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A Dual to Lyapunov’s Second Method for Linear
Systems With Multiple Delays and

Implementation Using SOS
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Abstract—We present a dual form of Lyapunov–5
Krasovskii functional which allows the problem of con-6
troller synthesis for multidelay systems to be formulated7
and solved in a convex manner. First, we give a generalized8
version of the dual stability condition formulated in terms9
of Lyapunov operators which are positive, self-adjoint, and10
preserve the structure of the state space. Second, we pro-11
vide a class of such operators and express the stability con-12
ditions as positivity and negativity of quadratic Lyapunov–13
Krasovskii functional forms. Next, we adapt the Sum of14
Squares (SOS) methodology to express positivity and neg-15
ativity of these forms as Linear Matrix Inequalities (LMIs),16
describing a new set of polynomial manipulation tools de-17
signed for this purpose. We apply the resulting LMIs to a18
battery of numerical examples and demonstrate that the sta-19
bility conditions are not significantly conservative. Finally,20
we formulate a test for controller synthesis for systems with21
multiple delays, apply the test to a numerical example, and22
simulate the resulting closed-loop system.23

Index Terms—Controller synthesis, delay systems, LMIs.24

I. INTRODUCTION25

SYSTEMS with delay have been well-studied for some26

time [1]–[3]. In recent years, however, there has been an27

increased emphasis on the use of optimization and SemiDefinite28

Programming (SDP) for stability analysis of linear and nonlin-29

ear time-delay systems. Although the computational question30

of the stability of a linear state-delayed system is believed to31

be NP-hard, several techniques have been developed that use32

LMI methods [4] to construct asymptotically exact algorithms.33

An asymptotically exact algorithm is a sequence of polynomial-34

time algorithms wherein each instance in the sequence provides35

sufficient conditions for stability, the computational complexity36

of the instances is increasing, the accuracy of the test is in-37

creasing, and the sequence converges to what appears to be a38

necessary and sufficient condition. Examples of such sequen-39

tial algorithms include the piecewise-linear approach [2], the40

Wirtinger-basedmethod of [5], and the SOS approach [6]. In ad-41
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dition, there are also frequency-domain approaches such as [7] 42

and [8]. These asymptotic algorithms are sufficiently reliable 43

so that for this paper, we may consider the problem of stability 44

analysis of linear discrete-delay systems to be solved. 45

The purpose of this paper is to explore methods by which 46

we may extend the success in the use of asymptotic algorithms 47

for stability analysis of time-delay systems to the field of robust 48

and optimal controller synthesis—an area that is relatively un- 49

derdeveloped. Although there have been a number of results on 50

controller synthesis for time-delay systems [9], none of these 51

results has been able to resolve the fundamental bilinearity of 52

the synthesis problem. Bilinearity here means that for a given 53

feedback controller, the search for a Lyapunov functional is lin- 54

ear in the decision variables that define the functional and is 55

relatively tractable. Furthermore, given a predefined Lyapunov 56

functional, the search for a controller ensuring negativity of the 57

time derivative of that functional is linear in the decision vari- 58

ables that define the feedback gains. However, if we are looking 59

for both a controller and a Lyapunov functional that establishes 60

the stability of that controller, then the resulting stability condi- 61

tion is nonlinear and nonconvex in the combined set of decision 62

variables. 63

Without a convex formulation of the controller synthesis prob- 64

lem, we cannot search over the set of provably stabilizing con- 65

trollers without significant conservatism, much less address the 66

problems of robust and quadratic stability. To resolve this diffi- 67

culty, some papers use iterative methods to alternately optimize 68

the Lyapunov functional and then the controller as in [10] or [11] 69

(via a “tuning parameter”). However, this iterative approach is 70

not guaranteed to converge. Meanwhile, approaches based on 71

frequency-domain methods, discrete approximation, or Smith 72

predictors result in controllers that are not provably stable or are 73

sensitive to variations in system parameters or in delay. 74

In this paper, we propose a dual Lyapunov-type stability cri- 75

terion, wherein the decision variables do not parameterize a 76

Lyapunov functional per se, but where the feasibility of this cri- 77

terion implies the existence of such a functional. The advantage 78

of such an approach for controller synthesis is that it allows for 79

an invertible variable substitution, eliminating all bilinear terms 80

in the criterion for controller synthesis. 81

Both our definition of duality (in the optimization sense) 82

and our approach to controller synthesis are based on the 83

LMI framework for controlling linear finite-dimensional state- 84

space systems of the form ẋ = Ax + Bu. Specifically, if u = 0, 85

the LMI condition for the existence of a quadratic Lyapunov 86

function V (x) = xT Px is the existence of a P > 0 such 87

that AT P + PA < 0. The feasibility of this LMI implies that 88

V (x) = xT Px > 0 and V̇ (x) = xT (AT P + PA)x < 0. This 89
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LMI is in primal form because the decision variable P de-90

fines the Lyapunov function directly. However, when we add91

a controller u = Kx, we get ẋ = (A + BK)x and the syn-92

thesis condition becomes AT P + PA + KT BT P + PBK <93

0, which is bilinear in decision variables P and K and94

hence intractable. Bilinearity can be eliminated, however, if95

we use the implied Lyapunov function V (x) = xT P−1x. Us-96

ing this implied Lyapunov function the time derivative be-97

comes V̇ (x) = xT (AT P−1 + P−1A)x = (P−1x)T (PAT +98

AP )(P−1x) = zT (PAT + AP )z, where z = P−1x. This im-99

plies that the stability of ẋ = Ax is equivalent to the exis-100

tence of P > 0 such that AP + PAT < 0. If we now add a101

controller u = Kx, the controller synthesis condition becomes102

(AP + BKP ) + (AP + BKP )T < 0, which is still bilinear.103

However, if we consider the variable substitution Z = KP ,104

then stabilizability is equivalent to the existence of a P > 0105

and Z such that (AP + BZ) + (AP + BZ)T < 0, which is106

an LMI. The stabilizing controller gains can then be recon-107

structed as K = ZP−1 . LMIs of this form were introduced108

in [12] and are the basis for a majority of LMI methods for109

controller synthesis (see the supplemental notes in [4, ch. 5]110

for a discussion). The first contribution of this paper, then, is111

an operator-valued equivalent of the dual Lyapunov inequality112

P > 0, AP + PAT < 0 that implies the stability of a general113

class of infinite-dimensional systems. The second contribution114

of this paper is a computational framework for verifying this115

dual inequality using LMIs.116

The standard approach to state-space representation of117

infinite-dimensional systems is to define the state as evolving118

on a Hilbert space Z and satisfying the derivative condition119

ẋ(t) = Ax(t). The state is constrained to a subspace X of Z120

and the operator A is typically unbounded. It is known that if121

A generates a strongly continuous semigroup, then exponential122

stability of this system is equivalent to the existence of an oper-123

ator P such that 〈x,Px〉 ≥ ‖x‖2 and 〈x,PAx〉 + 〈PAx, x〉 ≤124

−ε ‖x‖2 [13]. In Section IV, we show that under mild addi-125

tional conditions on P , the dual version of this result also holds.126

Namely existence of an operator P such that 〈x,Px〉 ≥ ‖x‖2
127

and 〈x,APx〉 + 〈APx, x〉 ≤ −ε ‖x‖2 implies exponential sta-128

bility of ẋ = Ax. Specifically, these additional conditions on129

P are that P be self-adjoint and preserve specified properties130

of the solution. This result applies to any well-posed infinite-131

dimensional system, and is not conservative if X is a closed132

subspace of Z.133

Having formulated a general duality result, we next turn to134

the special case of systems with multiple delays and introduce135

a parametrization of a class of operators that are self-adjoint,136

preserve desired properties of the solution, andwhich are defined137

by the combination of multiplier and integral operators with138

constraints on the associated multipliers and kernels. This result139

allows us to represent the dual stability criterion in a manner140

similar to classical Lyapunov–Krasovskii stability conditions,141

butwith an additional tridiagonal structure thatmay prove useful142

for solving these Lyapunov equations. Finally, we present an143

LMI/SOS method for enforcing positivity and negativity of the144

operators under the assumption that all multipliers and kernels145

are polynomial. Finally,we discuss how these results can be used146

to solve the controller synthesis problem and give a numerical147

example using the methods defined in [14] and [15].148

Having stated the main contributions of this paper, we note149

that while we show how to enforce the operator inequalities150

using a slight generalization of existing SOS-based results, the151

duality results are presented in such a way as to encourage 152

the reader to use other methods of enforcing these inequalities, 153

methods including those contained in [5], or [16]. Indeed, we 154

emphasize that Theorems 1 and 5 are formulated independent of 155

whichever numerical method is used for enforcing the inequal- 156

ities. In this way, our goal is to simply establish a new class of 157

Lyapunov stability conditions that are well suited to the problem 158

of controller synthesis, leaving the method of enforcement of 159

these conditions to the reader. 160

Finally, we note that there have been a number of results on 161

dual and adjoint systems [17]. Unfortunately, however, these 162

dual systems are not delay-type systems and there is no clear 163

relationship between the stability of these adjoint and dual sys- 164

tems and the stability of the original delayed system. 165

This paper is organized as follows. In Sections II 166

and III, we develop a mathematical framework for expressing 167

Lyapunov-based stability conditions as operator inequalities. In 168

Section IV, we show that given additional constraints on the 169

Lyapunov operator, satisfaction of the dual Lyapunov inequal- 170

ity 〈x,APx〉 + 〈APx, x〉 ≤ −ε ‖x‖2 proves the stability of 171

ẋ(t) = Ax(t). In Sections VI and V, we define a restricted 172

class of Lyapunov functionals and operators which are valid 173

for the dual stability condition in both the single-delay and 174

multiple-delay cases, applying these classes of operators in 175

Sections VI-B and V-B to obtain dual stability conditions. These 176

dual stability conditions are formulated as positivity and neg- 177

ativity of Lyapunov functionals. In Section VII, we show how 178

SOS-based methods can be used to parameterize positive Lya- 179

punov functionals and thereby enforce the inequality conditions 180

in Sections VI-B and V-B, results which are summarized in 181

Corollary 10. Finally, in Section VIII, we summarize our results 182

with a set of LMI conditions for dual stability in both the single 183

and multiple-delay cases. Section IX describes our MATLAB 184

toolbox, available online, which facilitates construction and so- 185

lution of the LMIs. Section X applies the results to a variety 186

of stability problems and verifies that the dual stability test is 187

not conservative. Finally, Section XI discusses the problem of 188

full-state feedback controller synthesis and gives a numerical 189

illustration in the case of a single delay. 190

A. Technical Summary of Results 191

Before proceeding, we give a brief summary of the main 192

results of Section VI-B using as little mathematical formalism 193

as possible in order to illustrate how these results differ from 194

the classical Lyapunov–Krasovskii stability conditions. These 195

results are stated for systemswith a single delay in order to avoid 196

much of the notation and mathematical progression needed for 197

the multiple-delay case. That is, we consider the system 198

ẋ(t) = A0x(t) + A1x(t − τ).

1) Classical Lyapunov–Krasovskii Stability Conditions: 199

The standard necessary and sufficient conditions for stability in 200

the single-delay case are the existence of a 201

V (φ) =
∫ 0

−τ

[
φ(0)

φ(s)

]T [
M11 τM12(s)

τM21(s) τM22(s)

][
φ(0)

φ(s)

]
ds

+ τ

∫ 0

−τ

∫ 0

−τ

φ(s)T N(s, θ)φ(θ)dθds
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such that V (φ) ≥ ‖φ(0)‖2 and202

V̇ (φ) =

∫ 0

−τ

⎡
⎣

φ(0)

φ(−τ)
φ(s)

⎤
⎦

T
⎡
⎢⎢⎣
D11 + DT

11 D12 τD13(s)

DT
12 −M22(−τ) τD23(s)

τD13(s)T τD23(s)T −τṀ22(s)

⎤
⎥⎥⎦
⎡
⎢⎣

φ(0)

φ(−τ)

φ(s)

⎤
⎥⎦ds

− τ

∫ 0

−τ

∫ 0

−τ

φ(s)T

(
d

ds
N(s, θ) +

d

dθ
N(s, θ)

)
φ(θ)dθds

≤ −ε ‖φ‖2

D11 = M11A0 + M12(0) +
1
2
M22(0),

D12 = M11A1 − M12(−τ),

D23 = AT
1 M12(s) − N(−τ, s),

D13 = xAT
0 M12(s) − Ṁ12(s) + N(0, s).

2) New Dual Lyapunov–Krasovskii Stability Conditions:203

As per Corollary 7, the single-delay system is stable if there204

exists a205

V (φ)=
∫ 0

−τ

[
φ(0)

φ(s)

]T[
τ(R(0, 0)+S(0)) τR(0, s)

τR(s, 0) τS(s)

][
φ(0)

φ(s)

]
ds

+
∫ 0

−τ

∫ 0

−τ

φ(s)T R(s, θ)φ(θ)dθds ≥
∥∥∥∥∥
[

φ(0)

φ

]∥∥∥∥∥
2

and206

VD (φ)

=
∫ 0

−τ

⎡
⎢⎣

φ(0)

φ(−τ)

φ(s)

⎤
⎥⎦

T
⎡
⎢⎢⎣

S11 + ST
11 S12 τS13(s)

ST
12 S22 0n

τS13(s)T 0n τ Ṡ(s)

⎤
⎥⎥⎦
⎡
⎢⎣

φ(0)

φ(−τ)

φ(s)

⎤
⎥⎦ds

+
∫ 0

−τ

∫ 0

−τ

φ(s)T

(
d

ds
R(s, θ)+

d

dθ
R(s, θ)

)
φ(θ)dθds

≤ −ε

∥∥∥∥∥
[

φ(0)

φ

]∥∥∥∥∥
where207

S11 := τA0(R(0, 0) + S(0)) + τA1R(−τ, 0) +
1
2
S(0)

S12 := τA1S(−τ), S22 := −S(−τ)

S13(s) := A0R(0, s) + A1R(−τ, s) + Ṙ(s, 0)T .

Although this section only considers the single-delay case,208

one can see the two primary differences between the primal209

and dual stability conditions. First, as was the case for delay-210

free systems, the A0 , A1 system matrices appear on the left as211

opposed to the right-hand side of the Lyapunov variables. This212

allows for controller synthesis via variable substitution as we213

will demonstrate in Section XI. The second difference is that in214

the dual stability conditions, the (2, 3) and (3, 2) blocks of the215

derivative condition are zero. This unexpected structure extends216

to the multiple-delay case, wherein ALL (i, j) blocks are zero 217

for i, j �= 1, i �= j. 218

B. Notation 219

Shorthand notation used throughout this paper includes 220

the Hilbert spaces Lm
2 [X] := L2(X;Rm ) of square integrable 221

functions from X to Rm and Wm
2 [X] := W 1,2(X;Rm ) = 222

H1(X;Rm ) = {x : x, ẋ ∈ Lm
2 [X]}. We use Lm

2 and Wm
2 223

when domains are clear from context. We also use the 224

extensions Ln×m
2 [X] := L2(X;Rn×m ) and Wn×m

2 [X] := 225

W 1,2(X;Rn×m ) for matrix-valued functions. C[X] ⊃ W2 [X] 226

denotes the continuous functions onX . Sn ⊂ Rn×n denotes the 227

symmetric matrices. We say an operator P : Z → Z is positive 228

on a subsetX of Hilbert spaceZ if 〈x,Px〉Z ≥ 0 for all x ∈ X . 229

P is coercive on X if 〈x,Px〉Z ≥ ε ‖x‖2
Z for some ε > 0 and 230

for all x ∈ X . Given an operator P : Z → Z and a set X ⊂ Z, 231

we use the shorthand P(X) to denote the image of P on subset 232

X . In ∈ Sn denotes the identity matrix. 0n×m ∈ Rn×m is the 233

matrix of zeros with shorthand 0n := 0n×n . We will occasion- 234

ally denote the intervals T j
i := [−τi,−τj ] and T 0

i := [−τi, 0]. 235

For a natural number K ∈ N, we adopt the index shorthand 236

notation, which denotes [K] = {1, . . . , K}. 237

II. STANDARD RESULTS ON LYAPUNOV STABILITY OF LINEAR 238

TIME-DELAY SYSTEMS 239

In this paper, we consider the stability of linear discrete-delay 240

systems of the form 241

ẋ(t) = A0x(t) +
K∑

i=1

Aix(t − τi) for all t ≥ 0

x(t) = φ(t) for all t ∈ [−τK , 0], (1)

whereAi ∈ Rn×n , φ ∈ C[−τK , 0],K ∈ N and for convenience 242

τ1 < τ2 < · · · < τK . We associate with any solution x and any 243

time t ≥ 0, the “state” of System (1), xt ∈ C[−τK , 0], where 244

xt(s) = x(t + s). For linear discrete-delay systems of Form (1), 245

the system has a unique solution for any φ ∈ C[−τK , 0] and 246

global, local, asymptotic, and exponential stability are all equiv- 247

alent. 248

Stability of (1) may be certified through the use of Lyapunov– 249

Krasovskii functionals—an extension of Lyapunov theory to 250

systems with infinite-dimensional state space. In particular, it 251

is known [2] that System (1) is stable if and only if there exist 252

functions M and N , continuous in their respective arguments 253

everywhere except possibly at pointsH := {−τ1 , . . . ,−τK−1}, 254

such that the quadratic Lyapunov–Krasovskii functional 255

V : C[−τk , 0] → R 256

V (φ) =
∫ 0

−τK

[
φ(0)

φ(s)

]T

M(s)

[
φ(0)

φ(s)

]
ds

+
∫ 0

−τK

∫ 0

−τK

φ(s)T N(s, θ)φ(θ) ds dθ (2)

satisfies V (φ) ≥ ε ‖φ(0)‖2 and the Lie (upper Dini) derivative 257

of the functional is negative along any solution x of (1). That is 258

V̇ (xt) = lim
h→0

V (xt+h) − V (xt)
h

≤ −ε ‖xt(0)‖2

for all t ≥ 0 and some ε > 0. 259
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For the dual stability conditions we propose in this paper,260

discontinuities in the unknown functions M and N pose chal-261

lenges, which make this form of Lyapunov–Krasovskii func-262

tional poorly suited to controller synthesis. For this reason,263

we use an alternative formulation of the necessary Lyapunov–264

Krasovskii functional. Specifically, it has been shown in [19],265

Theorem 3, that exponential stability is also equivalent to the266

existence of a Lyapunov–Krasovskii functional of the form267

V (φ) = τK φ(0)T Pφ(0) + τK

K∑
i=1

∫ 0

−τi

φ(0)T Qi(s)φ(s)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Qi(s)T φ(0)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Si(s)φ(s)

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φ(s)T Rij (s, θ)φ(θ)dθ ≥ ε ‖φ(0)‖2

(3)

where V̇ (xt) ≤ −ε ‖xt(0)‖2 for some ε > 0 and the functions268

Qi , Si , and Rij may be assumed continuous on their respective269

domains of definition.270

III. REFORMULATING THE LYAPUNOV STABILITY CONDITIONS271

USING POSITIVE OPERATORS272

In this section, we introduce the mathematical formalism,273

which will be used to express both the primal and dual stability274

conditions. We begin by reviewing the well-established semi-275

group framework—a generalization of the concept of differen-276

tial equations. Sometimes known as the “flow map,” a “strongly277

continuous semigroup” is an operator S(t) : Z → Z defined by278

the Hilbert space Z, which represents the evolution of the state279

of the system so that for any solution x, xt+s = S(s)xt . Asso-280

ciated with a semigroup on Z is an operator A, called the “in-281

finitesimal generator,” which satisfies d
dt S(t)φ = AS(t)φ for282

any φ ∈ X . The space X ⊂ Z is often referred to as the domain283

of the generator A, and is the space on which the generator is284

defined and need not be a closed subspace of Z. In this paper285

we will refer to X as the “state space.”286

For System (1), we define Zm,n,K := {Rm × Ln
2 [−τ1 , 0] ×287

· · · × Ln
2 [−τK , 0]} and for {x, φ1 , . . . , φK } ∈ Zm,n,K , we de-288

fine the following shorthand notation:289

[
x

φi

]
:= {x, φ1 , . . . , φK }

which allows us to simplify expression of the inner product on290

Zm,n,K , which we define to be291

〈[
y

ψi

]
,

[
x

φi

]〉

Zm , n , K

= τK yT x +
K∑

i=1

∫ 0

−τi

ψi(s)T φi(s)ds.

When m = n, we simplify the notation using Zn,K :=292

Zn,n,K . We may now conveniently write the state space for293

System (1) as follows: 294

X :=

{[
x

φi

]
∈ Zn,K :

φi ∈W n
2 [−τi ,0] and

φi (0)=x for all i∈[K ]

}
.

Note thatX is a subspace ofZn,K , inherits the norm ofZn,K , 295

but is not closed in Zn,K . We furthermore extend this notation 296

to say 297

[
x

φi

]
(s) =

[
y

f(s, i)

]

if x = y and φi(s) = f(s, i) for s ∈ [−τi, 0] and i ∈ [K]. This 298

also allows us to compactly represent the infinitesimal generator 299

A of (1) as follows: 300

A
[

x

φi

]
(s) :=

[
A0x +

∑K
i=1 Aiφi(−τi)

φ̇i(s)

]
.

Using these definitions of A, Z, and X , for matrix P and 301

functions Qi, Si, and Rij , we define an operator P{P,Qi ,Si ,Ri j } 302

of the “complete-quadratic” type as follows: 303

(
P{P,Qi ,Si ,Ri j }

[
x

φi

])
(s) :=

⎡
⎣ Px +

∑K
i=1

∫ 0
−τi

Qi(s)φi(s)ds

τK Qi(s)T x+τK Si(s)φi(s)+
∑K

j=1

∫ 0
−τj

Rij (s, θ)φj (θ) dθ

⎤
⎦.

This notation will be used throughout this paper and allows us 304

to associateP,Qi, Si , andRij with the corresponding complete- 305

quadratic functional in (3) as follows: 306

V (φ) =

〈[
φ(0)

φi

]
,P{P,Qi ,Si ,Ri j }

[
φ(0)

φi

]〉

Zn , K

.

That is, the Lyapunov functional is defined by the operator 307

P{P,Qi ,Si ,Ri j }, which is a variation of a classical combined 308

multiplier and integral operator whose multipliers and kernel 309

functions are defined by P,Qi, Si, Rij . 310

The upper Dini derivative of the complete-quadratic func- 311

tional can similarly be represented using complete quadratic 312

operators as follows: 313

V̇ (φ) =

〈[
φ(0)

φi

]
,P{P,Qi ,Si ,Ri j }A

[
φ(0)

φi

]〉

Zn , K

+

〈
A
[

φ(0)

φi

]
,P{P,Qi ,Si ,Ri j }

[
φ(0)

φi

]〉

Zn , K

=

&⎡
⎢⎢⎢⎢⎢⎣

φ(0)

...

φ(−τK )

φi

⎤
⎥⎥⎥⎥⎥⎦

,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎢⎢⎢⎢⎢⎣

φ(0)

...

φ(−τK )

φi

⎤
⎥⎥⎥⎥⎥⎦

'
Zn (K +1 ) , n , K
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where [20]314

D1 =

⎡
⎢⎢⎢⎢⎢⎣

Δ0 Δ1 · · · ΔK

ΔT
1 S1(−τ1) 0 0

... 0
. . . 0

ΔT
K 0 0 SK (−τK )

⎤
⎥⎥⎥⎥⎥⎦

,

Δ0 = PA0 + AT
0 P +

K∑
k=1

Qk (0) + Qk (0)T + Sk (0),

Δj = PAj − Qj (−τj ),

Vi(s) =
[
Π0,i(s)T . . . ΠK,i(s)T

]T
,

Π0j (s) = AT
0 Qj (s) +

1
τK

K∑
k=1

RT
jk (s, 0) − Q̇j (s),

Πij (s) = AT
i Qj (s) − 1

τK
RT

ji(s,−τi),

Gij (s, θ) = − ∂

∂s
Rij (s, θ) − ∂

∂θ
Rij (s, θ).

In this section, we have reformulated A∗P + PA < 0 as315

negativity of a multiplier/integral operator on a lifted space.316

The classical Lyapunov–Krasovskii stability condition, then,317

states that System (1) is stable if there exists an ε > 0, matrix318

P , and functions Qi, Si, and Rij such that P{P,Qi ,Si ,Ri j } ≥319

εÎ1 and P{D1 ,Vi ,Ṡ i ,Gi j } ≤ −εÎ2 for suitably defined Î1 =320

diag(In , 0, . . .) and Î2 = diag(In , 0, . . .).321

IV. A DUAL STABILITY CONDITION FOR322

INFINITE-DIMENSIONAL SYSTEMS323

Using the notation we have introduced in the preceding sec-324

tion, we compactly represent the dual stability condition that325

forms the main theoretical contribution of this paper. Note that326

the results of this section apply to infinite-dimensional systems327

in general and are not specific to systems with delay.328

Theorem 1: Suppose thatA generates a strongly continuous329

semigroup on Hilbert space Z with domain X . Furthermore,330

suppose there exists an ε > 0 and a bounded, coercive linear331

operatorP : X → X withP(X) = X and which is self-adjoint332

with respect to the Z inner product and satisfies333

〈APz, z〉Z + 〈z,APz〉Z ≤ −ε ‖z‖2
Z

for all z ∈ X . Then a dynamical system which satisfies ẋ(t) =334

Ax(t) generates an exponentially stable semigroup.335

Proof: Because P is coercive and bounded there exist336

γ, δ > 0 such that 〈x,Px〉Z ≥ γ ‖x‖2
Z and ‖Px‖ ≤ δ ‖x‖Z .337

By the Lax–Milgram theorem [21], P−1 exists and is bounded338

and P(X) = X implies P−1 : X → X . The inverse is self-339

adjoint since P is self-adjoint and hence
〈P−1x, y

〉
Z

=340 〈P−1x,PP−1y
〉

Z
=
〈
x,P−1y

〉
Z
. Since supz

‖Pz‖
‖z‖ = δ < ∞,341

infy
‖P−1 y‖

‖y‖ = infx
‖x‖
‖Px‖ = 1

δ > 0 and hence
〈
y,P−1y

〉
Z

=342 〈PP−1y,P−1y
〉

Z
≥ γ

∥∥P−1y
∥∥2

Z
≥ γ

δ 2 ‖y‖2
Z . Hence, P−1 is343

coercive.344

Define the Lyapunov functional V (y) =
〈
y,P−1y

〉
Z
≥ 345

γ
δ 2 ‖y‖2

Z , where positivity holds for any y ∈ X . If y(t) satis- 346

fies ẏ(t) = Ay(t), then V has time derivative 347

d

dt
V (y(t)) =

〈
ẏ(t),P−1y(t)

〉
Z

+
〈
y(t),P−1 ẏ(t)

〉
Z

=
〈Ay(t),P−1y(t)

〉
Z

+
〈P−1y(t),Ay(t)

〉
Z

.

Now, define z(t) = P−1y(t) ∈ X for all t ≥ 0. Then, y(t) = 348

Pz(t) and since P is bounded and P−1 is coercive 349

V̇ (y(t)) =
〈Ay(t),P−1y(t)

〉
Z

+
〈P−1y(t),Ay(t)

〉
Z

= 〈APz(t), z(t)〉Z + 〈z(t),APz(t)〉Z
≤ −ε ‖z(t)‖2

Z ≤ − ε

δ
〈z(t),Pz(t)〉Z

= − ε

δ

〈
y(t),P−1y(t)

〉
Z
≤ −εγ

δ3 ‖y(t)‖2
Z .

Negativity of the derivative of the Lyapunov function implies 350

exponential stability in the square norm of the state by, e.g., [13] 351

or by the invariance principle. � 352

The constraint P(X) = X ensures P−1 : X → X and is sat- 353

isfied if X is a closed subspace of Z or if X is itself a Hilbert 354

space contained in Z and P is coercive on the space X with 355

respect to the inner product in which X is closed. For the case 356

of time-delay systems, X is not a closed subspace and we do 357

not wish to constrain P to be coercive on X , since this space 358

requires the Sobolev inner product in order to be closed. For 359

these reasons, in Lemma 4, we will directly show that for our 360

class of operators (to be defined) P(X) = X . 361

In the following sections, we discuss how to parameterize 362

operators which satisfy the conditions of Theorem 1, first in the 363

case of multiple delays, and then for the special case of a single 364

delay. We start with the constraints P = P∗ and P : X → X . 365

Note that without additional restrictions on P,Qi, Si, Rij , the 366

operator P{P,Qi ,Si ,Ri j } satisfies neither constraint. 367

Before moving to the next section, a natural question is 368

whether the dual stability condition is significantly conservative. 369

That is, does the stability of the system imply that the conditions 370

of Theorem 1 are feasible. We refer to [14, Th. 5.1.3]. 371

Theorem 2: Suppose that A is the infinitesimal generator of 372

the C0-semigroup S(t) on the Hilbert space Z with domain 373

D(A). Then, S(t) is exponentially stable if and only if there 374

exists a positive, self-adjoint operator P ∈ L(Z) such that 375

〈PAz, z〉Z + 〈z,PAz〉Z = −〈z, z〉Z for all z ∈ D(A).

Absent from the conditions of Theorem 2 is the restriction 376

P : D(A) → D(A) and indeed the uniquely defined operator 377

P from the proof of the theorem instead mapsD(A) → D(A∗), 378

with D(A∗) the domain defined by A∗ and which has a struc- 379

ture significantly different than that of D(A). Also absent from 380

the conditions is the coercivity of P . Several results show (e.g., 381

[22, Th. 5.5]) that stability implies the existence of a coer- 382

cive Lyapunov function (using a slightly weaker definition of 383

coercivity). Finally, the image restriction P(X) = X is not sat- 384

isfied by the operator in the proof of Theorem 2. However, if 385

P : D(A) → D(A), in the following sectionwe give conditions 386

that guarantee P(X) = X . In summary, however, we conclude 387

that no definitive statement can be made regarding the necessity 388

of Theorem 1. 389
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V. DUAL CONDITIONS FOR MULTIPLE-DELAY SYSTEMS390

In this section, we translate the results of Section IV into pos-391

itivity and negativity of Lyapunov–Krasovskii-like functionals392

for systems with multiple delays. First, we give a class of opera-393

tors P , which satisfy the conditions of Theorem 1. Specifically,394

we give a parametrization of operators that are self-adjoint with395

respect to the Hilbert space Zn,K , map X → X and satisfy396

P(X) = X . Next, we show how the conditions of Theorem 1397

can be applied to this class of operators to obtain stability con-398

ditions similar to the primal Lyapunov–Krasovskii conditions399

presented in Section II. Note that in Section VI, we will apply400

these results specifically to systems with a single delay and the401

exposition in that section is significantly reduced.402

A. A Parametrization of Operators, P, Satisfying the403

Conditions of Theorem 1 on Zn,K404

In this section, we parameterize a class of operators which405

are self-adjoint and map X → X , where406

X :=

{[
x

φi

]
∈ Zn,K :

φi ∈W n
2 [−τi ,0] and

φi (0)=x for all i∈[K ]

}
.

The following lemma gives constraints on the matrix P and407

functionsQi ,Si , andRij for whichP{P,Qi ,Si ,Ri j } is self-adjoint408

and maps X → X .409

Lemma 3: Suppose that Si ∈ Wn×n
2 [−τi, 0], Rij ∈ Wn×n

2410

[[−τi, 0] × [−τj , 0]] and Si(s) = Si(s)T , Rij (s, θ) =411

Rji(θ, s)T ,P = τK Qi(0)T + τK Si(0), andQj (s) = Rij (0, s)412

for all i, j ∈ [K]. Then, P{P,Qi ,Si ,Ri j } is a bounded linear413

operator, maps P{P,Qi ,Si ,Ri j } : X → X , and is self-adjoint414

with respect to the inner product defined on Zn,K .415

Proof: To simplify the presentation, letP := P{P,Qi ,Si ,Ri j }.416

We first establish that P : X → X . If417 [
x

φi

]
∈ X,

then φi ∈ C[−τi, 0] and φi(0) = x. Now, if418

[
y

ψi(s)

]
=

(
P
[

x

φi

])
(s),

then since P = τK Qi(0)T + τK Si(0) and Qj (s) = Rij (0, s),419

we have that420

ψi(0) =
(
τK Qi(0)T + τK Si(0)

)
x

+
K∑

j=1

∫ 0

−τj

Rij (0, θ)φj (θ)dθ

= Px +
K∑

j=1

∫ 0

−τj

Qj (s)φj (s)ds = y.

Since Si ∈ Wn×n
2 [−τi, 0] and Rij ∈ Wn×n

2 [[−τi, 0]×421

[−τj , 0]], clearly ψi ∈ Wn
2 [−τi, 0], and hence we have422

[
y

ψi

]
∈ X.

This proves that P : X → X . Furthermore, boundedness of the 423

functions Qi , Si , and Rij implies boundedness of the linear 424

operator P . 425

Now, to prove that P is self-adjoint with respect to the in- 426

ner product 〈·, ·〉Zn , K
, we show 〈y,Px〉Zn , K

= 〈Py, x〉Zn , K
427

for any x, y ∈ Zn,K . Using the properties Si(s) = Si(s)T and 428

Rij (s, θ) = Rji(θ, s)T , we have the following: 429〈[
y

ψi

]
,P
[

x

φi

]〉

Zn , K

= τK yT

(
Px +

K∑
i=1

∫ 0

−τi

Qi(θ)φi(θ)dθ

)

+
K∑

i=1

∫ 0

−τi

ψi(s)T

(
τK Qi(s)T x + τK Si(s)φi(s)

+
K∑

j=1

∫ 0

−τj

Rij (s, θ)φj (θ)dθ

)

= τK

⎛
⎝Py +

K∑
j=1

∫ 0

−τj

Qi(s)ψj (s)ds

⎞
⎠

T

x

+
K∑

i=1

∫ 0

−τi

(
τK Qi(s)T y + τK Si(s)T ψi(s)

+
K∑

j=1

∫ 0

−τj

Rji(θ, s)T ψj (θ)dθ

)T

φi(s) ds

=

〈
P
[

y

ψi

]
,

[
x

φi

]〉

Zn , K

.

� 430

Finally, we show that for this class of operators, if 431

P{P,Qi ,Si ,Ri j } is coercive with respect to the L2-norm, then 432

P{P,Qi ,Si ,Ri j }(X) = X . 433

Lemma 4: Suppose that there exist P , Qi , Si , and 434

Rij which satisfy the conditions of Lemma 3. If 435〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

≥ ε ‖x‖2
Zn , K

for all x ∈ X and some 436

ε > 0, then P{P,Qi ,Si ,Ri j }(X) = X . 437

Proof: By Lemma 3, P is self-adjoint and maps X → X . 438

Since P is coercive, bounded, and self-adjoint, P−1 is coercive, 439

bounded, and self-adjoint. To show P(X) = X , we need only 440

show that y = Px ∈ X implies that x ∈ X . First, we show that 441

if 442

y =
[

y
ψi(θ)

]
∈ X,

then 443

x =
[

x
φi(θ)

]
= P−1y

satisfies x = φi(0). We proceed by contradiction. Suppose x − 444

φi(0) �= 0 for some i. Then, we have 445

y = P (φi(0) + x − φi(0)) +
K∑

i=1

∫ 0

−τi

Qi(s)φi(s)ds.
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Now, since y ∈ X , y = ψi(0), and hence,446

y = Pφi(0)+
K∑

j=1

∫ 0

−τj

Rij (0, θ)φj (θ) dθ,

which implies P (x − φi(0)) = 0. Now, 〈x,Px〉Zn , K
≥447

ε ‖x‖2
Zn , K

implies P ≥ εI . Hence, x − φ(0) �= 0 implies448

P (x − φ(0)) �= 0, which is a contradiction. We conclude that449

x = φi(0). Next, we establish φi ∈ Wn
2 for any i by showing450 ∥∥∥φ̇i

∥∥∥
L2

< ∞. For this, we differentiate ψi to obtain451

ψ̇i(s) = τK Q̇i(s)T x+τK Ṡi(s)φi(s)+τK Si(s)φ̇i(s)

+
K∑

j=1

∫ 0

−τj

∂sRij (s, θ)φj (θ) dθ,

which we reverse to obtain452

τK Si(s)φ̇i(s) = ψ̇i(s) − τK Q̇i(s)T x−τK Ṡi(s)φi(s)

−
K∑

j=1

∫ 0

−τj

∂sRij (s, θ)φj (θ) dθ,

which is L2 bounded since ψ̇i , φi , Q̇i ∈ Ln
2 , and Ṡi and ∂sRi.j453

are continuous and thus bounded on [−τi, 0]. Now, for x = 0454

and φj = 0 for j �= i, the constraint 〈x,Px〉Zn , K
≥ ε ‖x‖2

Zn , K
,455

implies that the operator on this subspace,456

τK Si(s)φi(s) +
∫ 0

−τi

Rii(s, θ)φi(θ) dθ

is also coercive. Thus, since integral operators cannot be co-457

ercive for L2-bounded kernels Rii , we have that Si(s) ≥ ηI458

for some η > 0. Therefore, for each i, we conclude
∥∥∥φ̇i

∥∥∥
L2

≤459

1
η

∥∥∥Si(s)φ̇i(s)
∥∥∥

L2

< ∞. Hence, x ∈ X . We conclude that460

P(X) = X . �461

B. Duality Conditions for Multiple Delays462

For the multiple-delay case, we apply the operator463

P{P,Qi ,Si ,Ri j }, with P,Qi, Si, and Rij satisfying the condi-464

tions of Lemma 4 to the dual stability condition in Theorem 1465

and eliminate differential operators from the result. This section466

provides additional justification for the unique choice of state-467

space X and Hilbert space Zm,n,K used in this paper. Specifi-468

cally, the elimination of differential operators and reformulation469

as negativity of a multiplier/integral operator on Zn(K +1),n,K470

would not be possible using the more classical state and inner471

product spaces, which allow for discontinuities in the state.472

Theorem 5: Suppose that there exist P , Qi , Si , and Rij sat-473

isfy the conditions of Lemma 3. If
〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

≥474

ε ‖x‖2 for all x ∈ Zn,K and475

〈⎡
⎣
[

y1
y2

]

φi

⎤
⎦,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦
〉

Zn (K +1 ) , n , K

≤ −ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn, K

for all y1 ∈ Rn and 476⎡
⎣
[

y1
y2

]

φi

⎤
⎦ ∈ Zn(K+1),n,K ,

where 477

D1 :=

⎡
⎢⎢⎢⎢⎢⎣

C0 + CT
0 C1 · · · Ck

CT
1 −S1(−τ1) 0 0

... 0
. . . 0

CkT 0 0 −Sk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

C0 := A0P +
K∑

i=1

(
τK AiQi(−τi)T +

1
2
Si(0)

)

Ci := τK AiSi(−τi), i ∈ [K]

Vi(s) :=
[
Bi(s)T 0 · · · 0

]T
, i ∈ [K]

Bi(s) := A0Qi(s)+Q̇i(s) +
K∑

j=1

AjRji(−τj , s), i ∈ [K]

Gij (s, θ) :=
∂

∂s
Rij (s, θ) +

∂

∂θ
Rji(s, θ)T , i, j ∈ [K]

then the system defined by (1) is exponentially stable. 478

Proof: Define the operators A and P = P{P,Qi ,Si ,Ri j } as 479

aforementioned. By Lemma 3, P is self-adjoint and maps X → 480

X . SinceP is coercive by assumption, this implies byTheorem1 481

and Lemma 4 that the system is exponentially stable if 482

〈
AP
[

x

φi

]
,

[
x

φi

]〉

Zn , K

+

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

≤ −ε

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
2

Zn , K

for all 483[
x

φi

]
∈ X.

We begin by constructing 484[
y

ψi(s)

]
:= AP

[
x

φi

]
,

where 485

y = A0Px +
K∑

i=1

∫ 0

−τi

A0Qi(s)φi(s)ds

+
K∑

i=1

Ai

(
τK Qi(−τi)T x + τK Si(−τi)φi(−τi)

+
K∑

j=1

∫ 0

−τj

Rij (−τi, θ)φj (θ)dθ

)

ψi(s) = τK Q̇i(s)T x + τK Ṡi(s)φi(s) + τK Si(s)φ̇i(s)

+
K∑

j=1

∫ 0

−τj

d

ds
Rij (s, θ)φj (θ)dθ.
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Now, divide the expression into terms as follows:486

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

:= τK xT y+
K∑

i=1

∫ 0

−τi

φi(s)T ψi(s)ds.

Examining the first term and using x = φi(0), we have487

xT y = xT A0Px +
K∑

i=1

∫ 0

−τi

xT A0Qi(s)φi(s)ds

+
K∑

i=1

τK xT AiQi(−τi)T x

+
K∑

i=1

τK xT AiSi(−τi)φi(−τi)

+
K∑

i=1

∫ 0

−τi

K∑
j=1

xT AjRji(−τj , θ)φi(θ)dθ.

Next, we examine the second term and use integration by488

parts to eliminate φ̇:489

K∑
i=1

∫ 0

−τi

φi(s)T ψi(s)ds =
K∑

i=1

τK

∫ 0

−τi

φi(s)T Q̇i(s)T x ds

+
K∑

i=1

τK

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
K∑

i=1

τK

∫ 0

−τi

φi(s)T Si(s)φ̇i(s)ds

+
∑
i,j

∫ 0

−τi

∫ 0

−τj

φi(s)T ∂

∂s
Rij (s, θ)φj (θ) ds dθ

=
K∑

i=1

τK

∫ 0

−τi

φi(s)T Q̇i(s)T x ds

+
τK

2

K∑
i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
τK

2
xT

K∑
i=1

Si(0)x

− τK

2

K∑
i=1

φi(−τi)T Si(−τi)φi(−τi)

+
∑
i,j

∫ 0

−τi

∫ 0

−τj

φi(s)T ∂

∂s
Rij (s, θ)φj (θ) ds dθ.

Combining both terms, we obtain490

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

= τK xT y+
K∑

i=1

∫ 0

−τi

φi(s)T ψi(s)ds

= xT

(
τK A0P +

K∑
i=1

τ 2
K AiQi(−τi)T +

τK

2

K∑
i=1

Si(0)

)
x

491

+ τ 2
K

K∑
i=1

xT AiSi(−τi)φi(−τi)

− τK

2

K∑
i=1

φi(−τi)T Si(−τi)φi(−τi)

+ τK

K∑
i=1

∫ 0

−τi

xT

(
A0Qi(s) + Q̇i(s)

+
K∑

j=1

AjRji(−τj , s)

)
φi(s)ds

+
τK

2

K∑
i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
∑
i,j

∫ 0

−τi

∫ 0

−τj

φi(s)T ∂

∂s
Rij (s, θ)φj (θ) ds dθ.

Combining the expression with its adjoint, we recover 492

〈
AP
[

x

φi

]
,

[
x

φi

]〉

Zn , K

+

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

=

�⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,D

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�
Zn (K +1 ) , n , K

≤ −ε

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
2

Zn , K

,

where D := P{D1 ,Vi ,Ṡ i ,Gi j }. We conclude that all conditions of 493

Theorem 1 are satisfied and hence System (1) is stable. � 494

Theorem 5 provides stability conditions expressed as the pos- 495

itivity of P{P,Qi ,Si ,Ri j } and negativity of the multiplier/integral 496

operator D = P{D1 ,Vi ,Ṡ i ,Gi j }. Note that positivity is defined 497

with respect to the inner product Zm,n,K . In Section VII, 498

we will show how to reformulate positivity on Zm,n,K as 499

an equivalent positivity condition on the space Zm,nK,1 . 500

Positive operators on Zm,nK,1 are then parameterized us- 501

ing LMIs, as also described in Section VII. Before mov- 502

ing to the next section, we note that the derivative operator 503

D = P{D1 ,Vi ,Ṡ i ,Gi j } is sparse in the sense that no terms of the 504

form φ(−τi)T φj (−τj ) for i �= j or φi(−τi)T φi(s) for any i ap- 505

pear in
〈
φ,P{D1 ,Vi ,Ṡ i ,Gi j }φ

〉
. This is extraordinary, as all such 506

terms do appear in the similar formulation of the primal stabil- 507

ity conditions (i.e.,
〈
φ,P{D1 ,Vi ,Ṡ i ,Gi j }φ

〉
from Section III). To 508

emphasize this difference, we fully expand both versions of the 509

form
〈
φ,P{D1 ,Vi ,Ṡ i ,Gi j }φ

〉
to obtain the following. 510
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1) Dual Lyapunov–Krasovskii Form: Theorem 5 implies511

that system (1) is stable if there exists a512

V (φ) = τK φ(0)T Pφ(0) + τK

K∑
i=1

∫ 0

−τi

φ(0)T Qi(s)φ(s)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Qi(s)T φ(0)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Si(s)φ(s)ds

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φ(s)T Rij (s, θ)φ(θ)dθ,

such that513

V (φ) ≥ ε

∥∥∥∥∥
[

φ(0)

φi

]∥∥∥∥∥
2

Zn , K

and514

VD (φ) = τK φ(0)T (C0 +CT
0 )φ(0)+2τK

K∑
i=1

φ(0)T Ciφi(−τi)

− τK

K∑
i=1

φi(−τi)T Si(−τi)φi(−τi)

+ 2τK

K∑
i=1

∫ 0

−τi

φ(0)T Bi(s)φi(s)ds

+ τK

K∑
i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φi(s)T Gij (s, θ)φi(θ) ds dθ

≤ −ε

∥∥∥∥∥
[

φ(0)

φi

]∥∥∥∥∥
2

Zn , K

.

2) Primal Lyapunov–Krasovskii Form: Now, compare515

with the associated primal classical Lyapunov–Krasovskii516

derivative condition [20] from Section III, which states that517

system (1) is stable if there exists a518

V (φ) = φ(0)T Pφ(0) +
K∑

i=1

∫ 0

−τi

φ(0)T Qi(s)φ(s)ds

+
K∑

i=1

∫ 0

−τi

φ(s)T Qi(s)T φ(0)ds

+
K∑

i=1

∫ 0

−τi

φ(s)T Si(s)φ(s)ds

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φ(s)T Rij (s, θ)φ(θ)dθ

such that V (φ) ≥ ε ‖φ(0)‖2 and 519

V̇ (φ) = φ(0)T Δ0φ(0) +
K∑

i=1

φi(−τi)T Si(−τi)φi(−τi)

+ 2
K∑

i=1

φ(0)T Δiφi(−τi)

+ 2
K∑

i=1

∫ 0

−τi

φ(0)T Π0i(s)φi(s)ds

+
K∑

i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+ 2
K∑

i,j=1

∫ 0

−τi

φi(−τi)T Πij (s)φj (s)ds

−
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φi(s)T Gij (s, θ)φi(θ) ds dθ

≤ −ε ‖φ(0)‖2 .

From this comparison, we see that the structure of the dual 520

stability condition is very similar to the structure of the primal 521

except for the fifth line of the derivative, which is absent from 522

the dual. Roughly speaking, it is as if all the Πij terms in the 523

primal form have been combined in Π0i . This sparsity pattern 524

yields a multiplier of the form 525

⎡
⎣ · · · ·
...

. . .

⎤
⎦

consisting of a single row, single column, and diagonal. For an 526

example of how to exploit such sparsity, the positivity of such a 527

multiplier would be equivalent to positivity of the diagonal and 528

positivity of the scalar [·] − · · ·
[
. . .
]−1 .... 529

VI. DUALITY CONDITIONS FOR SINGLE-DELAY SYSTEMS 530

In this section, we simplify the results of Section VIII-A for 531

systems with a single delay. We find that in the case of single 532

delay the parametrization of the operator P is direct (it does not 533

rely on equality constraints to enforce the mapping conditions 534

of Theorem 1), which allows us to arrive at the explicit forms 535

described in Section I-A. 536

A. Parametrization of Operators, P, Satisfying the 537

Conditions of Theorem 1 on Zn,1 538

First, we consider a class of operators that are self-adjoint 539

with respect to Z and map X → X . This is simplified in 540

the case of a single-delay case partially due to the fact that 541

Z = Zn,1 = Rn × Ln
2 equipped with the L2n

2 inner product 542

and subspace X := {{x, φ} ∈ Rn × Wn
2 [−τ, 0] : φ(0) = x}. 543

Specifically, given functions S,R ∈ Wn×n
2 [−τ, 0], in this sec- 544
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tion, we will define P as follows:545

(
P
[

x

φ

])
(s)

:=

[
τ(R(0, 0) + S(0))x +

∫ 0
−τ R(0, s)φ(s)ds

τR(s, 0)φ(0) + τS(s)φ(s) +
∫ 0
−τ R(s, θ)φ(θ)dθ

]
.

(4)

Clearly, we have that P is a bounded linear operator and546

since S,R are continuous, it is trivial to show that P : X → X .547

Furthermore, P is self-adjoint with respect to the L2n
2 inner548

product, as indicated in the following lemma.549

Lemma 6: Suppose S ∈ Wn×n
2 [−τ, 0], R ∈550

Wn×n
2 [[−τ, 0] × [−τ, 0]], R(s, θ) = R(θ, s)T , and S(s) ∈ Sn .551

Then, the operator P , as defined in (5), is self-adjoint with552

respect to the L2n
2 inner product. Furthermore, if there exists553

ε > 0 such that 〈x,Px〉L2 n
2

≥ ε ‖x‖2 for all x ∈ X , then554

P(X) = X .555

Proof: The proof is a direct application of Lemma 3. First,556

we note that P = P{P,Q,S,R} where P = τ(R(0, 0) + S(0))557

and Q(s) = R(0, s). Noting that P = τ(R(0, 0) + S(0)) =558

τQ(0)T + τS(0), we see that P{P,Q,S,R} satisfies the condi-559

tions of Lemma 3. �560

Note that the constraints P : X → X and P = P∗ signif-561

icantly reduce the number of free variables. In the single-562

delay case, we make this explicit by replacing P and Q with563

P = τ(R(0, 0) + S(0)) and Q(s) = R(0, s).564

Having introduced a parametrization of P and established565

properties of this operator, we now apply this structured operator566

to Theorem 1 to obtain Lyapunov-like conditions on S and R567

for which stability holds.568

B. Dual Stability Conditions: Single Delay569

In this section, we specialize the results of Theorem 5 to570

single-delay systems. First, recall that the dynamics of the571

single-delay system are represented by the infinitesimal gen-572

erator A defined as follows:573 (
A
[

x

φ

])
(s) =

[
A0x + A1φ(−τ)

d
ds φ(s)

]
.

Then, we have the following.574

Corollary 7: Suppose S and R satisfy the conditions of and575

Lemma 6 and there exists ε > 0 such that576

〈
x,P{P,Q,S,R}x

〉
L2 n

2
≥ ε ‖x‖2

L2 n
2

for all x ∈ Rn × Ln
2 [−τ, 0] where P = τ(R(0, 0) + S(0)) and577

Q(s) = R(0, s). Furthermore, suppose578

〈[
x
y
φ

]
,D
[

x
y
φ

]〉

L3 n
2

≤ −ε

∥∥∥∥∥
[

x

φ

]∥∥∥∥∥
2

L2 n
2

for all579

[
x
y
φ

]
∈ Rn ×Rn × Ln

2 [−τ, 0]

where D = P{D1 ,V ,Ṡ ,G} and 580

D1 :=

[
C0 + CT

0 C1

CT
1 −S(−τ)

]
, V (s) =

[
B(s)

0

]

C0 := τA0(R(0, 0) + S(0)) + τA1R(−τ, 0) +
1
2
S(0)

C1 := τA1S(−τ)

B(s) := A0R(0, s) + A1R(−τ, s) + Ṙ(s, 0)T

G(s, θ) :=
d

ds
R(s, θ) +

d

dθ
R(s, θ).

Then, the systemdefined by (1) in the caseK = 1with τ1 = τ 581

is exponentially stable. 582

Proof: The proof is a direct application of Lemma 6 and 583

Theorem 5. � 584

Note that expanding the term 585

〈[
φ(0)

φ(−τ)
φ

]
,D
[

φ(0)
φ(−τ)

φ

]〉

L3 n
2

from Corollary 7 yields the new dual stability conditions previ- 586

ously described in Section I-A. 587

VII. USING LMIS TO SOLVE LINEAR OPERATOR 588

INEQUALITIES (LOIS) ON Zm,n,K 589

In previous sections, we have formulated dual stability con- 590

ditions, with decision variables parameterized by the matrix P 591

and functions Qi , Si , and Rij . The dual stability conditions 592

were reformulated as the positivity of 593〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

≥ ε ‖x‖2
Zn , K

for all x ∈ Zn,K and the negativity of 594

〈⎡
⎣
[

y1
y2

]

φi

⎤
⎦,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎣
[

y1
y2

]

φi

⎤
⎦
〉

Zn (K +1 ) , n , K

≤ −ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn , K

for y1 ∈ Rn and 595⎡
⎣
[

y1

y2

]

φi

⎤
⎦ ∈ Zn(K +1,n,K )

where D1 , Vi, Ṡi , and Gij are as defined in Theorem 5. Opera- 596

tor feasibility conditions of this form are termed linear operator 597

inequalities and, in this section, we will show how LMIs can be 598

used to solve LOIs under the presumption that the functions Qi , 599

Si , and Rij are polynomial (which implies D1 , Vi, Ṡi , and Gij 600

are polynomial). Specifically, the variables in this case become 601

the coefficients of the polynomials Qi , Si , and Rij and the 602

goal of the section is to find LMI constraints on P and these 603

polynomial coefficients, which ensure that 604〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zm , n , K

≥ 0.

Our approach to solving LOIs on Zm,n,K is to construct an 605

equivalent feasibility condition using operators on Zm,nK,1 = 606

Rm × LnK
2 [−τK , 0]. This is accomplished in two steps. First, 607

in Section VII-A, we construct polynomials Q̂, Ŝ, and R̂ 608
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such that P{P,Q̂ ,Ŝ ,R̂} is coercive on Zm,nK,1 if and only if609

P{P,Qi ,Si ,Ri j } is coercive on Zm,n,K . Second, in Section VII-610

B, we impose LMI constraints on P and the coefficients of611

these polynomials Q̂, Ŝ, and R̂, constraints which are denoted612

{P, Q̂, Ŝ, R̂} ∈ Ξd,m,nK and which ensure that P{P,Q̂ ,Ŝ ,R̂} is613

coercive on Zm,nK,1 .614

Both steps are combined into a single summarizing statement615

in Corollary 10.616

A. Equivalence Between Zm,n,K and Zm,nK,1617

In this section, we address the positivity of P{P,Qi ,Si ,Ri j }618

on Zm,n,K by constructing a linear map from the matrix P and619

coefficients ofQi , Si , andRij to the coefficients of new polyno-620

mial variables Q̂, Ŝ, and R̂, where the coercivity of P{P,Q̂ ,Ŝ ,R̂}621

on Zm,nK,1 is equivalent to the coercivity of P{P,Qi ,Si ,Ri j } on622

Zm,n,K .623

Given matrix P and polynomials Qi , Si , and Rij , define the624

linear map L1 by625

{P̂ , Q̂, Ŝ, R̂} := L1(P,Qi, Si, Rij ) (5)

if ai = τi

τK
, P̂ = P and626

Q̂(s) := [
√

a1Q1(a1s) · · · √
aK QK (aK s) ]

Ŝ(s) :=

⎡
⎢⎣

S1(a1s) 0 0

0
. . . 0

0 0 SK (aK s)

⎤
⎥⎦

627

R̂(s, θ) :=⎡
⎢⎢⎣

√
a1a1R11 (sa1 , θa1) · · · √

a1aK R1K (sa1 , θaK )
... · · · ...√

aK a1RK 1 (saK , θa1) · · · √
aK aK RK K (saK , θaK )

⎤
⎥⎥⎦.

Then, we have the following result.628

Lemma 8: Let {P̂ , Q̂, Ŝ, R̂} := L1(P,Qi, Si, Rij ). Then629

〈[
x

φi

]
,P{P,Qi ,Si ,Ri j }

[
x

φi

]〉

Zm , n , K

≥ α

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
Zm , n , K

for all

[
x

φi

]
∈ Zm,n,K if and only if630

〈[
x

φ̂

]
,P{P̂ ,Q̂ ,R̂ ,Ŝ}

[
x

φ̂

]〉

Zm , n K , 1

≥ α

∥∥∥∥∥
[

x̂

φ̂

]∥∥∥∥∥
Zm , n K , 1

for all

[
x̂

φ̂

]
∈ Zm,nK,1 .631

Proof: The proof is straightforward. For necessity, let632

φ̂ =

⎡
⎢⎢⎣

√
aiφ1 (sa1)

...
√

aK φK (saK )

⎤
⎥⎥⎦.

Then, 633[
x

φ̂

]
∈ Zm,nK,1

and define the change of variables s′i = τK

τi
si = 1

ai
si . Then, 634

si = τi

τK
s′i = ais

′
i and dsi = aids′i and 635

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
Zm , n , K

= τK xT x +
K∑

i=1

∫ 0

−τi

‖φi(si)‖2 dsi

= τK xT x +
K∑

i=1

∫ 0

−τK

‖√aiφi (s′iai)‖2
ds′i

= τK xT x+
∫ 0

−τK

∥∥∥φ̂(s)
∥∥∥2

ds =

∥∥∥∥∥
[
x

φ̂

]∥∥∥∥∥
Zm , n K , 1

.

Now, using a similar change of integration variables, we have 636

the following: 637

〈[
x

φi

]
,P{P,Qi ,Si ,Ri j }

[
x

φi

]〉

Zm , n , K

= τK xT Px + 2τK

∫ 0

−τK

K∑
i=1

xT √aiQi(sai)φ̂i(s)ds

+ τK

∫ 0

−τK

K∑
i=1

φ̂i(s)T Si(sai)φ̂i(s)ds

+
∫ 0

−τK

∫ 0

−τK

K∑
i,j=1

φ̂i(s)T √aiajRij (sai, θaj )φ̂j (θ)dθds

=
∫ 0

−τK

[
x

φ̂(s)

]T [
P τK Q̂(s)

τK Q̂(s)T τK Ŝ(s)

][
x

φ̂(s)

]
ds

+
∫ 0

−τK

∫ 0

−τK

φ̂ (s)T R̂ (s, θ) φ̂ (θ) dθds

=

〈[
x

φ̂

]
,P{P,Q̂ ,R̂ ,Ŝ}

[
x

φ̂

]〉

Zm , n K , 1

≥ α

∥∥∥∥∥
[

x

φ̂

]∥∥∥∥∥
Zm , n K , 1

= α

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
Zm , n , K

.

For the sufficiency, we reverse the steps using 638

φi(s) =
1√
ai

φ̂i

(
s

ai

)
. �

639

Note that if Qi, Si , and Rij are polynomials whose coef- 640

ficients are variables in the optimization problem, then the 641

constraint {P̂ , Q̂, Ŝ, R̂} = L1(P,Qi, Si, Rij ) defines a linear 642

equality constraint between the coefficients of Qi, Si , and Rij 643

and the coefficients of the polynomials that define Q̂, Ŝ, and 644

R̂. In the following section, we will discuss how to enforce the 645

positivity of operators on Zm,nK,1 . 646
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B. LMI Conditions for the Positivity of Multiplier and647

Integral Operators on Zm,nK,1648

In this section, we define LMI-based conditions for the pos-649

itivity of operators P{P,Q,R,S} on Zm,nK,1 where Q, S, and R650

are continuous on [−τK , 0].651

Our approach to positivity is based on the observation that a652

positive operator will always have a square root. If we assume653

that this square root is also of the formP{P,Q,R,S} with functions654

Q, S, and R polynomial of bounded degree, then the results of655

this section give necessary and sufficient conditions. Note that656

although this assumption is restrictive, it is unclear whether657

it implies conservatism. For example, while not all positive658

polynomials are sum-of-squares, any positive polynomial can659

be approximated arbitrarily well in the sup norm on a bounded660

domain by a polynomial with a polynomial “root.” Specifically,661

the following theorem assumes a square root of the form662 (
P 1

2

[
x

φ

])
(s) := N1

√
g(s)x + N2

√
g(s)Y1(s)φ(s)

+
∫ 0

−τK

N3
√

g(s)Y2(s, θ)φ(θ)dθ

where the matrices Ni are unknown, the matrix-valued func-663

tions, Yi are chosen apriori, and g is either g(s) = 1 or664

g(s) = −s(s + τK ) (meaning g(s) is nonnegative on the in-665

terval [−τK , 0]).666

Theorem 9: For any functions Y1 : [−τK , 0] → Rm 1 ×n667

and Y2 : [−τK , 0] × [−τK , 0] → Rm 2 ×n , square integrable on668

[−τK , 0] with g(s) ≥ 0 for s ∈ [−τK , 0], suppose that669

P = M11 · 1
τK

∫ 0

−τK

g(s)ds

Q(s) =
1

τK

(
g(s)M12Y1(s) +

∫ 0

−τK

g(η)M13Y2(η, s)dη

)

S(s) =
1

τK
g(s)Y1(s)T M22Y1(s)

R(s, θ) = g(s)Y1(s)T M23Y2(s, θ) + g(θ)Y2(θ, s)T M32Y1(θ)

+
∫ 0

−τK

g(η)Y2(η, s)T M33Y2(η, θ)dη

where M11 ∈ Rm×m , M22 ∈ Rm 1 ×m 1 , M33 ∈ Rm 2 ×m 2 , and670

M =

⎡
⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎦ ≥ 0.

Then,
〈
x,P{P,Q,R,S}x

〉
Zm , n , 1

≥ 0 for all x ∈ Zm,n,1 .671

Proof: Since M ≥ 0, there exists a matrix672

N = [N1 N2 N3 ] such that M = NT N where673

N1 ∈ Rm+m 1 +m 2 ×m , N2 ∈ Rm+m 1 +m 2 ×m 2 , and674

N3 ∈ Rm+m 1 +m 2 ×m 2 . Using the definition of P 1
2 intro-675

duced previously, it is straightforward to show that676

〈
x,P{P,Q,R,S}x

〉
Zm , n, 1

=
〈
P 1

2 x,P 1
2 x
〉

L
m + m 1 + m 2
2

≥ 0. �
677

Theorem 9 gives a linear parametrization of a cone of positive678

operators using positive semidefinite matrices. Inclusion of g is679

inspired by the Positivstellensatz approach to local positivity of 680

polynomials, as can be found in, e.g., [23]–[25]. For example, 681

under mild conditions, Putinar’s P-Satz states that a polynomial 682

p(x) is positive for all x ∈ {x : g(x) ≥ 0} if and only if it 683

can be represented as p(x) = s1(x) + g(x)s2(x) for some sum- 684

of-squares polynomials s1 , s2 . In this way, Theorem 9 can be 685

seen as an operator-valued version of this classical result. Note, 686

however, in our case g is a function of the variable of integration 687

and not the state and so the analogy is somewhat specious. 688

Furthermore, for this paper, we restrict ourselves to linearmaps 689

of the state space. A partial discussion of parametrization of 690

positive nonlinear operators for the stability of nonlinear time- 691

delay systems can be found in [26] and [27]. 692

Note that there are few constraints on the matrix-valued func- 693

tions Y1 and Y2 , functions whose elements are a basis for 694

the multiplier and kernel functions found in P 1
2 . In this pa- 695

per, these are chosen as Y1(s) = Zd(s) ⊗ In and Y2(s, θ) = 696

Zd(s, θ) ⊗ In , where Zd is the vector of monomials of degree 697

d or less in variables s and s, θ, respectively. Likewise, as men- 698

tioned, g is chosen as both g(s) = 1 and g(s) = −s(s + τK ), 699

with the resulting P,Q,R, S being the sum of the results 700

of applying Theorem 9 to each case. To simplify notation, 701

throughout the remainder of this paper, we will use the nota- 702

tion {P,Q, S,R} ∈ Ξd,m,n to denote the LMI constraints on the 703

coefficients of the polynomials P,Q,R, S implied by the condi- 704

tions of Theorem 9 using both gi(s) = 1 and gi = −s(s + τK ) 705

as follows: 706

Ξd,m,n :=
{
{P,Q,R, S} :

{P,Q,S,R}={P1 ,Q 1 ,S1 ,R1 }+{P2 ,Q 2 ,S2 ,R2 },
where {P1 ,Q 1 ,S1 ,R1 } and {P2 ,Q 2 ,S2 ,R2 } satisfy

Theorem 9 with g=1 and g=−s(s+τK ), respectively.

}

C. Summary of Conditions for Positivity on Zm,n,K 707

The following corollary summarizes the main result of this 708

section. 709

Corollary 10: Suppose there exist d ∈ N, constant ε > 0, 710

matrix P ∈ Rm×m , polynomials Qi , Si , and Rij for i, j ∈ [K] 711

such that 712

L1(P,Qi, Si, Rij ) ∈ Ξd,m,nK .

Then,
〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zm , n , K

≥ 0 for all x ∈ Zm,n,K . 713

Proof: Define {P̂ , Q̂, Ŝ, R̂} = L1(P,Qi, Si, Rij ). 714

{P̂ , Q̂, Ŝ, R̂} ∈ Ξd,m,nK , by Theorem 9, 715〈
x,P{P̂ ,Q̂ ,Ŝ ,R̂}x

〉
Zm , n K , 1

≥ 0 for all x ∈ Zm,nK,1 . Next, 716

since {P̂ , Q̂, Ŝ, R̂} = L1(P,Qi, Si, Rij ), by Lemma 8, 717〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zm , n , K

≥ 0 for all x ∈ Zm,n,K . � 718

To simplify presentation, the main results of the following 719

section will reference Corollary 10 instead of the individual 720

lemma and theorem statements, which it combines. 721

VIII. LMI FORMULATION OF THE DUAL STABILITY TEST 722

In this section, we apply the positivity conditions developed 723

in Section VII to the operators parameterized in Section V-B, 724

yielding a computational method for verification of the dual 725

stability conditions of Theorem 5 and Corollary 7. 726
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A. LMI Test for Dual Stability With Multiple Delays727

We first consider the case of systems with multiple delays.728

The variables in the LMI are the matrix P and the coefficients729

of the polynomial functions Qi Si , and Rij . The polynomial730

constraints ∈ Ξd,n,nK and ∈ Ξd,n(K +1),nK represent LMI con-731

straints on the coefficients of the polynomials as per Theorem 9.732

Theorem 11: Suppose there exist d ∈ N, constant ε > 0, ma-733

trix P ∈ Rn×n , polynomials Si,Qi ∈ Wn×n
2 [T 0

i ] and Rij ∈734

Wn×n
2

[
T 0

i × T 0
j

]
for i, j ∈ [K] such that735

L1(P − εIn ,Qi, Si − εIn ,Rij ) ∈ Ξd,n,nK

L1(D1 + εÎ, Vi, Ṡi + εIn ,Gij ) ∈ Ξd,n(K +1),nK

where Î = diag(In , 0nK ), L1 is as defined in (6), and where736

P1 , V1 , Gij are as defined in Theorem 5.737

Furthermore, suppose738

P = τK Qi(0)T + τK Si(0) for i ∈ [K]

Si(s) = Si(s)T , Rij (s, θ) = Rji(θ, s)T for i, j ∈ [K]

Qj (s) = Rij (0, s) for i, j ∈ [K].

Then, the system defined by (1) is exponentially stable.739

Proof: Clearly, P{P,Qi ,Si ,Ri j } satisfies the conditions of740

Lemma 3. By Corollary 10, we have741 〈
x,P{P −εIn ,Qi ,Si −εIn ,Ri j }x

〉
Zn , K

=
〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

− ε ‖x‖2
Zn , K

≥ 0

for all x ∈ Zn,K . Similarly, we have742

〈⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦,P{D1 +εÎ ,Vi ,Ṡ i +εIn ,Gi j }

⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦
〉

Zn (K + 1 ) , n , K

=

〈⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦
〉

Zn (K + 1 ) , n , K

+ ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn , K

≤ 0.

Hence, Theorem 5 establishes the exponential stability743

of (1). �744

B. LMI for Dual Stability of Single-Delay Systems745

We now state an LMI representation of the dual stability746

condition for a single delay (τ1 = τK = τ ). This is a simplified747

version of Theorem 11, where we have eliminated the variables748

P and Q.749

Theorem 12: Suppose there exist d ∈ N, constant ε >750

0, polynomials S ∈ Wn×n
2 [−τ, 0] and R ∈ Wn×n

2 [[−τ, 0] ×751

[−τ, 0]], with R(s, θ) = R(θ, s)T and S(s) ∈ Sn such that752

{τ(R(0, 0) + S(0)) − εIn ,R(0, ·), S − εIn ,R} ∈ Ξd,2n,1

−
{

D1 + εIn , V, Ṡ + εIn ,G
}

∈ Ξd,2n,n

where D1 , V , and G are as defined in Corollary 7.753

Then, the systemdefined by (1) in the caseK = 1with τ1 = τ 754

is exponentially stable. 755

Proof: The proof follows from Theorem 11 by defining P = 756

τ(R(0, 0) + S(0)) and Q(s) = R(0, s) and noting that when 757

K = 1 758

{P,Q, S,R} = L1(P,Q, S,R). �

759

IX. MATLAB TOOLBOX IMPLEMENTATION 760

To assist with the application of these results, we have cre- 761

ated a library of functions for verifying the stability conditions 762

described in this paper. These libraries make use of modified 763

versions of the SOSTOOLS [28] and MULTIPOLY toolboxes 764

coupled with either SeDuMi [29] or Mosek. A complete pack- 765

age can be downloaded from [30] or [31] and all scripts and 766

functions are well documented and commented. Key examples 767

of functions included are as follows. 768

1) sosjointpos_mat_ker_ndelay_PQRS_vZ.m 769

a) Declares a [P,Qi,Rij , Si ] that defines an operator, 770

which is positive on Zm,n,K . 771

2) sosmateq.m 772

a) Declare a matrix-valued equality constraint. 773

3) solver_ndelay_dual_joint_nd_RL2.m 774

a) A script that combines the functions listed previ- 775

ously to test the stability of a user-defined problem. 776

These functions are implemented within the pvar framework 777

of SOSTOOLS and are available on Code Ocean. 778

Pseudocode: The following is a pseudocode implementation 779

of the conditions of Theorem 11. 780

(a) [P,Q,R,S]=sosjointpos_mat_ker_ndelay 781

_PQRS 782

(b) [D,E,G,H]=F(P,Q,R,S) 783

(c) [L,M,N,O]=sosjointpos_mat_ker_ndelay 784

_PQRS 785

(d) sosmateq(D+L); sosmateq(E+M) 786

(e) sosmateq(G+N); sosmateq(H+O) 787

Here, we use the function F to represent the derivative con- 788

struction defined in Theorem 11. This is not an actual function 789

in the toolbox. The derivative construction can be found in 790

solver_ndelay_dual_joint_nd_RL2, however. 791

X. NUMERICAL VALIDATION 792

In the preceding sections, we proposed a sufficient condition 793

for stability. However, as discussed, this condition is not nec- 794

essary and there are several potential sources of conservatism, 795

including the constraint P(X) = X and the assumption of an 796

SOS representation of the positive operator. In this section, we 797

apply the dual stability condition to a battery of numerical exam- 798

ples in order to determine whether this potential conservatism 799

is significant. 800

In each case, a table is given that lists the maximum provably 801

stable value of a specified parameter for each degree d. This 802

maximum value is found using bisection on the parameter. In 803

each case d is increased until the maximum parameter value 804

converges to several decimal places. The true maximum is also 805

provided as either the “limit” or “analytic” value, depending on 806

whether this limiting value is known analytically or is a best es- 807

timate based on simulation. The computation time is also listed 808

in CPU seconds on an Intel i7-5960X 3.0-GHz processor. This 809
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time corresponds to the interior-point (IPM) iteration in SeDuMi810

and does not account for preprocessing, postprocessing, or for811

the time spent on polynomial manipulations formulating the812

SDP using SOSTOOLS. Such polynomial manipulations can813

significantly exceed SDP computation time for small problems.814

b) Example A: First, we consider a simple example that is815

known to be stable for τ ≤ π
2 :816

ẋ(t) = −x(t − τ)

d 1 2 3 analytic
τmax 1.558 1.5707 1.5707 1.5707

CPU sec 0.309 0.516 0.776

c) Example B: Next, we consider a well-studied two-817

dimensional (2-D), single-delay system:818

ẋ(t) =

[
0 1

−2 .1

]
x(t) +

[
0 0

1 0

]
x(t − τ)

d 1 2 3 limit
τmax 1.693 1.7176 1.71785 1.71785
τmin 0.10018 0.100174 0.100174 0.100174

CPU sec 0.478 0.879 2.48

d) Example C: We consider a scalar, two-delay system:819

ẋ(t) = ax(t) + bx(t − 1) + cx(t − 2).

In this case, we fix a = −2 and c = −1 and search for the820

maximum b, which is 3 [32]–[34]:821

d 1 2 3 analytic
bmax 0.829 2.999 2.999 3

CPU sec 0.603 1.50 3.89

e) Example D: We consider a 2-D, two-delay system where822

τ1 = τ2/2 and search for the maximum stable τ2 :823

ẋ(t) =

[
0 1

−1 .1

]
x(t) +

[
0 0

−1 0

]
x(t − τ/2)

+

[
0 0

1 0

]
x(t − τ)

d 1 2 3 limit
τmax 1.354 1.3722 1.3722 1.3722

CPU sec 1.75 7.51 27.2

f) ExampleE:Next,we consider a 4-D, one-delay static output824

feedback system which, in [35], was found to be challenging for825

SOS-basedmethods. This example considers the static feedback826

system827

ẋ(t) = (A − BKC)x(t) + BKCx(t − τ)

where828

A =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−10 10 0 0

5 −15 0 −.25

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎦, C =

⎡
⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎦

T

.

TABLE I
COMPUTATION TIME (IN CPU SEC) INDEXED BY THE NUMBER OF STATES (n)

AND THE NUMBER OF DELAYS (K )

In this case, we take K = 1. It has been reported that it re- 829

quires polynomials of degree 10 even in the primal case to prove 830

stability of h = 3. However, using the dual stability condition, 831

we find a stability proof for degree d = 4, perhaps due to the 832

use of the new parametrization of positive operators. The com- 833

putation times for increasing degrees are listed in the following 834

table: 835

d 1 2 3
CPU sec 2.23 7.45 21.6
Stability? no yes yes

g) Example F: In this example, we consider a generalizedn-D 836

systemwithK delays and examine the computational scalability 837

of the stability test. Our system has the form 838

ẋ(t) = −
K∑

i=1

x(t − i/K)
K

.

For this example, we only search for polynomials of degree 2 839

and leave off the second kernel function. All results indexed in 840

Table I list IPM computation time in seconds and all establish 841

the stability of the system. The table is jointly indexed by the 842

number of states and the number of delays. 843

These numerical examples indicate little, if any conservatism 844

in the LMI implementation of the dual stability conditions, and 845

moreover, the method is accurate for relatively low degree. Ex- 846

ample E shows that computational complexity is a function of 847

nK and that the results scale well to high-dimensional sys- 848

tems and large numbers of delay. Specifically, current desk- 849

top computers with 128-GB RAM can solve problems where 850∼= nK ≤ 50. This scaling can be improved if the delay channel 851

is low dimensional through the use of the differential-difference 852

framework [19]. In the following section, we introduce a con- 853

troller synthesis condition. Note that adding the controller to the 854

optimization problem does not significantly change the compu- 855

tational complexity of the problem. 856

XI. LMI CONTROLLABILITY TEST 857

Establishment of dual stability conditions is the first step in 858

developing full-state feedback controller synthesis conditions. 859

Obtaining the stabilizing controller requires two more steps. 860

Specifically, consider the system ẋ(t) = Ax(t) + Bu(t),where 861

u(t) ∈ Rm . First, we define the controllability test. 862

Theorem 13: Suppose there exist d ∈ N, constant ε > 0, 863

matrix P ∈ Rn×n , polynomials Si,Qi ∈ Wn×n
2 [T 0

i ], Rij ∈ 864

Wn×n
2

[
T 0

i × T 0
j

]
for i, j ∈ [K], matrices Wi ∈ Rm×n , and 865

polynomials Yi ∈ Wm×n
2 for i ∈ [K] such that 866

L1(P − εIn ,Qi, Si − εIn ,Rij ) ∈ Ξd,n,nK

−L1(D1 +W +εÎ, Vi + BYi, Ṡi + εIn ,Gij ) ∈ Ξd,n(K +1),nK
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where Î , D1 , Vi , and Gij are as defined in Theorem 5, L1 is as867

defined in (6), and868

W =

⎡
⎢⎢⎢⎣

BW0 + WT
0 BT BW1 . . . BWK

WT
1 BT 0 . . . 0
...

...
. . .

...
WK BT 0 . . . 0

⎤
⎥⎥⎥⎦.

Furthermore, suppose P,Qi, Si, and Rij satisfy the con-869

ditions of Lemma 3. Then, the system ẋ(t) = A0x(t) =870 ∑
i Aix(t − τi) + Bu(t) is exponentially stabilizable and871

u(t) = ZP−1x(t) is an exponentially stabilizing controller872

where873 (
Z
[

x

φi

])
(s) :=W0x +

K∑
i=1

Wiφi(−τi) +
K∑

i=1

∫ 0

−τi

Yi(s)φi(s)ds.

Proof: If u(t) = ZP−1x(t), then ẋ(t) =874 (A + BZP−1
)
x(t) where875

(Bu)(s) =

[
Bu(t)

0

]
.

Hence, as in Theorem 5, the closed-loop system is stable if876 〈(A + BZP−1)P
[

x

φi

]
,

[
x

φi

]〉

Zn, K

+

〈[
x

φi

]
,
(A + BZP−1)P

[
x

φi

]〉

Zn, K

=

�⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,D+DZ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�
Zn (K +1 ) , n , K

≤−ε

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
2

Zn, K

∀
[

x

φi

]
∈ X

where877

DZ := P{W,BYi ,0,0} and D := P{D1 ,Vi ,Ṡ i ,Gi j }.

Now, from Corollary 10, we have878

P{D1 +W +εÎ ,Vi +BYi ,Ṡ i +εIn ,Gi j } ≤ 0

and hence879 &⎡
⎣
[

y1
y2

]

φi

⎤
⎦,P{D1 +W +εÎ ,Vi +BYi ,Ṡ i +εIn ,Gi j }

⎡
⎣
[

y1
y2

]

φi

⎤
⎦
'

=

&⎡
⎣
[

y1
y2

]

φi

⎤
⎦, (D + DZ )

⎡
⎣
[

y1
y2

]

φi

⎤
⎦
'

+ ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn , K

≤ 0.

Fig. 1. MATLAB DDE23 simulation of System (6) and Controller (8)
and delay τ = 5 s.

Therefore, by Theorem 5, the closed-loop system is exponen- 880

tially stable. � 881

The second step in controller synthesis is the construction 882

of the stabilizing controller u(t) = ZP−1
{P,Qi ,Si ,Ri j }, which re- 883

quires inversion of the operator P{P,Qi ,Si ,Ri j }—a topic which 884

is addressed in the sequel to this paper [36]. We illustrate these 885

results in the single-delay case using the well-studied system 886

ẋ(t) =

[
0 0

0 1

]
x(t) +

[−2 −.5

0 −1

]
x(t − τ) +

[
0

1

]
u(t).

(6)
For τ = 5 using simple polynomials of degree 2, we obtained 887

the following exponentially stabilizing controller: 888

u(t) =

[−3601

−944

]T

x(t) +

[−.00891

.872

]T

x(t − τ)

+
∫ 0

−5

[
52.1 + 6.98s + .00839s2 − .0710s3

12.7 + 1.50s − .0407s2 − .0190s3

]T

x(t + s)ds.

(7)

Simulations for fixed initial conditions were performed and 889

can be seen in Fig. 1. 890

XII. CONCLUSION 891

We have proposed a new form of dual Lyapunov stability con- 892

dition that allows the convexification of the controller synthesis 893

problem for delayed and other infinite-dimensional systems. 894

This duality principle requires a Lyapunov operator that is pos- 895

itive, invertible, and self-adjoint and preserves the structure of 896

the state space. We have proposed such a class of operators and 897

used them to create stability conditions that can be expressed as 898

positivity and negativity of quadratic Lyapunov functions. These 899

dual stability conditions have a tridiagonal structure, which is 900

distinct from standard Lyapunov–Krasovskii forms and may 901

be exploited to increase performance when studying systems 902

with large numbers of delays. The dual stability condition is 903

presented in a format that can be adapted to many existing com- 904

putational methods for Lyapunov stability analysis. We have 905



IEE
E P

ro
of

16 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2018

applied the sum-of-squares approach to enforce the positivity of906

the quadratic forms and tested the stability condition in both the907

single- and multiple-delay cases. Numerical testing on several908

examples indicates the method is not likely to be conservative.909

The contribution of this paper is not in the efficiency of the910

stability test, however, as these are likely less efficient when911

compared to, e.g., previous SOS results due to the structural912

constraints imposed upon the operator. Rather, the contribu-913

tion is in the convexification of the synthesis problem, which914

opens the door for dynamic output-feedback H∞ synthesis for915

infinite-dimensional systems. This potential is demonstrated in916

the numerical example of controller synthesis for a single-delay917

system.918
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[18] S. Mondie and V. Kharitonov, “Exponential estimates for retarded time-967
delay systems: An LMI approach,” IEEE Trans. Automat. Control, vol. 50,968
no. 2, pp. 268–273, Feb. 2005.969

[19] K. Gu, “Stability problem of systems with multiple delay channels,” Au- 970
tomatica, vol. 46, no. 4, pp. 743–751, 2010. 971

[20] H. Li and K. Gu, “Lyapunov-Krasovskii functional for coupled 972
differential-difference equations with multiple delay channels,” Automat- 973
ica, vol. 46, no. 5, pp. 902–909, 2010. 974

[21] R. Kress, V. Mazya, and V. Kozlov, Linear Integral Equations, vol. 17. 975
New York, NY, USA: Springer, 1989. 976

[22] A. Mironchenko and F. Wirth, “A non-coercive Lyapunov framework for 977
stability of distributed parameter systems,” in Proc. IEEE Conf. Decis. 978
Control, 2017, pp. 1900–1905. 979

[23] G. Stengle, “A nullstellensatz and a positivstellensatz in semial- 980
gebraic geometry,” Mathematische Annalen, vol. 207, pp. 87–97, 981
1973. 982
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[34] A. Egorov and S. Mondié, “Necessary stability conditions for linear delay 1008
systems,” Automatica, vol. 50, no. 12, pp. 3204–3208, 2014. 1009

[35] A. Seuret and F. Gouaisbaut, “Complete quadratic Lyapunov function- 1010
als using bessel-legendre inequality,” in Proc. Eur. Control Conf., 2014, 1011
pp. 448–453. 1012

[36] M. Peet, “A convex formulation of the H∞-optimal controller synthesis 1013
problem for multi-delay systems,” arXiv, Jun. 2018. 1014

Matthew M. Peet received the B.S. degree in 1015
physics and aerospace engineering from the 1016
University of Texas, Austin, TX, USA, in 1999, 1017
and the M.S. and Ph.D. degrees in aeronau- 1018
tics and astronautics from Stanford University, 1019
Stanford, CA, USA, in 2001 and 2006, respec- 1020
tively. 1021

From 2006 to 2008, he was a Postdoc- 1022
toral Fellow with INRIA, Paris, France. From 1023
2008 to 2012, he was an Assistant Professor 1024
in aerospace engineering with Illinois Institute of 1025

Technology, Chicago, IL, USA. He is currently an Associate Professor in 1026
aerospace engineering with Arizona State University, Tempe, AZ, USA. 1027

Dr. Peet was the recipient of the National Science Foundation CA- 1028
REER Award in 2011. 1029

1030



IEE
E P

ro
of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 00, NO. 00, 2018 1

A Dual to Lyapunov’s Second Method for Linear
Systems With Multiple Delays and

Implementation Using SOS
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Matthew M. Peet , Member, IEEE4

Abstract—We present a dual form of Lyapunov–5
Krasovskii functional which allows the problem of con-6
troller synthesis for multidelay systems to be formulated7
and solved in a convex manner. First, we give a generalized8
version of the dual stability condition formulated in terms9
of Lyapunov operators which are positive, self-adjoint, and10
preserve the structure of the state space. Second, we pro-11
vide a class of such operators and express the stability con-12
ditions as positivity and negativity of quadratic Lyapunov–13
Krasovskii functional forms. Next, we adapt the Sum of14
Squares (SOS) methodology to express positivity and neg-15
ativity of these forms as Linear Matrix Inequalities (LMIs),16
describing a new set of polynomial manipulation tools de-17
signed for this purpose. We apply the resulting LMIs to a18
battery of numerical examples and demonstrate that the sta-19
bility conditions are not significantly conservative. Finally,20
we formulate a test for controller synthesis for systems with21
multiple delays, apply the test to a numerical example, and22
simulate the resulting closed-loop system.23

Index Terms—Controller synthesis, delay systems, LMIs.24

I. INTRODUCTION25

SYSTEMS with delay have been well-studied for some26

time [1]–[3]. In recent years, however, there has been an27

increased emphasis on the use of optimization and SemiDefinite28

Programming (SDP) for stability analysis of linear and nonlin-29

ear time-delay systems. Although the computational question30

of the stability of a linear state-delayed system is believed to31

be NP-hard, several techniques have been developed that use32

LMI methods [4] to construct asymptotically exact algorithms.33

An asymptotically exact algorithm is a sequence of polynomial-34

time algorithms wherein each instance in the sequence provides35

sufficient conditions for stability, the computational complexity36

of the instances is increasing, the accuracy of the test is in-37

creasing, and the sequence converges to what appears to be a38

necessary and sufficient condition. Examples of such sequen-39

tial algorithms include the piecewise-linear approach [2], the40

Wirtinger-basedmethod of [5], and the SOS approach [6]. In ad-41
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dition, there are also frequency-domain approaches such as [7] 42

and [8]. These asymptotic algorithms are sufficiently reliable 43

so that for this paper, we may consider the problem of stability 44

analysis of linear discrete-delay systems to be solved. 45

The purpose of this paper is to explore methods by which 46

we may extend the success in the use of asymptotic algorithms 47

for stability analysis of time-delay systems to the field of robust 48

and optimal controller synthesis—an area that is relatively un- 49

derdeveloped. Although there have been a number of results on 50

controller synthesis for time-delay systems [9], none of these 51

results has been able to resolve the fundamental bilinearity of 52

the synthesis problem. Bilinearity here means that for a given 53

feedback controller, the search for a Lyapunov functional is lin- 54

ear in the decision variables that define the functional and is 55

relatively tractable. Furthermore, given a predefined Lyapunov 56

functional, the search for a controller ensuring negativity of the 57

time derivative of that functional is linear in the decision vari- 58

ables that define the feedback gains. However, if we are looking 59

for both a controller and a Lyapunov functional that establishes 60

the stability of that controller, then the resulting stability condi- 61

tion is nonlinear and nonconvex in the combined set of decision 62

variables. 63

Without a convex formulation of the controller synthesis prob- 64

lem, we cannot search over the set of provably stabilizing con- 65

trollers without significant conservatism, much less address the 66

problems of robust and quadratic stability. To resolve this diffi- 67

culty, some papers use iterative methods to alternately optimize 68

the Lyapunov functional and then the controller as in [10] or [11] 69

(via a “tuning parameter”). However, this iterative approach is 70

not guaranteed to converge. Meanwhile, approaches based on 71

frequency-domain methods, discrete approximation, or Smith 72

predictors result in controllers that are not provably stable or are 73

sensitive to variations in system parameters or in delay. 74

In this paper, we propose a dual Lyapunov-type stability cri- 75

terion, wherein the decision variables do not parameterize a 76

Lyapunov functional per se, but where the feasibility of this cri- 77

terion implies the existence of such a functional. The advantage 78

of such an approach for controller synthesis is that it allows for 79

an invertible variable substitution, eliminating all bilinear terms 80

in the criterion for controller synthesis. 81

Both our definition of duality (in the optimization sense) 82

and our approach to controller synthesis are based on the 83

LMI framework for controlling linear finite-dimensional state- 84

space systems of the form ẋ = Ax + Bu. Specifically, if u = 0, 85

the LMI condition for the existence of a quadratic Lyapunov 86

function V (x) = xT Px is the existence of a P > 0 such 87

that AT P + PA < 0. The feasibility of this LMI implies that 88

V (x) = xT Px > 0 and V̇ (x) = xT (AT P + PA)x < 0. This 89

0018-9286 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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LMI is in primal form because the decision variable P de-90

fines the Lyapunov function directly. However, when we add91

a controller u = Kx, we get ẋ = (A + BK)x and the syn-92

thesis condition becomes AT P + PA + KT BT P + PBK <93

0, which is bilinear in decision variables P and K and94

hence intractable. Bilinearity can be eliminated, however, if95

we use the implied Lyapunov function V (x) = xT P−1x. Us-96

ing this implied Lyapunov function the time derivative be-97

comes V̇ (x) = xT (AT P−1 + P−1A)x = (P−1x)T (PAT +98

AP )(P−1x) = zT (PAT + AP )z, where z = P−1x. This im-99

plies that the stability of ẋ = Ax is equivalent to the exis-100

tence of P > 0 such that AP + PAT < 0. If we now add a101

controller u = Kx, the controller synthesis condition becomes102

(AP + BKP ) + (AP + BKP )T < 0, which is still bilinear.103

However, if we consider the variable substitution Z = KP ,104

then stabilizability is equivalent to the existence of a P > 0105

and Z such that (AP + BZ) + (AP + BZ)T < 0, which is106

an LMI. The stabilizing controller gains can then be recon-107

structed as K = ZP−1 . LMIs of this form were introduced108

in [12] and are the basis for a majority of LMI methods for109

controller synthesis (see the supplemental notes in [4, ch. 5]110

for a discussion). The first contribution of this paper, then, is111

an operator-valued equivalent of the dual Lyapunov inequality112

P > 0, AP + PAT < 0 that implies the stability of a general113

class of infinite-dimensional systems. The second contribution114

of this paper is a computational framework for verifying this115

dual inequality using LMIs.116

The standard approach to state-space representation of117

infinite-dimensional systems is to define the state as evolving118

on a Hilbert space Z and satisfying the derivative condition119

ẋ(t) = Ax(t). The state is constrained to a subspace X of Z120

and the operator A is typically unbounded. It is known that if121

A generates a strongly continuous semigroup, then exponential122

stability of this system is equivalent to the existence of an oper-123

ator P such that 〈x,Px〉 ≥ ‖x‖2 and 〈x,PAx〉 + 〈PAx, x〉 ≤124

−ε ‖x‖2 [13]. In Section IV, we show that under mild addi-125

tional conditions on P , the dual version of this result also holds.126

Namely existence of an operator P such that 〈x,Px〉 ≥ ‖x‖2
127

and 〈x,APx〉 + 〈APx, x〉 ≤ −ε ‖x‖2 implies exponential sta-128

bility of ẋ = Ax. Specifically, these additional conditions on129

P are that P be self-adjoint and preserve specified properties130

of the solution. This result applies to any well-posed infinite-131

dimensional system, and is not conservative if X is a closed132

subspace of Z.133

Having formulated a general duality result, we next turn to134

the special case of systems with multiple delays and introduce135

a parametrization of a class of operators that are self-adjoint,136

preserve desired properties of the solution, andwhich are defined137

by the combination of multiplier and integral operators with138

constraints on the associated multipliers and kernels. This result139

allows us to represent the dual stability criterion in a manner140

similar to classical Lyapunov–Krasovskii stability conditions,141

butwith an additional tridiagonal structure thatmay prove useful142

for solving these Lyapunov equations. Finally, we present an143

LMI/SOS method for enforcing positivity and negativity of the144

operators under the assumption that all multipliers and kernels145

are polynomial. Finally,we discuss how these results can be used146

to solve the controller synthesis problem and give a numerical147

example using the methods defined in [14] and [15].148

Having stated the main contributions of this paper, we note149

that while we show how to enforce the operator inequalities150

using a slight generalization of existing SOS-based results, the151

duality results are presented in such a way as to encourage 152

the reader to use other methods of enforcing these inequalities, 153

methods including those contained in [5], or [16]. Indeed, we 154

emphasize that Theorems 1 and 5 are formulated independent of 155

whichever numerical method is used for enforcing the inequal- 156

ities. In this way, our goal is to simply establish a new class of 157

Lyapunov stability conditions that are well suited to the problem 158

of controller synthesis, leaving the method of enforcement of 159

these conditions to the reader. 160

Finally, we note that there have been a number of results on 161

dual and adjoint systems [17]. Unfortunately, however, these 162

dual systems are not delay-type systems and there is no clear 163

relationship between the stability of these adjoint and dual sys- 164

tems and the stability of the original delayed system. 165

This paper is organized as follows. In Sections II 166

and III, we develop a mathematical framework for expressing 167

Lyapunov-based stability conditions as operator inequalities. In 168

Section IV, we show that given additional constraints on the 169

Lyapunov operator, satisfaction of the dual Lyapunov inequal- 170

ity 〈x,APx〉 + 〈APx, x〉 ≤ −ε ‖x‖2 proves the stability of 171

ẋ(t) = Ax(t). In Sections VI and V, we define a restricted 172

class of Lyapunov functionals and operators which are valid 173

for the dual stability condition in both the single-delay and 174

multiple-delay cases, applying these classes of operators in 175

Sections VI-B and V-B to obtain dual stability conditions. These 176

dual stability conditions are formulated as positivity and neg- 177

ativity of Lyapunov functionals. In Section VII, we show how 178

SOS-based methods can be used to parameterize positive Lya- 179

punov functionals and thereby enforce the inequality conditions 180

in Sections VI-B and V-B, results which are summarized in 181

Corollary 10. Finally, in Section VIII, we summarize our results 182

with a set of LMI conditions for dual stability in both the single 183

and multiple-delay cases. Section IX describes our MATLAB 184

toolbox, available online, which facilitates construction and so- 185

lution of the LMIs. Section X applies the results to a variety 186

of stability problems and verifies that the dual stability test is 187

not conservative. Finally, Section XI discusses the problem of 188

full-state feedback controller synthesis and gives a numerical 189

illustration in the case of a single delay. 190

A. Technical Summary of Results 191

Before proceeding, we give a brief summary of the main 192

results of Section VI-B using as little mathematical formalism 193

as possible in order to illustrate how these results differ from 194

the classical Lyapunov–Krasovskii stability conditions. These 195

results are stated for systemswith a single delay in order to avoid 196

much of the notation and mathematical progression needed for 197

the multiple-delay case. That is, we consider the system 198

ẋ(t) = A0x(t) + A1x(t − τ).

1) Classical Lyapunov–Krasovskii Stability Conditions: 199

The standard necessary and sufficient conditions for stability in 200

the single-delay case are the existence of a 201

V (φ) =
∫ 0

−τ

[
φ(0)

φ(s)

]T [
M11 τM12(s)

τM21(s) τM22(s)

][
φ(0)

φ(s)

]
ds

+ τ

∫ 0

−τ

∫ 0

−τ

φ(s)T N(s, θ)φ(θ)dθds
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such that V (φ) ≥ ‖φ(0)‖2 and202

V̇ (φ) =

∫ 0

−τ

⎡
⎣

φ(0)

φ(−τ)
φ(s)

⎤
⎦

T
⎡
⎢⎢⎣
D11 + DT

11 D12 τD13(s)

DT
12 −M22(−τ) τD23(s)

τD13(s)T τD23(s)T −τṀ22(s)

⎤
⎥⎥⎦
⎡
⎢⎣

φ(0)

φ(−τ)

φ(s)

⎤
⎥⎦ds

− τ

∫ 0

−τ

∫ 0

−τ

φ(s)T

(
d

ds
N(s, θ) +

d

dθ
N(s, θ)

)
φ(θ)dθds

≤ −ε ‖φ‖2

D11 = M11A0 + M12(0) +
1
2
M22(0),

D12 = M11A1 − M12(−τ),

D23 = AT
1 M12(s) − N(−τ, s),

D13 = xAT
0 M12(s) − Ṁ12(s) + N(0, s).

2) New Dual Lyapunov–Krasovskii Stability Conditions:203

As per Corollary 7, the single-delay system is stable if there204

exists a205

V (φ)=
∫ 0

−τ

[
φ(0)

φ(s)

]T[
τ(R(0, 0)+S(0)) τR(0, s)

τR(s, 0) τS(s)

][
φ(0)

φ(s)

]
ds

+
∫ 0

−τ

∫ 0

−τ

φ(s)T R(s, θ)φ(θ)dθds ≥
∥∥∥∥∥
[

φ(0)

φ

]∥∥∥∥∥
2

and206

VD (φ)

=
∫ 0

−τ

⎡
⎢⎣

φ(0)

φ(−τ)

φ(s)

⎤
⎥⎦

T
⎡
⎢⎢⎣

S11 + ST
11 S12 τS13(s)

ST
12 S22 0n

τS13(s)T 0n τ Ṡ(s)

⎤
⎥⎥⎦
⎡
⎢⎣

φ(0)

φ(−τ)

φ(s)

⎤
⎥⎦ds

+
∫ 0

−τ

∫ 0

−τ

φ(s)T

(
d

ds
R(s, θ)+

d

dθ
R(s, θ)

)
φ(θ)dθds

≤ −ε

∥∥∥∥∥
[

φ(0)

φ

]∥∥∥∥∥
where207

S11 := τA0(R(0, 0) + S(0)) + τA1R(−τ, 0) +
1
2
S(0)

S12 := τA1S(−τ), S22 := −S(−τ)

S13(s) := A0R(0, s) + A1R(−τ, s) + Ṙ(s, 0)T .

Although this section only considers the single-delay case,208

one can see the two primary differences between the primal209

and dual stability conditions. First, as was the case for delay-210

free systems, the A0 , A1 system matrices appear on the left as211

opposed to the right-hand side of the Lyapunov variables. This212

allows for controller synthesis via variable substitution as we213

will demonstrate in Section XI. The second difference is that in214

the dual stability conditions, the (2, 3) and (3, 2) blocks of the215

derivative condition are zero. This unexpected structure extends216

to the multiple-delay case, wherein ALL (i, j) blocks are zero 217

for i, j �= 1, i �= j. 218

B. Notation 219

Shorthand notation used throughout this paper includes 220

the Hilbert spaces Lm
2 [X] := L2(X;Rm ) of square integrable 221

functions from X to Rm and Wm
2 [X] := W 1,2(X;Rm ) = 222

H1(X;Rm ) = {x : x, ẋ ∈ Lm
2 [X]}. We use Lm

2 and Wm
2 223

when domains are clear from context. We also use the 224

extensions Ln×m
2 [X] := L2(X;Rn×m ) and Wn×m

2 [X] := 225

W 1,2(X;Rn×m ) for matrix-valued functions. C[X] ⊃ W2 [X] 226

denotes the continuous functions onX . Sn ⊂ Rn×n denotes the 227

symmetric matrices. We say an operator P : Z → Z is positive 228

on a subsetX of Hilbert spaceZ if 〈x,Px〉Z ≥ 0 for all x ∈ X . 229

P is coercive on X if 〈x,Px〉Z ≥ ε ‖x‖2
Z for some ε > 0 and 230

for all x ∈ X . Given an operator P : Z → Z and a set X ⊂ Z, 231

we use the shorthand P(X) to denote the image of P on subset 232

X . In ∈ Sn denotes the identity matrix. 0n×m ∈ Rn×m is the 233

matrix of zeros with shorthand 0n := 0n×n . We will occasion- 234

ally denote the intervals T j
i := [−τi,−τj ] and T 0

i := [−τi, 0]. 235

For a natural number K ∈ N, we adopt the index shorthand 236

notation, which denotes [K] = {1, . . . , K}. 237

II. STANDARD RESULTS ON LYAPUNOV STABILITY OF LINEAR 238

TIME-DELAY SYSTEMS 239

In this paper, we consider the stability of linear discrete-delay 240

systems of the form 241

ẋ(t) = A0x(t) +
K∑

i=1

Aix(t − τi) for all t ≥ 0

x(t) = φ(t) for all t ∈ [−τK , 0], (1)

whereAi ∈ Rn×n , φ ∈ C[−τK , 0],K ∈ N and for convenience 242

τ1 < τ2 < · · · < τK . We associate with any solution x and any 243

time t ≥ 0, the “state” of System (1), xt ∈ C[−τK , 0], where 244

xt(s) = x(t + s). For linear discrete-delay systems of Form (1), 245

the system has a unique solution for any φ ∈ C[−τK , 0] and 246

global, local, asymptotic, and exponential stability are all equiv- 247

alent. 248

Stability of (1) may be certified through the use of Lyapunov– 249

Krasovskii functionals—an extension of Lyapunov theory to 250

systems with infinite-dimensional state space. In particular, it 251

is known [2] that System (1) is stable if and only if there exist 252

functions M and N , continuous in their respective arguments 253

everywhere except possibly at pointsH := {−τ1 , . . . ,−τK−1}, 254

such that the quadratic Lyapunov–Krasovskii functional 255

V : C[−τk , 0] → R 256

V (φ) =
∫ 0

−τK

[
φ(0)

φ(s)

]T

M(s)

[
φ(0)

φ(s)

]
ds

+
∫ 0

−τK

∫ 0

−τK

φ(s)T N(s, θ)φ(θ) ds dθ (2)

satisfies V (φ) ≥ ε ‖φ(0)‖2 and the Lie (upper Dini) derivative 257

of the functional is negative along any solution x of (1). That is 258

V̇ (xt) = lim
h→0

V (xt+h) − V (xt)
h

≤ −ε ‖xt(0)‖2

for all t ≥ 0 and some ε > 0. 259
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For the dual stability conditions we propose in this paper,260

discontinuities in the unknown functions M and N pose chal-261

lenges, which make this form of Lyapunov–Krasovskii func-262

tional poorly suited to controller synthesis. For this reason,263

we use an alternative formulation of the necessary Lyapunov–264

Krasovskii functional. Specifically, it has been shown in [19],265

Theorem 3, that exponential stability is also equivalent to the266

existence of a Lyapunov–Krasovskii functional of the form267

V (φ) = τK φ(0)T Pφ(0) + τK

K∑
i=1

∫ 0

−τi

φ(0)T Qi(s)φ(s)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Qi(s)T φ(0)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Si(s)φ(s)

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φ(s)T Rij (s, θ)φ(θ)dθ ≥ ε ‖φ(0)‖2

(3)

where V̇ (xt) ≤ −ε ‖xt(0)‖2 for some ε > 0 and the functions268

Qi , Si , and Rij may be assumed continuous on their respective269

domains of definition.270

III. REFORMULATING THE LYAPUNOV STABILITY CONDITIONS271

USING POSITIVE OPERATORS272

In this section, we introduce the mathematical formalism,273

which will be used to express both the primal and dual stability274

conditions. We begin by reviewing the well-established semi-275

group framework—a generalization of the concept of differen-276

tial equations. Sometimes known as the “flow map,” a “strongly277

continuous semigroup” is an operator S(t) : Z → Z defined by278

the Hilbert space Z, which represents the evolution of the state279

of the system so that for any solution x, xt+s = S(s)xt . Asso-280

ciated with a semigroup on Z is an operator A, called the “in-281

finitesimal generator,” which satisfies d
dt S(t)φ = AS(t)φ for282

any φ ∈ X . The space X ⊂ Z is often referred to as the domain283

of the generator A, and is the space on which the generator is284

defined and need not be a closed subspace of Z. In this paper285

we will refer to X as the “state space.”286

For System (1), we define Zm,n,K := {Rm × Ln
2 [−τ1 , 0] ×287

· · · × Ln
2 [−τK , 0]} and for {x, φ1 , . . . , φK } ∈ Zm,n,K , we de-288

fine the following shorthand notation:289

[
x

φi

]
:= {x, φ1 , . . . , φK }

which allows us to simplify expression of the inner product on290

Zm,n,K , which we define to be291

〈[
y

ψi

]
,

[
x

φi

]〉

Zm , n , K

= τK yT x +
K∑

i=1

∫ 0

−τi

ψi(s)T φi(s)ds.

When m = n, we simplify the notation using Zn,K :=292

Zn,n,K . We may now conveniently write the state space for293

System (1) as follows: 294

X :=

{[
x

φi

]
∈ Zn,K :

φi ∈W n
2 [−τi ,0] and

φi (0)=x for all i∈[K ]

}
.

Note thatX is a subspace ofZn,K , inherits the norm ofZn,K , 295

but is not closed in Zn,K . We furthermore extend this notation 296

to say 297

[
x

φi

]
(s) =

[
y

f(s, i)

]

if x = y and φi(s) = f(s, i) for s ∈ [−τi, 0] and i ∈ [K]. This 298

also allows us to compactly represent the infinitesimal generator 299

A of (1) as follows: 300

A
[

x

φi

]
(s) :=

[
A0x +

∑K
i=1 Aiφi(−τi)

φ̇i(s)

]
.

Using these definitions of A, Z, and X , for matrix P and 301

functions Qi, Si, and Rij , we define an operator P{P,Qi ,Si ,Ri j } 302

of the “complete-quadratic” type as follows: 303

(
P{P,Qi ,Si ,Ri j }

[
x

φi

])
(s) :=

⎡
⎣ Px +

∑K
i=1

∫ 0
−τi

Qi(s)φi(s)ds

τK Qi(s)T x+τK Si(s)φi(s)+
∑K

j=1

∫ 0
−τj

Rij (s, θ)φj (θ) dθ

⎤
⎦.

This notation will be used throughout this paper and allows us 304

to associateP,Qi, Si , andRij with the corresponding complete- 305

quadratic functional in (3) as follows: 306

V (φ) =

〈[
φ(0)

φi

]
,P{P,Qi ,Si ,Ri j }

[
φ(0)

φi

]〉

Zn , K

.

That is, the Lyapunov functional is defined by the operator 307

P{P,Qi ,Si ,Ri j }, which is a variation of a classical combined 308

multiplier and integral operator whose multipliers and kernel 309

functions are defined by P,Qi, Si, Rij . 310

The upper Dini derivative of the complete-quadratic func- 311

tional can similarly be represented using complete quadratic 312

operators as follows: 313

V̇ (φ) =

〈[
φ(0)

φi

]
,P{P,Qi ,Si ,Ri j }A

[
φ(0)

φi

]〉

Zn , K

+

〈
A
[

φ(0)

φi

]
,P{P,Qi ,Si ,Ri j }

[
φ(0)

φi

]〉

Zn , K

=

&⎡
⎢⎢⎢⎢⎢⎣

φ(0)

...

φ(−τK )

φi

⎤
⎥⎥⎥⎥⎥⎦

,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎢⎢⎢⎢⎢⎣

φ(0)

...

φ(−τK )

φi

⎤
⎥⎥⎥⎥⎥⎦

'
Zn (K +1 ) , n , K
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where [20]314

D1 =

⎡
⎢⎢⎢⎢⎢⎣

Δ0 Δ1 · · · ΔK

ΔT
1 S1(−τ1) 0 0

... 0
. . . 0

ΔT
K 0 0 SK (−τK )

⎤
⎥⎥⎥⎥⎥⎦

,

Δ0 = PA0 + AT
0 P +

K∑
k=1

Qk (0) + Qk (0)T + Sk (0),

Δj = PAj − Qj (−τj ),

Vi(s) =
[
Π0,i(s)T . . . ΠK,i(s)T

]T
,

Π0j (s) = AT
0 Qj (s) +

1
τK

K∑
k=1

RT
jk (s, 0) − Q̇j (s),

Πij (s) = AT
i Qj (s) − 1

τK
RT

ji(s,−τi),

Gij (s, θ) = − ∂

∂s
Rij (s, θ) − ∂

∂θ
Rij (s, θ).

In this section, we have reformulated A∗P + PA < 0 as315

negativity of a multiplier/integral operator on a lifted space.316

The classical Lyapunov–Krasovskii stability condition, then,317

states that System (1) is stable if there exists an ε > 0, matrix318

P , and functions Qi, Si, and Rij such that P{P,Qi ,Si ,Ri j } ≥319

εÎ1 and P{D1 ,Vi ,Ṡ i ,Gi j } ≤ −εÎ2 for suitably defined Î1 =320

diag(In , 0, . . .) and Î2 = diag(In , 0, . . .).321

IV. A DUAL STABILITY CONDITION FOR322

INFINITE-DIMENSIONAL SYSTEMS323

Using the notation we have introduced in the preceding sec-324

tion, we compactly represent the dual stability condition that325

forms the main theoretical contribution of this paper. Note that326

the results of this section apply to infinite-dimensional systems327

in general and are not specific to systems with delay.328

Theorem 1: Suppose thatA generates a strongly continuous329

semigroup on Hilbert space Z with domain X . Furthermore,330

suppose there exists an ε > 0 and a bounded, coercive linear331

operatorP : X → X withP(X) = X and which is self-adjoint332

with respect to the Z inner product and satisfies333

〈APz, z〉Z + 〈z,APz〉Z ≤ −ε ‖z‖2
Z

for all z ∈ X . Then a dynamical system which satisfies ẋ(t) =334

Ax(t) generates an exponentially stable semigroup.335

Proof: Because P is coercive and bounded there exist336

γ, δ > 0 such that 〈x,Px〉Z ≥ γ ‖x‖2
Z and ‖Px‖ ≤ δ ‖x‖Z .337

By the Lax–Milgram theorem [21], P−1 exists and is bounded338

and P(X) = X implies P−1 : X → X . The inverse is self-339

adjoint since P is self-adjoint and hence
〈P−1x, y

〉
Z

=340 〈P−1x,PP−1y
〉

Z
=
〈
x,P−1y

〉
Z
. Since supz

‖Pz‖
‖z‖ = δ < ∞,341

infy
‖P−1 y‖

‖y‖ = infx
‖x‖
‖Px‖ = 1

δ > 0 and hence
〈
y,P−1y

〉
Z

=342 〈PP−1y,P−1y
〉

Z
≥ γ

∥∥P−1y
∥∥2

Z
≥ γ

δ 2 ‖y‖2
Z . Hence, P−1 is343

coercive.344

Define the Lyapunov functional V (y) =
〈
y,P−1y

〉
Z
≥ 345

γ
δ 2 ‖y‖2

Z , where positivity holds for any y ∈ X . If y(t) satis- 346

fies ẏ(t) = Ay(t), then V has time derivative 347

d

dt
V (y(t)) =

〈
ẏ(t),P−1y(t)

〉
Z

+
〈
y(t),P−1 ẏ(t)

〉
Z

=
〈Ay(t),P−1y(t)

〉
Z

+
〈P−1y(t),Ay(t)

〉
Z

.

Now, define z(t) = P−1y(t) ∈ X for all t ≥ 0. Then, y(t) = 348

Pz(t) and since P is bounded and P−1 is coercive 349

V̇ (y(t)) =
〈Ay(t),P−1y(t)

〉
Z

+
〈P−1y(t),Ay(t)

〉
Z

= 〈APz(t), z(t)〉Z + 〈z(t),APz(t)〉Z
≤ −ε ‖z(t)‖2

Z ≤ − ε

δ
〈z(t),Pz(t)〉Z

= − ε

δ

〈
y(t),P−1y(t)

〉
Z
≤ −εγ

δ3 ‖y(t)‖2
Z .

Negativity of the derivative of the Lyapunov function implies 350

exponential stability in the square norm of the state by, e.g., [13] 351

or by the invariance principle. � 352

The constraint P(X) = X ensures P−1 : X → X and is sat- 353

isfied if X is a closed subspace of Z or if X is itself a Hilbert 354

space contained in Z and P is coercive on the space X with 355

respect to the inner product in which X is closed. For the case 356

of time-delay systems, X is not a closed subspace and we do 357

not wish to constrain P to be coercive on X , since this space 358

requires the Sobolev inner product in order to be closed. For 359

these reasons, in Lemma 4, we will directly show that for our 360

class of operators (to be defined) P(X) = X . 361

In the following sections, we discuss how to parameterize 362

operators which satisfy the conditions of Theorem 1, first in the 363

case of multiple delays, and then for the special case of a single 364

delay. We start with the constraints P = P∗ and P : X → X . 365

Note that without additional restrictions on P,Qi, Si, Rij , the 366

operator P{P,Qi ,Si ,Ri j } satisfies neither constraint. 367

Before moving to the next section, a natural question is 368

whether the dual stability condition is significantly conservative. 369

That is, does the stability of the system imply that the conditions 370

of Theorem 1 are feasible. We refer to [14, Th. 5.1.3]. 371

Theorem 2: Suppose that A is the infinitesimal generator of 372

the C0-semigroup S(t) on the Hilbert space Z with domain 373

D(A). Then, S(t) is exponentially stable if and only if there 374

exists a positive, self-adjoint operator P ∈ L(Z) such that 375

〈PAz, z〉Z + 〈z,PAz〉Z = −〈z, z〉Z for all z ∈ D(A).

Absent from the conditions of Theorem 2 is the restriction 376

P : D(A) → D(A) and indeed the uniquely defined operator 377

P from the proof of the theorem instead mapsD(A) → D(A∗), 378

with D(A∗) the domain defined by A∗ and which has a struc- 379

ture significantly different than that of D(A). Also absent from 380

the conditions is the coercivity of P . Several results show (e.g., 381

[22, Th. 5.5]) that stability implies the existence of a coer- 382

cive Lyapunov function (using a slightly weaker definition of 383

coercivity). Finally, the image restriction P(X) = X is not sat- 384

isfied by the operator in the proof of Theorem 2. However, if 385

P : D(A) → D(A), in the following sectionwe give conditions 386

that guarantee P(X) = X . In summary, however, we conclude 387

that no definitive statement can be made regarding the necessity 388

of Theorem 1. 389
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V. DUAL CONDITIONS FOR MULTIPLE-DELAY SYSTEMS390

In this section, we translate the results of Section IV into pos-391

itivity and negativity of Lyapunov–Krasovskii-like functionals392

for systems with multiple delays. First, we give a class of opera-393

tors P , which satisfy the conditions of Theorem 1. Specifically,394

we give a parametrization of operators that are self-adjoint with395

respect to the Hilbert space Zn,K , map X → X and satisfy396

P(X) = X . Next, we show how the conditions of Theorem 1397

can be applied to this class of operators to obtain stability con-398

ditions similar to the primal Lyapunov–Krasovskii conditions399

presented in Section II. Note that in Section VI, we will apply400

these results specifically to systems with a single delay and the401

exposition in that section is significantly reduced.402

A. A Parametrization of Operators, P, Satisfying the403

Conditions of Theorem 1 on Zn,K404

In this section, we parameterize a class of operators which405

are self-adjoint and map X → X , where406

X :=

{[
x

φi

]
∈ Zn,K :

φi ∈W n
2 [−τi ,0] and

φi (0)=x for all i∈[K ]

}
.

The following lemma gives constraints on the matrix P and407

functionsQi ,Si , andRij for whichP{P,Qi ,Si ,Ri j } is self-adjoint408

and maps X → X .409

Lemma 3: Suppose that Si ∈ Wn×n
2 [−τi, 0], Rij ∈ Wn×n

2410

[[−τi, 0] × [−τj , 0]] and Si(s) = Si(s)T , Rij (s, θ) =411

Rji(θ, s)T ,P = τK Qi(0)T + τK Si(0), andQj (s) = Rij (0, s)412

for all i, j ∈ [K]. Then, P{P,Qi ,Si ,Ri j } is a bounded linear413

operator, maps P{P,Qi ,Si ,Ri j } : X → X , and is self-adjoint414

with respect to the inner product defined on Zn,K .415

Proof: To simplify the presentation, letP := P{P,Qi ,Si ,Ri j }.416

We first establish that P : X → X . If417 [
x

φi

]
∈ X,

then φi ∈ C[−τi, 0] and φi(0) = x. Now, if418

[
y

ψi(s)

]
=

(
P
[

x

φi

])
(s),

then since P = τK Qi(0)T + τK Si(0) and Qj (s) = Rij (0, s),419

we have that420

ψi(0) =
(
τK Qi(0)T + τK Si(0)

)
x

+
K∑

j=1

∫ 0

−τj

Rij (0, θ)φj (θ)dθ

= Px +
K∑

j=1

∫ 0

−τj

Qj (s)φj (s)ds = y.

Since Si ∈ Wn×n
2 [−τi, 0] and Rij ∈ Wn×n

2 [[−τi, 0]×421

[−τj , 0]], clearly ψi ∈ Wn
2 [−τi, 0], and hence we have422

[
y

ψi

]
∈ X.

This proves that P : X → X . Furthermore, boundedness of the 423

functions Qi , Si , and Rij implies boundedness of the linear 424

operator P . 425

Now, to prove that P is self-adjoint with respect to the in- 426

ner product 〈·, ·〉Zn , K
, we show 〈y,Px〉Zn , K

= 〈Py, x〉Zn , K
427

for any x, y ∈ Zn,K . Using the properties Si(s) = Si(s)T and 428

Rij (s, θ) = Rji(θ, s)T , we have the following: 429〈[
y

ψi

]
,P
[

x

φi

]〉

Zn , K

= τK yT

(
Px +

K∑
i=1

∫ 0

−τi

Qi(θ)φi(θ)dθ

)

+
K∑

i=1

∫ 0

−τi

ψi(s)T

(
τK Qi(s)T x + τK Si(s)φi(s)

+
K∑

j=1

∫ 0

−τj

Rij (s, θ)φj (θ)dθ

)

= τK

⎛
⎝Py +

K∑
j=1

∫ 0

−τj

Qi(s)ψj (s)ds

⎞
⎠

T

x

+
K∑

i=1

∫ 0

−τi

(
τK Qi(s)T y + τK Si(s)T ψi(s)

+
K∑

j=1

∫ 0

−τj

Rji(θ, s)T ψj (θ)dθ

)T

φi(s) ds

=

〈
P
[

y

ψi

]
,

[
x

φi

]〉

Zn , K

.

� 430

Finally, we show that for this class of operators, if 431

P{P,Qi ,Si ,Ri j } is coercive with respect to the L2-norm, then 432

P{P,Qi ,Si ,Ri j }(X) = X . 433

Lemma 4: Suppose that there exist P , Qi , Si , and 434

Rij which satisfy the conditions of Lemma 3. If 435〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

≥ ε ‖x‖2
Zn , K

for all x ∈ X and some 436

ε > 0, then P{P,Qi ,Si ,Ri j }(X) = X . 437

Proof: By Lemma 3, P is self-adjoint and maps X → X . 438

Since P is coercive, bounded, and self-adjoint, P−1 is coercive, 439

bounded, and self-adjoint. To show P(X) = X , we need only 440

show that y = Px ∈ X implies that x ∈ X . First, we show that 441

if 442

y =
[

y
ψi(θ)

]
∈ X,

then 443

x =
[

x
φi(θ)

]
= P−1y

satisfies x = φi(0). We proceed by contradiction. Suppose x − 444

φi(0) �= 0 for some i. Then, we have 445

y = P (φi(0) + x − φi(0)) +
K∑

i=1

∫ 0

−τi

Qi(s)φi(s)ds.
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Now, since y ∈ X , y = ψi(0), and hence,446

y = Pφi(0)+
K∑

j=1

∫ 0

−τj

Rij (0, θ)φj (θ) dθ,

which implies P (x − φi(0)) = 0. Now, 〈x,Px〉Zn , K
≥447

ε ‖x‖2
Zn , K

implies P ≥ εI . Hence, x − φ(0) �= 0 implies448

P (x − φ(0)) �= 0, which is a contradiction. We conclude that449

x = φi(0). Next, we establish φi ∈ Wn
2 for any i by showing450 ∥∥∥φ̇i

∥∥∥
L2

< ∞. For this, we differentiate ψi to obtain451

ψ̇i(s) = τK Q̇i(s)T x+τK Ṡi(s)φi(s)+τK Si(s)φ̇i(s)

+
K∑

j=1

∫ 0

−τj

∂sRij (s, θ)φj (θ) dθ,

which we reverse to obtain452

τK Si(s)φ̇i(s) = ψ̇i(s) − τK Q̇i(s)T x−τK Ṡi(s)φi(s)

−
K∑

j=1

∫ 0

−τj

∂sRij (s, θ)φj (θ) dθ,

which is L2 bounded since ψ̇i , φi , Q̇i ∈ Ln
2 , and Ṡi and ∂sRi.j453

are continuous and thus bounded on [−τi, 0]. Now, for x = 0454

and φj = 0 for j �= i, the constraint 〈x,Px〉Zn , K
≥ ε ‖x‖2

Zn , K
,455

implies that the operator on this subspace,456

τK Si(s)φi(s) +
∫ 0

−τi

Rii(s, θ)φi(θ) dθ

is also coercive. Thus, since integral operators cannot be co-457

ercive for L2-bounded kernels Rii , we have that Si(s) ≥ ηI458

for some η > 0. Therefore, for each i, we conclude
∥∥∥φ̇i

∥∥∥
L2

≤459

1
η

∥∥∥Si(s)φ̇i(s)
∥∥∥

L2

< ∞. Hence, x ∈ X . We conclude that460

P(X) = X . �461

B. Duality Conditions for Multiple Delays462

For the multiple-delay case, we apply the operator463

P{P,Qi ,Si ,Ri j }, with P,Qi, Si, and Rij satisfying the condi-464

tions of Lemma 4 to the dual stability condition in Theorem 1465

and eliminate differential operators from the result. This section466

provides additional justification for the unique choice of state-467

space X and Hilbert space Zm,n,K used in this paper. Specifi-468

cally, the elimination of differential operators and reformulation469

as negativity of a multiplier/integral operator on Zn(K +1),n,K470

would not be possible using the more classical state and inner471

product spaces, which allow for discontinuities in the state.472

Theorem 5: Suppose that there exist P , Qi , Si , and Rij sat-473

isfy the conditions of Lemma 3. If
〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

≥474

ε ‖x‖2 for all x ∈ Zn,K and475

〈⎡
⎣
[

y1
y2

]

φi

⎤
⎦,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦
〉

Zn (K +1 ) , n , K

≤ −ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn, K

for all y1 ∈ Rn and 476⎡
⎣
[

y1
y2

]

φi

⎤
⎦ ∈ Zn(K+1),n,K ,

where 477

D1 :=

⎡
⎢⎢⎢⎢⎢⎣

C0 + CT
0 C1 · · · Ck

CT
1 −S1(−τ1) 0 0

... 0
. . . 0

CkT 0 0 −Sk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

C0 := A0P +
K∑

i=1

(
τK AiQi(−τi)T +

1
2
Si(0)

)

Ci := τK AiSi(−τi), i ∈ [K]

Vi(s) :=
[
Bi(s)T 0 · · · 0

]T
, i ∈ [K]

Bi(s) := A0Qi(s)+Q̇i(s) +
K∑

j=1

AjRji(−τj , s), i ∈ [K]

Gij (s, θ) :=
∂

∂s
Rij (s, θ) +

∂

∂θ
Rji(s, θ)T , i, j ∈ [K]

then the system defined by (1) is exponentially stable. 478

Proof: Define the operators A and P = P{P,Qi ,Si ,Ri j } as 479

aforementioned. By Lemma 3, P is self-adjoint and maps X → 480

X . SinceP is coercive by assumption, this implies byTheorem1 481

and Lemma 4 that the system is exponentially stable if 482

〈
AP
[

x

φi

]
,

[
x

φi

]〉

Zn , K

+

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

≤ −ε

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
2

Zn , K

for all 483[
x

φi

]
∈ X.

We begin by constructing 484[
y

ψi(s)

]
:= AP

[
x

φi

]
,

where 485

y = A0Px +
K∑

i=1

∫ 0

−τi

A0Qi(s)φi(s)ds

+
K∑

i=1

Ai

(
τK Qi(−τi)T x + τK Si(−τi)φi(−τi)

+
K∑

j=1

∫ 0

−τj

Rij (−τi, θ)φj (θ)dθ

)

ψi(s) = τK Q̇i(s)T x + τK Ṡi(s)φi(s) + τK Si(s)φ̇i(s)

+
K∑

j=1

∫ 0

−τj

d

ds
Rij (s, θ)φj (θ)dθ.
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Now, divide the expression into terms as follows:486

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

:= τK xT y+
K∑

i=1

∫ 0

−τi

φi(s)T ψi(s)ds.

Examining the first term and using x = φi(0), we have487

xT y = xT A0Px +
K∑

i=1

∫ 0

−τi

xT A0Qi(s)φi(s)ds

+
K∑

i=1

τK xT AiQi(−τi)T x

+
K∑

i=1

τK xT AiSi(−τi)φi(−τi)

+
K∑

i=1

∫ 0

−τi

K∑
j=1

xT AjRji(−τj , θ)φi(θ)dθ.

Next, we examine the second term and use integration by488

parts to eliminate φ̇:489

K∑
i=1

∫ 0

−τi

φi(s)T ψi(s)ds =
K∑

i=1

τK

∫ 0

−τi

φi(s)T Q̇i(s)T x ds

+
K∑

i=1

τK

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
K∑

i=1

τK

∫ 0

−τi

φi(s)T Si(s)φ̇i(s)ds

+
∑
i,j

∫ 0

−τi

∫ 0

−τj

φi(s)T ∂

∂s
Rij (s, θ)φj (θ) ds dθ

=
K∑

i=1

τK

∫ 0

−τi

φi(s)T Q̇i(s)T x ds

+
τK

2

K∑
i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
τK

2
xT

K∑
i=1

Si(0)x

− τK

2

K∑
i=1

φi(−τi)T Si(−τi)φi(−τi)

+
∑
i,j

∫ 0

−τi

∫ 0

−τj

φi(s)T ∂

∂s
Rij (s, θ)φj (θ) ds dθ.

Combining both terms, we obtain490

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

= τK xT y+
K∑

i=1

∫ 0

−τi

φi(s)T ψi(s)ds

= xT

(
τK A0P +

K∑
i=1

τ 2
K AiQi(−τi)T +

τK

2

K∑
i=1

Si(0)

)
x

491

+ τ 2
K

K∑
i=1

xT AiSi(−τi)φi(−τi)

− τK

2

K∑
i=1

φi(−τi)T Si(−τi)φi(−τi)

+ τK

K∑
i=1

∫ 0

−τi

xT

(
A0Qi(s) + Q̇i(s)

+
K∑

j=1

AjRji(−τj , s)

)
φi(s)ds

+
τK

2

K∑
i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
∑
i,j

∫ 0

−τi

∫ 0

−τj

φi(s)T ∂

∂s
Rij (s, θ)φj (θ) ds dθ.

Combining the expression with its adjoint, we recover 492

〈
AP
[

x

φi

]
,

[
x

φi

]〉

Zn , K

+

〈[
x

φi

]
,AP

[
x

φi

]〉

Zn , K

=

�⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,D

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�
Zn (K +1 ) , n , K

≤ −ε

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
2

Zn , K

,

where D := P{D1 ,Vi ,Ṡ i ,Gi j }. We conclude that all conditions of 493

Theorem 1 are satisfied and hence System (1) is stable. � 494

Theorem 5 provides stability conditions expressed as the pos- 495

itivity of P{P,Qi ,Si ,Ri j } and negativity of the multiplier/integral 496

operator D = P{D1 ,Vi ,Ṡ i ,Gi j }. Note that positivity is defined 497

with respect to the inner product Zm,n,K . In Section VII, 498

we will show how to reformulate positivity on Zm,n,K as 499

an equivalent positivity condition on the space Zm,nK,1 . 500

Positive operators on Zm,nK,1 are then parameterized us- 501

ing LMIs, as also described in Section VII. Before mov- 502

ing to the next section, we note that the derivative operator 503

D = P{D1 ,Vi ,Ṡ i ,Gi j } is sparse in the sense that no terms of the 504

form φ(−τi)T φj (−τj ) for i �= j or φi(−τi)T φi(s) for any i ap- 505

pear in
〈
φ,P{D1 ,Vi ,Ṡ i ,Gi j }φ

〉
. This is extraordinary, as all such 506

terms do appear in the similar formulation of the primal stabil- 507

ity conditions (i.e.,
〈
φ,P{D1 ,Vi ,Ṡ i ,Gi j }φ

〉
from Section III). To 508

emphasize this difference, we fully expand both versions of the 509

form
〈
φ,P{D1 ,Vi ,Ṡ i ,Gi j }φ

〉
to obtain the following. 510
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1) Dual Lyapunov–Krasovskii Form: Theorem 5 implies511

that system (1) is stable if there exists a512

V (φ) = τK φ(0)T Pφ(0) + τK

K∑
i=1

∫ 0

−τi

φ(0)T Qi(s)φ(s)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Qi(s)T φ(0)ds

+ τK

K∑
i=1

∫ 0

−τi

φ(s)T Si(s)φ(s)ds

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φ(s)T Rij (s, θ)φ(θ)dθ,

such that513

V (φ) ≥ ε

∥∥∥∥∥
[

φ(0)

φi

]∥∥∥∥∥
2

Zn , K

and514

VD (φ) = τK φ(0)T (C0 +CT
0 )φ(0)+2τK

K∑
i=1

φ(0)T Ciφi(−τi)

− τK

K∑
i=1

φi(−τi)T Si(−τi)φi(−τi)

+ 2τK

K∑
i=1

∫ 0

−τi

φ(0)T Bi(s)φi(s)ds

+ τK

K∑
i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φi(s)T Gij (s, θ)φi(θ) ds dθ

≤ −ε

∥∥∥∥∥
[

φ(0)

φi

]∥∥∥∥∥
2

Zn , K

.

2) Primal Lyapunov–Krasovskii Form: Now, compare515

with the associated primal classical Lyapunov–Krasovskii516

derivative condition [20] from Section III, which states that517

system (1) is stable if there exists a518

V (φ) = φ(0)T Pφ(0) +
K∑

i=1

∫ 0

−τi

φ(0)T Qi(s)φ(s)ds

+
K∑

i=1

∫ 0

−τi

φ(s)T Qi(s)T φ(0)ds

+
K∑

i=1

∫ 0

−τi

φ(s)T Si(s)φ(s)ds

+
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φ(s)T Rij (s, θ)φ(θ)dθ

such that V (φ) ≥ ε ‖φ(0)‖2 and 519

V̇ (φ) = φ(0)T Δ0φ(0) +
K∑

i=1

φi(−τi)T Si(−τi)φi(−τi)

+ 2
K∑

i=1

φ(0)T Δiφi(−τi)

+ 2
K∑

i=1

∫ 0

−τi

φ(0)T Π0i(s)φi(s)ds

+
K∑

i=1

∫ 0

−τi

φi(s)T Ṡi(s)φi(s)ds

+ 2
K∑

i,j=1

∫ 0

−τi

φi(−τi)T Πij (s)φj (s)ds

−
K∑

i,j=1

∫ 0

−τi

∫ 0

−τj

φi(s)T Gij (s, θ)φi(θ) ds dθ

≤ −ε ‖φ(0)‖2 .

From this comparison, we see that the structure of the dual 520

stability condition is very similar to the structure of the primal 521

except for the fifth line of the derivative, which is absent from 522

the dual. Roughly speaking, it is as if all the Πij terms in the 523

primal form have been combined in Π0i . This sparsity pattern 524

yields a multiplier of the form 525

⎡
⎣ · · · ·
...

. . .

⎤
⎦

consisting of a single row, single column, and diagonal. For an 526

example of how to exploit such sparsity, the positivity of such a 527

multiplier would be equivalent to positivity of the diagonal and 528

positivity of the scalar [·] − · · ·
[
. . .
]−1 .... 529

VI. DUALITY CONDITIONS FOR SINGLE-DELAY SYSTEMS 530

In this section, we simplify the results of Section VIII-A for 531

systems with a single delay. We find that in the case of single 532

delay the parametrization of the operator P is direct (it does not 533

rely on equality constraints to enforce the mapping conditions 534

of Theorem 1), which allows us to arrive at the explicit forms 535

described in Section I-A. 536

A. Parametrization of Operators, P, Satisfying the 537

Conditions of Theorem 1 on Zn,1 538

First, we consider a class of operators that are self-adjoint 539

with respect to Z and map X → X . This is simplified in 540

the case of a single-delay case partially due to the fact that 541

Z = Zn,1 = Rn × Ln
2 equipped with the L2n

2 inner product 542

and subspace X := {{x, φ} ∈ Rn × Wn
2 [−τ, 0] : φ(0) = x}. 543

Specifically, given functions S,R ∈ Wn×n
2 [−τ, 0], in this sec- 544
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tion, we will define P as follows:545

(
P
[

x

φ

])
(s)

:=

[
τ(R(0, 0) + S(0))x +

∫ 0
−τ R(0, s)φ(s)ds

τR(s, 0)φ(0) + τS(s)φ(s) +
∫ 0
−τ R(s, θ)φ(θ)dθ

]
.

(4)

Clearly, we have that P is a bounded linear operator and546

since S,R are continuous, it is trivial to show that P : X → X .547

Furthermore, P is self-adjoint with respect to the L2n
2 inner548

product, as indicated in the following lemma.549

Lemma 6: Suppose S ∈ Wn×n
2 [−τ, 0], R ∈550

Wn×n
2 [[−τ, 0] × [−τ, 0]], R(s, θ) = R(θ, s)T , and S(s) ∈ Sn .551

Then, the operator P , as defined in (5), is self-adjoint with552

respect to the L2n
2 inner product. Furthermore, if there exists553

ε > 0 such that 〈x,Px〉L2 n
2

≥ ε ‖x‖2 for all x ∈ X , then554

P(X) = X .555

Proof: The proof is a direct application of Lemma 3. First,556

we note that P = P{P,Q,S,R} where P = τ(R(0, 0) + S(0))557

and Q(s) = R(0, s). Noting that P = τ(R(0, 0) + S(0)) =558

τQ(0)T + τS(0), we see that P{P,Q,S,R} satisfies the condi-559

tions of Lemma 3. �560

Note that the constraints P : X → X and P = P∗ signif-561

icantly reduce the number of free variables. In the single-562

delay case, we make this explicit by replacing P and Q with563

P = τ(R(0, 0) + S(0)) and Q(s) = R(0, s).564

Having introduced a parametrization of P and established565

properties of this operator, we now apply this structured operator566

to Theorem 1 to obtain Lyapunov-like conditions on S and R567

for which stability holds.568

B. Dual Stability Conditions: Single Delay569

In this section, we specialize the results of Theorem 5 to570

single-delay systems. First, recall that the dynamics of the571

single-delay system are represented by the infinitesimal gen-572

erator A defined as follows:573 (
A
[

x

φ

])
(s) =

[
A0x + A1φ(−τ)

d
ds φ(s)

]
.

Then, we have the following.574

Corollary 7: Suppose S and R satisfy the conditions of and575

Lemma 6 and there exists ε > 0 such that576

〈
x,P{P,Q,S,R}x

〉
L2 n

2
≥ ε ‖x‖2

L2 n
2

for all x ∈ Rn × Ln
2 [−τ, 0] where P = τ(R(0, 0) + S(0)) and577

Q(s) = R(0, s). Furthermore, suppose578

〈[
x
y
φ

]
,D
[

x
y
φ

]〉

L3 n
2

≤ −ε

∥∥∥∥∥
[

x

φ

]∥∥∥∥∥
2

L2 n
2

for all579

[
x
y
φ

]
∈ Rn ×Rn × Ln

2 [−τ, 0]

where D = P{D1 ,V ,Ṡ ,G} and 580

D1 :=

[
C0 + CT

0 C1

CT
1 −S(−τ)

]
, V (s) =

[
B(s)

0

]

C0 := τA0(R(0, 0) + S(0)) + τA1R(−τ, 0) +
1
2
S(0)

C1 := τA1S(−τ)

B(s) := A0R(0, s) + A1R(−τ, s) + Ṙ(s, 0)T

G(s, θ) :=
d

ds
R(s, θ) +

d

dθ
R(s, θ).

Then, the systemdefined by (1) in the caseK = 1with τ1 = τ 581

is exponentially stable. 582

Proof: The proof is a direct application of Lemma 6 and 583

Theorem 5. � 584

Note that expanding the term 585

〈[
φ(0)

φ(−τ)
φ

]
,D
[

φ(0)
φ(−τ)

φ

]〉

L3 n
2

from Corollary 7 yields the new dual stability conditions previ- 586

ously described in Section I-A. 587

VII. USING LMIS TO SOLVE LINEAR OPERATOR 588

INEQUALITIES (LOIS) ON Zm,n,K 589

In previous sections, we have formulated dual stability con- 590

ditions, with decision variables parameterized by the matrix P 591

and functions Qi , Si , and Rij . The dual stability conditions 592

were reformulated as the positivity of 593〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

≥ ε ‖x‖2
Zn , K

for all x ∈ Zn,K and the negativity of 594

〈⎡
⎣
[

y1
y2

]

φi

⎤
⎦,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎣
[

y1
y2

]

φi

⎤
⎦
〉

Zn (K +1 ) , n , K

≤ −ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn , K

for y1 ∈ Rn and 595⎡
⎣
[

y1

y2

]

φi

⎤
⎦ ∈ Zn(K +1,n,K )

where D1 , Vi, Ṡi , and Gij are as defined in Theorem 5. Opera- 596

tor feasibility conditions of this form are termed linear operator 597

inequalities and, in this section, we will show how LMIs can be 598

used to solve LOIs under the presumption that the functions Qi , 599

Si , and Rij are polynomial (which implies D1 , Vi, Ṡi , and Gij 600

are polynomial). Specifically, the variables in this case become 601

the coefficients of the polynomials Qi , Si , and Rij and the 602

goal of the section is to find LMI constraints on P and these 603

polynomial coefficients, which ensure that 604〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zm , n , K

≥ 0.

Our approach to solving LOIs on Zm,n,K is to construct an 605

equivalent feasibility condition using operators on Zm,nK,1 = 606

Rm × LnK
2 [−τK , 0]. This is accomplished in two steps. First, 607

in Section VII-A, we construct polynomials Q̂, Ŝ, and R̂ 608
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such that P{P,Q̂ ,Ŝ ,R̂} is coercive on Zm,nK,1 if and only if609

P{P,Qi ,Si ,Ri j } is coercive on Zm,n,K . Second, in Section VII-610

B, we impose LMI constraints on P and the coefficients of611

these polynomials Q̂, Ŝ, and R̂, constraints which are denoted612

{P, Q̂, Ŝ, R̂} ∈ Ξd,m,nK and which ensure that P{P,Q̂ ,Ŝ ,R̂} is613

coercive on Zm,nK,1 .614

Both steps are combined into a single summarizing statement615

in Corollary 10.616

A. Equivalence Between Zm,n,K and Zm,nK,1617

In this section, we address the positivity of P{P,Qi ,Si ,Ri j }618

on Zm,n,K by constructing a linear map from the matrix P and619

coefficients ofQi , Si , andRij to the coefficients of new polyno-620

mial variables Q̂, Ŝ, and R̂, where the coercivity of P{P,Q̂ ,Ŝ ,R̂}621

on Zm,nK,1 is equivalent to the coercivity of P{P,Qi ,Si ,Ri j } on622

Zm,n,K .623

Given matrix P and polynomials Qi , Si , and Rij , define the624

linear map L1 by625

{P̂ , Q̂, Ŝ, R̂} := L1(P,Qi, Si, Rij ) (5)

if ai = τi

τK
, P̂ = P and626

Q̂(s) := [
√

a1Q1(a1s) · · · √
aK QK (aK s) ]

Ŝ(s) :=

⎡
⎢⎣

S1(a1s) 0 0

0
. . . 0

0 0 SK (aK s)

⎤
⎥⎦

627

R̂(s, θ) :=⎡
⎢⎢⎣

√
a1a1R11 (sa1 , θa1) · · · √

a1aK R1K (sa1 , θaK )
... · · · ...√

aK a1RK 1 (saK , θa1) · · · √
aK aK RK K (saK , θaK )

⎤
⎥⎥⎦.

Then, we have the following result.628

Lemma 8: Let {P̂ , Q̂, Ŝ, R̂} := L1(P,Qi, Si, Rij ). Then629

〈[
x

φi

]
,P{P,Qi ,Si ,Ri j }

[
x

φi

]〉

Zm , n , K

≥ α

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
Zm , n , K

for all

[
x

φi

]
∈ Zm,n,K if and only if630

〈[
x

φ̂

]
,P{P̂ ,Q̂ ,R̂ ,Ŝ}

[
x

φ̂

]〉

Zm , n K , 1

≥ α

∥∥∥∥∥
[

x̂

φ̂

]∥∥∥∥∥
Zm , n K , 1

for all

[
x̂

φ̂

]
∈ Zm,nK,1 .631

Proof: The proof is straightforward. For necessity, let632

φ̂ =

⎡
⎢⎢⎣

√
aiφ1 (sa1)

...
√

aK φK (saK )

⎤
⎥⎥⎦.

Then, 633[
x

φ̂

]
∈ Zm,nK,1

and define the change of variables s′i = τK

τi
si = 1

ai
si . Then, 634

si = τi

τK
s′i = ais

′
i and dsi = aids′i and 635

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
Zm , n , K

= τK xT x +
K∑

i=1

∫ 0

−τi

‖φi(si)‖2 dsi

= τK xT x +
K∑

i=1

∫ 0

−τK

‖√aiφi (s′iai)‖2
ds′i

= τK xT x+
∫ 0

−τK

∥∥∥φ̂(s)
∥∥∥2

ds =

∥∥∥∥∥
[
x

φ̂

]∥∥∥∥∥
Zm , n K , 1

.

Now, using a similar change of integration variables, we have 636

the following: 637

〈[
x

φi

]
,P{P,Qi ,Si ,Ri j }

[
x

φi

]〉

Zm , n , K

= τK xT Px + 2τK

∫ 0

−τK

K∑
i=1

xT √aiQi(sai)φ̂i(s)ds

+ τK

∫ 0

−τK

K∑
i=1

φ̂i(s)T Si(sai)φ̂i(s)ds

+
∫ 0

−τK

∫ 0

−τK

K∑
i,j=1

φ̂i(s)T √aiajRij (sai, θaj )φ̂j (θ)dθds

=
∫ 0

−τK

[
x

φ̂(s)

]T [
P τK Q̂(s)

τK Q̂(s)T τK Ŝ(s)

][
x

φ̂(s)

]
ds

+
∫ 0

−τK

∫ 0

−τK

φ̂ (s)T R̂ (s, θ) φ̂ (θ) dθds

=

〈[
x

φ̂

]
,P{P,Q̂ ,R̂ ,Ŝ}

[
x

φ̂

]〉

Zm , n K , 1

≥ α

∥∥∥∥∥
[

x

φ̂

]∥∥∥∥∥
Zm , n K , 1

= α

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
Zm , n , K

.

For the sufficiency, we reverse the steps using 638

φi(s) =
1√
ai

φ̂i

(
s

ai

)
. �

639

Note that if Qi, Si , and Rij are polynomials whose coef- 640

ficients are variables in the optimization problem, then the 641

constraint {P̂ , Q̂, Ŝ, R̂} = L1(P,Qi, Si, Rij ) defines a linear 642

equality constraint between the coefficients of Qi, Si , and Rij 643

and the coefficients of the polynomials that define Q̂, Ŝ, and 644

R̂. In the following section, we will discuss how to enforce the 645

positivity of operators on Zm,nK,1 . 646
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B. LMI Conditions for the Positivity of Multiplier and647

Integral Operators on Zm,nK,1648

In this section, we define LMI-based conditions for the pos-649

itivity of operators P{P,Q,R,S} on Zm,nK,1 where Q, S, and R650

are continuous on [−τK , 0].651

Our approach to positivity is based on the observation that a652

positive operator will always have a square root. If we assume653

that this square root is also of the formP{P,Q,R,S} with functions654

Q, S, and R polynomial of bounded degree, then the results of655

this section give necessary and sufficient conditions. Note that656

although this assumption is restrictive, it is unclear whether657

it implies conservatism. For example, while not all positive658

polynomials are sum-of-squares, any positive polynomial can659

be approximated arbitrarily well in the sup norm on a bounded660

domain by a polynomial with a polynomial “root.” Specifically,661

the following theorem assumes a square root of the form662 (
P 1

2

[
x

φ

])
(s) := N1

√
g(s)x + N2

√
g(s)Y1(s)φ(s)

+
∫ 0

−τK

N3
√

g(s)Y2(s, θ)φ(θ)dθ

where the matrices Ni are unknown, the matrix-valued func-663

tions, Yi are chosen apriori, and g is either g(s) = 1 or664

g(s) = −s(s + τK ) (meaning g(s) is nonnegative on the in-665

terval [−τK , 0]).666

Theorem 9: For any functions Y1 : [−τK , 0] → Rm 1 ×n667

and Y2 : [−τK , 0] × [−τK , 0] → Rm 2 ×n , square integrable on668

[−τK , 0] with g(s) ≥ 0 for s ∈ [−τK , 0], suppose that669

P = M11 · 1
τK

∫ 0

−τK

g(s)ds

Q(s) =
1

τK

(
g(s)M12Y1(s) +

∫ 0

−τK

g(η)M13Y2(η, s)dη

)

S(s) =
1

τK
g(s)Y1(s)T M22Y1(s)

R(s, θ) = g(s)Y1(s)T M23Y2(s, θ) + g(θ)Y2(θ, s)T M32Y1(θ)

+
∫ 0

−τK

g(η)Y2(η, s)T M33Y2(η, θ)dη

where M11 ∈ Rm×m , M22 ∈ Rm 1 ×m 1 , M33 ∈ Rm 2 ×m 2 , and670

M =

⎡
⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎦ ≥ 0.

Then,
〈
x,P{P,Q,R,S}x

〉
Zm , n , 1

≥ 0 for all x ∈ Zm,n,1 .671

Proof: Since M ≥ 0, there exists a matrix672

N = [N1 N2 N3 ] such that M = NT N where673

N1 ∈ Rm+m 1 +m 2 ×m , N2 ∈ Rm+m 1 +m 2 ×m 2 , and674

N3 ∈ Rm+m 1 +m 2 ×m 2 . Using the definition of P 1
2 intro-675

duced previously, it is straightforward to show that676

〈
x,P{P,Q,R,S}x

〉
Zm , n, 1

=
〈
P 1

2 x,P 1
2 x
〉

L
m + m 1 + m 2
2

≥ 0. �
677

Theorem 9 gives a linear parametrization of a cone of positive678

operators using positive semidefinite matrices. Inclusion of g is679

inspired by the Positivstellensatz approach to local positivity of 680

polynomials, as can be found in, e.g., [23]–[25]. For example, 681

under mild conditions, Putinar’s P-Satz states that a polynomial 682

p(x) is positive for all x ∈ {x : g(x) ≥ 0} if and only if it 683

can be represented as p(x) = s1(x) + g(x)s2(x) for some sum- 684

of-squares polynomials s1 , s2 . In this way, Theorem 9 can be 685

seen as an operator-valued version of this classical result. Note, 686

however, in our case g is a function of the variable of integration 687

and not the state and so the analogy is somewhat specious. 688

Furthermore, for this paper, we restrict ourselves to linearmaps 689

of the state space. A partial discussion of parametrization of 690

positive nonlinear operators for the stability of nonlinear time- 691

delay systems can be found in [26] and [27]. 692

Note that there are few constraints on the matrix-valued func- 693

tions Y1 and Y2 , functions whose elements are a basis for 694

the multiplier and kernel functions found in P 1
2 . In this pa- 695

per, these are chosen as Y1(s) = Zd(s) ⊗ In and Y2(s, θ) = 696

Zd(s, θ) ⊗ In , where Zd is the vector of monomials of degree 697

d or less in variables s and s, θ, respectively. Likewise, as men- 698

tioned, g is chosen as both g(s) = 1 and g(s) = −s(s + τK ), 699

with the resulting P,Q,R, S being the sum of the results 700

of applying Theorem 9 to each case. To simplify notation, 701

throughout the remainder of this paper, we will use the nota- 702

tion {P,Q, S,R} ∈ Ξd,m,n to denote the LMI constraints on the 703

coefficients of the polynomials P,Q,R, S implied by the condi- 704

tions of Theorem 9 using both gi(s) = 1 and gi = −s(s + τK ) 705

as follows: 706

Ξd,m,n :=
{
{P,Q,R, S} :

{P,Q,S,R}={P1 ,Q 1 ,S1 ,R1 }+{P2 ,Q 2 ,S2 ,R2 },
where {P1 ,Q 1 ,S1 ,R1 } and {P2 ,Q 2 ,S2 ,R2 } satisfy

Theorem 9 with g=1 and g=−s(s+τK ), respectively.

}

C. Summary of Conditions for Positivity on Zm,n,K 707

The following corollary summarizes the main result of this 708

section. 709

Corollary 10: Suppose there exist d ∈ N, constant ε > 0, 710

matrix P ∈ Rm×m , polynomials Qi , Si , and Rij for i, j ∈ [K] 711

such that 712

L1(P,Qi, Si, Rij ) ∈ Ξd,m,nK .

Then,
〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zm , n , K

≥ 0 for all x ∈ Zm,n,K . 713

Proof: Define {P̂ , Q̂, Ŝ, R̂} = L1(P,Qi, Si, Rij ). 714

{P̂ , Q̂, Ŝ, R̂} ∈ Ξd,m,nK , by Theorem 9, 715〈
x,P{P̂ ,Q̂ ,Ŝ ,R̂}x

〉
Zm , n K , 1

≥ 0 for all x ∈ Zm,nK,1 . Next, 716

since {P̂ , Q̂, Ŝ, R̂} = L1(P,Qi, Si, Rij ), by Lemma 8, 717〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zm , n , K

≥ 0 for all x ∈ Zm,n,K . � 718

To simplify presentation, the main results of the following 719

section will reference Corollary 10 instead of the individual 720

lemma and theorem statements, which it combines. 721

VIII. LMI FORMULATION OF THE DUAL STABILITY TEST 722

In this section, we apply the positivity conditions developed 723

in Section VII to the operators parameterized in Section V-B, 724

yielding a computational method for verification of the dual 725

stability conditions of Theorem 5 and Corollary 7. 726
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A. LMI Test for Dual Stability With Multiple Delays727

We first consider the case of systems with multiple delays.728

The variables in the LMI are the matrix P and the coefficients729

of the polynomial functions Qi Si , and Rij . The polynomial730

constraints ∈ Ξd,n,nK and ∈ Ξd,n(K +1),nK represent LMI con-731

straints on the coefficients of the polynomials as per Theorem 9.732

Theorem 11: Suppose there exist d ∈ N, constant ε > 0, ma-733

trix P ∈ Rn×n , polynomials Si,Qi ∈ Wn×n
2 [T 0

i ] and Rij ∈734

Wn×n
2

[
T 0

i × T 0
j

]
for i, j ∈ [K] such that735

L1(P − εIn ,Qi, Si − εIn ,Rij ) ∈ Ξd,n,nK

L1(D1 + εÎ, Vi, Ṡi + εIn ,Gij ) ∈ Ξd,n(K +1),nK

where Î = diag(In , 0nK ), L1 is as defined in (6), and where736

P1 , V1 , Gij are as defined in Theorem 5.737

Furthermore, suppose738

P = τK Qi(0)T + τK Si(0) for i ∈ [K]

Si(s) = Si(s)T , Rij (s, θ) = Rji(θ, s)T for i, j ∈ [K]

Qj (s) = Rij (0, s) for i, j ∈ [K].

Then, the system defined by (1) is exponentially stable.739

Proof: Clearly, P{P,Qi ,Si ,Ri j } satisfies the conditions of740

Lemma 3. By Corollary 10, we have741 〈
x,P{P −εIn ,Qi ,Si −εIn ,Ri j }x

〉
Zn , K

=
〈
x,P{P,Qi ,Si ,Ri j }x

〉
Zn , K

− ε ‖x‖2
Zn , K

≥ 0

for all x ∈ Zn,K . Similarly, we have742

〈⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦,P{D1 +εÎ ,Vi ,Ṡ i +εIn ,Gi j }

⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦
〉

Zn (K + 1 ) , n , K

=

〈⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦,P{D1 ,Vi ,Ṡ i ,Gi j }

⎡
⎢⎣
[

y1

y2

]

φi

⎤
⎥⎦
〉

Zn (K + 1 ) , n , K

+ ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn , K

≤ 0.

Hence, Theorem 5 establishes the exponential stability743

of (1). �744

B. LMI for Dual Stability of Single-Delay Systems745

We now state an LMI representation of the dual stability746

condition for a single delay (τ1 = τK = τ ). This is a simplified747

version of Theorem 11, where we have eliminated the variables748

P and Q.749

Theorem 12: Suppose there exist d ∈ N, constant ε >750

0, polynomials S ∈ Wn×n
2 [−τ, 0] and R ∈ Wn×n

2 [[−τ, 0] ×751

[−τ, 0]], with R(s, θ) = R(θ, s)T and S(s) ∈ Sn such that752

{τ(R(0, 0) + S(0)) − εIn ,R(0, ·), S − εIn ,R} ∈ Ξd,2n,1

−
{

D1 + εIn , V, Ṡ + εIn ,G
}

∈ Ξd,2n,n

where D1 , V , and G are as defined in Corollary 7.753

Then, the systemdefined by (1) in the caseK = 1with τ1 = τ 754

is exponentially stable. 755

Proof: The proof follows from Theorem 11 by defining P = 756

τ(R(0, 0) + S(0)) and Q(s) = R(0, s) and noting that when 757

K = 1 758

{P,Q, S,R} = L1(P,Q, S,R). �

759

IX. MATLAB TOOLBOX IMPLEMENTATION 760

To assist with the application of these results, we have cre- 761

ated a library of functions for verifying the stability conditions 762

described in this paper. These libraries make use of modified 763

versions of the SOSTOOLS [28] and MULTIPOLY toolboxes 764

coupled with either SeDuMi [29] or Mosek. A complete pack- 765

age can be downloaded from [30] or [31] and all scripts and 766

functions are well documented and commented. Key examples 767

of functions included are as follows. 768

1) sosjointpos_mat_ker_ndelay_PQRS_vZ.m 769

a) Declares a [P,Qi,Rij , Si ] that defines an operator, 770

which is positive on Zm,n,K . 771

2) sosmateq.m 772

a) Declare a matrix-valued equality constraint. 773

3) solver_ndelay_dual_joint_nd_RL2.m 774

a) A script that combines the functions listed previ- 775

ously to test the stability of a user-defined problem. 776

These functions are implemented within the pvar framework 777

of SOSTOOLS and are available on Code Ocean. 778

Pseudocode: The following is a pseudocode implementation 779

of the conditions of Theorem 11. 780

(a) [P,Q,R,S]=sosjointpos_mat_ker_ndelay 781

_PQRS 782

(b) [D,E,G,H]=F(P,Q,R,S) 783

(c) [L,M,N,O]=sosjointpos_mat_ker_ndelay 784

_PQRS 785

(d) sosmateq(D+L); sosmateq(E+M) 786

(e) sosmateq(G+N); sosmateq(H+O) 787

Here, we use the function F to represent the derivative con- 788

struction defined in Theorem 11. This is not an actual function 789

in the toolbox. The derivative construction can be found in 790

solver_ndelay_dual_joint_nd_RL2, however. 791

X. NUMERICAL VALIDATION 792

In the preceding sections, we proposed a sufficient condition 793

for stability. However, as discussed, this condition is not nec- 794

essary and there are several potential sources of conservatism, 795

including the constraint P(X) = X and the assumption of an 796

SOS representation of the positive operator. In this section, we 797

apply the dual stability condition to a battery of numerical exam- 798

ples in order to determine whether this potential conservatism 799

is significant. 800

In each case, a table is given that lists the maximum provably 801

stable value of a specified parameter for each degree d. This 802

maximum value is found using bisection on the parameter. In 803

each case d is increased until the maximum parameter value 804

converges to several decimal places. The true maximum is also 805

provided as either the “limit” or “analytic” value, depending on 806

whether this limiting value is known analytically or is a best es- 807

timate based on simulation. The computation time is also listed 808

in CPU seconds on an Intel i7-5960X 3.0-GHz processor. This 809
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time corresponds to the interior-point (IPM) iteration in SeDuMi810

and does not account for preprocessing, postprocessing, or for811

the time spent on polynomial manipulations formulating the812

SDP using SOSTOOLS. Such polynomial manipulations can813

significantly exceed SDP computation time for small problems.814

b) Example A: First, we consider a simple example that is815

known to be stable for τ ≤ π
2 :816

ẋ(t) = −x(t − τ)

d 1 2 3 analytic
τmax 1.558 1.5707 1.5707 1.5707

CPU sec 0.309 0.516 0.776

c) Example B: Next, we consider a well-studied two-817

dimensional (2-D), single-delay system:818

ẋ(t) =

[
0 1

−2 .1

]
x(t) +

[
0 0

1 0

]
x(t − τ)

d 1 2 3 limit
τmax 1.693 1.7176 1.71785 1.71785
τmin 0.10018 0.100174 0.100174 0.100174

CPU sec 0.478 0.879 2.48

d) Example C: We consider a scalar, two-delay system:819

ẋ(t) = ax(t) + bx(t − 1) + cx(t − 2).

In this case, we fix a = −2 and c = −1 and search for the820

maximum b, which is 3 [32]–[34]:821

d 1 2 3 analytic
bmax 0.829 2.999 2.999 3

CPU sec 0.603 1.50 3.89

e) Example D: We consider a 2-D, two-delay system where822

τ1 = τ2/2 and search for the maximum stable τ2 :823

ẋ(t) =

[
0 1

−1 .1

]
x(t) +

[
0 0

−1 0

]
x(t − τ/2)

+

[
0 0

1 0

]
x(t − τ)

d 1 2 3 limit
τmax 1.354 1.3722 1.3722 1.3722

CPU sec 1.75 7.51 27.2

f) ExampleE:Next,we consider a 4-D, one-delay static output824

feedback system which, in [35], was found to be challenging for825

SOS-basedmethods. This example considers the static feedback826

system827

ẋ(t) = (A − BKC)x(t) + BKCx(t − τ)

where828

A =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−10 10 0 0

5 −15 0 −.25

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎦, C =

⎡
⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎦

T

.

TABLE I
COMPUTATION TIME (IN CPU SEC) INDEXED BY THE NUMBER OF STATES (n)

AND THE NUMBER OF DELAYS (K )

In this case, we take K = 1. It has been reported that it re- 829

quires polynomials of degree 10 even in the primal case to prove 830

stability of h = 3. However, using the dual stability condition, 831

we find a stability proof for degree d = 4, perhaps due to the 832

use of the new parametrization of positive operators. The com- 833

putation times for increasing degrees are listed in the following 834

table: 835

d 1 2 3
CPU sec 2.23 7.45 21.6
Stability? no yes yes

g) Example F: In this example, we consider a generalizedn-D 836

systemwithK delays and examine the computational scalability 837

of the stability test. Our system has the form 838

ẋ(t) = −
K∑

i=1

x(t − i/K)
K

.

For this example, we only search for polynomials of degree 2 839

and leave off the second kernel function. All results indexed in 840

Table I list IPM computation time in seconds and all establish 841

the stability of the system. The table is jointly indexed by the 842

number of states and the number of delays. 843

These numerical examples indicate little, if any conservatism 844

in the LMI implementation of the dual stability conditions, and 845

moreover, the method is accurate for relatively low degree. Ex- 846

ample E shows that computational complexity is a function of 847

nK and that the results scale well to high-dimensional sys- 848

tems and large numbers of delay. Specifically, current desk- 849

top computers with 128-GB RAM can solve problems where 850∼= nK ≤ 50. This scaling can be improved if the delay channel 851

is low dimensional through the use of the differential-difference 852

framework [19]. In the following section, we introduce a con- 853

troller synthesis condition. Note that adding the controller to the 854

optimization problem does not significantly change the compu- 855

tational complexity of the problem. 856

XI. LMI CONTROLLABILITY TEST 857

Establishment of dual stability conditions is the first step in 858

developing full-state feedback controller synthesis conditions. 859

Obtaining the stabilizing controller requires two more steps. 860

Specifically, consider the system ẋ(t) = Ax(t) + Bu(t),where 861

u(t) ∈ Rm . First, we define the controllability test. 862

Theorem 13: Suppose there exist d ∈ N, constant ε > 0, 863

matrix P ∈ Rn×n , polynomials Si,Qi ∈ Wn×n
2 [T 0

i ], Rij ∈ 864

Wn×n
2

[
T 0

i × T 0
j

]
for i, j ∈ [K], matrices Wi ∈ Rm×n , and 865

polynomials Yi ∈ Wm×n
2 for i ∈ [K] such that 866

L1(P − εIn ,Qi, Si − εIn ,Rij ) ∈ Ξd,n,nK

−L1(D1 +W +εÎ, Vi + BYi, Ṡi + εIn ,Gij ) ∈ Ξd,n(K +1),nK
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where Î , D1 , Vi , and Gij are as defined in Theorem 5, L1 is as867

defined in (6), and868

W =

⎡
⎢⎢⎢⎣

BW0 + WT
0 BT BW1 . . . BWK

WT
1 BT 0 . . . 0
...

...
. . .

...
WK BT 0 . . . 0

⎤
⎥⎥⎥⎦.

Furthermore, suppose P,Qi, Si, and Rij satisfy the con-869

ditions of Lemma 3. Then, the system ẋ(t) = A0x(t) =870 ∑
i Aix(t − τi) + Bu(t) is exponentially stabilizable and871

u(t) = ZP−1x(t) is an exponentially stabilizing controller872

where873 (
Z
[

x

φi

])
(s) :=W0x +

K∑
i=1

Wiφi(−τi) +
K∑

i=1

∫ 0

−τi

Yi(s)φi(s)ds.

Proof: If u(t) = ZP−1x(t), then ẋ(t) =874 (A + BZP−1
)
x(t) where875

(Bu)(s) =

[
Bu(t)

0

]
.

Hence, as in Theorem 5, the closed-loop system is stable if876 〈(A + BZP−1)P
[

x

φi

]
,

[
x

φi

]〉

Zn, K

+

〈[
x

φi

]
,
(A + BZP−1)P

[
x

φi

]〉

Zn, K

=

�⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,D+DZ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

x

φ1(−τ1)

...

φk (−τK )

⎤
⎥⎥⎥⎥⎥⎦

φi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�
Zn (K +1 ) , n , K

≤−ε

∥∥∥∥∥
[

x

φi

]∥∥∥∥∥
2

Zn, K

∀
[

x

φi

]
∈ X

where877

DZ := P{W,BYi ,0,0} and D := P{D1 ,Vi ,Ṡ i ,Gi j }.

Now, from Corollary 10, we have878

P{D1 +W +εÎ ,Vi +BYi ,Ṡ i +εIn ,Gi j } ≤ 0

and hence879 &⎡
⎣
[

y1
y2

]

φi

⎤
⎦,P{D1 +W +εÎ ,Vi +BYi ,Ṡ i +εIn ,Gi j }

⎡
⎣
[

y1
y2

]

φi

⎤
⎦
'

=

&⎡
⎣
[

y1
y2

]

φi

⎤
⎦, (D + DZ )

⎡
⎣
[

y1
y2

]

φi

⎤
⎦
'

+ ε

∥∥∥∥∥
[

y1

φi

]∥∥∥∥∥
2

Zn , K

≤ 0.

Fig. 1. MATLAB DDE23 simulation of System (6) and Controller (8)
and delay τ = 5 s.

Therefore, by Theorem 5, the closed-loop system is exponen- 880

tially stable. � 881

The second step in controller synthesis is the construction 882

of the stabilizing controller u(t) = ZP−1
{P,Qi ,Si ,Ri j }, which re- 883

quires inversion of the operator P{P,Qi ,Si ,Ri j }—a topic which 884

is addressed in the sequel to this paper [36]. We illustrate these 885

results in the single-delay case using the well-studied system 886

ẋ(t) =

[
0 0

0 1

]
x(t) +

[−2 −.5

0 −1

]
x(t − τ) +

[
0

1

]
u(t).

(6)
For τ = 5 using simple polynomials of degree 2, we obtained 887

the following exponentially stabilizing controller: 888

u(t) =

[−3601

−944

]T

x(t) +

[−.00891

.872

]T

x(t − τ)

+
∫ 0

−5

[
52.1 + 6.98s + .00839s2 − .0710s3

12.7 + 1.50s − .0407s2 − .0190s3

]T

x(t + s)ds.

(7)

Simulations for fixed initial conditions were performed and 889

can be seen in Fig. 1. 890

XII. CONCLUSION 891

We have proposed a new form of dual Lyapunov stability con- 892

dition that allows the convexification of the controller synthesis 893

problem for delayed and other infinite-dimensional systems. 894

This duality principle requires a Lyapunov operator that is pos- 895

itive, invertible, and self-adjoint and preserves the structure of 896

the state space. We have proposed such a class of operators and 897

used them to create stability conditions that can be expressed as 898

positivity and negativity of quadratic Lyapunov functions. These 899

dual stability conditions have a tridiagonal structure, which is 900

distinct from standard Lyapunov–Krasovskii forms and may 901

be exploited to increase performance when studying systems 902

with large numbers of delays. The dual stability condition is 903

presented in a format that can be adapted to many existing com- 904

putational methods for Lyapunov stability analysis. We have 905
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applied the sum-of-squares approach to enforce the positivity of906

the quadratic forms and tested the stability condition in both the907

single- and multiple-delay cases. Numerical testing on several908

examples indicates the method is not likely to be conservative.909

The contribution of this paper is not in the efficiency of the910

stability test, however, as these are likely less efficient when911

compared to, e.g., previous SOS results due to the structural912

constraints imposed upon the operator. Rather, the contribu-913

tion is in the convexification of the synthesis problem, which914

opens the door for dynamic output-feedback H∞ synthesis for915

infinite-dimensional systems. This potential is demonstrated in916

the numerical example of controller synthesis for a single-delay917

system.918
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