounding box of 5.0 inches with different sizes of drilled holes were created (Fig. 4) as the training set. The diameter of
the holes is randomly chosen from 0.1 in. to 1.0 in. with a discrete resolution of 0.1 in. Similarly, the depth of the hole is
randomly chosen from 0.5 in. to 5.0 in. with an discrete resolution of 0.1 in. The holes are generated at different positions
on the face of the cube by varying the value of PosX and PosY randomly with a discrete resolution of 0.1 in. (Fig. 4). In
addition, the holes are generated randomly on any of the six faces. Repetition of the models is not allowed and thus, all the
models generated are completely different from other. A total of 800,000 (approx.) possible models can be generated. Taking
into advantage of the fact that 3D-CNN can learn the features and thus would not need much data about the variation
of these models, we generate only a subset of the models. After the CAD models are generated using the solid modeling
kernel, they are classified for manufacturability using the DFM rules for drilled holes.

After the B-Rep models are generated using the CAD modeling kernel, they are converted to volume representations.
One of the framework design choices is to choose an appropriate voxel grid for the model. A fine voxelization of the model,
while capturing all the features accurately, might be computationally expensive for training the 3D-CNN. Even a voxelization
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resolution of 64 x 64 x 64 pushes the limits of the GPU and CPU memory during the training, and hence, the parameters of
the 3D-CNN have to be tuned for optimal performance. The complete data is split into training set and validation set.

To test the performance of the DLDFM network, a new set of CAD models were generated. The CAD geometry generated
in this set is different from the CAD models used in training the DLDFM. The models generated in test-set do not have the
same depth or diameter values as those in the models of training set. For the test data, the following parameters are varied
to generate the samples:

e Diameter values from 1.1 to 1.5 are used for the representative test data. Diameter values from 0.1 to 1.0 inches were
used for training.
e Position of the holes that are not used while training.

In addition to that we generate a few more models for testing that does not resemble training data. These models have
geometries with the same primary hole parameters (depth, diameter, and position of the hole), but having additional or
different external features. The details of the geometries in the non-representative data set is given below.

Multiple holes: The DLDFM has been trained to analyze the manufacturability of a single drilled hole. However, in a de-
signed component, the features may not be independent; there can be multiple features, each of which may or may not be
manufacturable. Moreover, it is possible that each of the features themselves are manufacturable, but due to their proxim-
ity or interaction with other features, the part may become non-manufacturable. Hence, we test the ability of the DLDFM
framework to analyze the manufacturability of a part with two holes.

L-shaped blocks: All the models in the training set have an external cubical or cylindrical shape. Hence, to test the capability
of DLDFM to capture the manufacturability of a hole irrespective of the external geometry, we use L-shaped Block and
cylinders with holes. The rules established in Section 2 also apply to this geometry.

3. Volumetric representations for learning geometric features

Traditional CAD systems use boundary representations (B-Reps) to define and represent the CAD model (Krishnamurthy
et al,, 2009). In B-Reps, the geometry is defined using a set of faces that form the boundary of the solid object. B-Reps
are ideally suited for displaying the CAD model by first tessellating the surfaces into triangles and using the GPU to render
them. However, learning spatial features using B-Rep can be challenging, since the B-Rep does not contain any volumetric
information.

3.1. Voxel representation of geometry

The use of voxelized shape representation allows a digital representation of the CAD model, where each voxel of the
model can be represented using a binary digit corresponding to the voxel being inside or outside the model. Using this
method, the entire model can be represented using a long string of binary digits that can be used as input for training the
machine learning network.

In our framework, we convert the B-Rep CAD model to a volumetric occupancy grid of voxels. However, voxelizing a
B-Rep CAD model is a compute intensive operation, since the center of each voxel has to be classified as belonging to
either inside or outside the model. In addition, thousands of models need to be voxelized during training. Traditional CPU
voxelization algorithms are too computationally slow for training the machine learning network in a reasonable time frame.
Hence, we have developed methods for accelerated voxelization of CAD models using the graphics processing unit (GPU).
These GPU methods are more than 100x faster than the existing state-of-the-art CPU-based methods and can create a
voxelized representation of the CAD model with more than 1,000,000,000 voxels. Having a high resolution voxelization will
enable us to capture small features in a complex CAD model.

To create the voxelized CAD model, we construct a grid of voxels in the region occupied by the object. We then make
use of a rendering-based approach to classify the voxel centers as being inside or outside the object. A 2D example of the
method is shown in Fig. 5; the method directly extends to 3D. The CAD model is rendered slice-by-slice by clipping it while
rendering. Each pixel of this clipped model is then used to classify the voxel corresponding to the slice as being inside or
outside the CAD model. This is performed by counting the number of fragments that were rendered in each pixel using the
stencil buffer on the GPU. After the clipped model has been rendered, an odd value in the stencil buffer indicates that the
voxel on the particular slice is inside the CAD model, and vice versa (Fig. 5). The process is then repeated by clipping the
model with a plane that is offset by the voxel size. Once all the slices have been classified, we get the complete voxelized
representation of the CAD model.

The time taken to perform the classification is the sum of the time taken to tessellate the model once and the total time
taken to render each slice. As an example, the total time taken to voxelize the hole block is 0.133 seconds. These timings
are obtained by running our voxelization algorithm on a Intel Xeon CPU with 2.4 GHz processor, 64 GB RAM, and an NVIDIA
Titan X GPU.
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Fig. 5. Performing voxelization in 2D using GPU rendering. (a) A clipped CAD model is rendered slice-by-slice and the number of rendered pixels is counted.
(b) The pixels that are rendered an odd number of times in each slice are inside the object (green).

3.2. Augmenting volume representation with surface normals

While a digital voxelized representation may be sufficient for a regular object recognition problem, it may not be enough
to capture the detailed geometric information required for identifying local features of interest within the object. In partic-
ular, information about the boundary is lost in a voxel grid and the local region around a voxel grid need to be analyzed to
identify a boundary voxel. To overcome this challenge in voxelized representations, we augment the voxel occupancy grid
with the surface normals of the B-Rep geometry. First, we identify the boundary voxels of the B-Rep geometry. We consider
each voxel as an axis-aligned bounding-box (AABB) using the center location and size of each voxel. We then find all the
triangles of the B-Rep model that intersect with the AABBs. Finally, we average the surface normals of all triangles that
intersect with each AABB. The x, y, & z components of the surface normals are then embedded in the voxelization along
with the occupancy grid.

4. 3D-CNN for learning localized geometric features

The voxel-based representation with the surface normals of the CAD model can be used to train a 3D-CNN that can
identify local features. 3D-CNNs have mostly been used for complete 3D object recognition and object generation problems.
However, to the best of the authors’ knowledge, this is the first application of 3D-CNNs on identifying local features with
applications in manufacturability analysis.

4.1. Network architecture and hyper-parameters

The input to the 3D-CNN is a voxelized CAD model. The input volumetric data is first padded with zeros before convo-
lution is performed. Zero padding is necessary in this case to ensure that the information about the boundary of the CAD
model is not lost while performing the convolution. The convolution layer with RELU activation is followed by a batch nor-
malization layer and a Max. Pooling layer. The same sequence of Convolution, batch normalization and Max. Pooling is again
used. A fully connected layer is used before the final output layer with sigmoid activation. The hyper-parameters of the
3D-CNN that needs to be tuned in order to ensure optimal learning. The specific hyper-parameters used in our framework
are listed in Section 6.

The model parameters 6, comprised of weights W and biases, b are optimized by error back-propagation with binary
cross-entropy as the loss function (Hinton and Salakhutdinov, 2006) using the ADADELTA optimizer (Zeiler, 2012). Specifi-
cally, the loss function ¢ to be minimized is:

t=—ylogy—(1—y)log(1—3) (1)

where y € {0, 1} is the true class label and y € {0, 1} is the class prediction.. For training the network, the CAD models that
were generated based on the method illustrated in section 2 were used.

5. Interpretation of 3D-CNN output

The trained 3D-CNN network can be used to classify the manufacturability of any new geometry and can be treated as
a black-box. However, interpretability and explainability of the output provided by the 3D-CNN is essential to understand
the features learned by the model. In this paper, we attempt to visualize the input features that lead to a particular output
and if possible modify it. A similar approach was used in object recognition in images by using class activation maps to
obtain class specific feature maps (Selvaraju et al., 2016). The class specific feature maps are obtained by taking a class
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discriminative gradient of the prediction with respect to the feature map to get the class activation. In this paper, we
present the first application of gradient weighted class activation map (3D-GradCAM) for 3D object recognition.

In order to get the feature localization map using 3D-GradCAM, we need to compute the spatial importance of each
feature map A; in the last convolutional layer of the 3D-CNN, for a particular class, ¢ (¢ can be either non-manufacturability
or manufacturability, for the sake of generality) in the classification problem. This spatial importance for each feature map
can be interpreted as weights for each feature map; it can be computed as the global average pooling of the gradients back
from the specific class of interest as shown in Eq. (3).

The cumulative spatial activations that contribute to the class discriminative localization map, L3pgradcam, iS computed
using

L3pGradcam = ReLU (Z Q) x Al) , (2)

1

where ¢ are the weights computed using

1 ay°©
a=zx L3 9
— = A,
i j ok ijk

We can compute the activations obtained for the input part using L3pgredicam to analyze the source of output. The heat
map of (L3pgradcam) is resampled using linear interpolation to match the input size, and then overlaid in 3D with the input
to be able to spatially identify the source of non-manufacturability. This composite data is finally rendered using a volume
renderer.

We make use of a GPU-based ray-marching approach to render this data. The rendering is parallelized on the GPU with
each ray corresponding to the screen pixel being cast independently. The intersection of the ray with the bounding-cube
of the volumetric data is computed, and then the 3D volumetric data is sampled at periodic intervals. The sum of all the
sampled values along the ray is then computed, converted to RGB using a suitable color-bar, and rendered on the screen.
Table 5 shows different volumetric renderings of the composite 3D-GradCAM data.

6. Results and discussion

The different CAD geometries generated as explained in Section 2.1 are classified to be manufacturable or non-
manufacturable based on the rules discussed in Section 2. The B-Rep CAD geometries are converted to volumetric represen-
tation using the voxelization method explained in the Section 3. The grid size of 64 x 64 x 64 is used for the volumetric
representation in order to represent the geometry with sufficient resolution. We first trained the DLDFM network using only
the voxelized representation of the CAD geometry. We also trained another network to use the surface normal informa-
tion (i.e. x, y, z components) in addition to the voxelized representation of the CAD geometry. These are considered as four
channels of the 3D-CNN input to train the second DLDFM network.

We generated 9531 CAD models in total for the training and validation set. Out of these, 75% of the models were used
for training the 3D-CNN and the remaining 25% of the models were used for validation or fine-tuning the hyper-parameters
of the 3D-CNN. A detailed description of the training process is provided in Section 4. The trained DLDFM network is then
tested using the test set CAD models. The test set contains 675 geometries.

6.1. Voxelization timings

We recorded the time taken to generate the volumetric representation of the B-Rep CAD geometries at the voxel res-
olution used for the training. There is a slight dependence of the voxelization timings on the number of triangles in the
CAD model, but it is predominantly dependent on the voxel grid resolution. The voxelization timings for the different CAD
models shown in Table 5 is shown in Table 1. The table also includes the voxelization timings of the two large CAD models
that are also used for testing the DLDFM.

6.2. Tuning of the hyper-parameters

Finding the best hyper-parameters of the DLDFM is very important for the performance of the network. The hyper-
parameters of DLDFM are fine-tuned to have least validation loss. Tweaking the hyper-parameters such as the number of
layers, number of filters in each layer and filter sizes, the optimizer, loss function etc. is important to obtain the best possi-
ble results. Fig. 6a shows the variation of training and validation accuracy as a function of the number of parameters. The
parameters with the best training and validation accuracy is then selected to be the final DLDFM network. Another impor-
tant aspect of the training process is batch normalization, which allows for better training. Without batch normalization,
the network saturates, and the training reaches a saddle point leading to low training accuracy as shown in Fig. 6b.

A batch size of 64 is selected while training the networks. The training was performed using Keras (Chollet, 2015)
with a TensorFlow (Abadi et al., 2015) backend in Python environment. The training of DLDFM networks was performed



270 S. Ghadai et al. / Computer Aided Geometric Design 62 (2018) 263-275

Table 1

Timings and voxel count of the voxelization of the CAD geometries shown in Table 5 and the large-scale model.
CAD Geometry Triangle Count Total Voxel Resolution Inside Voxels Time (s)
(a) 61688 262,144 106,240 0177
(b) 59036 262,144 108,755 0.154
() 68694 262,144 110,592 0.179
(d) 63396 262,144 110,238 0.160
(e) 50544 262,144 72,778 0.150
(f) 51958 262,144 72,960 0.165
(g) 46582 262,144 88,293 0.151
(h) 68704 262,144 110,536 0.153
Part 1 57914 4,718,592 4,451,177 2.074
Part 2 96994 9,437,184 6,943,570 6.677

1r 1r

o

©

T

*

*

*%

o
©

o
oo
T
o
[ee]

1
1
1
> - 1
[5) Q |
e * S — - —
o Oc = ——Training Accuracy with batch normalization
307 0° 507 | . ) -
g 8 I = Training Accuracy without batch normalization
< < ! 1
06f % 5 o6kl 1
! 1
1
0.5 05} 1
) * Training Accuracy e s s sononn
o © Validation Accuracy
04 . . . ; ; , 0.4 . . . . . )
0 2 4 6 8 10 12 0 10 20 30 40 50 60
Number of parameters x10% Epochs
(a) Accuracy of DLDFM with different hyperparameters as (b) Comparison of the training performance with and with-
a function of total number of parameters in each network. out batch normalization for each layer.

Fig. 6. Hyper-parameter optimization of DLDFM.

Table 2
Optimized hyper-parameters with the least validation loss.

Common Training Parameters DLDFM Network Hyper-parameters

Convolutional Layer 1 (8 filters with size 8 x 8)
Max Pooling Layer 1 (sub-sampling of 2 x 2)
Convolutional Layer 2 (12 filters with size 4 x 4)
Max Pooling Layer 2 (sub-sampling of 2 x 2)
Convolutional Layer 3 (16 filters with size 2 x 2)

Batch Size: 64 Fully Connected Layer (128 neurons)
Optimizer: Adadelta

Loss Function: Cross-Entropy

Voxel

Convolutional Layer 1 (8 filters with size 8 x 8)
Max Pooling Layer 1 (sub-sampling of 2 x 2)
Convolutional Layer 2 (12 filters with size 4 x 4)
Max Pooling Layer 2 (sub-sampling of 2 x 2)
Convolutional Layer 3 (16 filters with size 2 x 2)
Fully Connected Layer (128 neurons)

Voxel + Normals

in a workstation with 128GB CPU RAM and a NVIDIA Titan X GPU with 12GB GPU RAM. The training is performed until
the validation loss remains constant for at least 10 consecutive epochs. The final architecture of the DLDFM network is

described in the Table 2. The trained DLDFM network is then tested using the test set CAD geometries, which contains 675
CAD models.

6.3. Results from test data set

After successful training, the DLDFM network was tested on a test set to benchmark its performance. Accuracy of DLDFM
network on the test set using the two data representations is shown in Table 3 and Fig. 7. The test-set has completely
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Table 3

Quantitative performance assessment of the DLDFM on test data sets.
Test Data Type Model Description True Positive True Negative False Positive False Negative Accuracy
675 models In-outs 391 90 17 176 0.7136
408 Manufacturable In-outs + Surface Normals 334 201 74 65 0.7938

DLDFM (binary)

pLor (binary : nonnaIS) _ |

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

m True Positive (Predicted Manufacturable, Actually Manufacturable)
True Negative (Predicted Non-Manufacturable, Actually Non-Manufacturable)
False Negative (Predicted Non-Manufacturable, Actually Manufacturable)

m False Positive (Predicted Manufacturable, Actually Non-Manufacturable)

Fig. 7. Confusion matrix for the DLDFM performance on test data set. Using surface normals along with binary voxels increases overall prediction accuracy

by ~ 8%.
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Fig. 8. Variation of accuracy with no. of training samples used for.

different geometries compared to the training set. Thus, the DLDFM is learning the localized geometric features that directly
contribute to the manufacturability or the non-manufacturability of the CAD geometry.

Using the trained DLDFM network, it is possible to obtain the localization of the feature activating the decision of the
DLDFM. The 3D-GradCAM renderings for various cases are shown in the Table 5. We have used 3D-GradCAM to visualize the
results of various inputs such as manufacturable holes, non-manufacturable-holes, multiple holes in same face, and holes
in multiple faces of the cube. 3D-GradCAM can localize the features that can cause the part to be non-manufacturable. For
example, in Table 5, the second example shows a CAD model with a hole, which is non-manufacturable because it is too
close to one of side faces. This is a difficult example to classify based only on the information of the hole. The 3D-GradCAM
rendering correctly identifies the non-manufacturable hole and as a result the DLDFM network also predicts the part to be
non-manufacturable.

6.4. Relationship between data size and accuracy
We performed an experiment the assess the effect of number of data samples on training the network. As discussed

earlier, the training samples were selected from a set of more than 800,000 CAD models. We trained the DLDFM network
with different number of training samples and recorded the variation in the training and validation accuracy (Fig. 8). The
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Table 4

Comparison of the performance of the DLDFM on the training data with traditional DFM based only on the depth to diameter ratio of the drilled holes.
CAD Models 3334 4361 5387 8405
DFM Hole ratio DLDFM Hole ratio DLDFM Hole ratio DLDFM Hole ratio DLDFM
True Positive 575 684 912 1053 1145 1339 1875 2222
True Negative 676 868 821 990 1011 1191 1568 1731
False Positive 165 59 208 67 266 73 316 126
False Negative 251 56 239 70 271 90 473 153
Training accuracy 0.7504 0.9310 0.7949 0.9372 0.8006 0.9394 0.8136 0.9340

Table 5

[llustrative examples of manufacturability prediction and interpretation using the DLDFM framework.

CAD Models

(a) Manufacturable (b) Non-Manufacturable (c) Non-Manufacturable (d) Non-Manufacturable

3D-GradCam
Visualizations

CAD Models

(e) Manufacturable (f) Non-Manufacturable (g) Non-Manufacturable (h) Manufacturable

3D-GradCam
Visualizations

— Non-Manufacturable

Manufacturable ——
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Manufacturable s——
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N 4
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Fig. 9. Test results on the large scale CAD model using DLDFM framework to detect manufacturable and non-manufacturable drilled holes. (a) Isometric
view of the test case with DLDFM inference mapped to the CAD model for comparison. (b) Top view with the holes aligned with the inference map. Each
hole is marked as M - manufacturable or as NM - non-manufacturable based on the reason for non-manufacturability: NM-1 - non-manufacturable due
to D/d ratio; NM-2 - Non-manufacturable due to small amount of material in the depth direction; B - borderline cases.

training accuracy does not vary, while the validation accuracy improves with the addition of more training data. The only
limitation in increasing the training data size is computational cost of training from the large data.

In order to compare our DLDFM method with other feature based detection method, we need to assume prior knowledge
of the geometry of the feature. We compare the performance of DLDFM with a hole-ratio based feature detection system,
since the hole-ratio is the most dominant feature that can be used for feature recognition. This is found in many CAD
tools such as SolidWorks (SolidWorks Corp., 2017). A hole-ratio based manufacturability analysis will fail for other thickness
based rules discussed in Section 2, which makes it non-reliable. However including such thickness-based checks is not
trivial for such a hand-crafted system. The false positive and false negative examples for hole-ratio based system is higher
than DLDFM as shown in Table 4 thus demonstrating the reliability of DLDFM and its capability to learn multiple complex
features, which one would have to hand-craft to use a feature detection algorithm to analyze the manufacturability of a
part.

6.5. Manufacturability analysis of a realistic part

In order to infer the manufacturability of a large scale realistic CAD model, we use the trained 3D-CNN model (Section 4)
to infer the manufacturability of small slices of the voxelized geometry. If the initial grid resolution chosen for the training
is | x m x n, then the large scale CAD model is voxelized using the same grid size, resulting in a larger grid resolution,
Iy x my x ny. We pad this voxel grid with [/2,m/2,n/2 voxels of zero value in all the directions to correctly analyze
the boundaries. We then slice | x m x n voxels to obtain one inference; we stride by one in each direction to obtain a
map of size l; x my x ny inferring the spatial non-manufacturability of the large CAD model. Note that some of the slices
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having partial coverage of the features will be inferred as non-manufacturable, thus raising a false alarm, but when the
hole is bounded correctly by the slice, the inference is comparable to the performance on the previous training data set.
As shown in the Fig. 9 there is a square region surrounding the features identified in the large CAD model, with false
non-manufacturability inference. However, the central region in the patch indicates the true manufacturability inference
of the feature, i.e. whether the drilled hole is manufacturable or not. According to the color map shown in Fig. 9, the
central blue colored regions inside holes corresponds to their manufacturability and likewise the central red colored regions
correspond to non-manufacturability. Comparing the inference of the DLDFM with the original CAD model in Fig. 3 we
see that all the green (manufacturable) holes align to the blue regions in the inference and the red (non-manufacturable)
holes align to the red regions as expected. The same is true in another example of a complex large part with many holes
resembling an injection mold die with cooling holes.

7. Conclusions

In this paper, we demonstrate the feasibility of using 3D-CNNs to identify local features of interest using a voxel-based
approach. The 3D-CNN was able to learn local geometric features directly from the voxelized model, without any additional
shape information. As a result, the 3D-CNN was able to identify the local geometric features irrespective of the external
object shape. Hence, a 3D-CNN can be used effectively to identify local features, which in turn can be used to define a
metric that may be used for successful object classification. In addition, using the 3D-GradCAM eliminates the black box
notion about CNNs; the DLDFM framework provides feedback about the source of non-manufacturability. The feedback is
helpful to understand which particular local feature among various other features in a CAD geometry accounts for the
non-manufacturability and possibly modify the design appropriately.

We apply our local feature detection tool to build a deep-learning-based DFM (DLDFM) framework, a novel application of
deep learning for cyber-enabled manufacturing. To the best of our knowledge, this is the first application of deep learning
to learn the different DFM rules associated with design for manufacturing. In this paper, our DLDFM framework was able
to successfully learn the complex DFM rules for drilling, which include not only the depth-to-diameter ratio of the holes
but also their position and type (through hole vs. blind). The framework can be extended to learn manufacturable features
for a variety of manufacturing processes such as milling, turning, etc. We envision training multiple networks for specific
manufacturing processes, which can be concurrently used to classify the same design with respect to their manufacturability
using different processes. Thus, an interactive decision-support system for DFM can be integrated with current CAD systems,
which can provide real-time manufacturability analysis while the component is being designed. This would decrease the
design time, leading to significant cost-savings.
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