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A Dual to Lyapunov’s Second Method for Linear
Systems With Multiple Delays and
Implementation Using SOS

Matthew M. Peet

Abstract—We present a dual form of Lyapunov-
Krasovskii functional which allows the problem of con-
troller synthesis for multidelay systems to be formulated
and solved in a convex manner. First, we give a generalized
version of the dual stability condition formulated in terms
of Lyapunov operators which are positive, self-adjoint, and
preserve the structure of the state space. Second, we pro-
vide a class of such operators and express the stability con-
ditions as positivity and negativity of quadratic Lyapunov—
Krasovskii functional forms. Next, we adapt the Sum of
Squares (SOS) methodology to express positivity and neg-
ativity of these forms as Linear Matrix Inequalities (LMIs),
describing a new set of polynomial manipulation tools de-
signed for this purpose. We apply the resulting LMis to a
battery of numerical examples and demonstrate that the sta-
bility conditions are not significantly conservative. Finally,
we formulate a test for controller synthesis for systems with
multiple delays, apply the test to a nhumerical example, and
simulate the resulting closed-loop system.

Index Terms—Controller synthesis, delay systems, LMIs.

|. INTRODUCTION

YSTEMS with delay have been well-studied for some
S time [1]-[3]. In recent years, however, there has been an
increased emphasis on the use of optimization and SemiDefinite
Programming (SDP) for stability analysis of linear and nonlin-
ear time-delay systems. Although the computational question
of the stability of a linear state-delayed system is believed to
be NP-hard, several techniques have been developed that use
LMI methods [4] to construct asymptotically exact algorithms.
An asymptotically exact algorithm is a sequence of polynomial-
time algorithms wherein each instance in the sequence provides
sufficient conditions for stability, the computational complexity
of the instances is increasing, the accuracy of the test is in-
creasing, and the sequence converges to what appears to be a
necessary and sufficient condition. Examples of such sequen-
tial algorithms include the piecewise-linear approach [2], the
Wirtinger-based method of [5], and the SOS approach [6]. In ad-
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dition, there are also frequency-domain approaches such as [7]
and [8]. These asymptotic algorithms are sufficiently reliable
so that for this paper, we may consider the problem of stability
analysis of linear discrete-delay systems to be solved.

The purpose of this paper is to explore methods by which
we may extend the success in the use of asymptotic algorithms
for stability analysis of time-delay systems to the field of robust
and optimal controller synthesis—an area that is relatively un-
derdeveloped. Although there have been a number of results on
controller synthesis for time-delay systems [9], none of these
results has been able to resolve the fundamental bilinearity of
the synthesis problem. Bilinearity here means that for a given
feedback controller, the search for a Lyapunov functional is lin-
ear in the decision variables that define the functional and is
relatively tractable. Furthermore, given a predefined Lyapunov
functional, the search for a controller ensuring negativity of the
time derivative of that functional is linear in the decision vari-
ables that define the feedback gains. However, if we are looking
for both a controller and a Lyapunov functional that establishes
the stability of that controller, then the resulting stability condi-
tion is nonlinear and nonconvex in the combined set of decision
variables.

Without a convex formulation of the controller synthesis prob-
lem, we cannot search over the set of provably stabilizing con-
trollers without significant conservatism, much less address the
problems of robust and quadratic stability. To resolve this diffi-
culty, some papers use iterative methods to alternately optimize
the Lyapunov functional and then the controller asin [10] or [11]
(via a “tuning parameter”’). However, this iterative approach is
not guaranteed to converge. Meanwhile, approaches based on
frequency-domain methods, discrete approximation, or Smith
predictors result in controllers that are not provably stable or are
sensitive to variations in system parameters or in delay.

In this paper, we propose a dual Lyapunov-type stability cri-
terion, wherein the decision variables do not parameterize a
Lyapunov functional per se, but where the feasibility of this cri-
terion implies the existence of such a functional. The advantage
of such an approach for controller synthesis is that it allows for
an invertible variable substitution, eliminating all bilinear terms
in the criterion for controller synthesis.

Both our definition of duality (in the optimization sense)
and our approach to controller synthesis are based on the
LMI framework for controlling linear finite-dimensional state-
space systems of the form & = Ax + Bu. Specifically, if u = 0,
the LMI condition for the existence of a quadratic Lyapunov
function V(z) = 27 Pz is the existence of a P >0 such
that AT P+ PA < 0. The feasibility of this LMI implies that
V(z) =2 Pz >0 and V(z) = 27 (AT P+ PA)x < 0. This
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LMI is in primal form because the decision variable P de-
fines the Lyapunov function directly. However, when we add
a controller v = Kz, we get & = (A+ BK)z and the syn-
thesis condition becomes A" P + PA+ K" BT P + PBK <
0, which is bilinear in decision variables P and K and
hence intractable. Bilinearity can be eliminated, however, if
we use the implied Lyapunov function V (z) = 7 P~1z. Us-
ing this implied Lyapunov function the time derivative be-
comes V(z) =27 (ATP!' 4+ P ' A)z = (P~'x)" (PAT +
AP)(P'z) = 2T (PAT + AP)z, where z = P~'z. This im-
plies that the stability of & = Ax is equivalent to the exis-
tence of P > 0 such that AP + PA” < 0. If we now add a
controller u = Kz, the controller synthesis condition becomes
(AP + BKP) + (AP + BKP)T < 0, which is still bilinear.
However, if we consider the variable substitution Z = K P,
then stabilizability is equivalent to the existence of a P > 0
and Z such that (AP + BZ) + (AP + BZ)" < 0, which is
an LMI. The stabilizing controller gains can then be recon-
structed as K = ZP~!. LMIs of this form were introduced
in [12] and are the basis for a majority of LMI methods for
controller synthesis (see the supplemental notes in [4, ch. 5]
for a discussion). The first contribution of this paper, then, is
an operator-valued equivalent of the dual Lyapunov inequality
P >0, AP + PAT < 0 that implies the stability of a general
class of infinite-dimensional systems. The second contribution
of this paper is a computational framework for verifying this
dual inequality using LMIs.

The standard approach to state-space representation of
infinite-dimensional systems is to define the state as evolving
on a Hilbert space Z and satisfying the derivative condition
#(t) = Axz(t). The state is constrained to a subspace X of Z
and the operator A is typically unbounded. It is known that if
A generates a strongly continuous semigroup, then exponential
stability of this system is equivalent to the existence of an oper-
ator P such that (x, Pz) > ||z||* and (z, PAz) + (PAz, ) <
—e||z||* [13]. In Section IV, we show that under mild addi-
tional conditions on 7P, the dual version of this result also holds.
Namely existence of an operator P such that (x, Pz) > ||z||”
and (2, APz) + (APz,z) < —e||z||* implies exponential sta-
bility of @ = Ax. Specifically, these additional conditions on
‘P are that P be self-adjoint and preserve specified properties
of the solution. This result applies to any well-posed infinite-
dimensional system, and is not conservative if X is a closed
subspace of Z.

Having formulated a general duality result, we next turn to
the special case of systems with multiple delays and introduce
a parametrization of a class of operators that are self-adjoint,
preserve desired properties of the solution, and which are defined
by the combination of multiplier and integral operators with
constraints on the associated multipliers and kernels. This result
allows us to represent the dual stability criterion in a manner
similar to classical Lyapunov—Krasovskii stability conditions,
but with an additional tridiagonal structure that may prove useful
for solving these Lyapunov equations. Finally, we present an
LMI/SOS method for enforcing positivity and negativity of the
operators under the assumption that all multipliers and kernels
are polynomial. Finally, we discuss how these results can be used
to solve the controller synthesis problem and give a numerical
example using the methods defined in [14] and [15].

Having stated the main contributions of this paper, we note
that while we show how to enforce the operator inequalities
using a slight generalization of existing SOS-based results, the

duality results are presented in such a way as to encourage
the reader to use other methods of enforcing these inequalities,
methods including those contained in [5], or [16]. Indeed, we
emphasize that Theorems 1 and 5 are formulated independent of
whichever numerical method is used for enforcing the inequal-
ities. In this way, our goal is to simply establish a new class of
Lyapunov stability conditions that are well suited to the problem
of controller synthesis, leaving the method of enforcement of
these conditions to the reader.

Finally, we note that there have been a number of results on
dual and adjoint systems [17]. Unfortunately, however, these
dual systems are not delay-type systems and there is no clear
relationship between the stability of these adjoint and dual sys-
tems and the stability of the original delayed system.

This paper is organized as follows. In Sections II
and III, we develop a mathematical framework for expressing
Lyapunov-based stability conditions as operator inequalities. In
Section IV, we show that given additional constraints on the
Lyapunov operator, satisfaction of the dual Lyapunov inequal-
ity (z, APz) + (APz,2) < —e||z||* proves the stability of
#(t) = Ax(t). In Sections VI and V, we define a restricted
class of Lyapunov functionals and operators which are valid
for the dual stability condition in both the single-delay and
multiple-delay cases, applying these classes of operators in
Sections VI-B and V-B to obtain dual stability conditions. These
dual stability conditions are formulated as positivity and neg-
ativity of Lyapunov functionals. In Section VII, we show how
SOS-based methods can be used to parameterize positive Lya-
punov functionals and thereby enforce the inequality conditions
in Sections VI-B and V-B, results which are summarized in
Corollary 10. Finally, in Section VIII, we summarize our results
with a set of LMI conditions for dual stability in both the single
and multiple-delay cases. Section IX describes our MATLAB
toolbox, available online, which facilitates construction and so-
Iution of the LMIs. Section X applies the results to a variety
of stability problems and verifies that the dual stability test is
not conservative. Finally, Section XI discusses the problem of
full-state feedback controller synthesis and gives a numerical
illustration in the case of a single delay.

A. Technical Summary of Results

Before proceeding, we give a brief summary of the main
results of Section VI-B using as little mathematical formalism
as possible in order to illustrate how these results differ from
the classical Lyapunov—Krasovskii stability conditions. These
results are stated for systems with a single delay in order to avoid
much of the notation and mathematical progression needed for
the multiple-delay case. That is, we consider the system

LE(t) = A().’E(t) + All'(t — T).

1) Classical Lyapunov—Krasovskii Stability Conditions:
The standard necessary and sufficient conditions for stability in
the single-delay case are the existence of a

e, e
—r (,ZS(S) TMgl(S)

Vo) = TMaa(s) | | 6(s)
0 0
+7[ [ o(s)" N(s,0)¢(0)d0ds
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such that V (¢) > [|¢(0)]|* and
V(p) =

L[ 6077 [Pr Dl D TDus(s) [ ¢(0)
[ (b(_T) D?Q 7M22 (77’) TD23 (8) (ZS(—T) dS
(b(S) TD13 (S)T TDQg(S)T —TMQQ (S) ¢(8)

- 1 ,T¢ ( N(s,0) + jgN(s 9)) $(0)dods

< —ellg|”

Dyy = My Ag + M12(0) + %M22(0)>
Dy = My Ay — Misg(—7),

Doy = Al My5(s) — N (-1, s),

Dy = 2 AL Myy(s) — Mia(s) + N(0, s).

2) New Dual Lyapunov-Krasovskii Stability Conditions:
As per Corollary 7, the single-delay system is stable if there

exists a
Vo) /0 [aﬁ(o) T 7(R(0,0)+5(0)) TR(O,S)‘| [¢(O)] .
— | o(s) TR(s,0) 75(s) o(s)

of [ N

R(s,0)¢p(0)dods >

and
Vi ()
. [ ¢ S+ 57 Si2 7Su3(s) | [ ¢(0)
:/ (25(—7') S{Q 522 On ¢(—T) ds
o(s) 7815(s)T 0, 78(s) #(s)
/ / < (s, 9)+d9R(s 9))¢(0)d0ds
¢(0)
¢
where
1
SH = TA[) (R(O, 0) + S(O)) + TAlR(fT, 0) + 55(0)
512 = TAls(—T), 522 = —S(—T)
Si3(s) := AgR(0,s) + A; R(—, s) + R(s,0)".
Although this section only considers the single-delay case,
one can see the two primary differences between the primal

and dual stability conditions. First, as was the case for delay-
free systems, the Ay, A; system matrices appear on the left as
opposed to the right-hand side of the Lyapunov variables. This
allows for controller synthesis via variable substitution as we
will demonstrate in Section XI. The second difference is that in
the dual stability conditions, the (2, 3) and (3, 2) blocks of the
derivative condition are zero. This unexpected structure extends

to the multiple-delay case, wherein ALL (3, j) blocks are zero
fori,j # 1,1 # 7.

B. Notation

Shorthand notation used throughout this paper includes
the Hilbert spaces L3’ [X] := Lo(X; R™) of square integrable
functions from X to R™ and WJ"[X]:= Wh2(X;R™) =
HYX;R™)={x : z,2 € L[X]}. We use L§ and W3"
when domains are clear from context. We also use the
extensions L§ ™" [X] := Ly(X;R™™) and W3 ™ [X]:=
WH2(X;R"™™) for matrix-valued functions. C[X] D W [X]
denotes the continuous functions on X. S” C R"*" denotes the
symmetric matrices. We say an operator P : Z — Z is positive
on a subset X of Hilbert space Z if (x, Pz), > Oforallz € X.
P is coercive on X if (x, Px), > €|z for some ¢ > 0 and
for all x € X. Given an operator P : Z — Z andaset X C Z,
we use the shorthand P(X) to denote the image of P on subset
X. I, € S" denotes the identity matrix. 0,, x,, € R"*™ is the
matrix of zeros with shorthand 0,, := 0,,,,. We will occasion-
ally denote the intervals 7/ := [—7;, —7;] and T := [—7;,0].
For a natural number K € N, we adopt the index shorthand
notation, which denotes [K] = {1,...,K}.

Il. STANDARD RESULTS ON LYAPUNOV STABILITY OF LINEAR
TIME-DELAY SYSTEMS

In this paper, we consider the stability of linear discrete-delay
systems of the form
K
)+ ZAix(t —7;) forall t>0
i=1

d(t) = Apa(t

z(t) = o(t) M

where A; € R"*", ¢ € C[—7x,0], K € N and for convenience
T < To < --- < Tg. We associate with any solution x and any
time t > 0, the “state” of System (1), z; € C[—7x, 0], where
xt(s) = x(t + ). For linear discrete-delay systems of Form (1),
the system has a unique solution for any ¢ € C[—7x,0] and
global, local, asymptotic, and exponential stability are all equiv-
alent.

Stability of (1) may be certified through the use of Lyapunov—
Krasovskii functionals—an extension of Lyapunov theory to
systems with infinite-dimensional state space. In particular, it
is known [2] that System (1) is stable if and only if there exist
functions M and N, continuous in their respective arguments
everywhere except possibly at points H := {—7y,...,—Tx 1},
such that the quadratic Lyapunov—Krasovskii functional

V C[ Tk }—)R
0 01" 0
vo- [ m;] M<s>[z(s)]ds

0 0
+ / 6(s)T N (s,

satisfies V' (¢) > €||¢(0)||* and the Lie (upper Dini) derivative
of the functional is negative along any solution x of (1). That is

. Vizgen) = Vi
t>:’111£% ( t+h )h ( t) < _6”3315(0)H2

forall ¢t € [—7x,0],

0)p(0)dsdd ()

for all ¢ > 0 and some € > 0.
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For the dual stability conditions we propose in this paper,
discontinuities in the unknown functions M and NN pose chal-
lenges, which make this form of Lyapunov—Krasovskii func-
tional poorly suited to controller synthesis. For this reason,
we use an alternative formulation of the necessary Lyapunov—
Krasovskii functional. Specifically, it has been shown in [19],
Theorem 3, that exponential stability is also equivalent to the
existence of a Lyapunov—Krasovskii functional of the form

K 0
V() =m0 Po0) +7ic Y- [ 907 Quls)os)ds
i=1"Y"Ti
K 0
trey [ o) @ o(0)ds

K 0
by / 05" 51(5)0(5)

&/“

ij=17"

0
/_ 6(5)7 Rij (5,0)6(0)d0 > ¢ |6(0)|]
3)

Ti

where V (x;) < —e ||, (0)]|* for some € > 0 and the functions
Qi, S;, and R;; may be assumed continuous on their respective
domains of definition.

[ll. REFORMULATING THE LYAPUNOV STABILITY CONDITIONS
USING POSITIVE OPERATORS

In this section, we introduce the mathematical formalism,
which will be used to express both the primal and dual stability
conditions. We begin by reviewing the well-established semi-
group framework—a generalization of the concept of differen-
tial equations. Sometimes known as the “flow map,” a “strongly
continuous semigroup” is an operator S(t) : Z — Z defined by
the Hilbert space Z, which represents the evolution of the state
of the system so that for any solution z, x4 = S(s)x;. Asso-
ciated with a semigroup on Z is an operator .4, called the “in-
finitesimal generator,” which satisfies £5(t)¢ = AS(t)¢ for
any ¢ € X. The space X C Z is often referred to as the domain
of the generator A, and is the space on which the generator is
defined and need not be a closed subspace of Z. In this paper
we will refer to X as the “state space.”

For System (1), we define Z,,, ,, i := {R" x Lj[—7,0] X
.-+ X Ly[—7x,0]} and for {z, ¢1, ..., 0K } € Z,, n k., We de-
fine the following shorthand notation:

[¢Z] = {x,¢1,...,¢[(}

which allows us to simplify expression of the inner product on
Zm n. K » Which we define to be

K L0

When m = n, we simplify the notation using Z, g :=
Zn o,k - We may now conveniently write the state space for

System (1) as follows:

1l

Note that X is a subspace of Z,, f, inherits the norm of Z,, f,
but is not closed in Z,, . We furthermore extend this notation

to say
z Y
[@](s) y [f(s,i)]

if 2 = y and ¢;(s) = f(s,4) for s € [=7;,0] and i € [K]. This
also allows us to compactly represent the infinitesimal generator

A of (1) as follows:
3 oi(s)

Using these definitions of A, Z, and X, for matrix P and
functions @;, S;, and R;;, we define an operator P(p q, s, r,;}
of the “complete-quadratic” type as follows:

xr
<P{P,Qiq$i7R”} Lb > (S) =

Pr+ YK, ffT Qi(s)¢i(s)ds
T Qi (8) T x+7 S (5) s (3)‘1‘2;{:1 fBTjRij (5,0);(0) do .

¢; €W [—7;,0] and
S Z”’K : ) .
¢; (0)=x forall ic[K]|

This notation will be used throughout this paper and allows us
toassociate P, ();, S;, and R;; with the corresponding complete-
quadratic functional in (3) as follows:

o 9(0)
v<¢>=<[ o ]’P{P’Q"S”R”}l 2 DZ

That is, the Lyapunov functional is defined by the operator
Pir.q. s r;;}» Which is a variation of a classical combined
multiplier and integral operator whose multipliers and kernel
functions are defined by P, Q;, S;, R;j.

The upper Dini derivative of the complete-quadratic func-
tional can similarly be represented using complete quadratic
operators as follows:

#(0) #(0)
<[ " ]’P{P’Q"S“R”}Al " ]>

V(g) =

(0 [6(0
+ <./4 ( ) ,P{P,Q,’,S[,Ru} ( )] >
i L Pi Zn K
#(0) [ ¢(0)
— : ’P{Dl,V,.,Si,G:/}
(—7K) H(=7)
d)i L ¢i Zn (K+1) .0, K

294

295
296
297

298
299
300

301
302
303

304
305
306

307
308
309
310
311
312
313



314

315
316
317
318
319

320

321

322
323

324
325
326
327
328
329
330
331
332
333

334
335
336
337
338
339
340

341

342

343
344

PEET: A DUAL TO LYAPUNOV’S SECOND METHOD FOR LINEAR SYSTEMS WITH MULTIPLE DELAYS AND IMPLEMENTATION USING SOS 5

where [20]
Ag AN Ay
A{ Sl (—Tl) 0 0
D1 = . )
: 0 0
A%; O O SK (—TK)
K
Ay =PAy+ATP+) " Qi(0) + Qr(0)" + Sk (0),
k=1
Aj; = PA; = Q;j(—T)),
‘/;(S) = [HU,i(S)T HK7 (S)T:|T7
1 & .
Moj () = Ay Qs (s) + = > Rji(5,0) = Qs (o),
k=1
1
I (s) = AT Q;(s) — —Rj; (s, —7),
TK
0 0
Gij(S,g) = —%Rij(s,e) — @R”(S,e)
In this section, we have reformulated A*P +PA < 0 as
negativity of a multiplier/integral operator on a lifted space.

The classical Lyapunov—Krasovskii stability condition, then,
states that System (1) is stable if there exists an € > (0, matrix
P, and functions @);, S;, and R;; such that P(p g, s, .z} =

ehy and P, g .y < —€lo for suitably defined [, =
diag(I,,0,...) and I, = diag(I,,,0,...).

IV. A DUAL STABILITY CONDITION FOR
INFINITE-DIMENSIONAL SYSTEMS

Using the notation we have introduced in the preceding sec-
tion, we compactly represent the dual stability condition that
forms the main theoretical contribution of this paper. Note that
the results of this section apply to infinite-dimensional systems
in general and are not specific to systems with delay.

Theorem 1: Suppose that A generates a strongly continuous
semigroup on Hilbert space Z with domain X. Furthermore,
suppose there exists an € > 0 and a bounded, coercive linear
operator P : X — X with P(X) = X and which is self-adjoint
with respect to the Z inner product and satisfies

(APz,z) 7 (2, APz) 7 < ~¢zll7

for all z € X. Then a dynamical system which satisfies @(t) =
Ax(t) generates an exponentially stable semigroup.

Proof: Because P is coercive and bounded there exist
~,8 > 0 such that (z,Pz), >~z and ||Pz| <d]z|,.
By the Lax—Milgram theorem [21], P! exists and is bounded
and P(X) = X implies P~ : X — X. The inverse is self-
adjoint since P is self-adjoint and hence (P~'wz,y), =

~1 ~1 _ -1 . [Pzl _
(P~tz,PPy), = (x,P'y),. Since sup, m =0 <oo,
Y A
inf,, HPHyHJH = inf, H|7‘;IHH =5 >0 and hence (y,P'y), =

<PPT1Q,P’1y>Z > HP’lyHZZ > & Hy||2Z Hence, P! is
coercive.

Define the Lyapunov functional V(y) = (y.P 'y), >

= lyl|5, where positivity holds for any y € X. If y(t) satis-
fies y(t) = Ay(t), then V has time derivative

LV(0) = 0. P D), + (v, P0),

= <Ay(t)7 ,Pily(t)>z + <,P71y(t)’ Ay(t)>z .

Now, define z(t) = P~ 1y(t) € X forallt > 0. Then, y(t) =
Pz(t) and since P is bounded and P~ is coercive

V(y(t) = (Ay(t), P y()), + (P y(t), Ay(t)),,
(APz(t), 2(t)) 7 + (2(t), AP2(1)) ,

—cll=@l7 < -5 (o), P=(0),

= S (y0,P (), < -l

IN

Negativity of the derivative of the Lyapunov function implies
exponential stability in the square norm of the state by, e.g., [13]
or by the invariance principle.

The constraint P(X) = X ensures P~! : X — X and is sat-
isfied if X is a closed subspace of Z or if X is itself a Hilbert
space contained in Z and P is coercive on the space X with
respect to the inner product in which X is closed. For the case
of time-delay systems, X is not a closed subspace and we do
not wish to constrain P to be coercive on X, since this space
requires the Sobolev inner product in order to be closed. For
these reasons, in Lemma 4, we will directly show that for our
class of operators (to be defined) P(X) = X.

In the following sections, we discuss how to parameterize
operators which satisfy the conditions of Theorem 1, first in the
case of multiple delays, and then for the special case of a single
delay. We start with the constraints P = P* and P : X — X.
Note that without additional restrictions on P, @Q);, S;, R;;, the
operator Prp g, s, r,,} satisfies neither constraint.

Before moving to the next section, a natural question is
whether the dual stability condition is significantly conservative.
That is, does the stability of the system imply that the conditions
of Theorem 1 are feasible. We refer to [14, Th. 5.1.3].

Theorem 2: Suppose that A is the infinitesimal generator of
the Cy-semigroup S(¢) on the Hilbert space Z with domain
D(A). Then, S(t) is exponentially stable if and only if there
exists a positive, self-adjoint operator P € £(Z) such that

(PAz,z), + (2,PAz), = — (z,2z), forall =ze D(A).

Absent from the conditions of Theorem 2 is the restriction
P : D(A) — D(A) and indeed the uniquely defined operator
P from the proof of the theorem instead maps D(A) — D(A*),
with D(A*) the domain defined by .A* and which has a struc-
ture significantly different than that of D(.A). Also absent from
the conditions is the coercivity of P. Several results show (e.g.,
[22, Th. 5.5]) that stability implies the existence of a coer-
cive Lyapunov function (using a slightly weaker definition of
coercivity). Finally, the image restriction P(X) = X is not sat-
isfied by the operator in the proof of Theorem 2. However, if
P : D(A) — D(A), inthe following section we give conditions
that guarantee P(X) = X. In summary, however, we conclude
that no definitive statement can be made regarding the necessity
of Theorem 1.

345

346
347

348
349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389



390

391
392
393
394
395
396
397
398
399
400
401
402

403
404

405
406

407
408
409
410
411
412
413
414
415
416
417

418

419
420

421
422

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2018

V. DUAL CONDITIONS FOR MULTIPLE-DELAY SYSTEMS

In this section, we translate the results of Section IV into pos-
itivity and negativity of Lyapunov—Krasovskii-like functionals
for systems with multiple delays. First, we give a class of opera-
tors P, which satisfy the conditions of Theorem 1. Specifically,
we give a parametrization of operators that are self-adjoint with
respect to the Hilbert space Z,, , map X — X and satisfy
P(X) = X. Next, we show how the conditions of Theorem 1
can be applied to this class of operators to obtain stability con-
ditions similar to the primal Lyapunov—Krasovskii conditions
presented in Section II. Note that in Section VI, we will apply
these results specifically to systems with a single delay and the
exposition in that section is significantly reduced.

A. A Parametrization of Operators,
Conditions of Theorem 1 on Z,,

P, Satisfying the

In this section, we parameterize a class of operators which
are self-adjoint and map X — X, where
G W

. x ;€W [—7;,0] and
A= { [@, 6;(0)=x forallie[K]} )

The following lemma gives constraints on the matrix P and
functions Q;, S;, and R;; forwhichPyp g, s, g, is self-adjoint
and maps X — X.

Lemma 3: Suppose that S; € W3'*" [—7;,0], R;; € W3'™"
[[77’,’,,0] X [77']‘,0]] and S,(S) = Sj(S)T, Rij (5,9) =
Rﬂ(ﬁ, S)T, P =1 Q7 (O)T + 7K S; (0), and Qj (S) = R” (O, 8)
for all i,j € [K]. Then, Pip, s, r,,) is a bounded linear
operator, maps Pip g, s, r;;} X — X, and is self-adjoint
with respect to the inner product defined on Z,, .

Proof: To simplify the presentation, let P := P(p o, s, Rr,;1-
We first establish that P : X — X.If

x
€ X,
)

then ¢; € C[—7;,0] and ¢;(0) = . Now, if

[szj ) (P[;D OF

then since P = 7 Q; (0)T + 7.5;(0) and Q; (s) = R;;(0, s),
we have that

¥i(0) = (T Qi(0)" + 7 S;(0)) «

K o
- Z/ Ri;(0,0)p;(0)do
j=1Y"Ti

S Zn,K :

K 0
= Px + Z/ Q;(s)pj(s)ds =y.
j=177T

Since S; € W3 [—-7;,0] and R;; € W' [[-7;,0] x
[—7;,0]], clearly ¢, € W3'[—7;,0], and hence we have

This proves that P : X — X. Furthermore, boundedness of the
functions @;, S;, and R;; implies boundedness of the linear
operator P.

Now, to prove that P is self-adjoint with respect to the in-
ner product (-,-), ., we show (y,Px), = (Py,z), .

for any x,y € Z, k. Using the properties S;(s) = S;(s)? and

Ri;(s,0) = R;j; (0, s)", we have the following:
y x
< [ 7,P >
Yi $i1/ 5, .

K 0
= eyl (Px—!—Z/ _Qi(e)qx(e)da)
K 0
£ [ (@ o S oo

n i / O Rij(5,0)6; <9>d9)
T

— | Py+_i / Qi) ()ds | @
+z/ (m@z Ty 47 Sils) i)

LD,

Finally, we show that for this class of operators, if
Pir.q..s: r;,;} 18 coercive with respect to the Lp-norm, then
,P{P,Q,»,S,,;,R,,:_,}(X) =X.

Lemma 4: Suppose that there exist P, @Q;, S;, and
R;; which satisfy the conditions of Lemma 3. If

(2, Pp.o,.s: ki) >Z p >€H33||Z forall z € X and some

e>0then73{pQ Si R }( ) X.

Proof: By Lemma 3 P is self-adjoint and maps X — X.
Since P is coercive, bounded, and self-adjoint, P~ is coercive,
bounded, and self-adjoint. To show P(X) = X, we need only
show thaty = Px € X implies that x € X. First, we show that

if
y= {1/}1‘%(/9)} €X

K 0 .,
30 [ o7 000) o) i

then

x= M@)] =Py

satisfies z = ¢;(0). We proceed by contradiction. Suppose x —
©;(0) # 0 for some ¢. Then, we have

K 0
= P6i(0) + - 0i(0) + Y / Q)1 (s)ds

423
424
425
426
427

428
429

430
431
432
433
434
435

436

437
438
439
440
441
442

443

444
445



446

447

448
449
450

451

452

453
454
455
456

457
458

459

460

461

462

463
464
465
466
467
468
469
470
471
472
473
474

475

PEET: A DUAL TO LYAPUNOV’S SECOND METHOD FOR LINEAR SYSTEMS WITH MULTIPLE DELAYS AND IMPLEMENTATION USING SOS 7

Now, since y € X, y = 1;(0), and hence,

K 0
y=Po(0)+3 / Ri;(0,0)6;(6) db
=17

which P(z — ¢:(0)) =0. Now, (x,Px), .
€ ||x||221 implies P > el. Hence, = — ¢(0) # 0 implies

P(x — ¢(0)) # 0, which is a contradiction. We conclude that
x = ¢;(0). Next, we establish ¢; € WJ' for any i by showing

o,

implies

< oo. For this, we differentiate v); to obtain
2
bi(s) = i Qi (s)" +7k S (8)i (8) + 7

K 0
+Z/ O Rij(s,0)¢;(0)do
j=177Ts

which we reverse to obtain

i Si (8)¢i (5) = i (5) — Tie Qi ()T & — 71 Si (8)hi ()
K 0
—~ Zl D Ri;(s,0)0;(0) do

which is Ly bounded since 1@;, oi, Qi € Ly, and S; and 9, Vi
are continuous and thus bounded on [—7;, 0]. Now, for 2 =0
and ¢; = 0 for j # i, the constraint (x,Px), = >¢€ ||x||2ZM ,
implies that the operator on this subspace,

/RHSG(;SZ (0)do

is also coercive. Thus, since integral operators cannot be co-
ercive for Lo-bounded kernels R;;, we have that S;(s) > nl

for some 1 > 0. Therefore, for each 7, we conclude ¢L ; <

Si()¢i(s) .

Si(s)oi(s)

TBS

< 00. Hence, x € X. We conclude that
P(X)=X. u

B. Duality Conditions for Multiple Delays

For the multiple-delay case, we apply the operator
Pip.q,.5..R,;}» With P,Q;,5;, and R;; satisfying the condi-
tions of Lemma 4 to the dual stability condition in Theorem 1
and eliminate differential operators from the result. This section
provides additional justification for the unique choice of state-
space X and Hilbert space Z,, ,, x used in this paper. Specifi-
cally, the elimination of differential operators and reformulation
as negativity of a multiplier/integral operator on Z,,(fc 1 1),n, K
would not be possible using the more classical state and inner
product spaces, which allow for discontinuities in the state.

Theorem 5: Suppose that there exist P, @;, S;, and R;; sat-
isfy the conditions of Lemma 3. If (x, Pp.q, s, R, }Z) >

n, K

e ||lz||® forall z € Z, x and

[yl} Y
< :Zf 77){D1,V'“S:-,G/J} y2 > S —¢

i o

2

I

0K
Zn(K+1),n, K

forall y; € R™ and 476
Y1
Y2 € Zn(KJrl).n,Ka
bi
where 477
Coy + Cg Cy Ch
ClT —Sl (—7’1 ) 0 0
D1 =
0 0
Cky' 0 0 —Sk (—TK )
« 1
Co == AP +; (TKAiQi(_Ti>T + 25,»(0))
C; = TKAZ'SZ'(—TZ‘) S [K]
Vi(s):= [Bi(s)T 0 - 0] i€ [K]
K
Bl( ) = AOQz +Qz Z —Tj,8), ©E [K]
Gy (3,0) = Ry (s,0) + aR (5.0 ij e [K)
ij(8:0) := = s ETRRASE 1,]
then the system defined by (1) is exponentially stable. 478
Proof: Define the operators A and P = P(p g, s, r,,} a5 479
aforementioned. By Lemma 3, P is self-adjoint and maps X — 480
X . Since P is coercive by assumption, this implies by Theorem 1 481
and Lemma 4 that the system is exponentially stable if 482
2
x x
<A73 [ >+ < AP >§—e l ]
G| [9il), L% bil/, . b, .
for all 483
T
e X.
bi
We begin by constructing 484
Y T
= AP ,
¥i(s) b
where 485

K 0
y=APr+Y / A0 Qi ()61 (s)ds
i=1 T

K

+) A

i=1

(m»czx—m% Tk Sy (=) (—70)

K L0
+J; [ Rw(—n,ﬂ)@(e)da)

$i(s) = T Qi (s)" @ + 71 Si (8) i (8) + 7i Si (5) i ()
K 0 d
+Z/ Is

j=17"Tj

Rij(s,0)0;(0)do
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486 Now, divide the expression into terms as follows: X 491
. K 0 + 7 Yy al AiSi(—T)gi(—T)
< AP > = TK:z:Ty+Z/ bi(5) 1 (s)ds. i=1
d)i/ QSZ Zn, K i=1 E T K
_ K (—\T g
487 Examining the first term and using x = ¢;(0), we have 2 ; $i(=mi)" Si(=mi)¢i (=)
K K 0 .
ety =al AyPx + Z/ x' AgQi(s)¢i(s)ds + 7K Z/ zT (A()Qi(s) + Qi(s)
i=17"Ti i=17"Ti
K K
+ZTK{ETAZ'Q7;(—TZ')T$ +ZA]‘R]‘Z‘(—TJ',S>> ¢i(s)ds
i=1 j=1
K
3 rcal 48— )i (<) Z/ 61(s) $ils):(s)ds
i=1
+Z/ Zm A;R;i(—5,0)¢;(0)do +Z/ / $i(8)" 5 Rij(s,0)¢;(0) ds db.

T'] 1

488 Next, we examine the second term and use integration by
489 parts to eliminate ¢: Combining the expression with its adjoint, we recover 492

K 0 K 0
di(s) i(s)ds =) 7 ¢ ()" Qi(s) xd 1
e
G| 9]/, . ¢%il/, .
+ZTK/ ¢z ¢z() r T T r T T

AP

i

¢1(—71) ¢1(—71)
+ Z TK / ¢z ¢7( ) = : D
O (—7x) ¢ (7K )
+Z/ / oi(s 1](5 0)¢;(6) ds db L & i L & A
Ik
K 0
. < —e€
T T = )
= ;TK /T, ¢i(s)" Qi(s) xds |ﬁ%] 2o
Z / oi(s (s)di(s)ds where D := P, v g ¢,y We conclude that all conditions of = 493
Theorem 1 are satisfied and hence System (1) is stable. B 104

K Theorem 5 provides stability conditions expressed as the pos- 495

—_ o L AT
4 KT Z S;(0)z itivity of P(p g, s, r,,y and negativity of the rr}l'llt.lplle.:r/lntegral 496
operator D = 77{ D1 Vi Gy} Note that positivity is defined 497
with respect to the inner product Z,, , x. In Section VII, 498
we will show how to reformulate positivity on Z, , x as 499

Z¢7 ~7) T 8i(=7:)¢i () an equivalent positivity condition on the space Z,, ,x 1. 500

Positive operators on Z,, , 1 are then parameterized us- 501

ing LMIs, as also described in Section VII. Before mov- 502

+ Z / / di(s Rij(s,0)¢;(0) dsdb. ing to the next section, we note that the derivative operator 503

D ="Pp, v, s c,) is sparse in the sense tThat no terms of the 504

490  Combining both terms, we obtain form ¢(—7;)" ¢ (—7;) fori # j or ¢;(—7;)" ¢i(s) forany i ap- 505

pear in <¢, P{Dl R nG,/}¢>' This is extraordinary, as all such 506

x
AP
i

K
r =i’y _|_Z / ! i S)T Vi (s)ds terms do appear in the similar formulation of the primal stabil- 507
o 7. x ity conditions (i.e., <¢, ’P{Dl Re }¢> from Section III). To 508
- emphasize this difference, we fully expand both versions of the 509
K p y exp
=z <7'K AgP + Z TKA Qi(— Z S;(0 ) form <q§, P{Dl Vg 7Gl]_}¢> to obtain the following. 510

=1
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511 1) Dual Lyapunov-Krasovskii Form: Theorem 5 implies
512 that system (1) is stable if there exists a

K 0
V() = o0 Pol0) + 7 3 [ 6(0) Qils)ols)ds

»(0)ds

K 0
P> / o Q)

513 such that

Zn K

514 and

Vi (¢) = 7 $(0)" (Co+C7 )b TCigi(—7i)

+2TKZ¢

— TK Z¢7 TI Tl)¢7( 7_7',)
K 0
vane Y [ o0/ B9t
i=1""Ti
K 10
by [0l S50 ()ds
i=1Y"Ti
K 0 0
3 [ e G, 00010 ds a0
i,j=1Y"Ti *7Tj
2
lqﬁ(o)]
< —¢
@ Jlly .
515 2) Primal Lyapunov-Krasovskii Form: Now, compare
516 with the associated primal classical Lyapunov—Krasovskii

517
518

derivative condition [20] from Section III, which states that
system (1) is stable if there exists a

K 0
"o+ Y [ 607 Quls)o(s)ds

V(¢) = ¢(0)

such that V (¢) > € [|¢(0)||* and
) K
V($) = 6(0)" 80 (0) + > ¢i(—7)" Si(—7:) i (—7:)
i=1
+2Z¢ A pi(—;)
K 0
+22 [ $(0) ' Hy; (5) ¢ (s)ds
+Z / &i(s

+2Z/ 61 (— )T TL; (5)6 (5)ds

(s)0i(s)ds

- ¢i(s)" Gij(s,0)0;(0)dsdb
P
< —ellg(0)].

From this comparison, we see that the structure of the dual
stability condition is very similar to the structure of the primal
except for the fifth line of the derivative, which is absent from
the dual. Roughly speaking, it is as if all the II;; terms in the
primal form have been combined in Ily;. This sparsity pattern
yields a multiplier of the form

consisting of a single row, single column, and diagonal. For an
example of how to exploit such sparsity, the positivity of such a
multiplier would be equivalent to positivity of the diagonal and

-1
positivity of the scalar [-] — - - - [} .

VI. DUALITY CONDITIONS FOR SINGLE-DELAY SYSTEMS

In this section, we simplify the results of Section VIII-A for
systems with a single delay. We find that in the case of single
delay the parametrization of the operator P is direct (it does not
rely on equality constraints to enforce the mapping conditions
of Theorem 1), which allows us to arrive at the explicit forms
described in Section I-A.

A. Parametrization of Operators, P, Satisfying the
Conditions of Theorem 1 on Z,,

First, we consider a class of operators that are self-adjoint
with respect to Z and map X — X. This is simplified in
the case of a single-delay case partially due to the fact that
Z =Z,1=R" x L} equipped with the L3" inner product
and subspace X := {{z,¢} € R" x WJ'[—7,0] : ¢(0) = x}.
Specifically, given functions S, R € W3'*" [—, 0], in this sec-
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tion, we will define P as follows:

GHIE

7(R(0,0) + S(0))z + [ R(0,5)$(s)ds ]

7R(5,0)6(0) + 75(s)é(s) + [ R(s,0)¢(0)dd
4)

Clearly, we have that P is a bounded linear operator and
since S, R are continuous, it is trivial to show that P : X — X.
Furthermore, P is self-adjoint with respect to the L2" inner
product, as indicated in the following lemma.

Lemma 6: Suppose S e Wy [—r,0], Re
Wy [[—7,0] x [—7,0]], R(s,0) = R(6,s)", and S(s) € S".
Then, the operator P, as defined in (5), is self-adjoint with
respect to the L3" inner product. Furthermore, if there exists
€ >0 such that (x777x>Lg,, >e€ H:1c||2 for all x € X, then
PX)=X.

Proof: The proof is a direct application of Lemma 3. First,
we note that P = Pip g s ry Where P = 7(R(0,0) + S(0))
and Q(s) = R(0,s). Noting that P = 7(R(0,0) + 5(0)) =
7Q(0)" + 7.5(0), we see that P(p o s ) satisfies the condi-
tions of Lemma 3. n

Note that the constraints P : X — X and P = P* signif-
icantly reduce the number of free variables. In the single-
delay case, we make this explicit by replacing P and @ with
P =7(R(0,0) + S(0)) and Q(s) = R(0, s).

Having introduced a parametrization of P and established
properties of this operator, we now apply this structured operator
to Theorem 1 to obtain Lyapunov-like conditions on S and R
for which stability holds.

B. Dual Stability Conditions: Single Delay

In this section, we specialize the results of Theorem 5 to
single-delay systems. First, recall that the dynamics of the
single-delay system are represented by the infinitesimal gen-
erator .4 defined as follows:

)

Then, we have the following.
Corollary 7: Suppose S and R satisfy the conditions of and
Lemma 6 and there exists ¢ > 0 such that

Apx + A1¢(—7)]

a5 9(s)

(2, P(p.Q.s.RY®) 20 2 € [

forall x € R" x LY[—7,0] where P = 7(R(0,0) + S(0)) and
Q(s) = R(0, s). Furthermore, suppose

x

¢

x x
(EeFD, --
¢ ¢ Ly
€ R" x R" x Ly [—,0]

T
;
¢

2

2n
LZ

for all

where D =P, 1 ¢ ) and
G+ci ¢ Bls
1= ’ ! ' , Vis)= “
o =S(-7) 0

Coy = 7 Ao (R(0,0) + S(0)) + 7A; R(—7,0) + %S(O)
Cy:=1AS(—71)
B(s) :== AgR(0,5) + Ay R(—7,s) + R(s,0)”

d d
7 R(s,0) + daR(s, 0).
Then, the system defined by (1) in the case K = 1 withm = 7
is exponentially stable.
Proof: The proof is a direct application of Lemma 6 and
Theorem 5. |
Note that expanding the term

60) 1 T 9(0)
<[¢<—T>] ,D[o;(—T)D
0 o 1/,

from Corollary 7 yields the new dual stability conditions previ-
ously described in Section I-A.

G(s,0) :=

VII. USING LMIs TO SOLVE LINEAR OPERATOR
INEQUALITIES (LOIS) ON Z,,, ., k
In previous sections, we have formulated dual stability con-
ditions, with decision variables parameterized by the matrix P

and functions @;, S;, and R;;. The dual stability conditions
were reformulated as the positivity of

2
<x’P{PlesSmRz_l}x>Zn_K 2 € ||x||Z

n,K

for all z € Z,,  and the negativity of

n o
3;)2 ?P{Dl,VnSmsGii} b2 =

(3 7

2

H

—€

Z -
Zn (K+1),n,K n, K

for y; € R" and

)
Y2 € Z71(K+1JL,K)
bi
where Dy, V;, Sq, and G; are as defined in Theorem 5. Opera-
tor feasibility conditions of this form are termed linear operator
inequalities and, in this section, we will show how LMIs can be
used to solve LOIs under the presumption that the functions @),
S;, and R;; are polynomial (which implies Dy, V;, S;, and G;;
are polynomial). Specifically, the variables in this case become
the coefficients of the polynomials @);, S;, and R;; and the
goal of the section is to find LMI constraints on P and these
polynomial coefficients, which ensure that
> 0.

mon, K

<l’, ,P{PﬁQT JSisRij }$>Z

Our approach to solving LOIs on Z,, ,, i is to construct an
equivalent feasibility condition using operators on Z,, ,x 1 =
R™ x L35 [—7g,0]. This is accomplished in two steps. First,
in Section VII-A, we construct polynomials @, S, and R
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such that P{P,Q,S,R} is coercive on Z,, , k1 if and only if
P{p,Ql SiRi;} is coercive on Z,, ,, k. Second, in Section VII-
B, we impose LMI constraints on P and the coefficients of
these polynomials Q, S , and IA%, constraints which are denoted
{P, 0, 5'71%} € Z4.m nx and which ensure that P{P,Q,S,R} is
coercive on Z, nx.1-

Both steps are combined into a single summarizing statement
in Corollary 10.

A. Equivalence Between Z,, ,, i and Z,, i 1

In this section, we address the positivity of Pip g, s, r,;}
on Z,, , i by constructing a linear map from the matrix P and
coefficients of Q;, S;, and R;; to the coefficients of new polyno-
mial variables Q, S, and R, where the coercivity of 73{ P08, R}
on Zy, nk 1 is equivalent to the coercivity of Pip ¢, s, &} On
me,K .

Given matrix P and polynomials @;, S;, and R;;, define the
linear map £, by

{P S R} El P Qz;SzaRw) (5)
ifa; = =,
TK
Q(s) == [VaiQi(a1s) -+ JaxQx(axs)]
Si(ars) 0 0
0 0 SK (CLKS)
R(s,0) :=
Vairay Ry (saq,0ay) <o Varag Ry (sar,far)
Vaxa Ri1 (sax,0a1) -+ \Jagag Ry (sag,0ar)
Then, we have the following result.
Lemma 8: Let {P, Q,S, R} =L (P, Qi, S, Rz‘j)- Then
» I{P,Q,Si,Rij} Z
¢i J ¢Z Zm o0 K ¢Z Zm . K
T
for all [(ﬁ € Zy n.k if and only if
(lreanali]), v =[]
Pio o >«
2 UP.Q.R,SY| 2 = -
¢ Zm n K1 d) Zm n K1

=>

-
—_

é
for all [ € Zynk,1-
Proof: The proof is straightforward. For necessity, let

Vaigr (sar)

Vark ¢k (sar)

Then,
T
L€ ZmJLK,l
¢
and define the change of variables s, = %sl = ,%Sl Then,
; = a;ds} and

K 0
:ﬂw%+2/\W@W®
=1 T

S; =

o

Zm ,n, K

=Tk 96—|—Z/ /@i (s,a;)||” ds|

—TK
0 T
=Tk :ch—|— / R
- o

Now, using a similar change of integration variables, we have
the following:

X 'P X
) P,Q;,Si,R;;
i { ! i Zm,n, K

K
= i xl Pr+ 27k Z a"\/a;Q; (Sai)qgi (s)ds

TTK =1

2
S)H ds:|

Zm,nK .1

+ 7K Z¢z Saz ¢z( ) $

“TK j=1

1 / Z ¢Z ./a,iajRZ-]- (sai,ﬁaj)éj (9)d9d8

TK ij=1

0 T
-/, Lx >]
/_T /_ )" R(s,0) ¢ (0) dods

)
»{P.Q.R.SY| 5
¢) Zm nK 1

¢3

T T
>all . =
¢ Zm, K1 ¢Z Zm n, K
For the sufficiency, we reverse the steps using
1 - /s [
o) = <= ().

Note that if ();,S;, and R;; are polynomials whose coef-
ficients are variables in the optimization problem, then the
constraint {]3,6}7 S, R} =L, (P,Qi, S;, R;;) defines a linear
equality constraint between the coefficients of @);, S;, and R;;
and the coefficients of the polynomials that define Q, S', and

R.In the following section, we will discuss how to enforce the
positivity of operators on Z,, k1.
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B. LMI Conditions for the Positivity of Multiplier and
Integral Operators on Z,, ,, i 1

In this section, we define LMI-based conditions for the pos-
itivity of operators Pip g g5} On Zy nic,1 Where @, S, and R
are continuous on [—7x , 0].

Our approach to positivity is based on the observation that a
positive operator will always have a square root. If we assume
that this square root is also of the form P(p ¢ r,sy with functions
@, S, and R polynomial of bounded degree, then the results of
this section give necessary and sufficient conditions. Note that
although this assumption is restrictive, it is unclear whether
it implies conservatism. For example, while not all positive
polynomials are sum-of-squares, any positive polynomial can
be approximated arbitrarily well in the sup norm on a bounded
domain by a polynomial with a polynomial “root.” Specifically,
the following theorem assumes a square root of the form

<p; H) (5) = Niv/g() + No/gYi (5)6(5)

p
0
+ / NoV/90)Ya (5, 0)0(0)8

where the matrices /NV; are unknown, the matrix-valued func-
tions, Y; are chosen apriori, and g is either g(s) =1 or
g(s) = —s(s + 7x ) (meaning ¢(s) is nonnegative on the in-
terval [—7x, 0]).

Theorem 9: For any functions Yj :[—7x,0] — R™*"
and Y : [—7x,0] X [Tk ,0] — R™2*" square integrable on
[—7x, 0] with g(s) > 0 for s € [—7x, 0], suppose that

1 0
PY— / g
TK J—rg

(g<s>M12Y1<s> - [

—TK

P =My, (s)ds

0

g(n)MuYz(n,s)dn)

S(5) = —g(s)Yi (s)7 Maai (8

R(s,0) = g(5)Y1(s)" Ma3Ya(s,0) + g(0)Y2(6, 5)" MsY1(6)

0
o/
e

where My, € R™*™ | Moy € R™1*™1 - Maq € R™2%™2 and

9()Ya(n, s)" Ms3Ya(n, 0)dn

My My Mg
M = | My, DMy Moz | > 0.
My Mszo  Mss

Then, <1’77){P’Q’R’S}l’>z > Oforallz € Z,,, 1.

m,n .,

Proof: Since M >0, there exists a matrix
N=[N, Ny N3] such that M=NTN where
N1 c RT’L+TTL1+NL2 Xm N2 c RTTL+7TL1+NL2 X1 o and

Ny € Rmtmitmexms - Using the definition of P? intro-
duced previously, it is straightforward to show that
Lol
<"L",P{P-Q-,R-,S}x>zm_”_1 = <7)2 :L.’PZ :I;>L;n+ml+mz Z 0. |

Theorem 9 gives a linear parametrization of a cone of positive
operators using positive semidefinite matrices. Inclusion of g is

inspired by the Positivstellensatz approach to local positivity of
polynomials, as can be found in, e.g., [23]-[25]. For example,
under mild conditions, Putinar’s P-Satz states that a polynomial
p(z) is positive for all x € {z: g(xz) > 0} if and only if it
can be represented as p(x) = s1(x) + g(z)s2(x) for some sum-
of-squares polynomials s;, so. In this way, Theorem 9 can be
seen as an operator-valued version of this classical result. Note,
however, in our case g is a function of the variable of integration
and not the state and so the analogy is somewhat specious.
Furthermore, for this paper, we restrict ourselves to /inear maps
of the state space. A partial discussion of parametrization of
positive nonlinear operators for the stability of nonlinear time-
delay systems can be found in [26] and [27].

Note that there are few constraints on the matrix-valued func-
tions Y, and Y5, functions whose elements are a basis for
the multiplier and kernel functions found in Pr. In this pa-
per, these are chosen as Y (s) = Z;(s) ® I,, and Y5(s,0) =
Zq(s,0) ® I,,, where Z, is the vector of monomials of degree
d or less in variables s and s, 6, respectively. Likewise, as men-
tioned, g is chosen as both ¢g(s) =1 and ¢(s) = —s(s + 7k ),
with the resulting P, @, R, S being the sum of the results
of applying Theorem 9 to each case. To simplify notation,
throughout the remainder of this paper, we will use the nota-
tion{P,Q, S, R} € g ., to denote the LMI constraints on the
coefficients of the polynomials P, @, R, S implied by the condi-
tions of Theorem 9 using both ¢;(s) = 1 and g; = —s(s + 7 )
as follows:

Ed,m,n =
{P,Q,S,R}={P1,Q1,51,R1 }+{P2,Q2,5, R},
{P7 Q, R, S} . where {P;,Q1,51,R1} and {P>,Q2,52,R } satisfy

Theorem 9 with g=1 and g=—s(s+7x ), respectively.

C. Summary of Conditions for Positivity on Z,, ,, i

The following corollary summarizes the main result of this
section.

Corollary 10: Suppose there exist d € N, constant € > 0,
matrix P € R™*™ polynomials @Q;, S;, and R;; for i, j € [K]
such that

‘cl(P7 Q?»SMRu) S Ed,m,nK~

Then, <x’P{PinasuRw}@Z,ﬂ,,,.K >0forallx € Z,, » k-

Proof: Define {P,Q,S,R} = L1(P,Qi,S;, Rij).
{P,Q,S,R} € Eqmnk» by Theorem 9,
(2. P a5.m®) >0 for all @€ Zy 1. Next,

Zm 0K 1

since {P,Q,S,R} =L(P,Q;,S;,Ri;), by Lemma 8,

(. Pipq.s.r,yx),, . = 0forallz € Zy k. [
To simplify presentation, the main results of the following

section will reference Corollary 10 instead of the individual

lemma and theorem statements, which it combines.

VIIl. LMI FORMULATION OF THE DUAL STABILITY TEST

In this section, we apply the positivity conditions developed
in Section VII to the operators parameterized in Section V-B,
yielding a computational method for verification of the dual
stability conditions of Theorem 5 and Corollary 7.
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A. LMI Test for Dual Stability With Multiple Delays

We first consider the case of systems with multiple delays.
The variables in the LMI are the matrix P and the coefficients
of the polynomial functions @; S;, and R;;. The polynomial
constraints € =4, ,x and € Edn(K +1),nx represent LMI con-
straints on the coefficients of the polynomials as per Theorem 9.

Theorem 11: Suppose thereexistd € N, constante > 0, ma-
trix P € R™ ", polynomials S;,Q; € W™ [T?] and R;; €
W3 [T x T}] for i, j € [K] such that

£1 (P - 6—[723622'752' - GInaRij) S Ed,n,nK
Ly(Dy +€el, Vi, S; +el,,Gyj) € Edn(K+1)nK

where [ = diag(I,,,0,x ), £ is as defined in (6), and where
Py, Vi, Gjj are as defined in Theorem 5.
Furthermore, suppose

P =15 Qi(0)" + 74 S;(0)
Si(s) = S; (S)Ta Ri;(s,0) = R;; (0, S)T
Q;(s) = R;;(0,s) fori,je [K].

Then, the system defined by (1) is exponentially stable.
Proof: Clearly, P(p q, s, r, ) satisfies the conditions of
Lemma 3. By Corollary 10, we have

fori € [K]
fori,j € [K]

(@, P(p—ct, Q1.5 —el, Ry} T) 4

n, K

2
= <33’P{P,Q,~S;,R;j}x>z,h,{ —elzlz, , 20

forall x € Z,, i . Similarly, we have

n 1
< Y aP{Dl+ef,‘/,,s,,+51,,,G,_,} Y >

2 (3

Y1
aP{Dl,V,',S',,,G,j} Y2 >

i

Zn(KAl)JLJ\'

Y1

- < | Y2

bi

)
o

Zn (K +1),n.K
2
<0.

+e€

Zn K

Hence, Theorem 5 establishes the exponential stability
of (1). |
B. LMl for Dual Stability of Single-Delay Systems

We now state an LMI representation of the dual stability
condition for a single delay (7; = 7x = 7). This is a simplified
version of Theorem 11, where we have eliminated the variables
P and Q.

Theorem 12: Suppose there exist d € N, constant e >
0, polynomials S € W;'*"[—7,0] and R € W3"*"[[—T,0] x
[—7,0]], with R(s,0) = R(0,s)" and S(s) € S™ such that

{T(R(0,0) + S(0)) — el,, R(0,-),S —€l,, R} € Zgan1
- {Dl + €I’n7Va S + 617” G} € Ed,?n,n

where Dy, V', and G are as defined in Corollary 7.

Then, the system defined by (1) inthe case K = 1 with7 = 7
is exponentially stable.

Proof: The proof follows from Theorem 11 by defining P =
7(R(0,0) + 5(0)) and Q(s) = R(0, s) and noting that when
K=1

{P,Q,S, R} = L,(P,Q,S,R). u

IX. MATLAB TOOLBOX IMPLEMENTATION

To assist with the application of these results, we have cre-
ated a library of functions for verifying the stability conditions
described in this paper. These libraries make use of modified
versions of the SOSTOOLS [28] and MULTIPOLY toolboxes
coupled with either SeDuMi [29] or Mosek. A complete pack-
age can be downloaded from [30] or [31] and all scripts and
functions are well documented and commented. Key examples
of functions included are as follows.

1) sosjointpos_mat_ker_ndelay PQRS_vZ.m
a) Declaresa [P, Q;, R;;, S;] that defines an operator,
which is positive on Z,, ,, k.
2) sosmateqg.m
a) Declare a matrix-valued equality constraint.
3) solver_ndelay_dual_joint_nd_RL2.m
a) A script that combines the functions listed previ-
ously to test the stability of a user-defined problem.

These functions are implemented within the pvar framework
of SOSTOOLS and are available on Code Ocean.

Pseudocode: The following is a pseudocode implementation
of the conditions of Theorem 11.

(a) [P,Q,R,S]=sosjointpos_mat_ker_ndelay
_PQRS

(b) [D,E,G,H]=F(P,Q,R,S)

(¢) [L,M,N,O]=sosjointpos_mat_ker_ndelay
_PORS

(d) sosmateq(D+L); sosmateq(E+M)

(e) sosmateqg (G+N); sosmateq(H+0)

Here, we use the function F to represent the derivative con-
struction defined in Theorem 11. This is not an actual function
in the toolbox. The derivative construction can be found in
solver_ndelay dual_joint_nd_RL2, however.

X. NUMERICAL VALIDATION

In the preceding sections, we proposed a sufficient condition
for stability. However, as discussed, this condition is not nec-
essary and there are several potential sources of conservatism,
including the constraint P(X) = X and the assumption of an
SOS representation of the positive operator. In this section, we
apply the dual stability condition to a battery of numerical exam-
ples in order to determine whether this potential conservatism
is significant.

In each case, a table is given that lists the maximum provably
stable value of a specified parameter for each degree d. This
maximum value is found using bisection on the parameter. In
each case d is increased until the maximum parameter value
converges to several decimal places. The true maximum is also
provided as either the “limit” or “analytic” value, depending on
whether this limiting value is known analytically or is a best es-
timate based on simulation. The computation time is also listed
in CPU seconds on an Intel 17-5960X 3.0-GHz processor. This
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time corresponds to the interior-point (IPM) iteration in SeDuMi
and does not account for preprocessing, postprocessing, or for
the time spent on polynomial manipulations formulating the
SDP using SOSTOOLS. Such polynomial manipulations can
significantly exceed SDP computation time for small problems.

b) Example A: First, we consider a simple example that is
known to be stable for 7 < 7:

(t) = —a(t—1)

d 1 2 3 analytic
Tmax 1.558 | 1.5707 | 1.5707 | 1.5707
CPU sec | 0.309 | 0.516 | 0.776

c) Example B: Next, we consider a well-studied two-
dimensional (2-D), single-delay system:

( vl (t) v (t—7)
T(t) = x(t) + x(t—1T1
-2 .1 1 0
d 1 2 3 limit
Tmax 1.693 1.7176 1.71785 | 1.71785
Twin 0.10018 | 0.100174 | 0.100174 | 0.100174
CPUsec| 0478 0.879 2.48

d) Example C: We consider a scalar, two-delay system:

&(t) = ax(t) + ba(t — 1) + cx(t — 2).

In this case, we fix ¢« = —2 and ¢ = —1 and search for the
maximum b, which is 3 [32]-[34]:
d 1 2 3 analytic
bmax 0.829 | 2.999 | 2.999 3
CPU sec| 0.603| 1.50 | 3.89

e) Example D: We consider a 2-D, two-delay system where
71 = T2 /2 and search for the maximum stable 75:

() 0 1 9 0 O (t /2)
() = x(t) + x(t—T1
-1 .1 -1 0
0 0 ( )
+ z(t—T7
1 0
d 1 2 3 limit
Tmax 1.354 | 1.3722 | 1.3722| 1.3722
CPU sec | 1.75 7.51 27.2

f) Example E: Next, we consider a4-D, one-delay static output
feedback system which, in [35], was found to be challenging for
SOS-based methods. This example considers the static feedback
system

#(t) = (A— BKC)x(t) + BKCa(t — )

where
T
0 0 1 0 0 1
0 0 0 1 0 0
A=110 10 0o o | B0 971,
5 —-15 0 —-.25 0 0

TABLE |
COMPUTATION TIME (IN CPU SEC) INDEXED BY THE NUMBER OF STATES (n)
AND THE NUMBER OF DELAYS (K)

Kln— 1 2 3 5 10
1 .366 .094 158 .686 12.8
2 112 295 1.260 | 10.83 | 61.05
3 177 1.311 6.86 | 96.85 | 5223
5 .895 13.05 | 124.7 | 2014 | 80950
10 13.09 | 59.5 5077 | 80231 NA

In this case, we take K = 1. It has been reported that it re-
quires polynomials of degree 10 even in the primal case to prove
stability of h = 3. However, using the dual stability condition,
we find a stability proof for degree d = 4, perhaps due to the
use of the new parametrization of positive operators. The com-
putation times for increasing degrees are listed in the following
table:

d 1 2 3
CPUsec | 2.23| 7.45| 21.6
Stability? | no | yes | yes

g) Example F: In this example, we consider a generalized n-D
system with K delays and examine the computational scalability
of the stability test. Our system has the form

K .
i =y R

For this example, we only search for polynomials of degree 2
and leave off the second kernel function. All results indexed in
Table I list IPM computation time in seconds and all establish
the stability of the system. The table is jointly indexed by the
number of states and the number of delays.

These numerical examples indicate little, if any conservatism
in the LMI implementation of the dual stability conditions, and
moreover, the method is accurate for relatively low degree. Ex-
ample E shows that computational complexity is a function of
nK and that the results scale well to high-dimensional sys-
tems and large numbers of delay. Specifically, current desk-
top computers with 128-GB RAM can solve problems where
= nK < 50. This scaling can be improved if the delay channel
is low dimensional through the use of the differential-difference
framework [19]. In the following section, we introduce a con-
troller synthesis condition. Note that adding the controller to the
optimization problem does not significantly change the compu-
tational complexity of the problem.

Xl. LMI CONTROLLABILITY TEST

Establishment of dual stability conditions is the first step in
developing full-state feedback controller synthesis conditions.
Obtaining the stabilizing controller requires two more steps.
Specifically, consider the system @(t) = Ax(t) + Bu(t), where
u(t) € R™. First, we define the controllability test.

Theorem 13: Suppose there exist d € N, constant ¢ > 0,
matrix P € R"*", polynomials S;,Q; € W3 [T?], R;; €
Wy [T x TJO] for i,j € [K], matrices W; € R™*", and
polynomials Y; € W3"*" for i € [K] such that

»Cl (P - EInaQia Sv - EITI ) R?]) € Ed,n,nK
—~L1(Dy+W el Vi + BY;, S; + €, Gij) € Egn(ic 1) mK
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where I, D1, V;, and G;; are as defined in Theorem 5, £; is as
defined in (6), and

BVV()-FWOTBT BW; BWxk
wi BT 0o ... 0
W= . . . .
Wx BT 0 0

Furthermore, suppose P, (Q);,S;, and R;; satisfy the con-
ditions of Lemma 3. Then, the system @(t) = Agz(t) =
> Aix(t — 7)) + Bu(t) is exponentially stabilizable and
u(t) = ZP'x(t) is an exponentially stabilizing controller
where

- K K 0
(Z " )(S) =Wyz +ZWz‘¢z‘(—Tz‘) +Z[K(S)¢i<5>ds'
Proof: If u(t) = ZP La(t), then w(t) =
(A+ BZP!) z(t) where
[ Bu(t)
(Bu)(s) = 0

Hence, as in Theorem 5, the closed-loop system is stable if

M)
7 (bi— Zn K

[
J(A+BZP P ] >
Zﬂ.I{

i

<(A+BZ7?‘1)P

3

i K
_ " - _ " y
¢1(*71) ¢1(*7'1)
- : 7D+DZ
br(—7x ) L dr(—T7K )
L oi i L oi i

Zn (K+1),n, K

2 X
A4 eX
Zn. K i

<—¢

)

where
DZ = P{W,BY,;,O,O} and D := ,P{DI,V,,S',,,G,j}'
Now, from Corollary 10, we have
P{D.+W+J,w +BY;,Si+el, ,Gij} =0
and hence

[yl] |:y1:|
Y2 | [ Poy W sed Vie BY, .S +eln Gy} Y2

2 3

=< [zm  (D+Dy) {Z;] >+e ‘Zﬂ

2

bi o

Zn VK

<0.

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Time (s)

Fig. 1.  MATLAB DDE23 simulation of System (6) and Controller (8)
and delay 7 = 5 s.

Therefore, by Theorem 35, the closed-loop system is exponen-
tially stable. |
The second step in controller synthesis is the construction
of the stabilizing controller u(t) = ZP{}l,Q; 5.1, Which re-
quires inversion of the operator P(p ¢, s, r,,1—a topic which
is addressed in the sequel to this paper [36]. We illustrate these
results in the single-delay case using the well-studied system

0 0 —2 0
[0 1]x(t)+ l 0

u(t).
|
For 7 = 5 using simple polynomials of degree 2, we obtained
the following exponentially stabilizing controller:

-5

i(t) = B

1x(t—7)+

" —36011" " —.008911" -
uw(t) = x(t) + x(t—T
—944 872
0 [52.1 + 6.98s + .00839s2 — .0710s% 1"
+ / | x(t+ s)ds.
5| 12,7+ 1.50s — .0407s% — .0190s°
@)

Simulations for fixed initial conditions were performed and
can be seen in Fig. 1.

XIl. CONCLUSION

We have proposed a new form of dual Lyapunov stability con-
dition that allows the convexification of the controller synthesis
problem for delayed and other infinite-dimensional systems.
This duality principle requires a Lyapunov operator that is pos-
itive, invertible, and self-adjoint and preserves the structure of
the state space. We have proposed such a class of operators and
used them to create stability conditions that can be expressed as
positivity and negativity of quadratic Lyapunov functions. These
dual stability conditions have a tridiagonal structure, which is
distinct from standard Lyapunov—Krasovskii forms and may
be exploited to increase performance when studying systems
with large numbers of delays. The dual stability condition is
presented in a format that can be adapted to many existing com-
putational methods for Lyapunov stability analysis. We have
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applied the sum-of-squares approach to enforce the positivity of
the quadratic forms and tested the stability condition in both the
single- and multiple-delay cases. Numerical testing on several
examples indicates the method is not likely to be conservative.
The contribution of this paper is not in the efficiency of the
stability test, however, as these are likely less efficient when
compared to, e.g., previous SOS results due to the structural
constraints imposed upon the operator. Rather, the contribu-
tion is in the convexification of the synthesis problem, which
opens the door for dynamic output-feedback H, synthesis for
infinite-dimensional systems. This potential is demonstrated in
the numerical example of controller synthesis for a single-delay
system.
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A Dual to Lyapunov’s Second Method for Linear
Systems With Multiple Delays and
Implementation Using SOS

Matthew M. Peet® , Member. IEEE

Abstract—We present a dual form of Lyapunov-
Krasovskii functional which allows the problem of con-
troller synthesis for multidelay systems to be formulated
and solved in a convex manner. First, we give a generalized
version of the dual stability condition formulated in terms
of Lyapunov operators which are positive, self-adjoint, and
preserve the structure of the state space. Second, we pro-
vide a class of such operators and express the stability con-
ditions as positivity and negativity of quadratic Lyapunov—-
Krasovskii functional forms. Next, we adapt the Sum of
Squares (SOS) methodology to express positivity and neg-
ativity of these forms as Linear Matrix Inequalities (LMIs),
describing a new set of polynomial manipulation tools de-
signed for this purpose. We apply the resulting LMIs to a
battery of numerical examples and demonstrate that the sta-
bility conditions are not significantly conservative. Finally,
we formulate a test for controller synthesis for systems with
multiple delays, apply the test to a numerical example, and
simulate the resulting closed-loop system.

Index Terms—Controller synthesis, delay systems, LMIs.

[. INTRODUCTION

YSTEMS with delay have been well-studied for some
S time [1]-[3]. In recent years, however, there has been an
increased emphasis on the use of optimization and SemiDefinite
Programming (SDP) for stability analysis of linear and nonlin-
ear time-delay systems. Although the computational question
of the stability of a linear state-delayed system is believed to
be NP-hard, several techniques have been developed that use
LMI methods [4] to construct asymptotically exact algorithms.
An asymptotically exact algorithm is a sequence of polynomial-
time algorithms wherein each instance in the sequence provides
sufficient conditions for stability, the computational complexity
of the instances is increasing, the accuracy of the test is in-
creasing, and the sequence converges to what appears to be a
necessary and sufficient condition. Examples of such sequen-
tial algorithms include the piecewise-linear approach [2], the
Wirtinger-based method of [5], and the SOS approach [6]. In ad-
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dition, there are also frequency-domain approaches such as [7]
and [8]. These asymptotic algorithms are sufficiently reliable
so that for this paper, we may consider the problem of stability
analysis of linear discrete-delay systems to be solved.

The purpose of this paper is to explore methods by which
we may extend the success in the use of asymptotic algorithms
for stability analysis of time-delay systems to the field of robust
and optimal controller synthesis—an area that is relatively un-
derdeveloped. Although there have been a number of results on
controller synthesis for time-delay systems [9], none of these
results has been able to resolve the fundamental bilinearity of
the synthesis problem. Bilinearity here means that for a given
feedback controller, the search for a Lyapunov functional is lin-
ear in the decision variables that define the functional and is
relatively tractable. Furthermore, given a predefined Lyapunov
functional, the search for a controller ensuring negativity of the
time derivative of that functional is linear in the decision vari-
ables that define the feedback gains. However, if we are looking
for both a controller and a Lyapunov functional that establishes
the stability of that controller, then the resulting stability condi-
tion is nonlinear and nonconvex in the combined set of decision
variables.

Without a convex formulation of the controller synthesis prob-
lem, we cannot search over the set of provably stabilizing con-
trollers without significant conservatism, much less address the
problems of robust and quadratic stability. To resolve this diffi-
culty, some papers use iterative methods to alternately optimize
the Lyapunov functional and then the controller asin [10] or [11]
(via a “tuning parameter’”). However, this iterative approach is
not guaranteed to converge. Meanwhile, approaches based on
frequency-domain methods, discrete approximation, or Smith
predictors result in controllers that are not provably stable or are
sensitive to variations in system parameters or in delay.

In this paper, we propose a dual Lyapunov-type stability cri-
terion, wherein the decision variables do not parameterize a
Lyapunov functional per se, but where the feasibility of this cri-
terion implies the existence of such a functional. The advantage
of such an approach for controller synthesis is that it allows for
an invertible variable substitution, eliminating all bilinear terms
in the criterion for controller synthesis.

Both our definition of duality (in the optimization sense)
and our approach to controller synthesis are based on the
LMI framework for controlling linear finite-dimensional state-
space systems of the form & = Ax + Bu. Specifically, if u = 0,
the LMI condition for the existence of a quadratic Lyapunov
function V(x) = 27 Pz is the existence of a P >0 such
that AT P+ PA < 0. The feasibility of this LMI implies that
V(z) =2 Pz >0 and V(z) = 2T (AT P+ PA)x < 0. This

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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LMI is in primal form because the decision variable P de-
fines the Lyapunov function directly. However, when we add
a controller v = Kx, we get & = (A+ BK)z and the syn-
thesis condition becomes A" P + PA+ K" BT P + PBK <
0, which is bilinear in decision variables P and K and
hence intractable. Bilinearity can be eliminated, however, if
we use the implied Lyapunov function V(z) = 27 P~1z. Us-
ing this implied Lyapunov function the time derivative be-
comes V(z) =27 (ATP' + P ' A)z = (P~'x)" (PAT +
AP)(Ptz) = 2T (PAT + AP)z, where z = P~'z. This im-
plies that the stability of & = Az is equivalent to the exis-
tence of P > 0 such that AP + PAT < 0. If we now add a
controller u = Kz, the controller synthesis condition becomes
(AP + BKP) + (AP + BKP)T < 0, which is still bilinear.
Howeyver, if we consider the variable substitution Z = K P,
then stabilizability is equivalent to the existence of a P > 0
and Z such that (AP + BZ) + (AP + BZ)T < 0, which is
an LMI. The stabilizing controller gains can then be recon-
structed as K = ZP~!. LMIs of this form were introduced
in [12] and are the basis for a majority of LMI methods for
controller synthesis (see the supplemental notes in [4, ch. 5]
for a discussion). The first contribution of this paper, then, is
an operator-valued equivalent of the dual Lyapunov inequality
P >0, AP + PAT < 0 that implies the stability of a general
class of infinite-dimensional systems. The second contribution
of this paper is a computational framework for verifying this
dual inequality using LMIs.

The standard approach to state-space representation of
infinite-dimensional systems is to define the state as evolving
on a Hilbert space Z and satisfying the derivative condition
#(t) = Ax(t). The state is constrained to a subspace X of Z
and the operator A is typically unbounded. It is known that if
A generates a strongly continuous semigroup, then exponential
stability of this system is equivalent to the existence of an oper-
ator P such that (x, Pz) > ||z||* and (z,PAz) + (PAz, z) <
—e||z||* [13]. In Section IV, we show that under mild addi-
tional conditions on P, the dual version of this result also holds.
Namely existence of an operator P such that (x, Pz) > ||z||”
and (z, APz) + (APz, x) < —e||z||* implies exponential sta-
bility of @ = Ax. Specifically, these additional conditions on
‘P are that P be self-adjoint and preserve specified properties
of the solution. This result applies to any well-posed infinite-
dimensional system, and is not conservative if X is a closed
subspace of Z.

Having formulated a general duality result, we next turn to
the special case of systems with multiple delays and introduce
a parametrization of a class of operators that are self-adjoint,
preserve desired properties of the solution, and which are defined
by the combination of multiplier and integral operators with
constraints on the associated multipliers and kernels. This result
allows us to represent the dual stability criterion in a manner
similar to classical Lyapunov—Krasovskii stability conditions,
but with an additional tridiagonal structure that may prove useful
for solving these Lyapunov equations. Finally, we present an
LMI/SOS method for enforcing positivity and negativity of the
operators under the assumption that all multipliers and kernels
are polynomial. Finally, we discuss how these results can be used
to solve the controller synthesis problem and give a numerical
example using the methods defined in [14] and [15].

Having stated the main contributions of this paper, we note
that while we show how to enforce the operator inequalities
using a slight generalization of existing SOS-based results, the

duality results are presented in such a way as to encourage
the reader to use other methods of enforcing these inequalities,
methods including those contained in [5], or [16]. Indeed, we
emphasize that Theorems 1 and 5 are formulated independent of
whichever numerical method is used for enforcing the inequal-
ities. In this way, our goal is to simply establish a new class of
Lyapunov stability conditions that are well suited to the problem
of controller synthesis, leaving the method of enforcement of
these conditions to the reader.

Finally, we note that there have been a number of results on
dual and adjoint systems [17]. Unfortunately, however, these
dual systems are not delay-type systems and there is no clear
relationship between the stability of these adjoint and dual sys-
tems and the stability of the original delayed system.

This paper is organized as follows. In Sections II
and III, we develop a mathematical framework for expressing
Lyapunov-based stability conditions as operator inequalities. In
Section IV, we show that given additional constraints on the
Lyapunov operator, satisfaction of the dual Lyapunov inequal-
ity (z, APz)+ (APxz,a) < —e||z||* proves the stability of
#(t) = Ax(t). In Sections VI and V, we define a restricted
class of Lyapunov functionals and operators which are valid
for the dual stability condition in both the single-delay and
multiple-delay cases, applying these classes of operators in
Sections VI-B and V-B to obtain dual stability conditions. These
dual stability conditions are formulated as positivity and neg-
ativity of Lyapunov functionals. In Section VII, we show how
SOS-based methods can be used to parameterize positive Lya-
punov functionals and thereby enforce the inequality conditions
in Sections VI-B and V-B, results which are summarized in
Corollary 10. Finally, in Section VIII, we summarize our results
with a set of LMI conditions for dual stability in both the single
and multiple-delay cases. Section IX describes our MATLAB
toolbox, available online, which facilitates construction and so-
lution of the LMIs. Section X applies the results to a variety
of stability problems and verifies that the dual stability test is
not conservative. Finally, Section XI discusses the problem of
full-state feedback controller synthesis and gives a numerical
illustration in the case of a single delay.

A. Technical Summary of Results

Before proceeding, we give a brief summary of the main
results of Section VI-B using as little mathematical formalism
as possible in order to illustrate how these results differ from
the classical Lyapunov—Krasovskii stability conditions. These
results are stated for systems with a single delay in order to avoid
much of the notation and mathematical progression needed for
the multiple-delay case. That is, we consider the system

.’L'(lf) = A(]SC(t) + Al.’JS(t — T).

1) Classical Lyapunov—Krasovskii Stability Conditions:
The standard necessary and sufficient conditions for stability in
the single-delay case are the existence of a

L e
— | &(s) TMa1(s)

o= "Maa(s) | | 6(s)
0 0
+T[ [ #(s)" N(s,0)¢(0)d0ds
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such that V() > [|¢(0)||* and
V(g) =

o [ 001" Dy +D{, Dy 7Dui3(s) |1 6(0)
/_ d(—T) DI, —Mys(—7)TDa3(s) ||o(—7)|ds
¢(S) TD13(S)T TDQg(S)T _TM22 (S) qj)(s)

- [ ,f) ( N(s,0) + dd@N(s 9)) 3(0)dods
< —ellg|?

et 10+ 0,

Diz = My Ay = Miz(=17),

Dyy = A Myy(s) — N(—7,s),

D13 = xA§ Mia(s) —

2) New Dual Lyapunov-Krasovskii Stability Conditions:
As per Corollary 7, the single-delay system is stable if there

exists a
Vo) /0 V)(O) T 7(R(0,0)+5(0)) R(0, s) [d)(O)]ds
— | #(s) 7R(s,0) 78(s) | |o(s)

of [ o )
and

Vb ()
Sii+ ST Si2 7813(s)
SE Saa 0,
7815(s)T 0, 7S8(s)

Mis(s) + N(0,s).

R(s,0)6(0)d0ds >

LT 00
= [ |
“Las)

L[
7l

Si1 = 1Ay (R(0,0) + 8(0)) + A, R(—7,0) + %5(0)

$(0)
o(—71) | ds
?(s)

< (s,0)+ daR(s 9)) 6(0)dds

where

Slg = TAls(—T), SQQ = —S(—T)
Si3(s) := AgR(0,s) + A; R(—, s) + R(s,0)".

Although this section only considers the single-delay case,
one can see the two primary differences between the primal
and dual stability conditions. First, as was the case for delay-
free systems, the Ay, A; system matrices appear on the left as
opposed to the right-hand side of the Lyapunov variables. This
allows for controller synthesis via variable substitution as we
will demonstrate in Section XI. The second difference is that in
the dual stability conditions, the (2, 3) and (3, 2) blocks of the
derivative condition are zero. This unexpected structure extends

to the multiple-delay case, wherein ALL (3, j) blocks are zero
fori,j # 1,1 # j.

B. Notation

Shorthand notation used throughout this paper includes
the Hilbert spaces L)' [X] := Lo (X;R™) of square integrable
functions from X to R™ and Wi [X]:= W}2?(X;R™) =
HY(X;R™) ={x : z,# € L[ X]}. We use L' and W
when domains are clear from context. We also use the
extensions Ly ™ [X]:= Lo(X;R™™) and W *"[X]:=
WH2(X;R™ ™) for matrix-valued functions. C[X] D W5[X]
denotes the continuous functions on X . .S" C R™"*" denotes the
symmetric matrices. We say an operator P : Z — Z is positive
on a subset X of Hilbert space Z if (x, Pz), > Oforallz € X.
P is coercive on X if (x, Px), > €|z for some € > 0 and
for all x € X. Given an operator P : Z — Z andaset X C Z,
we use the shorthand P(X) to denote the image of P on subset
X. I, € S" denotes the identity matrix. 0,, x,, € R"*™ is the
matrix of zeros with shorthand 0,, := 0,, «,,. We will occasion-
ally denote the intervals 7}/ := [—7;, —7;] and T? := [—7;,0].
For a natural number K € N, we adopt the index shorthand
notation, which denotes [K] = {1,..., K}.

Il. STANDARD RESULTS ON LYAPUNOV STABILITY OF LINEAR
TIME-DELAY SYSTEMS

In this paper, we consider the stability of linear discrete-delay
systems of the form

.
t)+ > At —m) forall t >0
i=1

i(t) = Aga(

x(t) = ¢(t)

where A; € R"*", ¢ € C[—7x,0], K € N and for convenience
T < To < --- < Tg. We associate with any solution x and any
time ¢t > 0, the “state” of System (1), z; € C[—7x, 0], where
x4(8) = x(t + s). For linear discrete-delay systems of Form (1),
the system has a unique solution for any ¢ € C[—7x,0] and
global, local, asymptotic, and exponential stability are all equiv-
alent.

Stability of (1) may be certified through the use of Lyapunov—
Krasovskii functionals—an extension of Lyapunov theory to
systems with infinite-dimensional state space. In particular, it
is known [2] that System (1) is stable if and only if there exist
functions M and N, continuous in their respective arguments
everywhere except possibly at points H := {—7y,..., —Tx 1},
such that the quadratic Lyapunov—Krasovskii functional

V C[ Tk y ]—>[R
¢(0)] M<s)[¢(0)] o

0
'/T"’ Lﬁ(s) (s
+/ B(s) N (s,

satisfies V (¢) > € /¢(0)]|* and the Lie (upper Dini) derivative
of the functional is negative along any solution x of (1). That is

o Vixeen) — Vi
) = lim V) 2V g 2

forall t € [-7x,0], (1)

V(p) =

0)6(0)dsdd  (2)

V(

for all ¢t > 0 and some ¢ > 0.
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For the dual stability conditions we propose in this paper,
discontinuities in the unknown functions M and N pose chal-
lenges, which make this form of Lyapunov—Krasovskii func-
tional poorly suited to controller synthesis. For this reason,
we use an alternative formulation of the necessary Lyapunov—
Krasovskii functional. Specifically, it has been shown in [19],
Theorem 3, that exponential stability is also equivalent to the
existence of a Lyapunov—Krasovskii functional of the form

K 0
V() = o0 Po0) + i Y- [ 607 Quls)ols)ds
i=1 /7

K 0
+ri Y / o(s)T Qi(s)T p(0)ds
i=1Y7Ti

K 0
e S / 6(5)7 5:(5)6(5)
i=17v 7T
K 0 0
3 [ [ o Rits. 0000000 = 0O

3

where V (2;) < —e||#;(0)||* for some € > 0 and the functions
Qi, S;, and R;; may be assumed continuous on their respective
domains of definition.

[ll. REFORMULATING THE LYAPUNOV STABILITY CONDITIONS
USING POSITIVE OPERATORS

In this section, we introduce the mathematical formalism,
which will be used to express both the primal and dual stability
conditions. We begin by reviewing the well-established semi-
group framework—a generalization of the concept of differen-
tial equations. Sometimes known as the “flow map,” a “strongly
continuous semigroup” is an operator S(t) : Z — Z defined by
the Hilbert space Z, which represents the evolution of the state
of the system so that for any solution x, x4 s = S(s)z. Asso-
ciated with a semigroup on Z is an operator 4, called the “in-
finitesimal generator,” which satisfies 45(t)¢ = AS(t)¢ for
any ¢ € X. The space X C Z is often referred to as the domain
of the generator A, and is the space on which the generator is
defined and need not be a closed subspace of Z. In this paper
we will refer to X as the “state space.”

For System (1), we define Z,,, ,, g := {R" x Lj[—7,0] X
<+« x L8 [—7x,0]} and for {z, ¢1,...,0x } € Zp 0.k, We de-
fine the following shorthand notation:

[¢Z] = {I,¢1,...7¢K}

which allows us to simplify expression of the inner product on
Zym n.x » Which we define to be

K 0
< LZZ] ’ l;] >Zm,.n_K =Ty @+ ;/T Vi ()" ¢i(s)ds.

When m =n, we simplify the notation using Z, r :=
Zn n, k- We may now conveniently write the state space for

System (1) as follows:

{

Note that X is a subspace of Z,, i, inherits the norm of Z,, f,
but is not closed in Z,, . We furthermore extend this notation

to say
z Y
lfﬁi} ¢ [f(s,i)]

if z = y and ¢;(s) = f(s,4) for s € [=7;,0] and i € [K]. This
also allows us to compactly represent the infinitesimal generator

Aof (1) as follows:
A[x](s) = AO$+Z;{:1 A’i(i’i(—ﬂ)].
3 ®i(s)

Using these definitions of A, Z, and X, for matrix P and
functions @7, S;, and R;;, we define an operator Pp g, s, r,;}
of the “complete-quadratic” type as follows:

X
<P{P1Q7',S,»,R,,} l‘b* ]) (s):=

Pr+ Y5 [0 Qi(s)gi(s)ds
TKQVI(S)TI"FTKSVI(S)Q/%(S)JFZJK:I fBT,RfJ(SaG)QSJ(Q) do|

¢ €W [—7;,0] and

€ Zn”K : i (0)=x foralli,e[K]}'

This notation will be used throughout this paper and allows us
to associate P, Q;, S;, and R;; with the corresponding complete-
quadratic functional in (3) as follows:

#(0) #(0)

That is, the Lyapunov functional is defined by the operator
Pir.q. s r;;}» Which is a variation of a classical combined
multiplier and integral operator whose multipliers and kernel
functions are defined by P, Q;, S;, R;j.

The upper Dini derivative of the complete-quadratic func-
tional can similarly be represented using complete quadratic
operators as follows:

¢(0) ¢(0)
yPip.q..s. ki A
<[ g | TiPQuS Ry [é ]>ZK

V(g) =

V(g) =

(2

$(0) [¢(0)
+(A s Pip.gi.s: ki
A e )),
#(0) [ ¢(0)
= : ’P{DlvVuﬁSmG:/}
(—7x) ¢(=7x)
(bi - ¢Z Zn (K+1).n K
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where [20]
Ay Ay Ag
A{ Sl (—Tl) 0 0
D1 - . )
: 0 0
A%} O O SK (*TK)
K
Ay = PAg+ AP+ Qi(0) + Qr(0)" + 55(0),
k=1
Aj =PA; = Q;(—T)),
V;(S) = [H(J,i(s)T HK,i(S)T]T7
1K
Iy, (s) = A Q;(s) + - > Rl (s,0) = Q;(s),
k=1
HZ](S) :A7TQ]( )7 ,RZ;(S, 77—7)3
0 0
Gij(S,a) = —%RU(S,Q) — %RH(S,H)
In this section, we have reformulated A*P 4+ PA < 0 as
negativity of a multiplier/integral operator on a lifted space.

The classical Lyapunov—Krasovskii stability condition, then,
states that System (1) is stable if there exists an € > 0, matrix
P, and functions @);,S;, and R;; such that P(p g, s, 7} =

efl and P{D]_’V“SHGU} < —efz for suitably defined f1 =
diag(I,,0,...) and I, = diag(I,,,0,...).

IV. A DUAL STABILITY CONDITION FOR
INFINITE-DIMENSIONAL SYSTEMS

Using the notation we have introduced in the preceding sec-
tion, we compactly represent the dual stability condition that
forms the main theoretical contribution of this paper. Note that
the results of this section apply to infinite-dimensional systems
in general and are not specific to systems with delay.

Theorem 1: Suppose that A generates a strongly continuous
semigroup on Hilbert space Z with domain X. Furthermore,
suppose there exists an € > 0 and a bounded, coercive linear
operator P : X — X with P(X) = X and which is self-adjoint
with respect to the Z inner product and satisfies

(APz,2), 4 (2, APz}, < —€|z||3

for all z € X. Then a dynamical system which satisfies & (¢) =
Ax(t) generates an exponentially stable semigroup.

Proof: Because P is coercive and bounded there exist
~,8 > 0 such that (z,Pz), >~z and ||Pz| <d]z|,.
By the Lax-Milgram theorem [21], P~ exists and is bounded
and P(X) = X implies P! : X — X. The inverse is self-
adjoint since P is self-adjoint and hence (P~'z,y), =

(P~tz,PPy), = (x,P'y),. Since sup, Hﬁ“ =4 < oo,
[l ]l

ez % >0 and hence (y,P'y), =

(PP 1y, Py, >~||P |5 > & Ilyl}. Hence, P~ is
coercive.

inf,, = inf,

Define the Lyapunov functional V(y) = (y.P 'y), >

= [y ZZ where positivity holds for any y € X. If y(t) satis-
fies (t) = Ay(t), then V has time derivative

gV(y(t)) = (y(t), P y(t)), + (w(t),P9(t)),

i
= (Ay(t), P 1y(t)), + (P 1y(t), Ay(t)),, -

Now, define z(t) = P~ly(t) € X forallt > 0. Then, y(t) =
Pz(t) and since P is bounded and P~ is coercive

V(y(t) = (Ay(t), P y(®)) , +(P 'y (1), Ay (1)),
= (AP=(1), (1)) 7 + (2(£), AP=(1)) ,

< —ell=(@lly < —5 ), P=(0);

= £y, P y(0), < -5 IOl -

Negativity of the derivative of the Lyapunov function implies
exponential stability in the square norm of the state by, e.g., [13]
or by the invariance principle.

The constraint P(X) = X ensures P~! : X — X and is sat-
isfied if X is a closed subspace of Z or if X is itself a Hilbert
space contained in Z and P is coercive on the space X with
respect to the inner product in which X is closed. For the case
of time-delay systems, X is not a closed subspace and we do
not wish to constrain P to be coercive on X, since this space
requires the Sobolev inner product in order to be closed. For
these reasons, in Lemma 4, we will directly show that for our
class of operators (to be defined) P(X) = X.

In the following sections, we discuss how to parameterize
operators which satisfy the conditions of Theorem 1, first in the
case of multiple delays, and then for the special case of a single
delay. We start with the constraints P = P* and P : X — X.
Note that without additional restrictions on P, @Q;, S;, R;;, the
operator Prp . s, r,,} satisfies neither constraint.

Before moving to the next section, a natural question is
whether the dual stability condition is significantly conservative.
That is, does the stability of the system imply that the conditions
of Theorem 1 are feasible. We refer to [14, Th. 5.1.3].

Theorem 2: Suppose that A is the infinitesimal generator of
the Cy-semigroup S(t) on the Hilbert space Z with domain
D(A). Then, S(t) is exponentially stable if and only if there
exists a positive, self-adjoint operator P € L£(Z) such that

(PAz,z), +(2,PAz), = — forall 2z € D(A).

<Z ) % > Z

Absent from the conditions of Theorem 2 is the restriction
P : D(A) — D(A) and indeed the uniquely defined operator
P from the proof of the theorem instead maps D(.A) — D(A*),
with D(A*) the domain defined by .A* and which has a struc-
ture significantly different than that of D(.A). Also absent from
the conditions is the coercivity of P. Several results show (e.g.,
[22, Th. 5.5]) that stability implies the existence of a coer-
cive Lyapunov function (using a slightly weaker definition of
coercivity). Finally, the image restriction P(X) = X is not sat-
isfied by the operator in the proof of Theorem 2. However, if
P : D(A) — D(A),inthe following section we give conditions
that guarantee P(X) = X. In summary, however, we conclude
that no definitive statement can be made regarding the necessity
of Theorem 1.
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V. DUAL CONDITIONS FOR MULTIPLE-DELAY SYSTEMS

In this section, we translate the results of Section IV into pos-
itivity and negativity of Lyapunov—Krasovskii-like functionals
for systems with multiple delays. First, we give a class of opera-
tors PP, which satisfy the conditions of Theorem 1. Specifically,
we give a parametrization of operators that are self-adjoint with
respect to the Hilbert space Z, i, map X — X and satisfy
P(X) = X. Next, we show how the conditions of Theorem 1
can be applied to this class of operators to obtain stability con-
ditions similar to the primal Lyapunov—Krasovskii conditions
presented in Section II. Note that in Section VI, we will apply
these results specifically to systems with a single delay and the
exposition in that section is significantly reduced.

A. A Parametrization of Operators,
Conditions of Theorem 1 on Z,, k

P, Satisfying the

In this section, we parameterize a class of operators which
are self-adjoint and map X — X, where
bieWy |

! —7;,0] and
X = { [(ﬁb i (0)=x foralll‘e[[ﬂ} .

The following lemma gives constraints on the matrix P and
functions (;, S;, and R;; forwhichPyp ¢, s, r,,} is self-adjoint
and maps X — X.

Lemma 3: Suppose that S; € W3'*" [—7;,0], R;; € W3'™"
[[—TZ‘,O] X [—’Tj,O]] and S,(S) = Si(S)T, R”(S,g) =
R]’i(a, S)T, P = TK Q7 (O)T + Tk Sz (0), and Qj (8) = Rij (0, S)
for all 4,5 € [K]. Then, Pip ¢, s, r,} is a bounded linear
operator, maps Pip . s, r;;} X — X, and is self-adjoint
with respect to the inner product defined on Z,, .

Proof: To simplify the presentation, let P := P(p g, s, R, }-
We first establish that P : X — X.If

X
€ X,
-

then ¢; € C[—7;,0] and ¢;(0) = x. Now, if

Ms)] ) H;D OF

then since P = 75 Q;(0)1 + 74 5;(0) and Q; (s) = R;; (0, s),
we have that

1/}1(0) = (TKQZ‘(O)T + TKSZ' (0)) xT

K 0
Y / Ri;(0,6), (6)d6
i=1777

S Z’VL,K :

K 0
=Px+ Z/ Q;(s)pj(s)ds =y.
j=17"Tj

Since S; € W' [—7;,0] and R;; € W3 [[—7;,0] X
[—7;,0]], clearly ; € W3'[—7;, 0], and hence we have

M cx.

This proves that P : X — X. Furthermore, boundedness of the
functions @;, S;, and R;; implies boundedness of the linear
operator P.

Now, to prove that P is self-adjoint with respect to the in-
ner product (-,-), , we show (y,Pzx) = (Py,x),

Si(s)T

Zn K n, K

for any z,y € Z,, . Using the properties S;(s) = and

Ri;(s,0) = R;j; (0, s)", we have the following:
Y T
, P
Yi b%il/, .

K 0
- (P:C+Z/_ _Qi(e)gsi(e)do)
K 0
+Z/_ Wils

it (rK Qi(s) a + 7 Si(s)94(s)

+Z/ Ri;(s,0)0;(0)d )
T

. Py+fj / Qu(s)y(s)ds | =
+z/ (TKQ Tyt 75 5,(5) T (5)
+Z/ Ryi(0,5)" (9)d9>T¢i(s)dS

Gl

Finally, we show that for this class of operators, if
P(p.q..5:.r,,} is coercive with respect to the Ly-norm, then
Pir.q. 511 (X) = X.

Lemma 4: Suppose that there exist P, ;, S;, and
R;; which satisfy the conditions of Lemma 3. If

<:c Pr.q..s: R} T > _for all x € X and some
€ >0, thenP{pQLVSHR }( ) X.

Proof: By Lemma 3 P is self-adjoint and maps X — X.
Since P is coercive, bounded, and self-adjoint, P! is coercive,
bounded, and self-adjoint. To show P(X) = X, we need only
show that y = Px € X implies that x € X. First, we show that

if
y= [%3{9)} €

zelal?,,

then

= laln] =P

satisfies © = ¢;(0). We proceed by contradiction. Suppose x —
©;(0) # 0 for some i. Then, we have

K 0
= PO +o- a0+ Y [ Qs
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Now, since y € X, y = 1;(0), and hence,
K 0
y=Poi0)+ [ Riy(0.0)05(6) 0,
i=17°T
which implies P(z — ¢;(0)) =0. Now, (x,Px), >
€ ||x||QZA implies P > el. Hence, = — ¢(0) # 0 implies
P(x — ¢(0)) # 0, which is a contradiction. We conclude that

x = ¢;(0). Next, we establish ¢; € WJ' for any i by showing

H(bl HL < oo. For this, we differentiate v); to obtain
hi(s) = i Qi(5)" w+75 Si (8)i (5) +7i Si ()i (5)
K 0
+3° [ 050060000
j=1""Ti
which we reverse to obtain
i Si (8)¢i (5) = i (5) — Tie Qi ()T & — 71 Si (8) i ()

K w0
—Z/ dsRi;(s,0)0;(0) do
j=177Ti

which is Ly bounded since %, b, Qi € Ly, and S; and O, R; p
are continuous and thus bounded on [—7;, 0]. Now, for =0
and ¢; = 0 for j # i, the constraint (x, Px), = > €|x| QZM\,
implies that the operator on this subspace,

>

0

i Si(8)i(s) + / Rui(s,0)6:(6) d

—Ti

is also coercive. Thus, since integral operators cannot be co-
ercive for Lo-bounded kernels R;;, we have that S;(s) > nl

for some 1 > 0. Therefore, for each 7, we conclude H¢z H . <
Lsiéis)

7 HL < 00. Hence, x € X. We conclude that
P(X)=X. [

B. Duality Conditions for Multiple Delays

For the multiple-delay case, we apply the operator
Pip.q..5:.R,;}» With P,Q;,5;, and R;; satisfying the condi-
tions of Lemma 4 to the dual stability condition in Theorem 1
and eliminate differential operators from the result. This section
provides additional justification for the unique choice of state-
space X and Hilbert space Z,, ,, x used in this paper. Specifi-
cally, the elimination of differential operators and reformulation
as negativity of a multiplier/integral operator on Z,, (g 11,0, K
would not be possible using the more classical state and inner
product spaces, which allow for discontinuities in the state.

Theorem 5: Suppose that there exist P, (;, S;, and R;; sat-

isfy the conditions of Lemma 3. If <x, P(r.q..s: R }x>Z . >

€ ||lz||” forall z € Z, x and

{Zh} Y1
< Y2 7P{D1-,V7:,S',,,G[j} o > < —¢

Pi b

2

Hi

0K
Zn(K+1).n K

forall y; € R" and 476
Y1
Y2 S Zn(KJrl),n,Ka
bi
where 477
Co+Cl 4 Cy
ClT —Sl (—7’1 ) 0 0
D1 =
0 0
CkT 0 0 —Sk- (—TK )
u 1
Co = Z: (TKA Qi(=m)" + 251‘(0)>
C; = T[{AiSi(—Ti), xS [K]
Vi(s) = [Bils)" 0 - 0]", ielK]
) K
BZ(S) = Ale(S)‘i‘Qz(S)“r AjRji(—Tj,S), 1€ [K]
i=1
Gij( 9)'—6 R;;(s, 9)+8R( T, i je K]
ij\S,0) = Ds S 90\ $ 2
then the system defined by (1) is exponentially stable. 478
Proof: Define the operators A and P = P(p g, 5, r,,} a5 479
aforementioned. By Lemma 3, P is self-adjoint and maps X — 480
X. Since P is coercive by assumption, this implies by Theorem 1 481
and Lemma 4 that the system is exponentially stable if 482
2
x x
¢i] L]/, L9 bil/ g . Pilll, .
for all 483
x
e X.
bi
We begin by constructing 484
Y
= AP
where 485

K 0
y=APr+Y / A0 Qi (5)én(5)ds
i=17"Ti
K
+ Y AT Qi)+ 7S
i=1

+ Ei: [ 0 Rij(~7,0)9; (a)de)

Vi(s) = e Qi) + i i (5) i (5) + i Si (5) i (5)
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486 Now, divide the expression into terms as follows:

(

487 Examining the first term and using = = ¢;(0), we have

K 0
oy =al AyPx + Z/ xTAOQi(s)@(s)ds
i=1""Ti

K
+Y ma" AiQi(—m) w
im1
K
+ ) rica” AiSi(—mi)gi(—m)
i—1

+Z/ ST ARy (=13, 0)6(0)d0

T'] 1

488 Next, we examine the second term and use integration by

489 parts to eliminate qb

i/i i (s)T 1y (5)ds = iTK /i 61(5)7 ()"
+Zw/¢z
+wa¢z
+Z/‘/@
= éTK /OT 6i(8)" Qi(s) ads
Z/ 6:(5
K
+ LT3 5(0)a
i=1

(s)i(s)ds

(5)¢i(s)ds

l](S 0)¢;(0)ds db
(s)oi(s)ds

K
— 5 L ai(m) Si= )i ()

i=1
0 40
0
' ZZJ:/_T /_T, 91(5)" 55 B (s,6)¢;(0) ds do.

490 Combining both terms, we obtain

(s

=7 (TKAOP+ Z’TKA Qi TZ

i=1

x
AP
o

45

K 0
=T 'SﬂT E ilS T ap; s)as
¢L] AP [¢7]> Ki : y+i:1 /Tr, d)?( ) 1)[)7( )d

T ds

K o
> :TKITHJFZ/ i (s) i (s)ds
Zn K i=1" T

K
+ 7'12( ZxTAlsq(le)qu(*Tl)

i=1

KK
72

(=7i)¢i (=)

Rij(5,0)9,(6) ds db.

0
+izj:/_7i i ¢i(5)Ta

Combining the expression with its adjoint, we recover

x x z |
AP , + AP
Grlobie ), (L)),

_ " - - " -

¢1(—7’1) ¢1(—7’1)
- ,D
Ok (—Tr) br (—Tx )
L d)i E L d)i - Zn (K+1),n.K
2
x
S_E 9
LSZ'] Zn i

where D := P, v ¢ ¢, - We conclude that all conditions of
Theorem 1 are satisfied and hence System (1) is stable. |

Theorem 5 provides stability conditions expressed as the pos-
itivity of P(p g, s, r,,} and negativity of the multiplier/integral
operator D = P{ D1 V8 .Gly ) Note that positivity is defined
with respect to the inner product Z,, , x. In Section VII,
we will show how to reformulate positivity on Z,, , x as
an equivalent positivity condition on the space Z,, ., 1.
Positive operators on Z,, , 1 are then parameterized us-
ing LMIs, as also described in Section VII. Before mov-
ing to the next section, we note that the derivative operator
D= P{Dl V.G is sparse in the sense that no terms of the

form ¢(—7;) ¢; (—7;) fori # j or ¢;(—7i)" ¢; (s) for any i ap-
pear in <¢, P{Dl ViiSi.Gu }¢>. This is extraordinary, as all such
terms do appear in the similar formulation of the primal stabil-
0, P{Dl Vi$i.Gy }¢> from Section III). To
emphasize this difference, we fully expand both versions of the

ity conditions (i.e.,

form <¢>, P{Dl v, A,S,,.G,j}¢> to obtain the following.
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511 1) Dual Lyapunov-Krasovskii Form: Theorem 5 implies
512 that system (1) is stable if there exists a

K 0
V() =m0 Po) +7ic Y- [ 607 Quls)o(s)ds

K 0
tre Y / 6(3)T Qi(s)T 6(0)ds

513 such that

2

[é(o)l
&i

+2TK Z¢

Zn K

514 and

Vi (¢) = 1 $(0)" (Co+Cy ) TCigi(—m)

_TKZ¢7 Tz (=7i)¢i (=)
K 0

v2ne Y [ o0 B9
K 0

+ Z/ / i (8)T G (s,0)0;(0) ds df

1,7=1

2
l¢<0)]
i Zn K
515 2) Primal Lyapunov-Krasovskii Form: Now, compare
516 with the associated primal classical Lyapunov—Krasovskii

517
518

derivative condition [20] from Section III, which states that
system (1) is stable if there exists a

K 0
TPoO)+) [ $(0)7 Qi(s)d(s)ds
K 0 B
+Z1/ B(5)"Qi(s)" ¢(0)ds
K 0
oy ,¢<s>TS :
+ Z /

i,7=1

V(¢) = #(0)

(s)ds

Rij(s,0)p(0)d0

such that V(¢) > €||¢(0)||* and
. K
V(9) = 6(0) 206 (0) + D _ di(=7)" Si(=7i)i(~7:)
+2Z¢> TN (=)
K 0
+23° / H(0) T (5)61 ()1
+Z / #i(s

+2Z/ 61 (—7,)TTL; ()9, (s)ds

(s)0i(s)ds

g

- Z/ 2 ZJ(S79)¢2'(0) deQ
i,j=1 =T7j
< —ello(0)]”.

From this comparison, we see that the structure of the dual
stability condition is very similar to the structure of the primal
except for the fifth line of the derivative, which is absent from
the dual. Roughly speaking, it is as if all the II;; terms in the
primal form have been combined in IIj;. This sparsity pattern
yields a multiplier of the form

consisting of a single row, single column, and diagonal. For an
example of how to exploit such sparsity, the positivity of such a
multiplier would be equivalent to positivity of the diagonal and

-1
positivity of the scalar [-] — - - - [ : } .

VI. DUALITY CONDITIONS FOR SINGLE-DELAY SYSTEMS

In this section, we simplify the results of Section VIII-A for
systems with a single delay. We find that in the case of single
delay the parametrization of the operator P is direct (it does not
rely on equality constraints to enforce the mapping conditions
of Theorem 1), which allows us to arrive at the explicit forms
described in Section I-A.

A. Parametrization of Operators, P, Satisfying the
Conditions of Theorem 1 on Z,, ,

First, we consider a class of operators that are self-adjoint
with respect to Z and map X — X. This is simplified in
the case of a single-delay case partially due to the fact that
Z = Z,, =R" x L} equipped with the L3" inner product
and subspace X := {{z,¢} € R" x WJ'[—7,0] : ¢(0) = x}.
Specifically, given functions S, R € W3'*" [—7, 0], in this sec-
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tion, we will define P as follows:

(Lo

7(R(0,0) + S(0))z + [ R(0,5)$(s)ds ]

7R(5,0)6(0) + 75(s)¢(s) + [°. R(s,0)¢(0)d0
@

Clearly, we have that P is a bounded linear operator and
since S, R are continuous, it is trivial to show that P : X — X.
Furthermore, P is self-adjoint with respect to the L3" inner
product, as indicated in the following lemma.

Lemma 6: Suppose S e Wy [—r,0], Re
Wy [[—7,0] x [—7,0]], R(s,0) = R(6,s)",and S(s) € S".
Then, the operator P, as defined in (5), is self-adjoint with
respect to the L%”’ inner product. Furthermore, if there exists
€>0 such that (z,Px) 2 =€ [z||* for all 2 € X, then
PX)=X.

Proof: The proof is a direct application of Lemma 3. First,
we note that P = Pyp g gy Where P = 7(R(0,0) + S(0))
and Q(s) = R(0,s). Noting that P = 7(R(0,0) + S(0)) =
7Q(0)" +75(0), we see that Pyp g s gy satisfies the condi-
tions of Lemma 3. n

Note that the constraints P : X — X and P = P* signif-
icantly reduce the number of free variables. In the single-
delay case, we make this explicit by replacing P and @ with
P =7(R(0,0) + S(0)) and Q(s) = R(0, s).

Having introduced a parametrization of P and established
properties of this operator, we now apply this structured operator
to Theorem 1 to obtain Lyapunov-like conditions on S and R
for which stability holds.

B. Dual Stability Conditions: Single Delay

In this section, we specialize the results of Theorem 5 to
single-delay systems. First, recall that the dynamics of the
single-delay system are represented by the infinitesimal gen-
erator A defined as follows:

(L)

Then, we have the following.
Corollary 7: Suppose S and R satisfy the conditions of and
Lemma 6 and there exists ¢ > 0 such that

Az + Alqb(—T)]

150(s)

2
<I7P{P~Q~S,R}z>[]§n > € HI”Lg”

forall x € R" x LY[—7,0] where P = 7(R(0,0) + S(0)) and
Q(s) = R(0, s). Furthermore, suppose

x

¢

x x
(HEHIES
ol Lol/,,
€ R" x R" x Ly [—,0]

T
;
¢

2

2n
L2

for all

where D =P,y ¢ ) and
L |Gr S V)=
] =8(=7) 0

Oy = TAY(R(0,0) + 5(0)) + 7 A R(~7,0) + 55(0)
Cy :=7A5(—71)
B(s) := AyR(0,5) + Ay R(—7,s) + R(s,0)"

Gls,0) = L R(s,0) + d%R(s, ).

ds

Then, the system defined by (1) inthe case K = 1 withmy =7
is exponentially stable.

Proof: The proof is a direct application of Lemma 6 and
Theorem 5. ]

Note that expanding the term

¢(0) ¢(0)
(1] o]
¢ o 1/

from Corollary 7 yields the new dual stability conditions previ-
ously described in Section I-A.

VII. USING LMIS TO SOLVE LINEAR OPERATOR
INEQUALITIES (LOIS) ON Z,,, ,, i
In previous sections, we have formulated dual stability con-
ditions, with decision variables parameterized by the matrix P

and functions Q;, S;, and R;;. The dual stability conditions
were reformulated as the positivity of

(. Ppag.s.rr), el

n, K

for all x € Z,, k and the negativity of

o 1
252 Pioyvisic,y | L9 < e

(3 K3

2

H

Z .
Zn(K+1),n,K K

for iy, € R" and

]
Y2 S Z’n(K+1A,n,K)
bi
where D¢, V;, S,L-, and G; are as defined in Theorem 5. Opera-
tor feasibility conditions of this form are termed linear operator
inequalities and, in this section, we will show how LMIs can be
used to solve LOIs under the presumption that the functions @;,
S;, and R;; are polynomial (which implies Dy, V;, S;, and G;;
are polynomial). Specifically, the variables in this case become
the coefficients of the polynomials ();, S;, and R;; and the
goal of the section is to find LMI constraints on P and these
polynomial coefficients, which ensure that
> 0.

m.n, K

<.T, P{P=Q1 WSisRij }x>Z

Our approach to solving LOIs on Z,, ,, i is to construct an
equivalent feasibility condition using operators on Z,, ,x 1 =
R™ x Ly% [—7g,0]. This is accomplished in two steps. First,
in Section VII-A, we construct polynomials Q, §, and R
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such that P{P,Q,S‘,fz} is coercive on Z,, ,x,1 if and only if
Pip,o, SR} is coercive on Z,, , k. Second, in Section VII-
B, we impose LMI constraints on P and the coefficients of
these polynomials Q S , and ]% constraints which are denoted
{P, 0, g,f%} € ZEgq,m.nx and which ensure that P{P,Q,S‘,R} is

coercive on Zy, n 1.

Both steps are combined into a single summarizing statement

in Corollary 10.

A. Equivalence Between Z,, ,, i and Z,, . i 1

In this section, we address the positivity of Pp ¢, s, g}
on Z,, , k by constructing a linear map from the matrix P and
coefficients of );, S;, and R;; to the coefficients of new polyno-

mial variables Q, S’, and R, where the coercivity of 73{ P08 R}
on Zy, nx 1 is equivalent to the coercivity of Prp ¢, s, R;;} On

Zm,n,K-

Given matrix P and polynomials @;, S;, and R;;, define the

linear map £, by

{P S, R} :=Li(P,Q;,S;, Rij)
if a; = P
Q(s) = [a1Qi(a15) Vax Qx (ax s) ]
Sl (al S) 0 0
S(S) = O .. 0
0 0 SK (aKs)
R(s,0) :=
Vaiai Ry (sap,0ay) Varag Ry (say,far)
VaxaiRi 1 (sax ,0ay) - Jagax Rk (sag,fak)
Then, we have the following result.
Lemma 8: Let{P,Q, S, R} := L1(P,Q;,S;,R;;). Then

xT

bi

(

for all [

(Ll

=>

R S
—_

Proof: The proof is straightforward. For necessity, let

RSN

s Pip.q..s: R} l

x

bi

m.,n, K

€ Zm n,k if and only if

x
b
! >

6]
for all [ € ZmanK,1-

V@i (say)

Vax o (sag)

> Z ¢
Z -

|

|

T

¢

x

bi

|

Zm K1

Zm,n.[\'

Then,

T
L € ZmnzK,l

¢
and deﬁne the change of variables s, = %57 = (%57 Then,
st and ds; = a;ds} and

K 0
—reale £ Y [ (s ds
i=1Y7Ti

S; —

71\

.

m.,n, K

=i I+Z/ /@i ¢i ()| ds!

—TK
0 b 2 X
:TKxTer/ S)H ds =|||.
—TK (15

Now, using a similar change of integration variables, we have
the following:

X 7) i
» T{P,Qi,SiRij
¢i { } ¢Z Zm .o K

.
N / ST @ Qu(san)di(s)ds

TE =1

Zm,nK 1

+ Tk Z¢z

TR =1

i(sa;) ¢ (s)ds

/ / Z i (s)" \/aia; Ry (sa;, 0a;)¢; (0)dods

TK =1

7) PP
»T{P,Q,R,S}| 4
¢ ZmnK 1

x x
ol . =
d) Zmon K1 (bl Zm n K
For the sufficiency, we reverse the steps using
1 . /s
di(s) = ﬁ‘bi <al> : "

Note that if @);,.5;, and R;; are polynomials whose coef-
ficients are variables in the optimization problem, then the
constraint {P,Q, S, R} = L1 (P, Q;,S;, R;;) defines a linear
equality constraint between the coefficients of @);, S;, and R;;
and the coefficients of the polynomials that define @, S, and

R. In the following section, we will discuss how to enforce the
positivity of operators on Z,, k1.
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B. LMI Conditions for the Positivity of Multiplier and
Integral Operators on Z,, i 1

In this section, we define LMI-based conditions for the pos-
itivity of operators P(p g p, sy On Zy, i1 Where @, S,and R
are continuous on [—7x , 0].

Our approach to positivity is based on the observation that a
positive operator will always have a square root. If we assume
that this square root is also of the form Pp ) r,sy with functions
@, S, and R polynomial of bounded degree, then the results of
this section give necessary and sufficient conditions. Note that
although this assumption is restrictive, it is unclear whether
it implies conservatism. For example, while not all positive
polynomials are sum-of-squares, any positive polynomial can
be approximated arbitrarily well in the sup norm on a bounded
domain by a polynomial with a polynomial “root.” Specifically,
the following theorem assumes a square root of the form

<P5 )wern@@m+Ab¢w$m@ww>

[ NG 0(6)ds

where the matrices INV; are unknown, the matrix-valued func-
tions, Y; are chosen apriori, and ¢ is either g(s) =1 or
g(s) = —s(s + k) (meaning g(s) is nonnegative on the in-
terval [—7x , 0)).

Theorem 9: For any functions Y :[—7x,0] — R™*"
and Y : [—7x,0] X [-7K,0] — R™2*" square integrable on
[—7K, 0] with g(s) > 0 for s € [—7x, 0], suppose that

€T

¢

1 0
P =M, - - /m g(s)ds
0
Q) = o= (st + [ slmatiaYado.syin)
S(5) = —g(s)Yi (s)7 Maai (8

R(s,0) = g(5)Y1(s)" MasYa(s,0) + g(0)Y2(0, 5)" M3 Y1 (0)

0
o

where My, € R™*™ | Moy € R™1*™1 | Mas € R™2%™2 and

9()Ya(n, s)" Ms3Ya(n, 0)dn

My, My M3
M= | My M M| >0.
Mz, Mszo  Mss
Then, <$,P{p’Q,R,S}x>Z >0forallz € Z,,, 1.
Proof: Since M >0, there exists a matrix
N=[N, Ny N3] such that M=NTN where
N1 c Rm+7n,1+7n,2 ><m’ N2 c Rm#—mﬁ-mz xm2’ and

N3 € Rmtmitmaxme = {Jging the definition of Pr
duced previously, it is straightforward to show that

L 1
:<P2x7pzx>err+r7rl+7712 ZO .
2

intro-

(z,Pip.g.r.51E) ,

m,n,1

Theorem 9 gives a linear parametrization of a cone of positive
operators using positive semidefinite matrices. Inclusion of g is

inspired by the Positivstellensatz approach to local positivity of
polynomials, as can be found in, e.g., [23]-[25]. For example,
under mild conditions, Putinar’s P-Satz states that a polynomial
p(z) is positive for all x € {z: g(xz) > 0} if and only if it
can be represented as p(x) = s (x) + g(z)s2(x) for some sum-
of-squares polynomials s;, so. In this way, Theorem 9 can be
seen as an operator-valued version of this classical result. Note,
however, in our case g is a function of the variable of integration
and not the state and so the analogy is somewhat specious.
Furthermore, for this paper, we restrict ourselves to /inear maps
of the state space. A partial discussion of parametrization of
positive nonlinear operators for the stability of nonlinear time-
delay systems can be found in [26] and [27].

Note that there are few constraints on the matrix-valued func-
tions Y; and Y5, functions whose elements are a basis for
the multiplier and kernel functions found in P . In this pa-
per, these are chosen as Y (s) = Z;(s) ® I,, and Y3(s,0) =
Z4(s,0) ® I,,, where Z; is the vector of monomials of degree
d or less in variables s and s, 6, respectively. Likewise, as men-
tioned, g is chosen as both g(s) =1 and ¢(s) = —s(s + 7k ),
with the resulting P, @, R,S being the sum of the results
of applying Theorem 9 to each case. To simplify notation,
throughout the remainder of this paper, we will use the nota-
tion{P,Q, S, R} € Zq ., to denote the LMI constraints on the
coefficients of the polynomials P, @, R, S implied by the condi-
tions of Theorem 9 using both g;(s) = 1 and g; = —s(s + 7« )
as follows:

dm,n +—
{P,Q,S,R}={P1,Q1,51,R1}+{P2,Q2,5,R>},
{P,Q,R,S} : where {P1,Q1,51,R1} and {P,,Q1,85, Ry} satisfy
Theorem 9 with g=1 and g=—s(s+7x ), respectively.

C. Summary of Conditions for Positivity on Z,, ,, i

The following corollary summarizes the main result of this
section.

Corollary 10: Suppose there exist d € N, constant € > 0,
matrix P € R polynomials Q;, S;, and R;; fori,j € [K]
such that

L1(P,Qi,Si, Rij) € Eqm.nk -

Then, <x7P{p7thhR,j}x>Z >O0forallx € Z,, , k-

Proof: Define {P,Q.S. R} = L1(P,Q;, Si, Rij).
{Pa Qa Sa R} S Ed,m,nK» by Theorem 9,
<x,77{p7@7sﬁﬁ}z> >0 for all z€ Z, k1. Next,

Zm n K1
since {P,Q,S,R} = L,(P,Q;,S;,Ri;), by Lemma 8,
<$7P{P1Q17517311}x>g , >0forall z € Zm,n,K~ |

m,n, K

To simplify presentation, the main results of the following
section will reference Corollary 10 instead of the individual
lemma and theorem statements, which it combines.

VIIl. LMI FORMULATION OF THE DUAL STABILITY TEST

In this section, we apply the positivity conditions developed
in Section VII to the operators parameterized in Section V-B,
yielding a computational method for verification of the dual
stability conditions of Theorem 5 and Corollary 7.
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A. LMI Test for Dual Stability With Multiple Delays

We first consider the case of systems with multiple delays.
The variables in the LMI are the matrix P and the coefficients
of the polynomial functions @; S;, and R;;. The polynomial
constraints € g, i and € Zq,,,(x 4+1),nx Tepresent LMI con-
straints on the coefficients of the polynomials as per Theorem 9.

Theorem 11: Suppose there existd € N, constante > 0, ma-
trix P € R™*", polynomials S;,Q; € W3 [T?] and R;; €
W3 [T x T} for i, j € [K] such that

£1 (P - EIna Qia Si - 61”7 RL/) S EdJL,nK
El (Dl + €j7 V;a Sz + GlnyGij) € Ed,n(KJrl),nK

where [ = diag(l,,0,x), L1 is as defined in (6), and where
Py, Vi, Gjj are as defined in Theorem 5.
Furthermore, suppose

P =15Qi(0)" + 15 8;(0) fori € [K]
Si (S) = Si(S)T, Rij (S, 9) = Rji(6‘, S)T
Q;(s) = R;;(0,s) fori,je [K].

Then, the system defined by (1) is exponentially stable.
Proof: Clearly, Pip g, s, r,;} satisfies the conditions of
Lemma 3. By Corollary 10, we have

fori,j € [K]

(@, P(p—cl, 01,8 —el, R:,; }93>Z

n,K

2
—ellllz, , 20

n, K

= <1§, P{PﬁQ, 7Si 7R¢'j }x>Z

forall x € Z,, . Similarly, we have

1 Y1
< Y ’,P{DlJreIA.,V,»,S,:JreI,,,,Gl_,»} Y >

! ! Zp(K+1).n.K

hn n
= < L Y2 ’P{DI,V,.S',»,G[]-} Y2 >
oi oi
2
n
[‘b]

Zn(K+1).n K

<0.

+e€

Zn K

Hence, Theorem 5 establishes the exponential stability
of (1). |
B. LMl for Dual Stability of Single-Delay Systems

We now state an LMI representation of the dual stability
condition for a single delay (7; = 7 = 7). This is a simplified
version of Theorem 11, where we have eliminated the variables
P and Q.

Theorem 12: Suppose there exist d € N, constant € >
0, polynomials S € W3 *"[—7,0] and R € W3"*"[[—,0] x
[—7,0]], with R(s,0) = R(6,s)" and S(s) € S™ such that

{7(R(0,0) + S(0)) — el,,, R(0,-), S — €l,,, R} € Egon1
- {Dl +el,, V, S + GLMG} € Ed,?n,n

where Dy, V, and G are as defined in Corollary 7.

Then, the system defined by (1) inthe case K = 1 withm =7
is exponentially stable.

Proof: The proof follows from Theorem 11 by defining P =
7(R(0,0) + 5(0)) and Q(s) = R(0, s) and noting that when
K=1

{P,Q,S,R} = L, (P,Q,S,R). u

IX. MATLAB TOOLBOX IMPLEMENTATION

To assist with the application of these results, we have cre-
ated a library of functions for verifying the stability conditions
described in this paper. These libraries make use of modified
versions of the SOSTOOLS [28] and MULTIPOLY toolboxes
coupled with either SeDuMi [29] or Mosek. A complete pack-
age can be downloaded from [30] or [31] and all scripts and
functions are well documented and commented. Key examples
of functions included are as follows.

1) sosjointpos_mat_ker_ndelay PQRS_vZ.m
a) Declaresa [P, Q;, R;;, S;] that defines an operator,
which is positive on Z,, ,, k.
2) sosmateqg.m
a) Declare a matrix-valued equality constraint.
3) solver_ndelay_dual_joint_nd RL2.m
a) A script that combines the functions listed previ-
ously to test the stability of a user-defined problem.

These functions are implemented within the pvar framework
of SOSTOOLS and are available on Code Ocean.

Pseudocode: The following is a pseudocode implementation
of the conditions of Theorem 11.

(a) [P,Q,R,S]=sosjointpos_mat_ker_ ndelay
_PQRS

(b) [D,E,G,H]=F(P,Q,R,S)

(¢) [L,M,N,O]l=sosjointpos_mat_ker_ ndelay
_PQRS

(d) sosmateq(D+L); sosmateq(E+M)

(e) sosmateq(G+N); sosmateq (H+O)

Here, we use the function F to represent the derivative con-
struction defined in Theorem 11. This is not an actual function
in the toolbox. The derivative construction can be found in
solver_ndelay dual_joint_nd_RL2, however.

X. NUMERICAL VALIDATION

In the preceding sections, we proposed a sufficient condition
for stability. However, as discussed, this condition is not nec-
essary and there are several potential sources of conservatism,
including the constraint P(X) = X and the assumption of an
SOS representation of the positive operator. In this section, we
apply the dual stability condition to a battery of numerical exam-
ples in order to determine whether this potential conservatism
is significant.

In each case, a table is given that lists the maximum provably
stable value of a specified parameter for each degree d. This
maximum value is found using bisection on the parameter. In
each case d is increased until the maximum parameter value
converges to several decimal places. The true maximum is also
provided as either the “limit” or “analytic” value, depending on
whether this limiting value is known analytically or is a best es-
timate based on simulation. The computation time is also listed
in CPU seconds on an Intel 17-5960X 3.0-GHz processor. This
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time corresponds to the interior-point (IPM) iteration in SeDuMi
and does not account for preprocessing, postprocessing, or for
the time spent on polynomial manipulations formulating the
SDP using SOSTOOLS. Such polynomial manipulations can
significantly exceed SDP computation time for small problems.

b) Example A: First, we consider a simple example that is
known to be stable for 7 < %:

(t) = —a(t—7)

d 1 2 3 analytic
Tmax 1.558 | 1.5707 | 1.5707| 1.5707
CPU sec| 0.309| 0.516 | 0.776

c) Example B: Next, we consider a well-studied two-
dimensional (2-D), single-delay system:

(t) v (t) v (t—r1)
T(t) = x(t) + x(t—1T1
-2 .1 1 0
d 1 2 3 limit
Tmax 1.693 1.7176 1.71785 | 1.71785
Tmin 0.10018 | 0.100174 | 0.100174 | 0.100174
CPUsec| 0478 0.879 2.48

d) Example C: We consider a scalar, two-delay system:

&(t) = ax(t) + ba(t — 1) + cx(t — 2).

In this case, we fix ¢« = —2 and ¢ = —1 and search for the
maximum b, which is 3 [32]-[34]:
d 1 2 3 analytic
bmax 0.829 | 2.999 | 2.999 3
CPU sec| 0.603| 1.50 | 3.89

e) Example D: We consider a 2-D, two-delay system where
71 = T2/2 and search for the maximum stable 75:

(t) vl (t) oY (t—71/2)
x(t) = x(t) + x(t—7
-1 .1 -1 0
0 0 ( )
+ x(t—1T1
1 0
d 1 2 3 limit
Tmax 1.354 | 1.3722 | 1.3722| 1.3722
CPU sec| 1.75 7.51 27.2

f) Example E: Next, we consider a4-D, one-delay static output
feedback system which, in [35], was found to be challenging for
SOS-based methods. This example considers the static feedback
system

i(t) = (A — BKC)x(t) + BKCx(t — 7)

where
T
0 0 1 0 0 1
0 0 0 1 0 0
A=1_10 10 0 o |0 B~ 1l €= 0
5 —15 0 —.25 0 0

TABLE |
COMPUTATION TIME (IN CPU SEC) INDEXED BY THE NUMBER OF STATES (n)
AND THE NUMBER OF DELAYS (K)

K{ln— 1 2 3 5 10
1 .366 .094 158 .686 12.8
2 112 295 1.260 | 10.83 | 61.05
3 177 1.311 6.86 | 96.85 | 5223
5 .895 13.05 | 124.7 | 2014 | 80950
10 13.09 | 595 5077 | 80231 NA

In this case, we take K = 1. It has been reported that it re-
quires polynomials of degree 10 even in the primal case to prove
stability of h = 3. However, using the dual stability condition,
we find a stability proof for degree d = 4, perhaps due to the
use of the new parametrization of positive operators. The com-
putation times for increasing degrees are listed in the following
table:

d 1 2 3
CPUsec | 2.23| 7.45| 21.6
Stability? | no | yes | yes

g) Example F: In this example, we consider a generalized n-D
system with K delays and examine the computational scalability
of the stability test. Our system has the form

K

#(t) = *ZL };/K).

For this example, we only search for polynomials of degree 2
and leave off the second kernel function. All results indexed in
Table I list IPM computation time in seconds and all establish
the stability of the system. The table is jointly indexed by the
number of states and the number of delays.

These numerical examples indicate little, if any conservatism
in the LMI implementation of the dual stability conditions, and
moreover, the method is accurate for relatively low degree. Ex-
ample E shows that computational complexity is a function of
nK and that the results scale well to high-dimensional sys-
tems and large numbers of delay. Specifically, current desk-
top computers with 128-GB RAM can solve problems where
= nK < 50. This scaling can be improved if the delay channel
is low dimensional through the use of the differential-difference
framework [19]. In the following section, we introduce a con-
troller synthesis condition. Note that adding the controller to the
optimization problem does not significantly change the compu-
tational complexity of the problem.

XI. LMI CONTROLLABILITY TEST

Establishment of dual stability conditions is the first step in
developing full-state feedback controller synthesis conditions.
Obtaining the stabilizing controller requires two more steps.
Specifically, consider the system @:(t) = Ax(t) + Bu(t), where
u(t) € R™. First, we define the controllability test.

Theorem 13: Suppose there exist d € N, constant € > 0,
matrix P € R"*", polynomials S;,Q; € W3 [T?], R;; €
Wy [TZO X TP] for 7,7 € [K], matrices W; € R™*", and
polynomials Y; € W3 *" for i € [K] such that

»Cl (P - EInain Sz - EInaRij) € E:d.,n,nK
_»Cl(Dl +W+€j7 Vi+ BKasz + EInvGij) € E'd.,n(K+1),nK
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where f, Dy, V;, and Gy are as defined in Theorem 5, £, is as
defined in (6), and

BW, + W{ BT BW, BWy
wi BT 0 ... 0
W= . S :
Wx BT 0 ... 0

Furthermore, suppose P,(Q);,S;, and R;; satisfy the con-
ditions of Lemma 3. Then, the system (t) = Apx(t) =
> Aixz(t — 7)) + Bu(t) is exponentially stabilizable and
u(t) = ZP~'x(t) is an exponentially stabilizing controller
where

x K K 0
(Z & )(S) =Woz +ZWL'¢7:(—TL') +Z/_Yi(5)¢i(5)d5-
Proof: 1If u(t) = ZP La(t), then (t) =
(A+ BZP) z(t) where
[ Bu(t)
(Bu)(s) = 0

Hence, as in Theorem 5, the closed-loop system is stable if

M)
7 ¢i— Zn, K

J(A+BZP P x]>
Zn K

i

<(A+BZ731) P

i K
_ - - S p
¢1(—T1) ¢1(—T1)
= : ,D+Dy
br (=K ) Lok (—7x)
L oi i L oi i

Zn (K+1) .. K

? x
v eX
Zin L9

<—¢€

)

where
DZ = P{l%BYi,O,O} and D .= ,P{Dl,V,,S',-,G,,‘}'
Now, from Corollary 10, we have
P{D1+W+ef,v, +BY; 8 +¢l, ,Gi;} <0
and hence

[%] l:y1:|
Y2 ’P{D1 +W el Vi+BY:,8i+el, .Gy} Y2

3 2

(1] @von | )] [2]

2

oi o

Zn K

<0.

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Time (s)

Fig. 1. MATLAB DDE23 simulation of System (6) and Controller (8)
and delay 7 = 5 s.

Therefore, by Theorem 5, the closed-loop system is exponen-
tially stable. |
The second step in controller synthesis is the construction
of the stabilizing controller u(t) = ZP{_Pl‘ Q1.8 .., > Which re-
quires inversion of the operator P(p ¢, s, r,,1—a topic which
is addressed in the sequel to this paper [36]. We illustrate these
results in the single-delay case using the well-studied system

0 0 -2 -5 0
[0 1]x(t)+l0

u(t).
. 152
For 7 = 5 using simple polynomials of degree 2, we obtained
the following exponentially stabilizing controller:

—36011" —0089171"
ut):[ ] x(t)—i—[ ] x(t—7)

(t) =

196(75—7’)—1—

—944 872
0 [52.1 + 6.98s + .00839s2 — .0710s> 1"
+ / | z(t+ s)ds.
5 | 12,7+ 1.50s — .0407s® — .0190s3
@)

Simulations for fixed initial conditions were performed and
can be seen in Fig. 1.

XIl. CONCLUSION

We have proposed a new form of dual Lyapunov stability con-
dition that allows the convexification of the controller synthesis
problem for delayed and other infinite-dimensional systems.
This duality principle requires a Lyapunov operator that is pos-
itive, invertible, and self-adjoint and preserves the structure of
the state space. We have proposed such a class of operators and
used them to create stability conditions that can be expressed as
positivity and negativity of quadratic Lyapunov functions. These
dual stability conditions have a tridiagonal structure, which is
distinct from standard Lyapunov—Krasovskii forms and may
be exploited to increase performance when studying systems
with large numbers of delays. The dual stability condition is
presented in a format that can be adapted to many existing com-
putational methods for Lyapunov stability analysis. We have
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applied the sum-of-squares approach to enforce the positivity of
the quadratic forms and tested the stability condition in both the
single- and multiple-delay cases. Numerical testing on several
examples indicates the method is not likely to be conservative.
The contribution of this paper is not in the efficiency of the
stability test, however, as these are likely less efficient when
compared to, e.g., previous SOS results due to the structural
constraints imposed upon the operator. Rather, the contribu-
tion is in the convexification of the synthesis problem, which
opens the door for dynamic output-feedback H, synthesis for
infinite-dimensional systems. This potential is demonstrated in
the numerical example of controller synthesis for a single-delay
system.
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